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THREE OBSERVATIONS ON COMMUTATORS OF SINGULAR
INTEGRAL OPERATORS WITH BMO FUNCTIONS

CARLOS PÉREZ AND ISRAEL P. RIVERA-RÍOS

Abstract. Three observations on commutators of Singular Integral Operators with
BMO functions are exposed, namely

1- The already known subgaussian local decay for the commutator, namely
1

|Q|
∣∣{x ∈ Q : |[b, T ](fχQ)(x)| > M2f(x)t

}∣∣ ≤ ce−√ct‖b‖BMO

is sharp, since it cannot be better than subgaussian.
2. It is not possible to obtain a pointwise control of the commutator by a finite sum

of sparse operators defined by L logL averages.
3. Motivated by the conjugation method for commutators, it is shown the failure

of the following endpoint estimate, if w ∈ Ap \A1 then∥∥∥∥wM (
f

w

)∥∥∥∥
L1(Rn)→L1,∞(Rn)

=∞.

1. Introduction

The purpose of this paper is to present some observations concerning commutators
of singular integral operators with BMO functions. These operators were introduced
by Coifman, Rochberg and Weiss in [6] as a tool to extend the classical factorization
theorem for Hardy spaces in the unit circle to Rn. These operators are defined by the
expression

(1) Tbf(x) =

ˆ
Rn

(b(x)− b(y))K(x, y)f(y) dy,

where K is a kernel satisfying the standard Calderón-Zygmund estimates and where
b, the “symbol” of the operator, is a locally integrable function. Of course, these are
special cases of the more general commutators given by the expression

Tb = [b, T ] = Mb ◦ T − T ◦Mb

where T is any operator and Mb is the multiplication operator Mbf = b · f .
The classical well known result from [6] establishes that [b, T ] is a bounded operator

on Lp(Rn), 1 < p <∞, when the symbol b is a BMO function. We state this result.
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Theorem 1. Let T be a singular integral operator and b a BMO function. The com-
mutator Tb is bounded on Lp(Rn) for every 1 < p <∞.

In the same paper it is shown that b ∈ BMO is also a necessary condition namely, if
the commutators [b, Rj], j = 1, · · · , n of b with the Riesz transforms Rj are bounded
on Lp(Rn) for some p ∈ (1,∞) and every j ∈ {1, 2, . . . , n} then b ∈ BMO.

None of the different proofs of this result follows the usual scheme of the classical
Calderón-Zygmund theory for proving the Lp(Rn) boundedness of singular integral op-
erators T . Two proofs of Theorem 1 can be found in [6]. The first and main one in
that paper is based on methods involving techniques similar to those used in [5] to un-
derstand the Calderón commutator. As far as we know this approach has not been so
influential. However, the second proof, based on the so called conjugation method from
operator theory, has been widely used. In fact, it is quite surprising that this proof was
postponed to the end of the paper since it turns out to be highly interesting. Indeed, the
method shows the intimate connection between these commutators and the Ap theory
of weights. Furthermore, this proof can be applied to general linear operators, not only
for Singular Integral Operators. As a sample we will point out the following particular
L2 case:

Theorem 2. Suppose that T is a linear operator such that

T : L2(w) −→ L2(w)

for every w ∈ A2. Then for every b ∈ BMO,

[b, T ] : L2(Rn) −→ L2(Rn).

The method of proof can be carried out in more generality as shown in [1]. The key
initial argument of the proof is that we can write [b, T ] as a complex integral operator
using the Cauchy integral theorem as follows

[b, T ]f =
d

dz
ezbT (fe−zb)

∣∣∣∣
z=0

=
1

2πi

ˆ
|z|=ε

Tz(f)

z2
dz , ε > 0

where

z → Tz(f) := ezbT

(
f

ezb

)
z ∈ C.

This is called the “conjugation” of T by ezb and the terminology comes most probably
from group theory. Now, if ‖ · ‖ is a norm we can apply Minkowski inequality:

‖[b, T ]f‖ ≤ 1

2π ε
sup
|z|=ε
‖Tz(f)‖ ε > 0.

The effectiveness of the method can be checked in the modern context of weighted Lp
estimates. Indeed, the method produces very optimal bounds of the operator norm as
shown in [4] (see also [15]).

