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ABSTRACT. We consider the Laplace operator in a tubular neighbourhood of a conical surface
of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry
and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a
critical total magnetic flux depending on the aperture of the conical surface for which the system
undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential
spectrum to an empty discrete spectrum. For the critical flux we establish a Hardy-type inequality.
In the regime with infinite discrete spectrum we obtain sharp spectral asymptotics with refined
estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of
the surface and the flux of the magnetic field.

1. INTRODUCTION

1.1. Motivation and state of the art. Various physical properties of quantum systems can be
explained through a careful spectral analysis of the underlying Hamiltonian. In this paper we
consider the Hamiltonian of a quantum particle constrained to a tubular neighbourhood of a
conical surface by hard-wall boundary conditions and subjected to an external Aharonov-Bohm
magnetic field supported on the axis of symmetry. It turns out that the system exhibits a spectral
transition: depending on the geometric aperture of the conical surface, there exists a critical total
magnetic flux which suddenly switches from infinitely many bound states to an empty discrete
spectrum.

The choice of such a system requires some comments. First, the existence of infinitely many
bound states below the threshold of the essential spectrum is a common property shared by
Laplacians on various conical structures. This was first found in [DEK01, CEK04], revisited
in [ET10], and further analysed in [DOR15] for the Dirichlet Laplacian in the tubular neighbour-
hood of the conical surface. In agreement with these pioneering works, in this paper we use
the term layer to denote the tubular neighbourhood. Later, the same effect was observed for
other realisations of Laplacians on conical structures [BEL14, BDPR15, BR15, BPP16, LO16, P15].
Second, the motivation for combining Dirichlet Laplacians on conical layers with magnetic
fields has a clear physical importance in quantum mechanics [SST69]. Informally speaking,
magnetic fields act as “repulsive” interactions whereas the specific geometry of the layer acts
as an “attractive” interaction. Therefore, one expects that if a magnetic field is not too strong
to change the essential spectrum but strong enough to compensate the binding effect of the
geometry, the number of eigenvalues can become finite or the discrete can even fully disappear.

Our main goal is to demonstrate this effect for an idealised situation of an infinitely thin
and long solenoid put along the axis of symmetry of the conical layer, which is conventionally
realised by a singular Aharonov-Bohm-type magnetic potential. First of all, we prove that
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the essential spectrum is stable under the geometric and magnetic perturbations considered
in this paper. As the main result, we establish the occurrence of an abrupt spectral transition
regarding the existence and number of discrete eigenvalues. In the sub-critical regime, when
the magnetic field is weak, we prove the existence of infinitely many bound states below the
essential spectrum and obtain a precise accumulation rate of the eigenvalues with refined
estimate of the remainder. The method of this proof is inspired by [DOR15], see also [LO16]. In
the case of the critical magnetic flux we obtain a global Hardy inequality which, in particular,
implies that there are no bound states in the sup-critical regime.

A similar phenomenon is observed in [NR16] where it is shown that a sufficiently strong
Aharonov-Bohm point interaction can remove finitely many bound states in the model of
a quantum waveguide laterally coupled through a window [ESTV96, P99]. There are also
many other models where a sort of competition between binding and repulsion caused by
different mechanism occurs. For example, bending of a quantum waveguide acts as an attractive
interaction [DE95, CDFK05] whereas twisting of it acts as a repulsive interaction [EKK08, K08].
Thus, bound states in such a waveguide exist only if the bending is in a certain sense stronger
than twisting. It is also conjectured in [S00, Sec. IX] (but not proven so far) that a similar effect
can arise for atomic many-body Hamiltonians at specific critical values of the nucleus charge.
Here, both binding and repulsive forces are played by Coulombic interactions.

1.2. Aharonov-Bohm magnetic Dirichlet Laplacian on a conical layer. Given an angle θ ∈
(0, π/2), our configuration space is a π/2-tubular neighbourhood of a conical surface of opening
angle 2θ. Such a domain will be denoted here by Lay(θ) and called a conical layer. Because of the
rotational symmetry, it is best described in cylindrical coordinates.

To this purpose, let (x1, x2, x3) be the Cartesian coordinates on the Euclidean space R3 and R2+
be the positive half-plane (0,+∞)× R. We consider cylindrical coordinates (r, z, φ) ∈ R2+ × S1
defined via the following standard relations

(1.1) x1 = r cosφ, x2 = r sinφ, x3 = z.

For further use, we also introduce the axis of symmetry Γ := {(r, z, φ) ∈ R2+ × S1 : r = 0}. We
abbreviate by (er, eφ, ez) the moving frame

er := (cosφ, sinφ, 0), eφ := (− sinφ, cosφ, 0), ez := (0, 0, 1),

associated with the cylindrical coordinates (r, z, φ).
To introduce the conical layer Lay(θ) with half-opening angle θ ∈ (0, π/2), we first define its

meridian domain Gui(θ) ⊂ R2+ (see Figure 1.1) by

(1.2) Gui(θ) =
{
(r, z) ∈ R2+ : −

π

sin θ
< z, max(0, z tan θ) < r < z tan θ+

π

cos θ

}
.

Then the conical layer Lay(θ) associated with Gui(θ) is defined in cylindrical coordinates (1.1)
by

(1.3) Lay(θ) := Gui(θ)× S1.
The layer Lay(θ) can be seen as a sub-domain of R3 constructed via rotation of the meridian
domain Gui(θ) around the axis Γ .

For later purposes we split the boundary ∂Gui(θ) of Gui(θ) into two parts defined as

∂0Gui(θ) := {(0, z) : − π < z sin θ < 0} , ∂1Gui(θ) := ∂Gui(θ) \ ∂0Gui(θ).

The distance between the two connected components of ∂1Gui(θ) is said to be the width of the
layer Lay(θ). We point out that the meridian domain is normalised so that the width of Lay(θ)



SPECTRAL TRANSITIONS FOR AHARONOV-BOHM LAPLACIANS ON CONICAL LAYERS 3

z

r

θ

Gui(θ)

− π
sin θ

•
0
•

FIGURE 1.1. The meridian domain Gui(θ).

equals π for any value of θ. This normalization simplifies notations significantly and it also
preserves all possible spectral features without loss of generality, because the problem with an
arbitrary width is related to the present setting by a simple scaling.

In order to define the Aharonov-Bohm magnetic field (AB-field) we are interested in, we introduce
a real-valued functionω ∈ L2(S1) and the vector potential Aω : R2+ × S1 → R3 by

(1.4) Aω(r, z, φ) :=
ω(φ)

r
eφ.

This vector potential is naturally associated with the singular AB-field

(1.5) Bω = ∇×Aω = 2πΦωδΓez,

where δΓ is the δ-distribution supported on Γ and Φω is the magnetic flux

Φω :=
1

2π

∫ 2π
0

ω(φ)dφ.

Note that to check identity (1.5) it suffices to compute ∇× Aω in the distributional sense [M,
Chap. 3].

We introduce the usual cylindrical L2-spaces on R3 and on Lay(θ)

L2cyl(R
3) := L2(R2+ × S1; rdrdzdφ), L2cyl(Lay(θ)) := L2(Gui(θ)× S1; rdrdzdφ).

For further use, we also introduce the cylindrical Sobolev space H1cyl(Lay(θ)) defined as

H1cyl
(
Lay(θ)

)
:=

{
u ∈ L2cyl(Lay(θ)) :

∫
Lay(θ)

(
|∂ru|

2 + |∂zu|
2 +

|∂φu|
2

r2

)
rdrdzdφ < +∞}.

The spaceH1cyl(Lay(θ)) is endowed with the norm ‖ · ‖H1cyl(Lay(θ)) defined, for all u ∈ H1cyl(Lay(θ)),
by

‖u‖2
H1cyl(Lay(θ)) = ‖u‖

2
L2cyl(Lay(θ)) +

∫
Lay(θ)

(
|∂ru|

2 + |∂zu|
2 +

|∂φu|
2

r2

)
rdrdzdφ.

Now, we define the non-negative symmetric densely defined quadratic form on the Hilbert
space L2cyl(Lay(θ)) by

(1.6) Qω,θ,0[u] := ‖(i∇− Aω)u‖2L2cyl(Lay(θ)), domQω,θ,0 := C∞
0 (Lay(θ)).

The quadratic form Qω,θ,0 is closable by [K, Thm. VI.1.27], because it can be written via integra-
tion by parts as

Qω,θ,0[u] = 〈Hω,θ,0u, u〉L2cyl(Lay(θ))
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where the operator Hω,θ,0u := (i∇ − Aω)
2u with dom Hω,θ,0 := C∞

0 (Lay(θ)) is non-negative,
symmetric, and densely defined in L2(Lay(θ)). In the sequel, it is convenient to have a special
notation for the closure of Qω,θ,0

(1.7) Qω,θ := Qω,θ,0.

Now we are in a position to introduce the main object of this paper.

Definition 1.1. The self-adjoint operator Hω,θ in L2cyl(Lay(θ)) associated with the form Qω,θ via the
first representation theorem [K, Thm. VI.2.1] is regarded as the Aharonov-Bohm magnetic Dirichlet
Laplacian on the conical layer Lay(θ).

The Hamiltonian Hω,θ can be seen as an idealization for a more physically realistic self-adjoint
Hamiltonian Hω,θ,W associated with the closure of the quadratic form

u ∈ C∞
0

(
R2+ × S1

)
7→ ‖(i∇− Aω)u‖2L2cyl(R3)

+ (Wu,u)L2cyl(R3)

where the potentialW : R2+ × S1 → R is a piecewise constant function given by

W(r, z, φ) =

{
0, (r, z, φ) ∈ Lay(θ),
W0, (r, z, φ) /∈ Lay(θ).

The strong resolvent convergence of Hω,θ,W to Hω,θ in the limit W0 → +∞ follows from the
monotone convergence for quadratic forms [RS-I, §VIII.7].

Before going any further, we remark thatΦω + k ∈ R with k ∈ Z can alternatively be seen as
a constant real-function in L2(S1) and that

(1.8) AΦω+k − Aω = ∇V with V(φ) := (Φω + k)φ−

∫φ
0

ω(ξ)dξ.

The gauge transform is defined as

(1.9) GV : L
2
cyl(Lay(θ))→ L2cyl(Lay(θ)), GVu := eiVu.

