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Abstract The Bidomain model is nowadays one of the most accurate mathematical
descriptions of the action potential propagation in the heart. However, its numerical
approximation is in general fairly expensive as a consequence of the mathemati-
cal features of this system, and several works have been devoted to devise effec-
tive solvers and preconditioners, [10, 11, 15] among others. A simplification of this
model, called Monodomain problem is often adopted in order to reduce computa-
tional costs of the numerical solution of the cardiac potential. The latter model is
however less accurate. A possible trade-off between accuracy and cost is a model
adaptive strategy. The computational domain is subdivided into regions, coupled
through an Optimized Schwarz Method, in which either the Bidomain or the Mon-
odomain problem is solved, according to an a-posteriori model error estimator fol-
lowing the spatio-temporal evolution of the action potential propagation. Here we
present a possible implementation of this approach, following up previous works on
the error estimation and the Optimized Schwarz coupling.

1 The Numerical Model

At the macroscopic level, the myocardial tissue is regarded as the superposition of
two continuous and anisotropic media, the intra-cellular and the extra-cellular one.
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They coexist at each point and are connected by a cell membrane. The tissue con-
ductivity depends upon its cells orientation, and in the most general case the associ-
ated tensor is anisotropic [7, 14]. In any point x ∈Ω , where Ω is the spatial domain
under consideration, it is possible to identify an orthonormal triplet of directions,
al(x), at(x), an(x), with al(x) parallel to the fibers direction, and we denote by σ l

i,e,
σ t

i,e, and σn
i,e the corresponding intra and extracellular conductivity coefficients. The

conductivity tensors are given by

Dτ(x) = σ
l
τ(x)al(x)aT

l (x)+σ
t
τ(x)at(x)aT

t (x)+σ
n
τ (x)an(x)aT

n (x), τ = i,e. (1)

We assume that Di,e fulfill in Ω a uniform elliptic condition.

The Bidomain model. The Bidomain model is a nonlinear reaction-diffusion sys-
tem of parabolic type describing the spatio-temporal dynamics of the intra and ex-
tracellular potentials, denoted by ui and ue, while the cell membrane is regarded as
dislocated in the domain [2]. We rely in this paper on a non-symmetric formulation
in terms of the transmembrane potential u = ui− ue, and the extracellular one [4].
We denote by u = (u,ue)

T the unknown, and by letting

D =

 σ l
eDi

σ l
i +σ l

e

σ l
eDi−σ l

i De

σ l
i +σ l

e

Di Di +De

 E1 =

[
1 0
0 0

]
e1 =

[
1
0

]

the Bidomain system reads

χCm E1
∂u
∂ t
−∇ ·D∇u+χ Iion(u)e1 = Iapp (2)

where Iion(u) is a nonlinear function of the transmembrane potential u, specified by
a ionic model, and where Iapp represent the applied current stimuli. Several ionic
models are available in literature, from more phenomenological to more accurate
ones, but the choice of the nonlinear term Iion(u) does not have any influence on the
procedure highlighted in what follows. The problem is completed by suitable initial
conditions, and by homogeneous Neumann boundary conditions on ∂Ω , modeling
an insulated myocardium. The transmembrane potential u is then uniquely deter-
mined from (2), while the extracellular potential ue is determined up to a function
of time, whose value is usually obtained by imposing that

∫
Ω

ue = 0 .

The Monodomain model. The Monodomain model is a simplified model for the
propagation of the electrical stimulus, based upon a proportionality assumption be-
tween the intracellular and the extracellular conductivity tensors, namely assuming
De = λDi, where λ is a constant to be properly chosen. We assume here λ = σ l

e/σ l
i

[6], and the Monodomain model reads

χCm
∂u
∂ t
−∇ · σ l

eDi

σ l
i +σ l

e
∇u+χIion(u) = Iapp, (3)
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still coupled with suitable initial conditions, and homogeneous Neumann boundary
conditions on ∂Ω . Differently from the Bidomain, the Monodomain model features
a unique solution and is way cheaper to solve numerically. In absence of applied
currents, the Monodomain model is accurate enough to catch the desired dynamics
and effects of the action potential propagation [12]. However, the Bidomain model
becomes necessary when current stimuli are applied in the extracellular space. Also,
the Monodomain is inadequate to simulate defibrillation [16].

1.1 Numerical approximation

Time integration. For simplicity in presentation, we consider a fixed time step ∆ t,
and we denote with superscript n the variables computed at time tn = n∆ t. Both
the Bidomain (2) and the Monodomain equations (3) are advanced in time by a
semi-implicit scheme, where the nonlinear term (the ionic current) is evaluated at
the previous time steps. More precisely, moving from tn to tn+1 we solve in Ω

χCm E1
un+1−un

∆ t
−∇ ·D∇un+1 = Iapp−χ Iion(un)e1 (4)

for the Bidomain system, and

χCm
un+1−un

∆ t
−∇ · σ l

eDi

σ l
i +σ l

e
∇un+1 = Iapp−χ Iion(un) (5)

for the Monodomain one.