This method reveals the role played by the following operation:

f → Tw(f) := w T

(
f

w

)
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where w is a weight which, in this context, is an Ap weight. Indeed, this is the case by
the well known key property of the BMO class, if p > 1 and b ∈ BMO then there is a
small ε0, such that etb ∈ Ap, for any real number t such that |t| < ε0. These operators
were already studied by B. Muckenhoupt and R. Wheeden in the 70’s and by E. Sawyer
in the 80’s. Some of the problems they left open were solved in [8]. A consequence of
the main result of [8] is that if w ∈ A1 then Tw is of weak type (1, 1), namely

‖Tw‖L1(Rn)→L1,∞(Rn) <∞
with bound depending upon the A1 constant of w. However, we will exhibit examples
of weights w ∈ Ap \ A1 in Section 4 for which Tw is not of weak type (1, 1), namely

‖Tw‖L1(Rn)→L1,∞(Rn) =∞.
This shows that the case w ∈ A1 is specially relevant. Perhaps, this phenomenon can be
explained by the fact that the conjugation method is closely attached to commutators
with BMO functions which are not of weak type (1, 1) as observed in [25]. Indeed, the
conjugation method works due to the property, already mentioned, that if p > 1 and
b ∈ BMO then etb ∈ Ap for small values of t. However, this property turns out to be
false in the case p = 1. The lack of the weak type (1, 1) property for commutators is
replaced by a L logL inequality like (5) below and not better.

There is another proof of Theorem 1 based on the use of the sharp maximal function
of C. Fefferman and E. Stein which has also been very influential. It seems that it was
first discovered by J. O. Strömberg as mentioned by S. Janson in [17] (see also [28] pp.
417-419) The proof relies on combining the following key pointwise estimate

(2) M ]([b, T ]f) ≤ c‖b‖BMO (Mr (Tf) +Ms (f))

where 1 < r, s <∞ andMr(f) = M(|f |r)1/r together with the classical Fefferman-Stein
inequality:

‖M(f)‖Lp ≤ c‖M ](f)‖Lp .
Here we use standard notation, M is the Hardy-Littlewood maximal function and M ]

is the sharp maximal function. The Lp boundedness of M and T yields the alternative
proof of Theorem 1. Proceeding in the same way we obtain the corresponding estimates
for Ap weights.

This approach was considered by S. Bloom in ([2]) extending in an interesting way
Theorem 1 but only on the real line.

Theorem 3. Let µ, λ ∈ Ap and let H be the Hilbert transform:

[b,H] : Lp(µ) −→ Lp(λ)

where ν = µ
1
pλ−

1
p if and only if

(3) ‖b‖BMO(ν) = sup
Q

1

ν(Q)

ˆ
Q

|b− bQ| <∞.

The power of the pointwise estimate (2) is reflected in many situations, for instance
in [12], where similar results were derived for commutators of strongly singular integral
with symbol in the new BMO class (3) (see also [13, 14] for an alternative approach
based on dyadic shifts).
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However, estimate (2) is not sharp enough for many purposes and much better results
can be obtained with the following variation:

(4) M ]
δ([b, T ]f) ≤ c‖b‖BMO

(
Mε (Tf) +M2 (f)

)
0 < δ < ε < 1

whereM2 stands forM ◦M (see [25]). Here, the key difference is that we are considering
small parameters δ and ε. The estimate is sharp since M2 cannot be replaced by the
(pointwise) smaller operatorM . Indeed, otherwise these commutators would be of weak
type (1, 1) but, as we mentioned above, this is not the case [25] where it is shown that
commutators satisfy the following “L logL” type estimate,

(5) w ({x ∈ Rn : |[b, T ] f(x)| > λ}) ≤ c

ˆ
Rn

Φ

(
|f |
λ
‖b‖BMO

)
wdx λ > 0,

where w ∈ A1, Φ(t) = t log (e+ t) and where c > 0 depends upon the A1 constant. This
shows that these commutators are “more singular” than Calderón-Zygmund operators.
The original proof of (5) follows from the key pointwise (4) combined with a good-λ type
argument, but an alternative proof was obtained by the first author and G. Pradolini
in [26] with the bonus that non A∞ weights can be considered. This argument is based
on a variation of the classical scheme used to prove the weak type (1, 1) for Calderón-
Zygmund operators. The statement of the result is the following.