Clearly, the operator GV is unitary. By Proposition A.1 proven in Appendix A the oper-
ators Hω,θ and HΦω+k,θ are unitarily equivalent via the transform GV . Therefore, taking
k = −argmin k∈Z{|k − Φω|} we can reduce the case of general ω ∈ L2(S1;R) to constant
ω ∈ [−1/2, 1/2]. For symmetry reasons Hω,θ is unitary equivalent to H−ω,θ for any ω ∈ R.
Thus, the case of constantω ∈ [−1/2, 1/2] is further reduced toω ∈ [0, 1/2].

Whenω = 0, we remark that the quadratic form Q0,θ,0 coincides with the quadratic form of
a Dirichlet Laplacian in cylindrical coordinates. Moreover, we have

C∞
0 (Lay(θ))

‖·‖
H1cyl(Lay(θ))

= C∞
0 (Lay0(θ))

‖·‖
H1cyl(Lay(θ))

,

where Lay0(θ) =
(
Gui(θ) ∪ ∂0Gui(θ)

)
× S1. Consequently, the case ω = 0 reduces to the one

analysed in [DEK01, DOR15, ET10] and we exclude it from our considerations. From now on,
we assume thatω ∈ (0, 1/2] is a constant, without loss of generality.

Forω ∈ (0, 1/2] the quadratic form Qω,θ associated with Hω,θ simply reads

Qω,θ[u] =

∫
Lay(θ)

(
|∂ru|

2 + |∂zu|
2 +

|i∂φu−ωu|2

r2

)
rdrdzdφ.
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Following the strategy of [K13, §3.4.1], we consider on the Hilbert space L2(S1) the ordinary
differential self-adjoint operator hω

(1.10) hωv := iv ′ −ωv, dom hω :=
{
v ∈ H1(S1) : v(0) = v(2π)

}
.

The eigenvalues {m−ω}m∈Z of hω are associated with the orthonormal basis of L2(S1) given by

(1.11) vm(φ) = (2π)−1/2eimφ, m ∈ Z.

For anym ∈ Z and u ∈ L2cyl(Lay(θ)), we introduce the projector

(1.12) (π[m]u)(r, z) = 〈u(r, z, φ), vm(φ)〉L2(S1) .

According to the approach of [RS78, §XIII.16], see also [DOR15, LO16] for related considerations,
we can decompose Hω,θ, with respect to this basis, as

(1.13) Hω,θ ∼=
⊕
m∈Z

F[m]
ω,θ,

where the symbol ∼= stands for the unitary equivalence relation and, for allm ∈ Z, the operators
F[m]
ω,θ acting on L2(Gui(θ); rdrdz) are the fibers of Hω,θ. They are associated through the first

representation theorem with the closed, densely defined, symmetric non-negative quadratic
forms

(1.14) f
[m]
ω,θ[u] :=

∫
Gui(θ)

(
|∂ru|

2 + |∂zu|
2 +

(m−ω)2

r2
|u|2
)
rdrdz, dom f

[m]
ω,θ := π

[m]
(
domQω,θ

)
.

The domain of the operator F[m]
ω,θ can be deduced from the form f

[m]
ω,θ in the standard way via the

first representation theorem.
Finally, we introduce the unitary operator U : L2(Gui(θ); rdrdz) → L2(Gui(θ)), Uu :=

√
ru.

This unitary operator allows to transform the quadratic forms f
[m]
ω,θ into other ones expressed

in a flat metric. Indeed, the quadratic form f
[m]
ω,θ is unitarily equivalent via U to the form on the

Hilbert space L2(Gui(θ)) defined as

(1.15) q
[m]
ω,θ[u] :=

∫
Gui(θ)

(
|∂ru|

2+ |∂zu|
2+

(m−ω)2 − 1/4

r2
|u|2
)

drdz, dom q
[m]
ω,θ := U(dom f

[m]
ω,θ).

In fact, one can prove that C∞
0 (Gui(θ)) is a form core for q[m]

ω,θ and that its form domain satisfies

(1.16) dom q
[m]
ω,θ = H

1
0(Gui(θ)).

We refer to Appendix B for a justification of (1.16) and we would like to emphasise that (1.16)
does not hold forω = 0 but we excluded this case from our considerations.

It will be handy in what follows to drop the superscript [0] form = 0 and to set

(1.17) Fω,θ := F[0]
ω,θ, fω,θ := f

[0]
ω,θ, qω,θ := q

[0]
ω,θ.

1.3. Main results. We introduce a few notation before stating the main results of this paper. The
set of positive integers is denoted by N := {1, 2, . . . } and the set of natural integers is denoted by
N0 := N ∪ {0}. Let T be a semi-bounded self-adjoint operator associated with the quadratic form
t. We denote by σess(T) and σdisc(T) the essential and the discrete spectrum of T, respectively.
By σ(T), we denote the spectrum of T (i.e.σ(T) = σess(T) ∪ σdisc(T)).
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Let t1 and t1 be two quadratic forms of domains dom (t1) and dom (t2), respectively. We say
that we have the form ordering t1 ≺ t2 if

dom (t2) ⊂ dom (t1) and t1[u] ≤ t2[u], for all u ∈ dom (t2).

We set Eess(T) := infσess(T) and, for k ∈ N, Ek(T) denotes the k-th Rayleigh quotient of T,
defined as

Ek(T) = sup
u1,...,uk−1∈dom t

inf
u∈span(u1,...,uk−1)⊥

u∈dom t\{0}

t[u]

‖u‖2
.

From the min-max principle (see e.g. [RS78, Chap. XIII]), we know that if Ek(T) ∈ (−∞, Eess(T)),
the k-th Rayleigh quotient is a discrete eigenvalue of finite multiplicity. Especially, we have the
following description of the discrete spectrum below Eess(T)

σdisc(T) ∩ (−∞, Eess(T)) =
{
Ek(T) : k ∈ N, Ek(T) < Eess(T)

}
.

Consequently, if Ek(T) ∈ σdisc(T), it is the k-th eigenvalue with multiplicity taken into account.
We define the counting function of T as

NE(T) := #
{
k ∈ N : Ek(T) < E

}
, E ≤ Eess(T).

When working with the quadratic form t, we use the notations σess(t), σdisc(t), σ(t), Eess(t), Ek(t)
and NE(t) instead.

Our first result gives the description of the essential spectrum of Hω,θ.

Theorem 1.2. Let θ ∈ (0, π/2) andω ∈ (0, 1/2]. There holds,

σess(Hω,θ) = [1,+∞).

The minimum at 1 of the essential spectrum is a consequence of the normalisation of the
width of Lay(θ) to π. The method of the proof of Theorem 1.2 relies on a construction of
singular sequences as well as on form decomposition techniques. A similar approach is used
e.g. in [CEK04, DEK01, ET10] for Dirichlet conical layers without magnetic fields and in [BEL14]
for Schrödinger operators with δ-interactions supported on conical surfaces. In this paper we
simplify the argument by constructing singular sequences in the generalized sense [KL14] on
the level of quadratic forms.

Now we state a proposition that gives a lower bound on the spectra of the fibers F[m]
ω,θ with

m 6= 0.

Proposition 1.3. Let θ ∈ (0, π/2) andω ∈ (0, 1/2]. There holds

infσ(F[m]
ω,θ) ≥ 1, ∀m 6= 0.

Relying on this proposition and on Theorem 1.2, we see that the investigation of the discrete
spectrum of Hω,θ reduces to the axisymmetric fiber Fω,θ of decomposition (1.13). When there is
no magnetic field (ω = 0) this result can be found in [ET10, Prop. 3.1]. An analogous statement
holds also for δ-interactions supported on conical surfaces [LO16, Prop. 2.5].

Now, we formulate a result on the ordering between Rayleigh quotients.
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Proposition 1.4. Let 0 < θ1 ≤ θ2 < π/2,ω1 ∈ (0, 1/2], andω2 ∈ [cos θ2(cos θ1)−1ω1, 1/2]. Then

Ek(Fω1,θ1) ≤ Ek(Fω2,θ2).
holds for all k ∈ N.

If the Rayleigh quotients in Proposition 1.4 are indeed eigenvalues, we get immediately an
ordering of the eigenvalues for different apertures θ and values ofω. In particular, ifω1 = ω2,
we obtain that the Rayleigh quotients are non-decreasing functions of the aperture θ. The latter
property is reminiscent of analogous results for broken waveguides [DLR12, Prop. 3.1] and for
Dirichlet conical layers without magnetic fields [DOR15, Prop. 1.2]. A similar claim also holds
for δ-interactions supported on broken lines [EN03, Prop. 5.12] and on conical surfaces [LO16,
Prop. 1.3]. The new aspect of Proposition 1.4 is that we obtain a monotonicity result with respect
to two parameters. Proposition 1.4 implies that the eigenvalues are non-decreasing if we weaken
the magnetic field and compensate by making the aperture of the conical layer smaller and vice
versa.

The next theorem is the first main result of this paper.

Theorem 1.5. Let θ ∈ (0, π/2) andω ∈ (0, 1/2]. The following statements hold.

(i) For cos θ ≤ 2ω, #σdisc(Fω,θ) = 0.

(ii) For cos θ > 2ω, #σdisc(Fω,θ) =∞ and

N1−E(Fω,θ) =
√

cos2 θ− 4ω2

4π sin θ
| lnE|+ O(1), E→ 0+ .

For a fixed θ ∈ (0, π/2), Theorem 1.5 yields the existence of a critical flux

(1.18) ωcr = ωcr(θ) :=
cos θ
2

at which the number of eigenvalues undergoes an abrupt transition from infinity to zero. This is,
to our knowledge, the first example of a geometrically non-trivial model that exhibits such a
behaviour. In comparison, in the special caseω = 0, this phenomenon arises at θ = π/2which
is geometrically simple because the domain Lay(π/2) can be seen in the Cartesian coordinates
as the layer between two parallel planes at distance π.

The spectral asymptotics proven in Theorem 1.5 (ii) is reminiscent of [DOR15, Thm. 1.4].
However, it can be seen that the magnetic field enters the coefficient in front of the main term.
As a slight improvement upon [DOR15, Thm. 1.4], in Theorem 1.5 we explicitly state that the
remainder in this asymptotics is just O(1). The main new feature in Theorem 1.5, compared
to the previous publications on the subject, is the absence of discrete spectrum Fω,θ for strong
magnetic fields stated in Theorem 1.5 (i). This result is achieved by proving a Hardy-type
inequality for the quadratic form qθ := qωcr,θ. This inequality is the second main result of this
paper. It is also of independent interest in view of potential applications in the context of the
associated heat semigroup, cf. [K13, CK14].

