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Abstract

We derive the model of homogenized von Karmén shell theory, starting from three
dimensional nonlinear elasticity. The original three dimensional model contains two
small parameters: the oscillations of the material £ and the thickness of the shell
h. Depending on the asymptotic ratio of these two parameters, we obtain different
asymptotic theories. In the case h < ¢ we identify two different asymptotic theories,
depending on the ratio of h and £2. In the case of convex shells we obtain a complete
picture in the whole regime h < €.
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1 Introduction

This paper is about von-Karman theory for thin elastic shells. There is a vast literature
on shell theory in elasticity. An overview about the derivation of models for linear and
nonlinear shells by the method of formal asymptotic expansions can be found in [Cia00].
In the case of linearly elastic shells, the models thus obtained can also be justified by a
rigorous convergence result, starting from three dimensional linearized elasticity (see also
[CL.96l, [CLM94] ).

In the last two decades, rigorous justifications of nonlinear models for rods, curved rods,
plates and shells were obtained by means of I'-convergence, starting from three dimensional
nonlinear elasticity. The first papers in that direction are [ABP91l [LDR95, [LDRI6G] for
the string model, membrane plate and shell model respectively. The rigorous derivation of
nonlinear bending theory of plate was achieved in [F-JM02]; see also [Pan01] for an earlier
result in this direction. Féppl-von Karmén theory for plates was derived in [FJMO06]. In
[MMO3], MMO04], bending and von Kérman theories for rods were derived. In [FJMMO3]
the nonlinear bending theory shell model was derived, and in [LMP10] the von Karmén
shell model was derived.

Here we are interested in an the ansatz-free derivation of a homogenized von Karméan shell
theory by simultaneous homogenization and dimension reduction. Our starting point is
the energy functional from 3d nonlinear elasticity. It attributes to a deformation u of a
given shell S* ¢ R? of small thickness h > 0 around a surface S C R3 the stored elastic
energy
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1 — HY(S" RY).
(1) S Jan W.(z, Vu(z)) dz, ue H (5" R”)

Here W, is a non-degenerate stored energy function that oscillates periodically on the
surface, with some period ¢ < 1. We are interested in the effective behavior when both
the thickness h and the period € are small. The separate limits h — 0 and € — 0 are
reasonably well understood: In [LMP10] it is shown that, when W does not depend on
g, then the functionals () I-converge as h — 0 to a two-dimensional von Kdrmén shell



theory. Regarding the limit € — 0, which is related to homogenization, the first rigorous
results relevant in nonlinear elasticity were obtained by Braides [Bra85] and independently
by Miiller [Mil87]. They proved that, under suitable growth assumptions on W, the
energy () I'-converges as ¢ — 0 (and h fixed) to the functional obtained by replacing
W in ([l) with the homogenized energy density given by an infinite-cell homogenization
formula.

In this paper we study the asymptotic behavior when both the thickness i and the period
¢ tend to zero simultaneously. As a [-limit we obtain a two-dimensional von Karmaéan
shell model with homogenized material properties. Recently, the von Kdrman plate model
(see [NV]), the bending plate models (see [HNV] [Vela]), and bending rod models (see
[NeulO, Neul2]), were analyzed in this way. Simultaneous homogenization and dimen-
sional reduction was also done in the case of periodically wrinkled plate (see [Velb]). As
explained there, in these cases one does not obtain infinite-cell homogenization formula
like in the membrane case (see [BEF00, BB06]). The basic reason for that is the fact since
we are in small strain regimes, the energy is essentially convex in the strain. This is the
main reason why we can use two scale convergence techniques in all these cases. However,
every case has its own peculiarities. In the von Karman theory of plates, one obtains a
limiting quadratic energy density which is continuous in the asymptotic ratio v between
h and e, for all v € [0,00]. Moreover, the case v = 0 corresponds to the situation when
the dimensional reduction dominates and the obtained model is just the homogenized von
Karmén plate model. The situation v = oo corresponds to the case when homogenization
dominates and the obtained model is the von Karman plate model of the homogenized
functional. The case of bending plate is more involving; we are able to obtain the models
in the case v € (0, 00] (see [HNV]) and in the case v = 0 under the additional assumption
that €2 < h < ¢ (see [Vela]). This model does not correspond to the situation of the
homogenized bending plate model, but is the limiting situation of the models when v — 0
and v > 0.

In case of von Karman shell theory studied in the present paper, we encounter two different
scenarios in the regime h < ¢, depending whether h ~ €2 or h < 2. Our main result
is presented in Theorem We are not able to cover the case h < £2 in a generic way
for arbitrary reference surfaces S. A stronger influence of the geometry of the reference
surface S is expected in this case. In fact, in the case when S is a convex surface, we
succesfully derive the limiting model even for the regime h < €2, see Theorem

Our analysis requires both techniques from dimension reduction, in particular, the quan-
titative rigidity estimate and approximation schemes developed in [FJMO02) [FJMO06]; and
techniques from homogenization methods, in particular, two-scale convergence [Ngu89l
Al192] [Vis06l [Vis07]. To our knowledge our result is the first rigorous result combin-
ing homogenization and dimension reduction for shells in the von Karman regime. The
homogenization for linearly elastic shells was carried out in [Lut85].