Theorem 4. Let T be a Calderón-Zygmund operator and b ∈ BMO. If w is an
arbitrary weight the following inequality holds

w ({x ∈ Rn : |[b, T ]f(x)| > λ}) ≤ Cε,T

ˆ
Rn

Φ

(
‖b‖BMO

|f(x)|
λ

)
ML(logL)1+εw(x)dx

for every ε > 0.

Very recently (c.f. [27]) the authors have obtained a quantitative version of the
endpoint estimate for arbitrary weights, namely Theorem 4. This result is analogous
to the one obtained by the first author and T. Hytönen for singular integrals in [15].

Theorem 5. Let T be a Calderón-Zygmund operator and b ∈ BMO. If w ≥ 0 is a
weight then, for every ε > 0

w ({x ∈ Rn : |[b, T ]f(x)| > λ}) ≤ c

ε2

ˆ
Rn

Φ

(
‖b‖BMO

|f |
λ

)
ML(logL)1+εwdx.

The main novelty here is the appearance of the sharp factor 1
ε2

reflecting again
the higher singularity of the operator. As a corollary of this result we can derive the
following result obtained previously by C. Ortiz-Caraballo in [23],

w ({x ∈ Rn : |[b, T ]f(x)| > λ}) ≤ CΦ ([w]A1)
2

ˆ
Rn

Φ

(
‖b‖BMO

|f |
λ

)
wdx.

We remark that it seems that the conjugation method cannot be applied to prove this
estimate. Therefore, estimate (5) or Theorem 4 works, so far, for Calderón-Zygmund
operators not for general linear operators assuming a minimal appropriate weighted
weak type estimate.
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Another interesting difference between Calderón-Zygmund operators and commuta-
tors concerns their local behavior. A very nice way of expressing this is by means of
the following estimate due to Karagulyan [18]: there exists a constant c > 0 such that
for each cube Q and for each function f supported on the cube Q

(6)
1

|Q|
|{x ∈ Q : |Tf(x)| > tMf(x)}| ≤ c e−c t t > 0.

This result can be seen as an improvement of Buckley’s exponential decay theorem [3]
which is a very useful result. For instance, it allows to improve in a quantitative way
the classical good-λ inequality between T and M : if p ∈ (0,∞) and w ∈ A∞

‖Tf‖Lp(w) ≤ cT p [w]A∞‖M(f)‖Lp(w).

Motivated by this result of Karagulyan, Ortiz-Caraballo, Rela and the first author
developed a new method for proving (6) in [24]. This method is flexible enough to deal
with other operators including the commutators. In particular, we have the following
sub-gaussian estimate.

Theorem 6. Let T be a Calderón-Zygmund operator and b ∈ BMO, then there exists
a constant c > 0 such that for each f

(7) sup
Q

1

|Q|
|{x ∈ Q : |[b, T ](fχQ)(x)| > tM2f(x)}| ≤ c e−

√
c t‖b‖BMO t > 0.

We will show in Section 2 that this subexponential decay is fully sharp. In Section
3, we will provide a new proof of (6) based on the pointwise domination: if T is a
Calderón-Zygmund operator, then it is possible to find a finite set of η-sparse families
{Sj}3n

j=1 (see Section 3 for the definitions) contained in the same or in different dyadic
lattices Dj and depending on f such that

(8) |Tf(x)| ≤ cT

3n∑
j=1

ASjf(x)

where

ASjf(x) =
∑
Q∈Sj

1

|Q|

ˆ
Q

|f |χQ(x).

See Section 3 for details, in particular Theorem 7.
In view of the interest of an estimate like (8) it would be relevant to produce a

counterpart for commutators. The “natural” sparse operator for these commutators
would be

BSf(x) =
∑
Q∈S

‖f‖
L logL,Q

χQ(x).

The reason that leads to consider this sparse operator in terms of the average
‖ · ‖

L logL,Q
is due to the intimate relationship of commutators and M2 which is an

operator pointwise equivalent to ML logL. In Section 3 we prove the impossibility of
having a domination theorem for commutators by these “sparse” operators.
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2. First observation: Sharpness of the subexponential local decay

We prove in this section that Theorem 6 is sharp, i.e., we can find a Calderón-
Zygmund operator T , a symbol b ∈ BMO a function f and a cube Q such that

1

|Q|
|{x ∈ Q : |[b, T ]f(x)| > tM2f(x)}| ≥ c e−

√
c t‖b‖BMO

for some constant c > 0. More precisely we have the following.