Theorem 1.6 (Hardy-type inequality). Let θ ∈ (0, π/2). There exists c > 0 such that

(1.19) qθ[u] − ‖u‖2L2(Gui(θ)) ≥ c
∫

Gui(θ)

(r cos θ− z sin θ)3

1+ r2

sin2 θ
ln2
(

r
cos θ

2
r cos θ−z sin θ

) |u|2drdz
holds for any u ∈ C∞

0 (Gui(θ)).
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Finally, we point out that Theorem 1.6 implies that for any V ∈ C∞
0 (Lay(θ))

(1.20) #σdisc(Hωcr,θ − µV) = 0

holds for all sufficiently small µ > 0. This observation can be extended to some potentials
V ∈ C∞

0 (Lay(θ)), but we can not derive (1.20) for any V ∈ C∞
0 (Lay(θ)) from Theorem 1.6,

because the weight on the right-hand side of (1.19) vanishes on the part of ∂Gui(θ) satisfying
r = z tan θ. It is an open question whether a global Hardy inequality with weight non-vanishing
on the whole ∂Gui(θ) can be proven.

1.4. Structure of the paper. In Section 2 we prove Theorem 1.2 about the structure of the
essential spectrum. In Section 3 we reduce the analysis of the discrete spectrum of Hω,θ to the
discrete spectrum of its axisymmetric fiber, prove Proposition 1.4 about inequalities between the
Rayleigh quotients, and Theorem 1.5 (ii) on infiniteness of the discrete spectrum and its spectral
asymptotics. Theorem 1.5 (i) on absence of discrete spectrum and Theorem 1.6 on a Hardy-type
inequality are proven in Section 4. Some technical arguments are gathered into Appendices A
and B.

2. ESSENTIAL SPECTRUM

In this section we prove Theorem 1.2 on the structure of the essential spectrum of Hω,θ.
Observe that for any m 6= 0 the form ordering fω,θ ≺ f

[m]
ω,θ follows directly from (1.14). Hence,

according to decomposition (1.13), to prove Theorem 1.2 it suffices only to verify σess(fω,θ) =
[1,+∞) which is equivalent to checking that σess(qω,θ) = [1,+∞).

To simplify the argument we reformulate the problem in another set of coordinates perform-
ing the rotation

(2.1) s = z cos θ+ r sin θ, t = −z sin θ+ r cos θ,

that transforms the meridian domain Gui(θ) into the half-strip with cornerΩθ (see Figure 2.1)
defined by

(2.2) Ωθ =
{
(s, t) ∈ R× (0, π) : s > −t cot θ

}
.

In the sequel of this subsection, 〈·, ·〉 and ‖ · ‖ denote the inner product and the norm on L2(Ωθ),
respectively.

Rotation (2.1) naturally defines a unitary operator

(2.3) Uθ : L2(Ωθ)→ L2(Gui(θ)), (Uθu)(r, z) := u(z cos θ+ r sin θ,−z sin θ+ r cos θ),

s

t

Ωθ

−π cot θ
•

0
•

(−π cot θ, π)
•

FIGURE 2.1. The domainΩθ.
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and induces a new quadratic form

hω,θ[u] :=qω,θ[Uθu] =
∫
Ωθ

(
|∂su|

2 + |∂tu|
2 −

γ|u|2

(s+ t cot θ)2
)

dsdt, dom hω,θ := H
1
0(Ωθ),(2.4a)

where γ = γ(ω,θ) :=
1/4−ω2

sin2 θ
.(2.4b)

Since the form hω,θ is unitarily equivalent to qω,θ, proving Theorem 1.2 is equivalent to showing
that σess(hω,θ) = [1,+∞). We split this verification into checking the two inclusions.

2.1. The inclusion σess(hω,θ) ⊃ [1,+∞). We verify this inclusion by constructing singular
sequences for hω,θ in the generalized sense [KL14, App. A] for every point of the interval
[1,+∞). Let us start by fixing a function χ ∈ C∞

0 (1, 2) such that ‖χ‖L2(1,2) = 1. For all p ∈ R+,
we define the functions un,p : Ωθ → C, n ∈ N, as

(2.5) un,p(s, t) :=

(
1√
n
χ
( s
n

)
exp(ips)

)(√
2

π
sin(t)

)
.

According to (1.16) it is not difficult to check that un,p ∈ dom hω,θ. It is also convenient to
introduce the associated functions vn,p, wn,p : Ωθ → C, n ∈ N, as

vn,p(s, t) :=

(
1

n3/2
χ′
( s
n

)
exp(ips)

)(√
2

π
sin(t)

)
,

wn,p(s, t) :=

(
1√
n
χ
( s
n

)
exp(ips)

)(√
2

π
cos(t)

)
.

First, we get

‖un,p‖2 =
2

π

∫π
0

∫ 2n
n

1

n

∣∣∣χ( s
n

)∣∣∣2 sin2(t)dsdt = 1.(2.6)

‖vn,p‖2 =
2

π

1

n2

∫π
0

∫ 2n
n

1

n

∣∣∣χ′ ( s
n

)∣∣∣2 sin2(t)dsdt =
1

n2
‖χ′‖2L2(1,2) → 0, n→∞.(2.7)

Further, we compute the partial derivatives ∂sun,p and ∂tun,p

(2.8) (∂sun,p)(s, t) = ipun,p(s, t) + vn,p(s, t), (∂tun,p)(s, t) = wn,p(s, t),

and we define an auxiliary potential by

(2.9) Vω,θ(s, t) :=
γ(ω,θ)

(s+ t cot θ)2
.

For any φ ∈ dom hω,θ we have

In,p(φ) := hω,θ[φ,un,p] − (1+ p2)〈φ,un,p〉

= 〈∇φ,∇un,p〉− 〈Vω,θφ,un,p〉− (1+ p2)〈φ,un,p〉

=

(〈
∇φ,

(
ipun,p
wn,p

)〉
− (1+ p2)〈φ,un,p〉

)
︸ ︷︷ ︸

=:Jn,p(φ)

+

(〈
∇φ,

(
vn,p
0

)〉
− 〈Vω,θφ,un,p〉

)
︸ ︷︷ ︸

=:Kn,p(φ)

.
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Integrating by parts and applying the Cauchy-Schwarz inequality we obtain

|Jn,p(φ)| =
∣∣∣−〈φ, ip∂sun,p + ∂twn,p〉− (1+ p2)〈φ,un,p〉

∣∣∣
=
∣∣∣〈φ, p2un,p + un,p〉− (1+ p2)〈φ,un,p〉− 〈φ, ipvn,p〉

∣∣∣ = |〈φ, ipvn,p〉| ≤ p‖φ‖‖vn,p‖.

Applying the Cauchy-Schwarz inequality once again and using (2.6) and (2.8) we get

|Kn,p(φ)| ≤ ‖φ‖ sup
(s,t)∈(n,2n)×(0,π)

|Vω,θ(s, t)|+ ‖∇φ‖ ‖vn,p‖ =
γ

n2
‖φ‖+ ‖∇φ‖‖vn,p‖.

Let us define the norm ‖ · ‖+1 as

‖φ‖2+1 := hω,θ[φ] + ‖φ‖2, φ ∈ dom hω,θ.

Clearly, ‖φ‖+1 ≥ ‖φ‖ and, moreover, for sufficiently small ε > 0, it holds

ω(ε) :=
√
1/4+ (1− ε)−1(ω2 − 1/4) ∈ (0, 1/2]

and
‖φ‖2+1 ≥ hω,θ[φ] = ε‖∇φ‖2 + (1− ε)hω(ε),θ[φ] ≥ ε‖∇φ‖2,

where we used hω(ε),θ[φ] ≥ 0 in the last step. Therefore, for any φ ∈ dom hω,θ, φ 6= 0, we have
by (2.7)

(2.10)
|In,p(φ)|

‖φ‖+1
≤ |Jn,p(φ)|

‖φ‖+1
+

|Kn,p(φ)|

‖φ‖+1
≤ p‖vn,p‖+

γ

n2
+ ε−1/2‖vn,p‖→ 0, n→∞.

Here, the upper bound on |In,p(φ)|
‖φ‖+1 is given by a vanishing sequence which is independent of φ.

Since the supports of u2k,p and u2l,p with k 6= l are disjoint, the sequence {u2k,p} converges
weakly to zero. Hence, (2.6) and (2.10) imply that {u2k,p} is a singular sequence in the generalized
sense [KL14, App. A] for hω,θ corresponding to the point 1+ p2. Therefore, by [KL14, Thm. 5],
1+ p2 ∈ σess(hω,θ) for all p ∈ R+ and it follows that [1,+∞) ⊂ σess(hω,θ).

2.2. The inclusion σess(hω,θ) ⊂ [1,+∞). We check this inclusion using the form decomposi-
tion method. For n ∈ N we define two subsets ofΩθ

(2.11) Ω+
n := {(s, t) ∈ Ωθ : s < n}, Ω−

n := {(s, t) ∈ Ωθ : s > n},

as shown in Figure 2.2. For the sake of simplicity we do not indicate dependence of Ω+
n on θ.

We also introduce
Λn := {(s, t) ∈ Ωθ : s = n}.

For u ∈ L2(Ωθ) we set u± := u|Ω±n . Further, we introduce the Sobolev-type spaces

(2.12) H10,N(Ω
±
n ) :=

{
u ∈ H1(Ω±n ) : u|∂Ω±n \Λn = 0

}
and consider the following quadratic forms

(2.13) h±ω,θ,n[u] :=

∫
Ω±n

(
|∂su

±|2 + |∂tu
±|2 − Vω,θ|u

±|2
)

dsdt, dom h±ω,θ,n := H10,N(Ω
±
n ),

where Vω,θ is as in (2.9). One can verify that the form h±ω,θ,n is closed, densely defined, symmetric
and semibounded from below in L2(Ω±n ).
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Due to the compact embedding of H10,N(Ω
+
n) into L2(Ω+

n) the spectrum of h+ω,θ,n is purely
discrete. The spectrum of h−ω,θ,n can be estimated from below as follows

(2.14) infσ(h−ω,θ,n) ≥ 1− sup
(s,t)∈Ω−

n

Vω,θ(s, t) = 1−
γ

n2
.