This paper is organised as follows: after introducing the setting and basic objects in
Section 2] and B] we state the main result in Section Bl In Section [ we identify the two
scale limit of the strain and prove lower bound for I'-limit. In Section Bl we construct the
recovery sequences and thus prove the upper bound. All these results are given for general
surfaces and the cases h > €2 or h ~ 2. In the last section we analyze the case of convex
shells for the situation when h < €2.



Notation

The notation A < B means that A < CB with C' depending only on quantities regarded
as constant in the context in question.

In this paper we frequently encounter function spaces of periodic functions. We denote
by Y the real line R equipped with the torus topology, that is y+1 and y are identified
in ). We write C'()) to denote the space of continuous functions f : R — R satisfying
f(y+1) = f(y) for ally € R. Clearly, C()) endowed with the norm || f||s := sup,ey [f ()]
is a Banach space. Moreover, we set C*())) := C¥(R)NC(Y) and denote by L*(Y), H'(Y)
and H'(SxY) the closure of C*()) and C*°(S; C>®(Y)) w. 1. t. the norm in L2(Y'), H(Y)
and H'(SxY'), respectively. By L2()), H*()) we denote the subspace of functions H*())
whose mid-value over ) is zero. Obviously, all these spaces are Banach spaces. For A ¢ R?
measurable and X a Banach space, L%(4; X) is understood in the sense of Bochner. We
tacitly identify the spaces L?(A4; L*(B)) and L?(A x B); since whenever f € L?(A x B),
then there exists a function f € L?*(A; L?(B)) with f = f almost everywhere in A x B.
By (e1,e2,e3) we denote the standard basis on R3.

2 Geometric preliminaries and general framework

In this subsection we do not always display the explicit regularity assumptions; the minimal
requirements are obvious. We assume that w C R? is a bounded domain with boundary
of class C3. We set I := (—3,3) and Q" := w x (hI), and Q := w x I. The variables on
w (resp. Q) will be denoted by &1, & (resp. £1,&s,t). For a function f: Q — R? we define
Vinf = (01f,0f, +05f).

Let S be a compact connected oriented surface with boundary which is embedded in
R3. For convenience we assume that S is parametrized by a single chart: From now on,
Y € C3(w;R3) denotes an embedding with 1(w) = S. The inverse of 1 is denoted by
r: S — w, and we assume it to be of class C3. We leave it to the interested reader to
verify to which extent these regularity assumptions on S can be weakened without altering
our arguments.

The nearest point retraction of a tubular neighbourhood of S onto S will be denoted by
. Hence

m(x +tn(z)) =x whenever [t| is small enough.

We introduce the basis vectors of the tangent bundle determined by ¥, namely the push-
forwards 7; = ¥.e;. Explicitly, this means

7i(z) = (0;¢)(r(z)) for i = 1,2 and all z € S.
By our hypotheses on 1 there exist 11,70 > 0 such that
(2) m < det([m1 7)1 1)) <, [T1llwecesy < 2y I2llwese sy < o
We denote by (71(x),72(x)) the dual base to the base (71(z), 72(z)), that is,

7'(2) = (9")(r(2)).



By n: S — S? we denote the unit normal, that is,

T1(x) A 12(2)

= —F—"=forallz e S.
|71 () A ()]

n(z)

By TS = span {71 (z), 72(z)} we denote the tangent space to S at x For each x € S, the
vectors 71 (), 72(z) and n(z) form a basis of R3. Its dual basis is (7!(z), 7%(x), n(x)). We
define 73(x) = 73(x) = n(z).

For a subset A C S we set

Al ={z +tn(z); € S,—h/2 <t < h/2}.
In particular, the shell is given by

St ={x+tn(x); €8, ~h/2<t<h/2}.
We introduce the function ¢ : S — R by
(3) t(z) = (x — w(z)) - n(z) for all z € S*.

By 7. : St — Q we denote the map (see below why we assume that 7 and ¢ is well-defined
on S1)
re(r) = r(m(x)) + t(x)es.

Clearly,

(4) re (&, Eo,t) = (61, &) + tn (&1, £)),

and thus:

() Vgt &e,t) = (I +1S(2))[r(z), ma(x),m3(2)], where & =9 (&1, &)
(6) Vre(z) = [7'(2), 7% (@), 7% (@)]" (I + t(2)S(2)) .

We denote by
Ts(z) :=1 —n(x) @n(x)

the orthogonal projection from R? onto 7,,S. We will frequently deal with vector fields
V : S — R3 on the surface. We extend all such vector fields trivially from S to S!, simply
by defining V(z) = V(n(x)) for all x € S*. By Vian we denote the projection of vector
field V on the tangential space i.e. Viun = TsV. We will denote by V the corresponding
vector field along w, i.e. we set V(z) = V(¢(€)) for all £ € w.

The space of quadratic forms on S is denoted by S. It consists of all maps B on S such
that, for each = € S, the map

B(z): T,S x T,S — R

is symmetric and bilinear. We will frequently regard B as a map from S into R3*3 via the
embedding ¢ defined by
L(B) = B(TS,Ts).