Observation 1. Let b(x) = log |x|, then we can find a constant c > 0 such that

|{x ∈ (0, 1) : |[b,H](χ(0,1))(x)| > t}| ≥ e−
√
ct

where H stands for the Hilbert transform.

Proof. Let f(x) = χ(0,1)(x). We are going to show that

|{x ∈ (0, 1) : |[b,H]f(x)| > tM2f(x)}| = |{x ∈ (0, 1) : |[b,H]f(x)| > t}| ≥ c e−
√
α t t > 0.

For x ∈ (0, 1) we have that

[b,H]f(x) =

ˆ 1

0

log(x)− log(y)

x− y
dy =

ˆ 1

0

log(x
y
)

x− y
dy =

ˆ 1/x

0

log(1
t
)

1− t
dt.

Now we observe thatˆ 1/x

0

log(1
t
)

1− t
dt =

ˆ 1

0

log(1
t
)

1− t
dt+

ˆ 1/x

1

log(1
t
)

1− t
dt

and since log( 1
t
)

1−t is positive for (0, 1) ∪ (1,∞) we have for 0 < x < 1 that

|[b,H]f(x)| >
ˆ 1/x

1

log(1
t
)

1− t
dt.

Finally, a computation shows that
ˆ 1/x

1

log(1
t
)

1− t
dt ≈

(
log

1

x

)2

x→ 0.

Consequently, we have that for some x0 < 1

|[b,H]f(x)| > c

(
log

1

x

)2

0 < x < x0.

and then for some t0 > 0,
(9)

|{x ∈ (0, 1) : |[b,H]f(x)| > t}| ≥

∣∣∣∣∣
{
x ∈ (0, x0) : c

(
log

1

x

)2

> t

}∣∣∣∣∣ = e−
√
t/c t > t0

as we wanted to prove. �
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3. Second observation: a “natural” but false sparse domination result
for commutators

Before stating the result we are going to prove in this section we need some notation.
We borrow it from [21].

Definition 1 (Dyadic child). Let Q be a cube (with sides parallel to the axis). We call
dyadic child any of the 2n cubes obtained by partitioning Q by n “median hyperplanes”
(planes parallel to the faces of Q and dividing each edge into 2 equal parts).

If we iterate the partition process of the preceding definition we obtain a standard
dyadic lattice D(Q) of subcubes of Q which has the usual properties:

(1) For each k = 0, 1, 2, . . . cubes in the k-th generation have sidelength 2−k and
tile Q in a regular way.

(2) Each Q′ in the k-th generation has 2n children in the in the (k + 1)-th gener-
ation contained in it and one and only one parent in the (k − 1)-th generation
containing it (unless it is Q itself).

(3) If Q′, Q′′ ∈ D(Q), then Q′ ∩Q′′ = ∅ or Q′ ⊆ Q′′ or Q′′ ⊆ Q′.
(4) If Q′ ∈ D(Q), then D(Q′) ⊆ D(Q).

Definition 2 (Dyadic lattice). A dyadic lattice D in Rn is any collection of cubes such
that
(DL-1) If Q ∈ D then each dyadic child of Q is in D as well.
(DL-2) If Q′, Q′′ ∈ D there exists Q ∈ D such that Q′, Q′′ ∈ D(Q).
(DL-3) If K is a compact set of Rn there exists Q ∈ D such that K ⊆ Q.

There is an easy way to build a dyadic lattice by considering a increasing sequence of
dyadic cubes Qj such that ∪∞j=1Qj = Rn. Then

D =
∞⋃
j=1

D(Qj)

is a dyadic lattice.

Definition 3. Let η ∈ (0, 1). We say that a family of cubes S ⊆ D is η-sparse if for
each Q ∈ S we can find a measurable subset E(Q) ⊂ Q such that:

(1) E(Q)’s are pairwise disjoint.
(2) η|Q| ≤ |E(Q)|

Definition 4. Let Λ > 1. We say a family of cubes S is Λ-Carleson if for every cube
Q ∈ D we have ∑

P∈S,P⊂Q

|P | ≤ Λ|Q|.

There is an interesting relation between Carleson and sparse families that we sum-
marize in the following lemma

Lemma 1. If S is a Λ-Carleson family of cubes then it is 1
Λ
-sparse. Conversely if S is

a η-sparse family of cubes then it is a 1
η
-Carleson family of cubes.
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Armed with all these definitions we can state the following pointwise domination
theorem.