The discreteness of the spectrum for h+ω,θ,n and the estimate (2.14) imply that

infσess(h
+
ω,θ,n ⊕ h−ω,θ,n) ≥ 1−

γ

n2
.

Notice that the ordering h+ω,θ,n ⊕ h−ω,θ,n ≺ hω,θ holds. Hence, by the min-max principle we have

infσess(hω,θ) ≥ infσess(h
+
ω,θ,n ⊕ h−ω,θ,n) ≥ 1−

γ

n2
,

and passing to the limit n→∞we get infσess(hω,θ) ≥ 1.

3. DISCRETE SPECTRUM

The aim of this section is to discuss properties of the discrete spectrum of Hω,θ, which has
the physical meaning of quantum bound states. In subsection 3.1 we reduce the study of the
discrete spectrum of Hω,θ to its axisymmetric fiber Fω,θ introduced in (1.17). Then, in subsection
3.2, we prove Proposition 1.4 about the ordering of the Rayleigh quotients. Finally, in subsection
3.3, we are interested in the asymptotics of the counting function in the regimeω ∈ (0,ωcr(θ))
and we give a proof of Theorem 1.5 (ii).

3.1. Reduction to the axisymmetric operator. The goal of this subsection is to prove Proposi-
tion 1.3. In the proof we use the strategy developed in [DOR15, ET10] for Dirichlet conical layers
without magnetic fields.

Consider the quadratic forms in the flat metric q
[m]
ω,θ given in (1.15). For all m 6= 0 and

ω ∈ (0, 1/2], we have (m−ω)2 ≥ 1/4. Consequently, for any u ∈ H10(Gui(θ)), we get

(3.1) q
[m]
ω,θ[u] ≥ ‖∇u‖

2
L2(Gui(θ)).

Any function u ∈ H10(Gui(θ)) can be extended by zero to the strip

Str(θ) :=
{
(r, z) ∈ R2 : z tan θ < r < z tan θ+

π

cos θ

}
,

defining a function u0 ∈ H10(Str(θ)). Hence, inequality (3.1) can be re-written as

q
[m]
ω,θ[u] ≥ ‖∇u0‖

2
L2(Str(θ)).

s

t

Ω+
n Ω−

n

−π cot θ
•

0
•

(−π cot θ, π)
•

n
•

FIGURE 2.2. The domainΩθ and the subdomainsΩ±
n .
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The right-hand side of the last inequality is the quadratic form of the two-dimensional Dirichlet
Laplacian in a strip of width π. The spectrum of this operator is only essential and equals
[1,+∞). Hence, by the min-max principle we get

q
[m]
ω,θ[u] ≥ ‖u0‖

2
L2(Str(θ)) = ‖u‖

2
L2(Gui(θ)).

Finally, applying the min-max principle to the quadratic form q
[m]
ω,θ we obtain

infσ(q[m]
ω,θ) ≥ 1.

This achieves the proof of Proposition 1.3.

3.2. Rayleigh quotients inequalities. The aim of this subsection is to prove Proposition 1.4.
This proof follows the same strategy as the proof of a related statement about broken waveguides
developed in [DLR12, §3].

It will be more convenient to work with the quadratic form fω,θ in the non-flat metric. Let the
domainΩθ be defined as in (2.2) through rotation (2.1). This rotation induces a unitary operator
Rθ : L2(Gui(θ); rdrdz)→ L2(Ωθ; (s sin θ+ t cos θ)dsdt). For u ∈ dom fω,θ, we set ũ(s, t) = u(r, z)
and obtain the identity fω,θ[u] = f̃ω,θ[ũ] with the new quadratic form

f̃ω,θ[ũ] :=

∫
Ωθ

(
|∂sũ|

2 + |∂tũ|
2 +

ω2|ũ|2

(s sin θ+ t cos θ)2
)
(s sin θ+ t cos θ)dsdt,

dom f̃ω,θ := Rθ(dom fω,θ),

which is unitarily equivalent to fω,θ. Now, in order to get rid of the dependence on θ of the
integration domain Ωθ, we perform the change of variables (s, t) 7→ (ŝ, t̂) = (s tan θ, t) that
transforms the domain Ωθ into Ω := Ωπ/4. Setting û(ŝ, t̂) = ũ(s, t) we get for the Rayleigh
quotients

fω,θ[u]

‖u‖2
L2(Gui(θ);rdrdz)

=

∫
Ω

(
tan2 θ|∂ŝû|2 + |∂t̂û|

2 +ω2 cos−2 θ(ŝ+ t̂)−2|û|2
)
(ŝ+ t̂) cos θ cot θdŝdt̂∫

Ω |û|2(ŝ+ t̂) cos θ cot θdŝdt̂

=

∫
Ω

(
tan2 θ|∂ŝû|2 + |∂t̂û|

2 +ω2 cos−2 θ(ŝ+ t̂)−2|û|2
)
(ŝ+ t̂)dŝdt̂∫

Ω |û|2(ŝ+ t̂)dŝdt̂

:=
f̂ω,θ[û]∫

Ω |û|2(ŝ+ t̂)dŝdt̂

The domain of the quadratic form f̂ω,θ does not depend on θ. However, we transferred the
dependence on θ into the expression of f̂ω,θ[û]. Now, let 0 < θ1 ≤ θ2 < π/2, ω1 ∈ (0, 1/2] and
ω2 ∈ [cos θ2(cos θ1)−1ω1, 1/2]. Then we get

(3.2) f̂ω2,θ2 [û]−f̂ω1,θ1 [û] =

∫
Ω

[
(tan2 θ2−tan2 θ1)|∂ŝû|2+

( ω22
cos2 θ2

−
ω21

cos2 θ1

) |û|2

(ŝ+ t̂)2

]
(ŝ+t̂)dŝdt̂.

Since the tangent is an increasing function, the first term on the right hand side is non-negative.
Asω2 is chosen, the second term is also non-negative. Therefore, for any k ∈ N, the min-max
principle and (3.2) yield Ek(̂fω1,θ1) ≤ Ek(̂fω2,θ2) which is equivalent to

Ek(Fω1,θ1) ≤ Ek(Fω2,θ2).

This achieves the proof of Proposition 1.4.
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3.3. Asymptotics of the counting function. This subsection is devoted to the proof of Theo-
rem 1.5 (ii). All along this subsection, θ ∈ (0, π/2) andω ∈ (0,ωcr(θ)) withωcr(θ) = (1/2) cos θ
as in (1.18). The proof follows the same steps as in [DOR15, §3]. However, in presence of a
magnetic field the proof simplifies because instead of working with the form fω,θ introduced
in (1.14) we can work with the unitarily equivalent quadratic form hω,θ defined in (2.4a). In
particular, we avoid using IMS localization formula.

The main idea is to reduce the problem to the known spectral asymptotics of one-dimensional
operators. To this aim, first, we recall the result of [KS88], later extended in [HM08]. Further, let
γ > 0 be fixed. We are interested in the spectral properties of the self-adjoint operators acting on
L2(1,+∞) associated with the closed, densely defined symmetric and semi-bounded quadratic
form,

qN
γ [f] :=

∫∞
1

|f′(x)|2 −
γ|f(x)|2

x2
dx, dom qN

γ := H1(1,+∞),

and with its restriction

qD
γ [f] := qN

γ [f], dom qD
γ := H10(1,+∞).

It is well known that σess(q
D
γ ) = σess(q

N
γ ) = [0,+∞) and it can be shown by a proper choice of

test functions that #σdisc(q
D
γ ) = #σdisc(q

N
γ ) =∞ for all γ > 1/4.

Theorem 3.1 ([KS88, Thm. 1], [HM08, Thm. 1]). As E→ 0+ the counting functions of qD
γ and qN

γ

with γ > 1/4 satisfy

N−E(q
D
γ ) =

1

2π

√
γ−

1

4
| lnE|+ O(1), N−E(q

N
γ ) =

1

2π

√
γ−

1

4
| lnE|+ O(1).

In Proposition 3.2 we establish a lower bound for N1−E(hω,θ) while an upper bound is
obtained in Proposition 3.3. Together with Theorem 3.1 these bounds yield Theorem 1.5 (ii).

Let the sub-domainsΩ± := Ω±1 (for n = 1) ofΩθ be as in (2.11) and the Sobolev-type spaces
H10,N(Ω

±) be as in (2.12). Let also the quadratic forms h±ω,θ := h±ω,θ,1 be as in (2.13). Define the
restriction h−ω,θ,D of h−ω,θ by

h−ω,θ,D[u] := h−ω,θ[u], dom h−ω,θ,D := H10(Ω
−).

To obtain a lower bound, we use a Dirichlet bracketing technique.

Proposition 3.2. Let θ ∈ (0, π/2), ω ∈ (0,ωcr(θ)) be fixed and let γ = γ(ω,θ) be as in (2.4b). For
any E > 0 set Ê = (1+ π cot θ)2E. Then the bound

N
−Ê

(qD
γ ) ≤ N1−E(hω,θ),

holds for all E > 0.

Proof. Any u ∈ H10(Ω
−) can be extended by zero in Ωθ, defining u0 ∈ H10(Ωθ) such that

h−ω,θ,D[u] = hω,θ[u0]. Then, the min-max principle yields

(3.3) N1−E(h
−
ω,θ,D) ≤ N1−E(hω,θ).

Now, we bound (s+ t cot θ)2 from above by (s+ π cot θ)2 and for any u ∈ H10(Ω−), we get

(3.4) h−ω,θ,D[u] ≤
∫
Ω−

|∂su|
2 + |∂tu|

2 −
γ|u|2

(s+ π cot θ)2
dsdt.
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Further, we introduce the quadratic forms for one-dimensional operators

q̂D
γ [f] :=

∫+∞
1

|f′(x)|2 −
γ|f(x)|2

(x+ π cot θ)2
dx, dom q̂D

γ := H10(1,+∞),

qD
(0,π)[f] :=

∫π
0

|f ′(x)|2dx, dom qD
(0,π) := H

1
0(0, π).

The right hand side of (3.4) can be represented as q̂D
γ ⊗ i2+i1⊗qD

(0,π) with respect to the tensor
product decomposition L2(Ω−) = L2(1,+∞) ⊗ L2(0, π) where i1, i2 are the quadratic forms of
the identity operators on L2(1,+∞) and on L2(0, π), respectively. The eigenvalues of qD

(0,π) are
given by {k2}k∈N and hence

(3.5) N−E(q̂
D
γ ) ≤ N1−E(h

−
ω,θ,D).