On the right-hand side and elsewhere we identify bilinear maps from R? into itself with
R3*3. By definition, B(Ts,Ts) : S — R3*3 takes the vector fields v,w : S — R? into the
function

B(Tsv, Tsw).
By definition, B € L?(S;S) means that (using the above embedding) B € L2(S;R3*3)
and B € S. The spaces H!(S;S) etc. are defined similarly. By S(x) we denote the set
of all quadratic forms on 7},S which can be embedded in the space R3*3. By S(x)sym we
denote the set of symmetric quadratic forms on T3S which can be embedded in R3%?.
For a function f : S — R3 we regard its tangential derivative Viq, f(2) as a linear map
from T,S into R. For a tangent vector field 7 along S we write 0, f = Vianf 7. A
similar notation applies to vector fields instead of functions. By VianVianf we denote the
triilinear form VianVian f(n1,12,m3) = Op Oy f - m. For scalar f, VianVianf is just the
bilinear form VianVian f(n1,72) = 0y, Opy f

The Weingarten map S on the surface S is given by S = Vi1, i.e.,
S(x)r = (0:n)(x) for all z € S, T € T, M.

We extend S to a linear map on R3 by setting S = S Tg, i.e., we define S(x)n(x) = 0.
Moreover, we extend S trivially from S to S, i.e., we have S(x) = S(r(x)). With a slight
abuse of notation, we denote by S also the (negated) second fundamental form of S defined
by

Sij(x) :== S(x)7(z) - 75(x).
In general, for a given bilinear form B on S we denote its local coordinates by

Bij = BT]' *Tie

Obviously B = Z?,j:l Byt ® 1.
After rescaling the ambient space, we may assume that the curvature of S is as small as
we please. In particular, we may assume without loss of generality that 7« is well-defined
on a domain containing the closure of {x + tn(x); = € S, -1 <t < 1}, and that

1/2 < |Id +tS(z)| < 3/2
forallt € (—1,1) and all z € S.

Lemma 2.1. For all x € S' we have

(Vm)(x) = Ts(n(@)) (I + t(z)S(m(2))) "

Proof. Let x € S, let 7 € T,,S and let v € C'((—1,1), M) with v(0) = x and ¥(0) = 7.
Then

7+ sn(7)) =7 on (—1,1).
Taking the derivative with respect to the arclength of -, this implies

(V) (v + tn(y)) (T +tS(y)7) = .

As xz € S and 7 € TS were arbitrary, we conclude that

(7) (Vr)(x + tn(z))(L +tS(z)) = Ts(x)
on T,,S. But by definition S(z)n(x) = 0, and clearly (V7)(z+tn(x))n(z) = 0, too. Hence
both sides of (7)) agree on all of R3. O



We will frequently extend functions f : .S — R defined on S only to functions defined on
S1 in the following way:
f(z) = f(x(z)) for all z € S*,

with a slight abuse of notation on the left-hand side. When referring to this extension,
we will say that we extend f trivially to S'. By Lemma [ZI] we have for all z € S' the
following formula for the full derivative of f in terms of its tangential derivative:

(VI (@) = (Vienf)(m (@) Ts(n(2)(I + t(x)S(n(2)) .

Extending Vi, f, Ts and S trivially from S to S, as we will do from now on, this formula,
reads

(8) (V)(2) = (Vianf)(@)Ts (@) + t(z)S(z)) "

From now on we tacitly also extend 7 trivially to S*.

2.1 Displacements and infinitesimal bendings

For a given displacement V : S — R3 we introduce the quadratic form (dV)? on S which
is defined by
(dV)2(z)(r,n) = 0.V (x) - 8,V (x) for all 7,7 € T,S.

We also introduce the quadratic form ¢y on S which is defined by its action on tangent
vectors T, € T,.S as follows:

qv(@)(1,n) = 5 (n- 0,V (x) + 79,V (x))

In the geometry literature, this form is usually denoted by di - dV. In local coordinates,
it is given by the matrix field

sym <(V1/JT)V‘7>

on w. Obviously,

(9) sym ((V¢)TV17}W> =symVV -T .V,

where V,, = V-9, for a = 1,2 and where for brevity we have set (L-V)j = Zk:1,2 F%Vk.
Here I’fj denote the Christoffel symbols of the metric induced by . For our purposes it
will be enough to know that T' € L>(w;R?*%%2). Using (@) we see that

(10) sym ((Vib)TVf/) =symVV —T-V +(V-n)S,

were S denotes the pulled back (negated) second fundamental form. Equivalently, we have
the following equality between quadratic forms on S:

(11) @V = Qi + (V- 0)S.

It is well-known that the quadratic form ¢y typically arises in the context of thin elastic
shells, because it is just the first variation of the metric of S under the displacement V.
For example, in [GSP95)] it is denoted (in coordinates) by v, and in [LMP10] it is denoted
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by sym VV.
A displacement V : S — R? is called an infinitesimal bending of S provided that gy = 0,
i.e., that

sym ((w)va/) =04 OV + 05 O,V =0 for all i, = 1,2.
ij

Infinitesimal bendings have been studied extensively both in the applied literature (see

e.g. [Cia00], [Cho97], [GSP95]) and in the geometry literature (see e.g. the references in

[Hor12]). Recently, they have been found to be relevant as well to fully nonlinear bending

theories, cf. [Horl.
For any displacement V',

we define py : S — R3 by setting
8T1V NTo +T1 /\({97—2V

12 =T
(12) pv =Ts Al
Note that
(13) w(x) -7 =—n(z) 0.V(x) for all T € T,.S.

In fact, we compute

1

:m(anV'TQ/\T—aTQV'Tl/\T).

poT

Hence p- 7 = —n - 0.,V for i = 1,2. This proves (I3)).
For a given displacement V : S — R3 we define Qy : S — R3*3 by

(14) Qv = ViV Ts + py ® n.