Space discretization. Both Bidomain (4) and Monodomain (5) models are dis-
cretized in space by finite elements. When solving the Bidomain system, the un-
knowns of the fully discrete problem are represented by the vector

(
uh,ue,h

)T , stor-
ing the nodal values of the transmembrane and extracellular potentials. The matrix
associated with the discrete Bidomain models is given by

B =

[
Buu Bue
Beu Bee

]
=

 χCm
∆ t M+ σ l

e
σ l

i +σ l
e
Ki

σ l
e

σ l
i +σ l

e
Ki−

σ l
i

σ l
i +σ l

e
Ke

Ki Ki +Ke

 , (6)

where M is the mass matrix and Ki,e are the stiffness matrices associated with the
chosen finite elements space.
When solving the Monodomain system, the unknown of the fully discrete problem
is uh, and the associated matrix is simply block Buu of the Bidomain matrix.
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2 A model adaptive strategy

Stemming from the observation that the Monodomain error is concentrated around
the wavefront (particularly crosswind with respect to the fibers, see Figure 1), we
consider here a model adaptive strategy that solves the Bidomain only where ac-
tually needed. In a first implementation of this approach [9] an intermediate Hy-
bridomain model based on a suitable a posteriori model estimator was introduced.
The Hybridomain assembles the block Bue only in correspondence with the nodes
identified as Bidomain ones by the model estimator, while the second equation stays
untouched. This simplifies significantly the implementation of the adaptive proce-
dure, however the computational advantage is limited, since also in the Monodomain
regions an extended problem with the same size of the Bidomain one is solved. An
alternative procedure consists of a genuine heterogenous coupling by splitting the
domain. This coupling guarantees a significant reduction of the computational costs,
but raises non trivial issues when matching the two models, featuring a different
size. This has been considered in [6], where the Optimized Schwarz method has
been advocated for the heterogeneous coupling.

From the practical standpoint, an immediate idea for setting up a model adap-
tive solver would be to use the a posteriori error estimator for detecting the regions
where to solve the Bidomain problem and then to couple these subdomains with the
Monodomain regions, so to have the Bidomain model capturing the wavefron prop-
agation. However, this approach is barely doable. As a matter of fact. the Robin-
type interface conditions in the Optimized Schwarz setting require the assembly of
mass matrices on the interfaces. As a consequence, every time the Bidomain region
changes, one should identify the new interfaces and then recompute the matrices,
with an additional computational cost that is anticipated to reduce the advantage of
the Optimized Schwarz coupling. The model adaptive strategy we propose here re-
lies instead on a a priori subdivision of Ω into smaller subdomains Ω j. The model
error estimator will associate runtime each subdomain with either the Bidomain or
the Monodomain problem. In this way, the interfaces matrices needed for the cou-
pling can be computed once at the beginning of the time loop. The non-symmetric
formulation of the Bidomain system ensures that by assembling the blocks of every
subdomain matrix, also the Monodomain ones are available. Details on the Opti-
mized Schwarz coupling are given in the next Section.

Fig. 1 Error in the propagation of the membrane potential u between Bidomain and Monodomain
simulation (from [6]): fibers oriented along the x axis.
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2.1 Coupling conditions and Optimized Schwarz Methods

We outline here the coupling conditions for the three different types of interfaces. If
the subdomains involved have the same characteristic (Bido/Bido and Mono/Mono)
the corresponding solutions are labeled by subscript 1 and 2, while if the subdo-
mains have different characteristics (Bido/Mono) the corresponding solutions are
labeled with subscript B and M.

Bidomain/Bidomain interface. The coupling conditions on the Bidomain/Bidomain
interface have been introduced in [5], and are given by

nT
1 D∇u1 +α1 Σ u1 = nT

1 D∇u2 +α1 Σ u2

nT
2 D∇u2 +α2 Σ u2 = nT

2 D∇u1 +α2 Σ u1, where Σ =

 σ l
e

σ l
i +σ l

e
0

1 σ l
i +σ l

e
σ l

i

 . (7)

The convergence of the Optimized Schwarz Algorithm based on the interface con-
ditions (7) was analyzed in [5], where also optimal parameters have been identified
by means of Fourier analysis.