Finally, we perform the change of variables y = (1 + π cot θ)−1(x + π cot θ). For all functions
f ∈ dom q̂D

γ , we denote g(y) = f(x). We get

q̂D
γ [f]∫+∞

1 |f(x)|2dx
= (1+ π cot θ)−2

qD
γ [g]∫+∞

1 |g(y)|2dy
.

Finally, using (3.3), (3.5) and the min-max principle, we get the desired bound on N1−E(hω,θ). �

To obtain an upper bound, we use a Neumann bracketing technique.

Proposition 3.3. Let θ ∈ (0, π/2) and ω ∈ (0,ωcr(θ)) be fixed and let γ = γ(ω,θ) be as in (2.4b).
Then there exists a constant C = C(ω,θ) > 0 such that

N1−E(hω,θ) ≤ C+N−E(q
N
γ )

holds for all E > 0.

To prove Proposition 3.3 we will need the following two lemmas whose proofs are postponed
until the end of the subsection.

Lemma 3.4. Let θ ∈ (0, π/2) andω ∈ (0,ωcr(θ)) be fixed. Then there exists a constantC = C(ω,θ) >
0 such that

N1−E(h
+
ω,θ) ≤ C

holds for all E > 0.

Lemma 3.5. Let θ ∈ (0, π/2) andω ∈ (0,ωcr(θ)) be fixed and let γ = γ(ω,θ) be as in (2.4b). Then

N1−E(h
−
ω,θ) ≤ N−E(q

N
γ )

holds for all E > 0.

Proof of Proposition 3.3. Note that we have the following form ordering

h+ω,θ ⊕ h−ω,θ ≺ hω,θ

and the min-max principle gives

(3.6) N1−E(hω,θ) ≤ N1−E(h
+
ω,θ) +N1−E(h

−
ω,θ).

The statement follows directly combining (3.6), Lemma 3.4 and Lemma 3.5. �

We conclude this part by the proofs of Lemmas 3.4 and 3.5.
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Proof of Lemma 3.4. Recall that the space H10,N(Ω
+) is compactly embedded into L2(Ω+). Conse-

quently, σ(h+ω,θ) is purely discrete and consists of a non-decreasing sequence of eigenvalues of
finite multiplicity that goes to +∞. In particular, there exists a constant C = C(ω,θ) > 0 such
that

N1−E(h
+
ω,θ) ≤ N1(h

+
ω,θ) ≤ C. �

Proof of Lemma 3.5. InΩ−, we can bound (s+ t cot θ)2 from below by s2. For any u ∈ dom h−ω,θ,
we get ∫

Ω−

|∂su|
2 + |∂tu|

2 −
γ|u|2

s2
dsdt ≤ h−ω,θ[u].

The left-hand side can be seen as the tensor product qN
γ ⊗ i2 + i1 ⊗ qD

(0,π) with respect to the
decomposition L2(Ω−) = L2(1,+∞) ⊗ L2(0, π) where the form qD

(0,π) is defined in the proof of
Proposition 3.2. Since the eigenvalues of qD

(0,π) are given by {k2}k∈N, we deduce that

N1−E(h
−
ω,θ) ≤ N−E(q

N
γ ). �

Proof of Theorem 1.5 (ii). Combining Proposition 3.2 and Proposition 3.3, for any E > 0we get

(3.7) N−(1+π cot θ)2E(q
D
γ ) ≤ N1−E(hω,θ) ≤ C+N−E(q

N
γ ).

For the lower and upper bounds on N1−E(hω,θ) given in (3.7), Theorem 3.1 implies that as
E→ 0+ holds

C+N−E(q
N
γ ) =

1

2π

√
γ−

1

4
| lnE|+ O(1),

N−(1+π cot θ)2E(q
D
γ ) =

1

2π

√
γ−

1

4
| ln((1+ π cot θ)2E)|+ O(1) =

1

2π

√
γ−

1

4
| lnE|+ O(1).

Hence, Theorem 1.5 (ii) follows from the identity√
γ−

1

4
=

√
cos2 θ− 4ω2

2 sin θ
. �

4. A HARDY-TYPE INEQUALITY

The aim of this section is to prove Theorem 1.6. Instead of working with the quadratic form
qω,θ which is used in the formulation of Theorem 1.6 it is more convenient to work with hω,θ
defined in (2.4a). We go back to the form qω,θ only in the end of this section. Recall that we
denote by 〈·, ·〉 and ‖ · ‖, respectively, the inner product and the norm in L2(Ωθ).

In this section we are only interested in the critical caseω = ωcr(θ) = (1/2) cos θ for which
γ(ωcr(θ), θ) = 1/4 holds where γ(ω,θ) is defined in (2.4b). To make the notations more handy
we define hθ := hωcr,θ. For further use, for any (s, t) ∈ Ωθ, we introduce

ρ := ρ(s, t) = s+ t cot θ, ρ0 := ρ0(t) =
1

2
t cot θ.

With this notation the domainΩθ can be represented as

Ωθ =
{
(s, t) ∈ R× (0, π) : s > −2ρ0(t)

}
and the quadratic form hθ can be written as

hθ[u] =

∫
Ωθ

|∂su|
2 + |∂tu|

2 −
|u|2

4ρ2
dsdt, dom hθ = H

1
0(Ωθ).
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The emptiness of the discrete spectrum stated in Theorem 1.5 (i) is an immediate consequence of
Theorem 1.6 and of the min-max principle because for anyω ≥ ωcr the form ordering hθ ≺ hω,θ
holds. Another consequence of Theorem 1.6 is the non-criticality of Hω,θ as stated in (1.20).

To prove Theorem 1.6, we adapt the strategy developed in [CK14, §3]. First, in subsection 4.1
we prove a local Hardy-type inequality for the quadratic form hθ taking advantage of the usual
one-dimensional Hardy inequality. Second, in subsection 4.2, we obtain a refined lower bound
that allows us, in subsection 4.3, to prove Theorem 1.6.

4.1. A local Hardy inequality. Let us introduce the triangle Tθ (see Figure 4.1), which is a
sub-domain ofΩθ defined as

Tθ :=
{
(s, t) ∈ Ωθ : s < −ρ0(t)/2

}
=
{
(s, t) ∈ R× (0, π) : − 2ρ0(t) < s < −ρ0(t)/2

}
.

Tθ Ωθ

θ

FIGURE 4.1. The domainΩθ and the subdomain Tθ (in grey).

We also need to define the auxiliary function

(4.1) f(t) :=
π2

(π− t/4)2
− 1.

Note that f(t) ≥ 0 in Tθ.

Proposition 4.1. For any u ∈ C∞
0 (Ωθ) the inequality∫

Ωθ

|∂tu|
2dsdt− ‖u‖2 ≥

∫
Tθ

f(t)|u|2dsdt,

holds with f(·) as in (4.1).

Before going through the proof of Proposition 4.1, we notice that

hθ[u] − ‖u‖2 =
∫
Ωθ

|∂tu|
2dsdt− ‖u‖2 +

∫π
t=0

∫
s>−t cot θ

|∂su|
2 −

|u|2

4ρ2
dsdt.

In fact, the last term on the right-hand side is positive. It can be seen by performing, in the
s-integral, the change of variable σ = ρ(s, t) for any fixed t ∈ (0, π) and using the classical
one-dimensional Hardy inequality (see e.g. [K, §VI.4., eq. (4.6)]). Together with Proposition 4.1,
it gives the following corollary.

Corollary 4.2 (Local Hardy inequality). For any u ∈ C∞
0 (Ωθ) the inequality

hθ[u] − ‖u‖2 ≥
∫
Tθ

f(t)|u|2dsdt,

holds with f(·) as in (4.1).
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Proof of Proposition 4.1. Let u ∈ C∞
0 (Ωθ). For fixed s ∈ (−π cot θ, 0) the function

(−s tan θ, π) 3 t 7→ u(s, t)

satisfies Dirichlet boundary conditions at t = −s tan θ and t = π. Let

λ1(s) :=
π2

(π− |s| tan θ)2

be the first eigenvalue of the Dirichlet Laplacian on the interval (−s tan θ, π). Hence, we get∫
Ωθ

|∂tu|
2dtds− ‖u‖2 ≥

∫
Ωθ

(
h(s) − 1

)
|u|2dsdt,

with

h(s) :=

{
λ1(s), s ∈ (−π cot θ, 0),
1, s ∈ [0,+∞).

Particularly, we remark that for any s > −π cot θwe have h(s) − 1 ≥ 0. It yields∫
Ωθ

|∂tu|
2dsdt− ‖u‖2 ≥

∫
Tθ

(h(s) − 1)|u|2dsdt.

Finally, as h(·) is non-increasing we obtain∫
Ωθ

|∂tu|
2dsdt− ‖u‖2 ≥

∫
Tθ

(
h(s) − 1

)
|u|2dsdt

=

∫π
t=0

∫−ρ0/2
s=−2ρ0

(
h(s) − 1

)
|u|2dsdt

≥
∫π
t=0

∫−ρ0/2
s=−2ρ0

(
λ1
(
− ρ0/2

)
− 1
)
|u|2dsdt

=

∫
Tθ

(
λ1
(
− ρ0/2

)
− 1
)
|u|2dsdt =

∫
Tθ

f(t)|u|2dsdt. �

4.2. A refined lower-bound. In this subsection we prove the following statement.

Proposition 4.3. For any ε ∈ (0, π−3)∫
Ωθ

|∂su|
2 −

1

4ρ2
|u|2dsdt ≥ ε

16

∫
Ωθ

t3

1+ ρ2 ln2(ρ/ρ0)
|u|2dsdt− ε

∫
Tθ

t3
(
4

ρ20
+
1

8

)
|u|2dsdt

holds for all u ∈ C∞
0 (Ωθ).

To prove Proposition 4.3 we need the following lemma whose proof follows the same lines
as the one of [CK14, Lem. 3.1]. However, we provide it here for the sake of completeness. In the
proofs of this lemma and of Proposition 4.3, we use that for t ∈ (0, π) and g ∈ H10(−2ρ0(t),+∞)∫

s>−2ρ0

|(ρ−1/2g)′|2ρds =
∫
s>−2ρ0

∣∣ρ−1/2g′ − 1/2ρ−3/2g∣∣2ρds

=

∫
s>−2ρ0

|g′|2 −
1

2ρ
(|g|2)′ +

1

4ρ2
|g|2ds

=

∫
s>−2ρ0

|g′|2 −
1

4ρ2
|g|2ds.