Lemma 2.2. If V € H'(S;R?) then sym Qy = qv (Ts, Ts) almost everywhere on S.

Proof. Clearly n-Qyn =n-puy =0 and for any tangent vector field 7 along S we have
T-Qyn+n-Qur=7-uy+n-9;,V=0
by (I3). For any tangent vector field o we have

T-Quo+o-Qur =2qy(o, 7).

If V is an infinitesimal bending, then
(15) (T, Ts) = —(dV)*(Ts, Ts),

that is, Q% (1,0) = =0,V - 9,V for all tangent vector fields 7, o along S.
In fact, by skew symmetry, Q% (7,0) = —Qu7 - Qpo, and 9,V = Qy .
For any displacement V, the linearised Weingarten map by (x) is the linear map on 7,5

given by

(16) bV - VtanVS - Vtan,U'V-



An infinitesimal bending V' determines a linearized second fundamental form by, which
can be regarded as the first order change of the second fundamental form of the surface 1)
under the displacement V. In coordinates, the (negated) linearized second fundamental
form of V is given by

(17) (bV)ij =n- (8,@17 - Ffjak‘?),

cf. [Hor12] and the references therein. The linearized second fundamental form also occurs
e.g. in the analysis in [GSP95].

The following lemma justifies our use of the symbol by here.
Lemma 2.3. If V is an infinitesimal bending, then 0;1) - by 0;9 = (by )sj.
Proof. We write u, V, n etc. instead of uy, ‘7, n, and the coordinates of the second

fundamental form are denoted h;;, and we use the common convention regarding the
raising and lowering of indices. By definition of the linearised Weingarten map, we have

bvajlb = —0ju + VajnV = —0ju — h;ﬁakv
Hence using n - 9;V + p - 9;¢ = 0 (which follows from n - 9;1) = 0), we see
it by Ot = —0ip - Dt — WO - OV
= —(9]'(6@'1[) cp) 4 0;0 - p — h;caﬂ,z) X%
= 0;(V - n) + TEo) - — hbop - 0V
= 0,0,V -n+ 0V - O — TV -n— hEgw - 9,V
=n- (90 ~TEYV) = WEV - 0> — Wy - O

This indeed agrees with (by);; as defined in (7)), because the last terms cancel by the
definition of infinitesimal bendings. O

We will frequently need the following diffeomorphism ®" : §* — S1:

The following lemma summarizes a computation that will later be used for the generic
type of ansatz functions.

Lemma 2.4. Let h € (0,1/2), let V € H?(S;R3), and for x € S define
p(@) = V() + t)y (2).
Then the following equality holds on S™:
Vp = Qy — thy(Ts, Ts) — t*Vianiv'S

(18) + (vtanv + 75vtcm,uV) TS <(I + ts)il — (I — tS)) s

where we extend V., py, Qv, by, VienV etc. trivially from S to S™.



Proof. For all x € S" define

(19) Q(z) = (I +t(2)S(x)) " — (I - t(z)S(2)).
Since clearly Vt = n, formula (8) shows that on S”:
Vo = (VianV + tVianpy ) Ts (I +tS) ™ 4 py @ n

- (Vtanv + tvtan/ﬂ/) TS (I - tS) + 1%4% KXn+ (vtanv + tvtan,U'V) TSQ
= VinV + ny @n — tVtanVS + 75vtan;u\/'TS - tQVtanNVS + (Vtanv + tvtan;uV) TSQ

By the definition of Qy and by this is the claim. O

3 Elasticity framework and main result

Throughout this paper we assume that the limit

— Jim A
7= 2y

exists in [0,00]. We will frequently write ¢ instead of €(r), but always with the under-
standing that € depends on h via 7.

Definition 3.1 (nonlinear material law). Let 0 < o < 8 and p > 0. The class W(«, 3, p)
consists of all measurable functions W : R3*3 — [0, +00] that satisfy the following prop-
erties:

(W1) W is frame indifferent, i.e.
W(RF) =W(F) forall F € R¥3 ReSO(3);
(W2) W is non degenerate, i.e.
W(F) > adist?(F,S0(3)) for all F € R3*3;
W(F) < Bdist?>(F,S0(3)) for all F € R3*3 with dist?>(F,SO(3)) < p;
(W3) W is minimal at I, i.e.
W(I) = 0;
(W4) W admits a quadratic expansion at I, i.e.
W(I+G) = 9(G) + o(|G*) for all G € R**3

where @ : R**3 — R is a quadratic form.
Definition 3.2 (admissible composite material). Let 0 < a < § and p > 0. We say
WSt xR? x R & R U {400}
describes an admissible composite material of class W(a, 3, p) if

(i) W is almost everywhere equal to a Borel function on S' x R? x R3*3,
(ii) W(-,y, F) is continuous for almost every y € R? and F € R3*3,

(iii) W (x,-, F) is Y-periodic for all x €  and almost every F € R3*3,
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(iv) W(z,y,-) € W(a,8,p) for all x € S! and almost every y € R.

Assumption 3.3. We assume that

e W describes an admissible composite material of class W(«, 3, p) in the sense of
Definition

e Q is the quadratic energy density associated to W through expansion (W4)) in Def-
inition Bl

e The following uniformity is valid

I _
lim  esssup W (z,y, +G)2 Q(z,y,G)|
G20 (2,9)eS1 xY |G|

=0.

We collect some basic properties of admissible W and the associated quadratic forms Q;
a proof can be found in [Neul2| Lemma 2.7].