Bidomain/Monodomain interface. Due to a dimensional mismatch between the
two models, two interface conditions are needed on the Bidomain side of the inter-
face, and one on the Monodomain side [6]. Possible coupling conditions are

nT
B

σ l
eDi

σ l
i +σ l

e
(∇uB +∇ue,B)−nT

B
σ l

i De

σ l
i +σ l

e
∇ue,B +

σ l
eα

σ l
i +σ l

e
uB = nT

B
σ l

eDi
σ l

i +σ l
e
∇uM + σ l

eα

σ l
i +σ l

e
uB

nT
BDi(∇uB +∇ue,B)+nT

BDe∇ue,B +αuB +
σ l

i +σ l
e

σ l
i

αue,B = αurest

(8)
for the Bidomain subproblem, and

nT
M

σ l
eDi

σ l
i +σ l

e
∇uM + σ l

eα

σ l
i +σ l

e
uM = nT

M
σ l

eDi
σ l

i +σ l
e
(∇uB +∇ue,B)−nT

M
σ l

i De

σ l
i +σ l

e
∇ue,B +

σ l
eα

σ l
i +σ l

e
uB

(9)
for the Monodomain one. To cope with the mismatch, the second condition in (8)
is a transparent boundary condition, designed to avoid spurious reflexions off the
interface for the extracellular potential wave. The convergence of the Optimized
Schwarz Algorithm based on the interface conditions (8)-(9) was analyzed in [6],
where also optimal parameters has been identified by means of Fourier analysis.

Monodomain/Monodomain interface. The Optimized Schwarz coupling is way
simpler on the interface between two Monodomain regions. The Monodomain
model is a parabolic equation equipped with a nonlinear reaction term. The IMEX
temporal integration scheme reduces it, within the single time step, to the solution of
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a linear steady reaction-diffusion problem, whose solution by means of Optimized
Schwarz Methods has been widely studied, and an optimal parameter has been iden-
tified [3]. The coupling on the interface is thus given by

nT
1

σ l
eDi

σ l
i +σ l

e
∇u1 +αoptu1 = nT

1
σ l

eDi
σ l

i +σ l
e
∇up

2 +αoptup
2

nT
2

σ l
eDi

σ l
i +σ l

e
∇u2 +αoptu2 = nT

2
σ l

eDi
σ l

i +σ l
e
∇u1 +αoptu1.

(10)

2.2 The model error estimator

For choosing between a Bidomain or Monodomain simulation within the single
subdomain we need a reliable model error estimator. An efficient a posteriori error
estimator was introduced in [9], based on the extracellular potential computed from
an extended Monodomain solution. To further reduce the computational cost, we
compute only a Monodomain solution uM over the whole domain.
We let De =

σ l
e

σ l
i
Di+Dε , and the model estimator is computed at the subdomain level

as

ζ
2
j =

∫ tn+1

tn

∫
Ω j

∇uM
σ l

i Dε

σ l
i +σ l

e

(
D−1

i +D−1
e
) σ l

i Dε

σ l
i +σ l

e
∇uM dxdt.

The value ζ 2
j is an upper bound for the error between the Monodomain and the

Bidomain model within the Ω j [9]. The Bidomain model is then activated in Ω j
whenever ζ 2

j exceeds a given threshold τ j, depending on the size of the subdomain.

2.3 The model adaptive algorithm

We summarize here the resulting model adaptive strategy, by highlighting the pre-
processing and the runtime phases.

Preprocessing

1. Split the computational domain into non-overlapping subregions Ω j ( j = 1, ..,N).
2. Identify the interfaces Γi j between subdomains Ωi and Ω j.
3. Assemble the local matrices B j

uu, B j
ue, B j

eu, B j
ee

4. Assemble the interface mass matrices MΓi j

5. Compute the incomplete ILU factorization of the local B j
uu and B j

ee matrices

Runtime (time step tn→ tn+1)

1. Run a Monodomain simulation at time tn+1 over the whole domain Ω

2. Evaluate the a-posteriori model estimator and compute the local indicator
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3. For all subdomains where the local indicator is above a given threshold, activate
Bidomain

4. Run a few iteration of the Optimized Schwarz Algorithm using the solution com-
puted in Step 1. as initial guess

5. Advance to time tn+1

A dynamical allocation of tasks is under investigation to properly balance, in real
problems, the load of each processor in the parallel solver.

3 Preliminary numerical results

Numerical results in this section have the purpose to show the effectiveness of the
model adaptive method: for this reason we consider here only 2D simulations. The
numerical tests are run in Matlab R© 7.5. The Bidomain problems are solved with
by a flexible GMRES (f-GMRES) right preconditioned by the Block-triangular pre-
conditioner introduced in [4], while the Monodomain problems are solved by a CG
preconditioned by an ILU factorization.
We consider the strip Ω = [0,3]× [0,1] subdivided into the three noverlapping sub-
domains Ω1 = [0,1]× [0,1], Ω2 = [1,2]× [0,1], and Ω3 = [2,3]× [0,1]. The fibers
are oriented with the principal direction perpendicular to the interfaces, and we im-
pose a stimulus on the whole left boundary of Ω1. The ionic model is the Rogers-
McCulloch one [13]. We plot in Figure 2 the wavefront position at different times
(top row), and the activated subdomains (bottom row).

A more detailed presentation of the method will be the subject of a forthcoming
work. Further work needs to be done to identify the proper trade-off between the
number of subdomains, and the size of the Bidomain region surrounding the wave-
front, and to properly handle the processors load balance in a parallel architecture.
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