(4.2)



18 D. KREJČIŘÍK, V. LOTOREICHIK, AND T. OURMIÈRES-BONAFOS

Lemma 4.4. For any fixed t ∈ (0, π) the inequality∫
s>−ρ0(t)

|g′(s)|2 −
1

4ρ2
|g(s)|2ds ≥ 1

4

∫
s>−ρ0(t)

|g(s)|2

ρ2 ln2(ρ/ρ0)
ds

holds for all g ∈ H10(−ρ0(t),+∞).

Proof. Let t ∈ (0, π) and g ∈ C∞
0 (−ρ0(t),+∞) be fixed. We notice that for any α > 0∫

s>−ρ0

∣∣∣∣(ρ−1/2g)′ − αρ−1/2g

ρ ln(ρ/ρ0)

∣∣∣∣2ρds

=

∫
s>−ρ0

|(ρ−1/2g)′|2ρds+ α2
∫
s>−ρ0

|g|2

ρ2 ln2(ρ/ρ0)
ds− α

∫
s>−ρ0

(
∣∣ρ−1/2g)∣∣2)′
ln(ρ/ρ0)

ds.

(4.3)

For the first term on the right hand side in (4.3) we get by (4.2) that

(4.4)
∫
s>−ρ0

|(ρ−1/2g)′|2ρds =
∫
s>−ρ0

|g′|2 −
1

4ρ2
|g|2ds.

Performing an integration by parts in the last term of the right-hand side in (4.3) we obtain

(4.5)
∫
s>−ρ0

(
|ρ−1/2g)

∣∣2)′
ln(ρ/ρ0)

ds =
∫
s>−ρ0

|g|2

ρ2 ln2(ρ/ρ0)
ds.

Combining (4.3), (4.4), and (4.5) we get∫
s>−ρ0

|g′|2 −
1

4ρ2
|g|2ds ≥ (α− α2)

∫
s>−ρ0

|g|2

ρ2 ln2(ρ/ρ0)
ds.

It remains to set α = 1/2.
The extension of this result to g ∈ H10(−ρ0(t),+∞) relies on the density of C∞

0 (−ρ0(t),+∞)

in H10(−ρ0(t),+∞) with respect to the H1-norm and a standard continuity argument. �

Now we have all the tools to prove Proposition 4.3.

Proof of Proposition 4.3. First, we define the cut-off function ξ : Ωθ → R by

ξ(s, t) :=


0, s ∈ (−2ρ0(t),−ρ0(t)),
2ρ0(t)

−1(s+ ρ0(t)), s ∈ (−ρ0(t),−ρ0(t)/2),
1, s ∈ (−ρ0(t)/2,+∞).

The partial derivative of ξwith respect to the s-variable is given by

(4.6) (∂sξ)(s, t) =

{
2ρ0(t)

−1, s ∈ (−ρ0(t),−ρ0(t)/2),
0, s ∈ (−2ρ0(t),−ρ0(t)) ∪ (−ρ0(t)/2,+∞),

Further, for any u ∈ C∞
0 (Ωθ) and fixed t ∈ (0, π) using (a+ b)2 ≤ 2a2 + 2b2, a, b ∈ R, we get∫

s>−2ρ0

|u|2

1+ ρ2 ln2(ρ/ρ0)
ds ≤ 2

∫
s>−ρ0

|ξu|2

ρ2 ln2(ρ/ρ0)
ds+ 2

∫
s>−2ρ0

|(1− ξ)u|2ds,

where in both integrals we increased the integrands by making the denominators smaller. Note
that for fixed t ∈ (0, π) we have s 7→ ξ(s, t)u(s, t) ∈ H10(−ρ0(t),+∞). Applying Lemma 4.4 and
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using (4.2) we get∫
s>−2ρ0

|u|2

1+ ρ2 ln2(ρ/ρ0)
ds ≤ 8

∫
s>−ρ0

|∂s(ξu)|
2 −

|ξu|2

4ρ2
ds+ 2

∫−ρ0/2
s=−2ρ0

|u|2ds

= 8

∫
s>−ρ0

|∂s(ρ
−1/2ξu)|2ρds+ 2

∫−ρ0/2
s=−2ρ0

|u|2ds

≤ 16
∫
s>−ρ0

(
|ξ∂s(ρ

−1/2u)|2ρ+ |u∂sξ|
2
)

ds+ 2
∫−ρ0/2
s=−2ρ0

|u|2ds

≤ 16
∫
s>−2ρ0

|∂s(ρ
−1/2u)|2ρds+

∫−ρ0/2
s=−ρ0

64

ρ20
|u|2ds+ 2

∫−ρ0/2
s=−2ρ0

|u|2ds

≤ 16
∫
s>−2ρ0

(
|∂su|

2 −
|u|2

4ρ2

)
ds+

∫−ρ0/2
s=−2ρ0

(
64

ρ20
+ 2

)
|u|2ds,

which is equivalent to∫
s>−2ρ0

(
|∂su|

2 −
|u|2

4ρ2

)
ds ≥ 1

16

∫
s>−2ρ0

|u|2

1+ ρ2 ln2(ρ/ρ0)
ds−

∫−ρ0/2
s=−2ρ0

(
4

ρ20
+
1

8

)
|u|2ds

Finally, we multiply each side by εt3 and integrate for t ∈ (0, π)∫
Ωθ

εt3
(
|∂su|

2 −
|u|2

4ρ2

)
dsdt ≥ ε

16

∫
Ωθ

t3

1+ ρ2 ln2(ρ/ρ0)
|u|2dsdt− ε

∫
Tθ

t3
( 4
ρ20

+
1

8

)
|u|2dsdt.

Since for any ε ∈ (0, π−3) holds 0 < εt3 < 1, the inequality in Proposition 4.3 follows. �

4.3. Proof of Theorem 1.6. By Propositions 4.1 and 4.3 we have

hθ[u] − ‖u‖2 =
∫
Ωθ

(
|∂su|

2 −
|u|2

4ρ2

)
dsdt+

∫
Ωθ

|∂tu|
2dsdt

≥ ε

16

∫
Ωθ

t3

1+ ρ2 ln2(ρ/ρ0)
|u|2dsdt+

∫
Tθ

[
f(t) − εt3

(
4

ρ20
+
1

8

)]
|u|2dsdt,

(4.7)

for all u ∈ C∞
0 (Ωθ). For the second term on the right-hand side of (4.7) to be positive it suffices

to verify that for all t ∈ (0, π)

(4.8) hε(t) := f(t) −
16

cot2 θ
εt−

1

8
εt3 ≥ 0.

By definition, f in (4.1) is a C∞-smooth bounded function on (0, π) and for any a ∈ (0, π)
and all t ∈ (a, π) we have f(t) ≥ f(a) > 0. Moreover, f(t) = (2π)−1t + O(t2) when t → 0+.
Consequently, we can find ε0 > 0 small enough such that for all ε ∈ (0, ε0) inequality (4.8) holds.
Going back to the form qθ we get that there exists c > 0 such that for any u ∈ C∞

0 (Gui(θ)) holds

qθ[u] − ‖u‖2L2(Gui(θ) = hθ[U−1
θ u] − ‖U

−1
θ u‖

2

≥ c
∫
Ωθ

t3

1+ ρ2 ln2(ρ/ρ0)
|(U−1

θ u)(s, t)|
2dsdt

= c

∫
Gui(θ)

(r cos θ− z sin θ)3

1+ r2

sin2 θ
ln2
(

r
cos θ

2
r cos θ−z sin θ

) |u|2drdz,
where we used the unitary transform Uθ defined in (2.3). This finishes the proof of Theorem 1.6.
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APPENDIX A. GAUGE INVARIANCE

In this appendix we justify the unitary equivalence between the self-adjoint operators Hω
and HΦω+k for all real-valued function ω ∈ L2(S1) and k ∈ Z. The justification relies on the
explicit construction of a unitary transform.

Throughout this appendix,ω always denotes a real-valued function. Before formulating the
main result of this appendix we recall that forω ∈ L2(S1), we define the norm induced by the
quadratic form Qω,θ defined in (1.7) as

‖u‖2+1,ω := Qω,θ[u] + ‖u‖2L2cyl(Lay(θ)), u ∈ domQω,θ.

Recall that the flux Φω ∈ R, the function V ∈ C([0, 2π]) and the unitary gauge transform
GV : L

2
cyl(Lay(θ))→ L2cyl(Lay(θ)) are associated withω and k as

(A.1) Φω :=
1

2π

∫ 2π
0

ω(φ)dφ, V(φ) := (Φω + k)φ−

∫φ
0

ω(ξ)dξ, GVψ := eiVψ.

The following proposition is the main result of this appendix.

Proposition A.1. Let ω ∈ L2(S1) and k ∈ Z. Let Φω, V and GV be as in (A.1). Then, the following
hold:

(i) domQω,θ = GV

(
domQΦω+k,θ

)
;

(ii) Qω,θ[GVu] = QΦω+k,θ[u] for all u ∈ domQΦω+k,θ.

In particular, the operators Hω,θ and HΦω+k,θ are unitarily equivalent.

Therefore, taking k = −argmin k∈Z{|k − ω|} in (A.1) we can reduce the case of a general
ω ∈ L2(S1) via the transform GV to a constantω ∈ [−1/2, 1/2].

Before proving Proposition A.1 we need to state several lemmas whose proofs are postponed
until the end of this appendix.

Lemma A.2. Let ω ∈ C∞(S1) and k ∈ Z. Let Φω, V and GV be associated with ω and k as in (A.1).
Then, the following statements hold:

(i) C∞
0 (Lay(θ)) = GV

(
C∞
0 (Lay(θ))

)
;

(ii) Qω,θ[GVu] = QΦω+k,θ[u] for all u ∈ C∞
0 (Lay(θ)).