Lemma 3.4. Let W and Q satisfy the assumption (3.3). Then

(Q1) Q(-,y,-) is continuous for almost every y € R2,
(Q2) Q(x,-,G) is Y -periodic and measurable for all x € S' and all F € R3*3,

(Q3) for all x € S* and almost every y € R? the map Q(z,vy,-) is quadratic and satisfies

alsym G> < Q(z,y,G) = Q(z,y,sym G) < B|sym G|? for all G € R3*3,

Furthermore, there exists a monotone function m : RT™ — Rt U{+oco} such that m(§) — 0
as 6 — 0 and

(20) VG € R¥C W (x,y, I+ G) - Qz,y,G)| < |GI’m(|G])

for all x € S* and almost every y € R2.

Let W be an energy density satisfying Assumption [3.3l The elastic energy per unit thick-
ness of a deformation u" € H'(S";R3) of the shell S” is given by
1
EMu) = E/ w (@h(x),r(m)/s,Vuh(x)> dx.
Sh

We denote by B the L?-closure of the set
{gw :w e H'(S;R%)}.

As this is a linear space, its strong and its weak L?-closure coincide. The set B is a closed
linear subspace of L?(S;S). The space B is also encountered in the context of shell models
derived from linearized elasticity; see [SP89al [SP89b| [GSP95] for details.

Before we give the main statement we have to define the limit functionals. To do that we
need the definition of the relaxation fields and the cell formulas.

11



Definition 3.5. We define the following operators:
Uy - H' (V;R?) x L*(I x Y3 R?) — L*(I x V;REE),
g1 ' ‘
U(C,g) = ( sym Vb g2 ) T,
(91, 92) g3 ij
U H' (Vi R?) x H*(Y) x L*(I x Y;R?) — L*(I x V; R,
V,(—tV2p I L
Ug (¢, ¢,9) = ( Sy Vi g e T,
(91, 92) 9/

Uy, + HH(V;R?) x H* (V) x L*(I x Y;R?) — L*(I x V;RD),

sym

1 N2, N S
Z/I&m(Q ©,9) = ( Sym Vyl + m PSle) —tVye g2 ) TR T,
(91, 92) g3 ij
Uy : LI HY(Y;R?)) x L2(I; HY(Y)) x L*(I;R?) — L3(I x Y;R3%3),

sym

. 8@/11/} +c1 ) )

Use(C.10,¢) = ( WV g e, ) T e,
Vy + (c1,¢2) c3 i

U, : HY(I x Y;R?) — L2(I x Y;R3%3); for v € (0,00);

sym

Uy (¢) = sym(Vyo, 2030);5 7' @ 7.
For 7 € (0,00) we introduce the function spaces of relazation fields
Ly(Ix ¥) = {Uy(6) : 6 € H'(I x ViR }
For v = 0o and v = 0 we define
LooT x ) ={Usc(C,00,0) 1 (G 0h,0) € LI HM (V3 RE) x LA () x LR},
Lo(I x ¥) ={Us(¢.9) : (C.9) € H'(VR?) x LA(I x ViR?) |

We also introduce

2, N o .
L8(I % y) :{ ( SymVyC tvySD 9 ) Tz ®T‘7 : C e Hl(y’RZ)’
(91, 92) 9 /i

p € HXY), g € L*(I x Vi RY)}

and for x € S, 11 € (0,00) we define

V¢ + LeS(z) —tv2p T D :
Ljq, (I % V) {<Sym S Ve ) derice BAOGRY),
(91, 92) 9 /i

@€ HAY), g L3I x ViR }.
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Remark 1. Notice that all the operators U and the appropriate spaces also depend on
x € S. For simplicity of writing we do not write x in the notation.

For v € (0,00] and = € S we define the functions Q. (z) : S()sym X S(z)sym — R as
follows:

21 .¢' %)= inf // +tn(x),y, ¢" + t¢*> + U ) dydt.
ey Q)= it ] O(etn@) ! e+ U) dy

For 7 € (0,00) we define QY(x), Q(l)m (@) : S(z)sym X S(x)sym — R as follows:

(22) A(z,q¢",¢°) = inf //Q<x+tn(x),y,q1+tq2+U> dy dt
UeLS(IxY)J1Jy
@) bty = it [ [ oot tnt@)yat 4+ U)dya
' veLy ., (Ix¥)J1Jy

Remark 2. We discuss the cell formula in the limiting cases v = 0 and v = co.

(i) In the case v = oo define

~ 3 Oy + 1 ' ‘
Loo(I X)) = { Z sym V¢ Byt + ¢ e
ij=1 \ Vy + (c1,c2) 3

]
(e HY(Y,R?),¢ € H(Y), c € Rg}.
Also define for (z,t) € S x I

(24)  Quw(z,t,¢'¢) = _ inf / Q(fﬂ +tn(z),y,q" +t¢* + U) dy.
U€Loo(IxY;REH JY

It is easy to see that éoo is, for a fixed x € S, t € I, a quadratic in ¢!, ¢>. We have
(25) Quol,q', %) = / éoo(x + tn(z), ¢!, ¢%) dt
I

(ii) Define as in [LMP10]

(26) Qg(x,t,ql,qQ) = min {Q(z+tn(x), M) Cq gt — Z (MTj-TZ‘)Ti(X)Tj = 0}.

Also define

.MM

LI xY) = { (symV,¢ V5 Lf"@fﬂ’:<eH1<y,R2>,soeH2<y>},

1

.