Theorem 7. Let T be a Calderón-Zygmund operator. There is a finite set of η-sparse
families {Sj}3n

j=1 contained in the same or in different dyadic lattices Dj and depending
on f such that

(10) T ∗f(x) ≤ cT,n

3n∑
j=1

ASjf(x)

where ASjf(x) =
∑

Q∈Sj
1
|Q|

´
Q
|f |χQ(x).

The proof of this result can be found in [21] and [7]. In [19] M. Lacey obtains the
same estimate for Calderón-Zygmund operators that satisfy a Dini condition. Recently
a fully quantitative version of Lacey’s result was obtained in [16] and even more recently
this quantitative version has been simplified in [20].

As a sample of the interest of this result we give a different proof of the exponential
estimate (6): there exists a constant c > 0 such that for each cube Q and for each f
supported on the cube Q

(11)
1

|Q|
|{x ∈ Q : T ∗f(x) > tMf(x)}| ≤ c e−c t t > 0,

To prove this result we will use the classical vector-valued extension of the maximal
function introduced by Fefferman and Stein in [11] that can be written as follows:

M qf(x) =
( ∞∑
j=1

(Mfj(x))q
)1/q

= |Mf(x)|q,

where f = {fj}∞j=1 is a vector–valued function.
Indeed, consider the distribution set

SQ := {x ∈ Q : T ∗f(x) > tMf(x)}.
Then, by Theorem 7 we have that

|SQ| ≤

∣∣∣∣∣
{
x ∈ Q : cT,n

3n∑
j=1

ASjf(x) > tMf(x)

}∣∣∣∣∣
≤

3n∑
j=1

|{x ∈ Q : ASjf(x) > t(3ncT,n)−1Mf(x)}|

≤
3n∑
j=1

∣∣∣∣∣∣
x ∈ Q :

∑
Q∈Sj

χQ(x) > t(3ncT,n)−1


∣∣∣∣∣∣

since trivially,
ASjf(x) ≤Mf(x)

∑
Q∈Sj

χQ(x).
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We now use one of the key estimates from [24]. Indeed, let {E(Q)}Q∈Sj be the family
of sets from Definition 3. We have then for some c > 0

∑
Q∈Sj

χQ(x) =
∑
Q∈Sj

(
1

|Q|
|Q|
)q

χQ(x)

≤ c
∑
Q∈Sj

(
1

|Q|
|E(Q)|

)q
χQ(x)

≤ c
∑
Q∈Sj

(
1

|Q|

ˆ
Q

χE(Q)(y) dy

)q
χQ(x)

≤ c
(
M q

({
χE(Q)

}
Q∈Sj

)
(x)
)q

≤ c
(
M qgj(x)

)q
,

where gj =
{
χE(Q)

}
Q∈Sj

. Now, since {E(Q)}Q∈Sj is a pairwise disjoint family of subsets,
we have that for any j

(12) ‖gj(x)‖`q =

∑
Q∈Sj

(
χE(Q)(x)

)q1/q

≤ 1.

We finish our proof recalling that if |gj|`q ∈ L∞, then
(
M qgj(x)

)q ∈ ExpL (see [11])
from which we conclude the desired inequality (11):

|SQ| ≤ ce−ct|Q|, t > 0.

Observation 2. Let T be a Calderón-Zygmund operator and b ∈ BMO. It is not
possible to find a finite set of η-sparse families {Sj}Nj=1, with N dimensional, contained
in the same or in different dyadic lattices Dj and depending on f such that

(13) |[b, T ]f(x)| ≤ cb,T

N∑
j=1

BSjf(x) a.e. x ∈ Rn

where BSjf(x) =
∑

Q∈Sj ‖f‖L logL,Q
χQ(x).

We are going to give two proofs of this result. The first one is based on the Rubio
de Francia algorithm.