Lemma A.3. Let ω ∈ L2(S1) and (ωn)n∈N be a sequence of real-valued functions C∞(S1) such that
‖ωn−ω‖L2(S1) → 0 as n→∞. LetΦω, V , GV be associated withω,k andΦωn , Vn, GVn be associated
withωn, k as in (A.1). Then, as n→∞, the following hold:

(i) ‖ωn −ω‖L1(S1) → 0;

(ii) |Φωn −Φω|→ 0;

(iii) Vn(φ)→ V(φ) for any φ ∈ S1;

(iv) GVn → GV in the strong sense;

(v) Qωn,θ[GVnu] −Qω,θ[GVnu]→ 0 and QΦωn+k,θ[u]→ QΦω+k,θ[u] for any u ∈ C∞
0 (Lay(θ)).
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Lemma A.4. Let ω ∈ L2(S1) and k ∈ Z. Let Φω, V , and GV be associated with ω and k as in (A.1).
Then, the following statements hold:

(i) GV

(
C∞
0 (Lay(θ))

)
⊂ domQω,θ;

(ii) Qω,θ[GVu] = QΦω+k,θ[u] for all u ∈ C∞
0 (Lay(θ)).

In the proof of Proposition A.1 we use Lemmas A.2 and A.4. The statement of Lemma A.3 is
only needed later in the proof of Lemma A.4.

Proof of Proposition A.1. Let u ∈ domQΦω+k,θ and let (un)n∈N be a sequence of functions in
C∞
0 (Lay(θ)) such that ‖un − u‖+1,Φω+k → 0 as n → ∞. The sequence (un)n∈N exists because

C∞
0 (Lay(θ)) is a core for the form QΦω+k,θ.

(i) Since the norm ‖ · ‖+1,Φω+k is stronger than the norm ‖ · ‖L2cyl(Lay(θ)) we get

(A.2) ‖un − u‖L2cyl(Lay(θ)) → 0, n→∞.
Let us consider the sequence (GVun)n∈N. Due to (A.2) we have

(A.3) ‖GVun − GVu‖L2cyl(Lay(θ)) → 0, n→∞.
By Lemma A.4 (i), we know that GVun ∈ domQω,θ for all n ∈ N. Now, we prove that (GVun)n∈N
is a Cauchy sequence in the norm ‖ · ‖+1,ω. Indeed, by Lemma A.4 (ii) we have

‖GV(un+p − un)‖2+1,ω = Qω,θ[GV(un+p − un)] + ‖GV(un+p − un)‖2L2cyl(Lay(θ))

= QΦω+k,θ[un+p − un] + ‖un+p − un‖2L2cyl(Lay(θ)) = ‖un+p − un‖
2
+1,Φω+k.

Thus, (GVun)n∈N is a Cauchy sequence in the norm ‖ · ‖+1,ω and therefore it converges to a
function v ∈ domQω,θ in this norm. Since the norm ‖ · ‖+1,ω is stronger than ‖ · ‖L2cyl(Lay(θ)) we
get ‖GVun − v‖L2cyl(Lay(θ)) → 0 as n → ∞. Taking (A.3) into account we conclude GVu = v ∈
domQω,θ, i.e. we have proven that GV

(
domQΦω+k,θ

)
⊂ domQω,θ. As a by-product we have

strengthened (A.3) up to

(A.4) ‖GVun − GVu‖+1,ω → 0, n→∞.
Because the reverse inclusion GV

(
domQΦω+k,θ

)
⊃ domQω,θ can be proven in a similar way

we omit this argument here.
(ii) First, observe that

‖un‖+1,Φω+k −→
n→∞ ‖u‖+1,Φω+k and ‖GVun‖+1,ω −→

n→∞ ‖GVu‖+1,ω,

where the second limit is a particular consequence of (A.4) in the proof of (i). Further, in view of
the definition of the norms ‖ · ‖+1,ω and ‖ · ‖+1,Φω+k, we obtain

(A.5) QΦω+k,θ[un] −→
n→∞ QΦω+k,θ[u] and Qω,θ[GVun] −→

n→∞ Qω,θ[GVu].

Note that by Lemma A.4 (ii) we have Qω,θ[GVun] = QΦω+k,θ[un] for any n ∈ N. Thus, passing
to the limit n→∞ and taking into account (A.5) we end up with

Qω,θ[GVu] = lim
n→∞Qω,θ[GVun] = lim

n→∞QΦω+k,θ[un] = QΦω+k,θ[u].

Finally, the unitary equivalence of the operators Hω,θ and HΦω+k,θ follows from the first rep-
resentation theorem. The operator GV plays the role of the corresponding transform which
establishes unitary equivalence. �
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Now, we deal with the proofs of Lemmas A.2, A.3, and A.4.

Proof of Lemma A.2. (i) The identity C∞
0 (Lay(θ)) = GV

(
C∞
0 (Lay(θ))

)
is a straightforward conse-

quence of eiV(·) ∈ C∞(S1). The details are omitted.
(ii) For any u ∈ C∞

0 (Lay(θ)) we get by direct computation

Qω,θ[GVu] = ‖(i∇− Aω)e
iVu‖2

L2cyl(Lay(θ))

= ‖eiV(i∇− Aω −∇V)u‖2
L2cyl(Lay(θ))

=
∥∥∥(i∇− Aω − r−1eφV ′(φ)

)
u
∥∥∥2
L2cyl(Lay(θ))

=
∥∥∥(i∇− Aω − r−1eφ(Φω + k) + Aω

)
u
∥∥∥2
L2cyl(Lay(θ))

= ‖(i∇− AΦω+k)u‖2L2cyl(Lay(θ)) = QΦω+k,θ[u]. �

Proof of Lemma A.3. The claims of (i) and (ii) are a direct consequence of the inclusion L2(S1) ⊂
L1(S1). Indeed, thanks to the Cauchy-Schwarz inequality, we have

|Φωn −Φω| ≤ ‖ωn −ω‖L1(S1) =
∫ 2π
0

|ωn(ξ) −ω(ξ)|dξ ≤
√
2π‖ωn −ω‖L2(S1) −→

n→∞ 0.

The claim of (iii) follows from (i) and (ii) as

|Vn(φ)−V(φ)| =

∣∣∣∣(Φωn −Φω)φ+

∫φ
0

(
ωn(ξ) −ω(ξ)

)
dξ
∣∣∣∣ ≤ |Φωn−Φω|φ+‖ωn−ω‖L1(S1) −→

n→∞ 0.

Using the identity 2i sin(x) = eix − e−ix we obtain for any u ∈ L2cyl(Lay(θ))

(A.6) ‖GVnu− GVu‖L2cyl(Lay(θ)) = ‖(e
iVn − eiV)u‖L2cyl(Lay(θ)) = 2‖ sin

(
(V − Vn)/2

)
u‖L2cyl(Lay(θ)).

Elementary properties of the sine function give | sin
(
(V − Vn)/2

)
u|2 ≤ |u|2. Thanks to (iii) we

know that sin
(
(V − Vn)/2

) → 0 as n → ∞ (pointwise). Consequently, passing to the limit
in (A.6), we get the claim of (iv) by the Lebesgue dominated convergence theorem. Finally, for
any u ∈ C∞

0 (Lay(θ)) we get∣∣(Qωn,θ[u])1/2 − (Qω,θ[u])
1/2
∣∣ ≤ ‖(Aωn − Aω)u‖L2cyl(Lay(θ)) ≤ C‖ωn −ω‖L2(S1) → 0,

where the constant C > 0 depends on ‖u‖L∞(Lay(θ)) and suppu only. Hence, the second limit
in (v) immediately follows. The first limit in (v) is a consequence of the above bound and of the
fact that ‖GVnu‖L∞(Lay(θ)) and supp (GVnu) are independent of n. �

Proof of Lemma A.4. (i) By definition, domQω,θ is the closure of C∞
0 (Lay(θ)) with respect to the

norm ‖ · ‖+1,ω. Let u ∈ C∞
0 (Lay(θ)) and (ωn)n∈N be a sequence of real-valued functions C∞(S1)

such that ‖ωn −ω‖L2(S1) → 0 as n→∞.
First, we prove that GVnu ∈ C∞

0 (Lay(θ)) is a Cauchy sequence in the norm ‖ · ‖+1,ω. Due to
Lemma A.3 (iv) we already know that

(A.7) ‖GVnu− GVu‖L2cyl(Lay(θ)) → 0, n→∞.
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Further, Qω,θ[(GVn+p − GVn)u] can be bounded from above by

(A.8) Qω,θ[(GVn+p − GVn)u] = ‖(i∇− Aω)(e
iVn+p − eiVn)u‖2

L2cyl(Lay(θ)) ≤ 2(Jn,p + Kn,p),

where Jn,p and Kn,p are defined by

(A.9) Jn,p := ‖(eiVn+p −eiVn)(i∇−Aω)u‖2L2cyl(Lay(θ)), Kn,p := ‖
(
∇(eiVn+p −eiVn)

)
u‖2

L2cyl(Lay(θ)).

Because (i∇ − Aω)u ∈ C∞
0 (Lay(θ)), Lemma A.3 (iv) implies that Jn,p → 0 as n, p → ∞. Let us

deal with the term Kn,p. Computing the gradient taking into account the expression of Vn, we
get

∇(eiVn+p − eiVn) =
[
eiVn+pΦn+p − e

iVnΦn
]eφ
r

−
[
eiVn+pωn+p(φ) − e

iVnωn(φ)
]eφ
r

= xn,p + yn,p,
(A.10)

where, for all q ∈ N, Φq := Φωq + k and the terms xn,p, yn,p on the right-hand side are defined
by

xn,p :=
(
(eiVn+p − eiVn)Φn+p + e

iVn(Φn+p −Φn)
)eφ
r
,

yn,p :=
(
(eiVn+p − eiVn)ωn+p(φ) + e

iVn(ωn+p(φ) −ωn(φ)
)eφ
r
.

Note that u ∈ C∞
0 (Lay(θ)) yields v := r−1u ∈ C∞

0 (Lay(θ)). The norm of xn,pu can be estimated
as

‖xn,pu‖L2cyl(Lay(θ)) ≤ |Φn+p| · ‖(GVn+p − GVn)v‖L2cyl(Lay(θ)) + |Φn+p −Φn| · ‖v‖L2cyl(Lay(θ)).(A.11)

Lemma A.3 (iv) implies
‖(GVn+p − GVn)v‖L2cyl(Lay(θ)) −→n,p→∞ 0.