)

.MM

B3 = { 3 (amvicedesuo -5 ) #or
1

.

)

Ce DR g€ H2<y>}

13



It can be easily seen that we have for the cell formula

(27) Nz, q',¢°) = inf / Q> <x +tn(z),y.¢" +tg* + U) dt dy,
UeL8(IxY) JJIxY

for i=0,2 i.e.
(28) Qtl)n/l (1‘, q17 q2) =

inf // Qs <x + tn(x),y, ¢* + tg* + U) dt dy.
IxYy

UeL . (IxY)
In the case when Q does not depend on ¢ we have that

X, q',q¢%) = inf /Qz z,y,4" + Z (sym Vy¢)yyr* @ 79) dy

1 2
CEH(V,R?) i

1
+— inf /szy,q + 20)ii @ 1) dy,
12 weH2(Y) JZ:I y¥P)ijTi j)

1,
9y " (z,¢",¢%) =

([0l s 5 omnons osor)a

CEM (VR2)peli*(Y) by

/Qnyq +Z y(PUTz(g)T])dy)

i,j=1

Remark 3. In the same way as in [NV] we can prove the following: For every ¢!, q¢? €
S(x)sym and « € S we have that

_ 1 2
,Ylgrolo Q,(x, ) = Qulx,q,q?)
lim O, (r,q"¢*) = QY(w.q".")

Remark 4. Notice that when S = 0 then all spaces L) and L(lm1 coincide for v; € (0, 00).
This corresponds to the observation in the von Karméan plate theory that for v = 0 one
obtains only one relaxation space, cf. [NV] for details.

For v € (0,0] define the functionals I, : H*(S;R?) x L?(S;S) — R by setting

(29) I(V, By) :/SQV(-,BW + 1(dV)?, —by)dH?,

and define the functionals I : H2(S;R3) x L?(S;S) — R by

(30) 18V.Ba) = [ Qb B+ bav)R —h)ar

as well as, for 71 € (0,00), define the functionals I&m s H?(S;R3) x L%(S;S) — R by
(31) 15, (V,By) = /5 Qb (B + 5(dV)?, —by)dH>.

This is our main result:

14



Theorem 3.6. Let W satisfy Assumption[3.3 and assume that u" € H'(S";R3) satisfy

(32) limsup A~ E" (u") < o0.
h—0

Then the following are true:

(i) (compactness). There exists a subsequence, still denoted by (g"), and there emist
Q" € SO(3) and " € R? such that the sequences y" and V* defined by

o= @)
and
</ Y (@ + tn(z))dt — x> forallx €S
I
satisfy the following:

(a) We have
y" — 7 strongly in H'(S';R?).

(b) There exists an infinitesimal bending V € H?(S;R3) of S such that
VP =V strongly in H'(S;R?).
(c) There exists By, € L*(S;S) such that

1
7 avh — B, weakly in L*(S;S).

1) (lower bound). Defining I, by and I9 by and I} by , we have
Y 0 0

L,(V,By) if h/e = v € (0, 00]
lim inf WA EM W) > { I9(V, By) if > h > €2
H
15, (V,By) ife?/h— 7—11 € (0,00)
(iii) (recovery sequence) For any infinitesimal bending V € H?(S,R?) of S and any B, €
B, there exist u" € H'(S";R3) satisfying (32), and such that the conclusions of part
(i) are true with Q" = I and " =0, and

I,(V,By) if h/e = v € (0, 0]
lim WA EM W) = { I9(V, By) if € > h > &2
_)
I§,,(V,By) ife*/h — = € (0,00).

From now on u" € H'(S";R3) will always denote a sequence satisfying (B2).

15



3.1 Unit thickness rescaling

Recall that ®" : S* — S is given by

Since Vt = n, Lemma 1] and formula (8) show (recall that n is extended trivially to S*):

t 1
V@h:VW%—EVn—{—En@n

t 1
=Ts(I+tS)™' + - STs(I + tS)~! + Sn@n

Since Ts clearly commutes with S, we see that Ts commutes with (I + ¢S)~! as well.
Hence

(33) Vol = (I, + %S)(I +tS)"! on S,

where I, = Tg + %n ® n. Following [FJMO02], for given w : Sh — R? we define its rescaled
version y : ST — R3 by
y(®") = u on S".

We define the rescaled gradient of y by the condition
(34) Viy(®") = Vu on S™.
To compute V), more explicitly, insert the definition of y into (34]) and use ([B3)) to find

(35) Viwy = Vy (I, +tS)(I + htS)~! on S,

In order to express the elastic energy in terms of the new variables, we associate with
y: S' — R3 the energy

I"(y) = 1 W (x,7(z) /e, Viy(x)) det (I + t(2)S(x)) " dx

S
= /S/IW(x—i—tn(x),r(x)/a, Viy(z)) dt dH?

By a change of variables we have

1

EMuhy = E/Sl W <-,r/e,Vhyh) det V(@")71] .

Using (33)) it is easy to see that

EMu™y = 1" (y") + o(h*) as h — 0.
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3.2 FJM-compactness

The following lemma proves the first part of Theorem It is a direct consequences
of [FJM02, Theorem 3.1] and of arguments in [FJMO06]. We refer to [LMP10] for the
extension to the present setting.