Proof 1. Suppose that equation (13) holds, then we can prove the following L1 inequality

(14) ‖[b, T ]f‖L1(w) ≤ c[w]A1‖M2f‖L1(w).
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Indeed,

‖[b, T ]f‖L1(w) ≤ cb,T

N∑
j=1

‖BSjf‖L1(w)

≤ cb,T

N∑
j=1

∑
Q∈Sj

‖f‖
L logL,Q

w(Q)

|Q|
|Q|

≤ cb,T
η

N∑
j=1

∑
Q∈Sj

‖f‖
L logL,Q

w(Q)

|Q|
|E(Q)|

≤ cb,T
η

N∑
j=1

∑
Q∈Sj

ˆ
E(Q)

M
L logL

f(x)Mw(x)dx

≤ N
cb,T
η

[w]A1‖M2f‖L1(w),

since M2 ≈ML logL. We claim now the Lp version,

(15) ‖[b, T ]f‖Lp(Rn) ≤ cnp‖M2f‖Lp(Rn) p > 1.

Indeed, by duality we can find g ≥ 0 in Lp′(Rn) with unit norm such that

‖[b, T ]f‖Lp(Rn) =

ˆ
Rn
|[b, T ]f(x)|g(x)dx.

We consider the Rubio de Francia algorithm

Rg =
∞∑
k=0

Mk(g)

‖M‖k
Lp′ (Rn)

.

It’s a straightforward computation that R(g) is an A1 weight with constant

[Rg]A1
≤ 2‖M‖Lp′ ≤ cnp

and also that g ≤ Rg and ‖Rg‖Lp′ ≤ 2‖g‖Lp′ (Rn) = 2. Then have thatˆ
Rn
|[b, T ]f(x)|g(x)dx ≤

ˆ
Rn
|[b, T ]f(x)|Rg(x)dx

and using equation (14) and Hölder inequalityˆ
Rn
|[b, T ]f(x)|Rg(x)dx ≤ c [Rg]A1

ˆ
Rn
M2f(x)Rg(x)dx

≤ cp

ˆ
Rn
M2f(x)Rg(x)dx ≤ cp‖M2f‖Lp(Rn)‖Rg‖Lp′ (Rn)

≤ cp‖M2f‖Lp(Rn).

Hence equation (15) is established. Now since

‖M2‖Lp(Rn) ≤ cn (p′)
2

p > 1
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we have that

(16) ‖[b, T ]‖Lp(Rn) ≤ cp (p′)
2

p > 1

Now let us observe that if we take [b,H]f with b(x) = log |x| and f(x) = χ(0,1)(x) then

‖[b,H]f‖Lp(R) ≥ cp2 p > 1,

and this leads to a contradiction when p → ∞. To prove this lower estimate we use
estimate (9) from Theorem 1. Indeed, for some t0 > 0

‖[b,H]f‖Lp(R) ≥ ‖ [b,H] f‖Lp,∞(R) = sup
t>0

t|{x ∈ R : |[b,H]f(x)| > t}|
1
p

≥ sup
t>t0

t

∣∣∣∣∣
{
x ∈ (0, x0) : c

(
log

1

x

)2

> t

}∣∣∣∣∣
1
p

≥ sup
t>t0

tce
−
√
t

p ≥ c p2 t0e
−
√
t0

and this concludes the first proof. �

For the second proof we will rely on the sharpness result that was settled in the
previous section.

Proof 2. Assume again that equation (13) holds. Then, for some c > 1

∣∣{x ∈ Q : |[b, T ]f(x)| > tM2f(x)
}∣∣ ≤

∣∣∣∣∣∣
x ∈ Q :

N∑
j=1

∑
Q∈Sj

‖f‖
L logL,Q

χQ(x) > ctM2f(x)


∣∣∣∣∣∣

We use a similar argument as for the proof of (11). Now, recalling thatM2f 'M
L logL

f

this is bounded by
N∑
j=1

∣∣∣∣∣∣
x ∈ Q :

∑
Q∈Sj

χQ(x) > ct


∣∣∣∣∣∣

and we can proceed exactly as in the proof of (11) to derive∣∣∣∣∣
{
x ∈ Q :

∑
Q∈S

χQ(x) > tC

}∣∣∣∣∣ ≤ c|Q|e−αt.

Combining we arrive to
1

|Q|
∣∣{x ∈ Q : |[b, T ]f(x)| > tM2f(x)

}∣∣ ≤ ce−αt t > 0

which is a contradiction by Observation 1. �

The correct pointwise control for the commutator seems to be the following one

Conjecture 1. Let T be a Calderón-Zygmund operator and b ∈ BMO. Then

|[b, T ]f(x)| ≤ C(n, T )‖b‖BMO

N∑
i,j=1

ASi
(
ASjf

)
(x)
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where ASjf(x) =
∑

Q∈Sj
1
|Q|

´
Q
|f(y)| dyχQ(x) and the sparse families Sj are not neces-

sarily subfamilies of the same dyadic lattice.