By Lemma A.3 (ii) the sequence |Φn+p| is bounded so that the first term on the right-hand side
of (A.11) tends to 0 as n, p→∞. Again by Lemma A.3 (ii) the sequenceΦn, being convergent,
is a Cauchy sequence. Consequently, the second term on the right-hand side of (A.11) also tends
to 0 as n, p→∞. Hence, we have proved that

(A.12) ‖xn,pu‖L2cyl(Lay(θ)) → 0, n, p→∞.
For the norm of yn,puwe get

‖yn,pu‖L2cyl(Lay(θ)) ≤ ‖(GVn+p − GVn)ωn+pv‖L2cyl(Lay(θ)) + ‖(ωn+p −ωn)v‖L2cyl(Lay(θ))

≤ ‖(GVn+p − GVn)(ωn+p −ω)v‖L2cyl(Lay(θ))

+ ‖(GVn+p − GVn)ωv‖L2cyl(Lay(θ)) + ‖(ωn+p −ωn)v‖L2cyl(Lay(θ)).

(A.13)

Using that ‖GVn+p − GVn‖ is bounded and that v ∈ C∞
0 (Lay(θ)) we get that the first term on the

right-hand side of (A.13) satisfies

‖(GVn+p − GVn)(ωn+p −ω)v‖2
L2cyl(Lay(θ)) ≤ C‖ωn+p −ω‖L2(S1), for some C > 0.

Consequently it goes to 0 as n, p → ∞. The second term ‖(GVn+p − GVn)ωv‖L2cyl(Lay(θ)) on the
right-hand side of (A.13) tends to 0 by Lemma A.3 (iv). Again employing that v ∈ C∞

0 (Lay(θ))
and thatωn is convergent in the norm ‖·‖L2(S1) we get that the last term ‖(ωn+p−ωn)v‖L2cyl(Lay(θ))

on the right-hand side of (A.13) also tends to zero as n, p→∞. Thus, we have shown

(A.14) ‖yn,pu‖L2cyl(Lay(θ)) → 0, n, p→∞.
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Finally, combining (A.9), (A.10), (A.12), and (A.14), we get that Kn,p → 0 as n, p → ∞.
Thus, GVnu is a Cauchy sequence in the norm ‖ · ‖+1,ω. Hence, it converges to a function
w ∈ domQω,θ in this norm. In particular, ‖GVnu−w‖L2cyl(Lay(θ)) → 0 as n→∞. In view of (A.7)
we get w = GVu ∈ domQω,θ. Thus, we obtain

‖GVnu− GVu‖+1,ω → 0, n→∞.
Finally, applying Lemma A.2 (ii) and Lemma A.3 (v) we end up with

Qω,θ[GVu] = lim
n→∞Qω,θ[GVnu] = lim

n→∞Qωn,θ[GVnu] = lim
n→∞QΦωn+k,θ[u] = QΦω+k,θ[u]. �

APPENDIX B. DESCRIPTION OF THE DOMAIN OF q
[m]
ω,θ

The aim of this appendix is to give a simple description of the domain of the quadratic forms
q
[m]
ω,θ withω ∈ (0, 1/2] defined in (1.15). The main result of this appendix reads as follows.

Proposition B.1. Letω ∈ (0, 1/2]. The domain of the form q
[m]
ω,θ defined in (1.15) is given by

dom q
[m]
ω,θ = H

1
0(Gui(θ)).

Before proving Proposition B.1 we introduce the norm ‖ · ‖+1,m associated to the quadratic
form q

[m]
ω,θ as

(B.1) ‖u‖2+1,m := q
[m]
ω,θ[u] + ‖u‖

2
L2(Gui(θ)), u ∈ dom q

[m]
ω,θ.

The proof of Proposition B.1 goes along the following lines. First, we remark that C∞
0 (Gui(θ))

is a form core for q
[m]
ω,θ and, second, we prove that the norms ‖ · ‖H1(Gui(θ)) and ‖ · ‖+1,m are

topologically equivalent on C∞
0 (Gui(θ)). These properties are stated in the following two

lemmas whose proofs are postponed to the end of this appendix.

Lemma B.2. Letω ∈ (0, 1/2]. C∞
0 (Gui(θ)) is a core for the form q

[m]
ω,θ defined in (1.15).

Lemma B.3. Let θ ∈ (0, π/2), ω ∈ (0, 1/2], and m ∈ Z. Then there exist Cj = Cj(ω,θ,m) > 0,
j = 1, 2, such that

C1‖u‖H1(Gui(θ)) ≤ ‖u‖+1,m ≤ C2‖u‖H1(Gui(θ)), ∀u ∈ C∞
0 (Gui(θ)).

We now have all the tools to prove Proposition B.1.

Proof of Proposition B.1. Combining Lemmas B.2, B.3 and [K, Thm. VI 1.21] we obtain

dom q
[m]
ω,θ = C∞

0 (Gui(θ))
‖·‖+1,m

= C∞
0 (Gui(θ))

‖·‖
H1(Gui(θ)) = H10(Gui(θ)). �

Finally, we conclude this appendix by the proofs of Lemmas B.2 and B.3.

Proof of Lemma B.2. Let the projection π[m] be defined as in (1.12). Let us introduce the associated
orthogonal projector Π[m] in L2cyl(Lay(θ)) by

Π[m]u := vm(φ)(π
[m]u)(r, z)

with vm as in (1.11). For any v ∈ domQω,θ we have

‖v‖2
L2cyl(Lay(θ)) = ‖Π

[m]v‖2
L2cyl(Lay(θ)) + ‖(I − Π

[m])v‖2
L2cyl(Lay(θ)),(B.2a)

Qω,θ[v] = Qω,θ[Π
[m]v] +Qω,θ[(I − Π[m])v].(B.2b)
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Let u ∈ dom q
[m]
ω,θ be fixed. Thanks to (1.13) and (1.15), we know that v = (2π)−1/2r−1/2ueimφ ∈

domQω,θ. Consequently, there exists vn ∈ C∞
0 (Lay(θ)) such that

Qω,θ[vn − v] + ‖vn − v‖2L2cyl(Lay(θ)) → 0, n→∞.
By (B.2b) and using the non-negativity of Qω,θ we obtain

Qω,θ[Π
[m](vn − v)] + ‖Π[m](vn − v)‖2L2cyl(Lay(θ)) −→ 0, n→∞.

Letting un(r, z) =
√
r(π[m]vn)(r, z), the last equation rewrites

‖un − u‖2+1,m = q
[m]
ω,θ[un − u] + ‖un − u‖

2
L2(Gui(θ)) → 0, n→∞.

Since vn ∈ C∞
0 (Lay(θ)), we get that un ∈ C∞

0 (Gui(θ)) which concludes the proof. �

Proof of Lemma B.3. Let u ∈ C∞
0 (Gui(θ)) be fixed. The claim of the lemma is a consequence of

the non-negativity of q0,θ[u]

(B.3) q0,θ[u] =

∫
Gui(θ)

|∂ru|
2 + |∂zu|

2 −
1

4r2
|u|2drdz ≥ 0.

The inequality (B.3) can be easily derived from Hardy inequality in the form as stated in [K,
§VI.4, eq. 4.6]. Further, we remark that

(B.4) ‖u‖2+1,m = q
[m]
ω,θ[u] + ‖u‖

2
L2(Gui(θ)) = ‖u‖

2
H1(Gui(θ)) +

[
(m−ω)2 − 1/4

] ∫
Gui(θ)

|u|2

r2
drdz

Now, we distinguish the special casem = 0 fromm 6= 0.
m = 0. In this case, (B.4) simplifies as

(B.5) ‖u‖2+1,0 = ‖u‖2H1(Gui(θ)) − [1/4−ω2]

∫
Gui(θ)

|u|2

r2
drdz

Since the second term on the right-hand side of (B.5) is non-positive, we immediately get the
upper bound

‖u‖+1,0 ≤ ‖u‖H1(Gui(θ)).

To obtain the lower bound, we combine (B.5) with inequality (B.3)

‖u‖2+1,0 = ‖u‖2H1(Gui(θ)) −
(1
4
−ω2

) ∫
Gui(θ)

|u|2

r2
drdz

≥ ‖u‖2H1(Gui(θ)) − (1− 4ω2)
(
‖∂ru‖2L2(Gui(θ)) + ‖∂zu‖

2
L2(Gui(θ))

)
≥ 4ω2‖u‖2H1(Gui(θ)).

m 6= 0. In this case the second term on the right-hand side of (B.4) is non-negative and we get
the lower bound

‖u‖+1,m ≥ ‖u‖H1(Gui(θ)).

To get an upper bound we combine (B.4) with (B.3)

‖u‖2+1,m = ‖u‖2H1(Gui(θ)) +
[
(m−ω)2 − 1/4

] ∫
Gui(θ)

|u|2

r2
drdz

≤ ‖u‖2H1(Gui(θ)) +
[
4(m−ω)2 − 1

](
‖∂ru‖2L2(Gui(θ)) + ‖∂zu‖

2
L2(Gui(θ))

)
≤ 4(m−ω)2‖u‖2H1(Gui(θ)). �
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[K13] D. Krejčiřík, The improved decay rate for the heat semigroup with local magnetic field in the plane, Calc.
Var. Partial Differ. Equ. 47 (2013), 207–226.



SPECTRAL TRANSITIONS FOR AHARONOV-BOHM LAPLACIANS ON CONICAL LAYERS 27

[LO16] V. Lotoreichik and T. Ourmières-Bonafos, On the bound states of Schrödinger operators with δ-
interactions on conical surfaces, Comm. Partial Differential Equations 41 (2016), 999–1028.

[M] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cam-
bridge, 2000.

[NR16] H. Najar and M. Raissi, A quantum waveguide with Aharonov-Bohm magnetic field, Mathematical
Methods in the Applied Sciences 39 (2016), 92–103.

[P15] K. Pankrashkin, On the discrete spectrum of Robin Laplacians in conical domains, Math. Model. Nat.
Phenom. 11 (2016), 100–110.

[P99] I. Yu. Popov, Asymptotics of bound state for laterally coupled waveguides, Rep. Math. Phys. 43 (1999),
427–437.

[RS-I] M. Reed and B. Simon, Methods of modern mathematical physics. I: Functional analysis, Academic Press, New
York, 1980.

[RS78] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press,
New York, 1978.

[SST69] D. Saint-James, G. Sarma, and E. J. Thomas, Type-II Superconductivity, Saclay, France, 1969.
[S00] B. Simon, Schrödinger operators in the twentieth century, J. Math. Phys. 41 (2000), 3523–3555.

DEPARTMENT OF THEORETICAL PHYSICS, NUCLEAR PHYSICS INSTITUTE, CZECH ACADEMY OF SCIENCES, 250
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