Lemma 3.7. There exist a constant C' > 0, independent of h, and a sequence of ma-
triz fields (R") ¢ H'(S;SO(3)) (eatended trivially to S™) and there exists a sequence of
matrices (Q") C SO(3) such that:

(i) limsupy,_,o h=5/?||Vul — RhHL2(Sh) < 00
(it) limsup;,_, h_1||VRh||L2(S) < o0
(i4) limsupy,_,o 71 |(QM)TRM — I||pr(s) < 00, for all p € [1,00).

(iv) (QMTRM — I strongly in H.

Moreover, there exists a matriz field A € H'(S,s0(3)) taking values in the space of skew
symmetric matrices, such that (after passing to subsequences)

(v) %((Qh)TRh - I) — A, weakly in H'(S;R3*3).

(vi) h_12 sym (QMTRM — 1) — 1A% strongly in LP(S;R*3), for all p € [1,00).
Moreover, the following are true:

(i) limsupy, o 7z Vai" — Rl 12(s1) < o0.
(ii) %((Qh)TVhyh — I) — A, weakly in H" up to a subsequence.
Define y"* € H'(S';R3) by
yh = (Qh)Tgh - ch7
where

h = MTgh(x n(r)) —x 2(x).
d = f @@+ nie)) — a)it ()

Introduce the (average) midplane displacements V' : S — R3 by setting

h \Jr

(36) Vi(z) = S (/ (y"(z + tn(z)))dt — x> forall z € S.

Then {4 V" =0 and (after passing to a subsequence)

(iii) y* — w, strongly in H'(S';R3).

(iv) There exists an infinitesimal bending V' € H*(S;R3) of S with Qy = A and such
that V" — V strongly in H'(S;R3).

(v) Eqyn is bounded in L*(S;R3*3).

17



In what follows we replace the sequence R" by (Qh)TRh and the sequence y" by 7", so we
assume without loss of generality that Q" = Id.
Expressed in the unrescaled variables, we have

Vi(z) = % </Ih ul(z 4 tn(z)) dt — m> ,

ie. x4+ hV(z) = f;, u"(z + tn(z)) dt.

Next we modify the displacement fields V" into more regular fields Vsh enjoying a similar
compactness.

Lemma 3.8. There exist V' € H*(S;R®) with £ VI = 0 satisfying

(37) limsup h ||V — VhHH1(S) < 0o
h—0
and
Rh—T Rh—T
(38) H <Vtan‘/sh - ) TS < H (vtanvh - > TS .
h 12() h 12(8)

Moreover, (V1) is uniformly bounded in H*(S) and
(39) VI~V weakly in H*(S;R?).

Proof. We follow [NV| Proposition 3.1]. For ¢ = 1,2,3 denote by p; the i-th row of the
matrix %Vﬂ), We define V! € H?(@;R3) such that (V/); is a minimiser of the
functional

v / Vo — p;|* da

among all v € H'(©) satisfying [ v =0, and we define V" via V}*(¢) = V. The bound
BY) follows from the minimality of V*. Combining the tangential components of (0] and
(1)) below, we obtain

”Vtan‘/sh - vtcmvvh”LQ(S) < Ch.

Hence ([B1) follows from Poincaré’s inequality on S.
Since 0@ is O, standard regularity estimates for minimisers imply that V* € H?(S)
with bounds

IV mr2sy < C (Ildiv pll 2y + lIpllz2o)) -

Hence Lemma 37 (v) ensures that (V) is uniformly bounded in H2(S). Since V* — V
in H', the bound (37) therefore implies (39).

O

Lemma 3.9. There exist maps Fl', F* € L2(S;R3*3) with

timsup b (|E | zzs) + 1Fl2(s) ) < oo
h—0

such that

(40) R" =T+ hQyn + F"
and

(41) R" =TI+ hQyn + F!

18



Proof. For brevity, we set ul = pyr and = pyn.
We first verify the tangential component of (@0). Let 7 be a C' tangent vector field
along S. Then by the definition of V" and using flh RMx)tS(z) dt = 0, we see that

(I + hVian V" Ts)T equals

d-(id + V") = 2, </yh(x + tn(x)) dt) = %37 (/Ih u' (x4 tn(z)) dt)

1

_ % YVl (z + tn(@))(I + tS(z)) dir(z)
Ip,

— R"(@)7(z) - M"(2)r (),

where we have introduced

M (z) = —% /Ih (Vu (e + tn(a)) — B*2)) (1 +1S(2)) .
Clearly,
/SthR M2 = %/M Vil (z + tn(z)) — RM@) |1+ tS()2 dH3(x) dt
< %/Sh |Vu(z) — R"(z)|? dz < Ch™.

To verify the normal component of (40),
we compute using the tangential part of (40):

7-R'n=—n-R'r +2n - (sym R")r
:—”'(Rh—1)7+2n-sym(Rh—I>T
:—hn-@TVh—n-FhT—i—Qn-sym(Rh—I)7'
:h,uh-T—n-FhT+2n-sym(Rh—I>T.

In the last step we used ([I3]). As

(42) Hsym <R I) ‘ sy =
by Lemma 3.7, we conclude that
(43) HTSRhn - huhH < OR2.
But again by (42)) we have
(R"n — —ln - h _ < Ch2.
[ (R"n —n)|[r2(s) Hn sym <R I) nHL2(S) <Ch

Since R"n = (n - R"n) n + TsR"n, we conclude that R"n agrees — up to an error term
whose L?(S)-norm is dominated by h% — with n 4 hu”. This concludes the proof of (@Q).