If this conjecture holds it would be very easy to recover the main theorem from [4]
since it suffices to iterate the following estimate:∥∥ASjf∥∥Lp(w)

≤ Cn,p[w]
max{1, 1

p−1}
Ap

‖f‖Lp .

which was studied in [9, 10] (see also [21]).

4. Third observation: The failure of a endpoint estimate motivated by
the conjugation method

In this section we consider the following family of operators:

(17) f → Tw(f) := w T

(
f

w

)
where w is a weight and T is a Calderón-Zygmund operator. We already mentioned in
the introduction that these operators are of interest since they are very much related
to commutators due to the conjugation method. We emphasized that the case w ∈ A1

is special since Tw is of weak type (1, 1) as a consequence of the main results from [8].
Understanding the case w ∈ Ap would be more interesting due to its connection with
the conjugation method. However, Tw is not of weak type (1, 1) in general since there
are weights w ∈ Ap \ A1 for which

‖Tw‖L1(Rn)→L1,∞(Rn) =∞,
being the purpose of this section to show the existence of such weights. In fact we are
going to show something worst replacing T by the less singular operator M .

Observation 3. Let 1 < p <∞, then there is w ∈ Ap \ A1 such that

‖Mw‖L1(Rn)→L1,∞(Rn) =∞.

Proof. In dimension 1 we choose theAp weight w(x) = |x|−δ(1−p) with δ ∈
(

0,min
{

1, 1
p−1

})
and f = χ[0,1] so that f ∈ L1(w). We prove that∥∥∥∥wM (

f

w

)∥∥∥∥
L1,∞(R)

=∞.

Indeed, a computation shows that for x > 1

M
(χ(0,1)

w

)
(x) ≥ 1

x

1

β

with β = 1 + δ(1− p) and then∥∥∥∥wM (
f

w

)∥∥∥∥
L1,∞(R)

≥ 1

β
sup
t>0

t
∣∣{x > 1 : x−δ(1−p)−1 > t

}∣∣ =
1

β
sup

1>t>0
t

((
1

t

) 1
β

− 1

)
=∞

since β ∈ (0, 1).
�
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An interesting question is to find a necessary and sufficient condition for the bound-
edness of this operator, namely, characterize the weights w for which

‖Mw‖L1(Rn)→L1,∞(Rn) <∞.

In [22] Muckenhoupt and Wheeden proved that this inequality holds for w ∈ A1 in the
real line and also obtained a necessary condition on the weights, namely∥∥∥∥ wχQ

| · −x|n

∥∥∥∥
L1,∞(Rn)

≤ cw(x) a.e. x ∈ Rn

but we don’t know whether is sufficient or not.
To end this section we show that can go further and prove a negative result for

possible L logL type estimates.

Observation 4. Let 1 < p <∞, and let Φ(t) = t log(e+ t)α, α > 0. Then we can find
w ∈ Ap \ A1 and f such that there’s no c > 0 for which

(18)
∣∣∣∣{x ∈ Rn : wM

(
f

w

)
> t

}∣∣∣∣ ≤ c

ˆ
Rn

Φ

(
|f(x)|
t

)
dx.

Proof. As above we do it for the case n = 1. We assume the contrary, namely there is
a finite constant c > 0 such that (18) holds for any nonnegative f . Let f = χ(0,1). For
this choice of f the right hand side of (18) equals Φ

(
1
t

)
and we have that

sup
t>0

1

Φ
(

1
t

) ∣∣∣{x ∈ R : wM
(χ(0,1)

w

)
> t
}∣∣∣ <∞.

Choose again the Ap weight w(x) = |x|−δ(1−p) with δ ∈
(

0,min
{

1, 1
p−1

})
. Proceeding

and using the same notation as in the proof of Observation 3 we have that

sup
t>0

1

Φ
(

1
t

) ∣∣∣{x ∈ R : wM
(χ(0,1)

w

)
> t
}∣∣∣ ≥ c sup

0<t<1

1

Φ
(

1
t

) [(1

t

) 1
β

− 1

]

= c sup
0<t<1

t

log
(
e+ 1

t

)α
[(

1

t

) 1
β

− 1

]
=∞.

since β ∈ (0, 1).
�
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