The tangential component of ([40]) together with (B8] imply that the tangential component
of (A1) is satisfied. But then the normal component of (4I]) follows from its tangential
component in exactly the same way in which the normal component of (0] followed from
its tangential component. ]
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3.3 Two-scale convergence

Recall that we extend the chart r trivially from S to S*.

Definition 3.10 (two-scale convergence). We say that a sequence ¢ € L?(S'), weakly
two-scale converges in L? to the function g € L?(S', L?())) as h — 0, if the sequence g"
is bounded in L?(S') and

h—0

fi [ @) var@)/ede = [ oo vy dyda
S Sixy
for all 1p € C(S',C(Y)). We say that g" strongly two-scale converges to g if, in addition,

lim ||¢" = .
hli%Hg ||L2(Sl) H9||L2(Sl><Y)

. 2, . 2, .
We write ¢" = ¢ in L? (resp. g¢" =Y g in L?) for weak (resp. strong) two-scale
convergence in L2

For the basic properties of two-scale convergence we refer to [Ngu89| [All92] [Vis06]. If
gh g then ¢" — fyg y)dy weakly in L?. If g" is bounded in L?(S') then it has
subsequence which weakly two scale converges to some g € L?(SY; L3())).

The following lemma summarizes standard results about two scale convergence and adapts
them to a possibly curved surface. Its proof follows easily from the analogous statements
for the planar case (see v) and vi) of Lemma [A1]lin the Appendix).

Lemma 3.11. (i) if (¢")ns0 C H'(S') is bounded, then there exist go € H'(S') and
g1 € L2(SY; HY(Y)) such that, after passing to a subsequence, Vg" 2, g, where

9=Vgo+ Vygi(z,y).

(i) if (¢") € H%(S';R3) is bounded, then there exist go € H?(S') and g1 € L*(S'; H2(Y))
such that, after passing to a subsequence,

vigh 2 g,
where

9=V’ 0+Z ylyglxy) T,
1,7<2

iii) if (g") is bounded in ; then we have Vg" == g, along a subsequence, an
ii) if (g") is bounded in H'(S';R®) then we have Vg* 22 g, al b d
there exist go € H(SY;R?) and g1 € L*(SY; HY(Y;R3)) such that

9=Va+ Y (Vyg(zy), e
1<3;5<2

(iv) if (g") is bounded in H?(S';R?) then we have V2g" 27, g, along a subsequence, and
there exist go € H*(SY;R?) and g1 € LQ(Sl,HQ(y,R?’)) such that

9=+ Y, (@ ,9u@y)rerer”
1<3;7,k<2
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4 Two-scale compactness and lower bound

Next we will identify the space of possible two scale limits of symmetrized gradients.
The following auxiliary result is standard and it can be easily derived, e.g., using Fourier
transforms.

Lemma 4.1. Let B € L*(w; L?(Y; R2X2)) have the following property: for every

sym
U € C°(w; C(V;RED))

sym
satisfying
(44) V(€ y) = (&) cof VF(y),
for some ¢ € CX(w), F € C(Y) such that [}, F(y)dy =0,
we have

/ yB(é,y) :¥(z,y)dyd = 0.

Then there exist unique B € L*(w;R3X3) and w € L?*(w; H'(V;R?)) such that

sym

B(&,y) = B(§) +sym V,w(€,y)

In what follows, we will use the notation 22470\ introduced in the appendix. We prove the
next proposition in local coordinates; of course, this is equivalent to performing computa-
tions on the level of the surface.

Proposition 4.2. Let (w") be a bounded sequence in H?(S;R3) such that
%qwh

is bounded in L*(S;S). Then there exist wy € H*(S), wy € L*(S; H*(V;R?)) and B €
L?(S x Y;S) such that, after passing to a subsequence,

2, S
(45) Vtcmvtcmwh AN vtanvtanwo + Z (agjykwl,i(x, y))TZ RT® Tk
1<3,5,k<2
and )
7’y
%qwh — B.

Set By, = [ B(-,y)dy. Then the following are true:

(i) If h > €2 then there exists a unique v € L*(S; H'(V;R?)) such that

B=B,+ Z (sym Vyv),; @7,
ij=1,2

(ii) If h ~ &2 and if we setlimy,_,o 6(2)2 = 711, then there exists a uniquev € L?(S; Hl(y; R?))
such that

A 1

B =B, + Z (sym Vyv), 7" @77 + ’Y—wl,gs
4 1
i,7=1,2
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(iii) If h < €2, then there exists a unique v € L*(S; H'(YV;R?)) such that

> Gym V), 7 @77 + (w3)S =0.
ij=12

Proof. The existence of wy and w; follows from Lemma BIIl In local coordinates (E5)
can be expressed as
~ 27 ~ -
V2ah 2N V2w0 + Vzwl,

where @ = w" o ¥, Wy = wg o Y, W = 17)171-7”, W = wy o1, 7 = 7' 0 1) where by slight
abuse of notation we write (w1, o¥)(x,y) = wi;(¥(x),y), for (x,y) € w x Y. Denote also
wg =" 0,1, Wo,q = wo - Op, for a = 1,2 and w; = (w1,1,W1,2). By Lemma [A.4in the
appendix we have

1 _p 0SCyy _ 1 ~ osc,y _
(46) - sym Vah TN sym Vo, - sym <(V1/J)TVw€Lan> —— sym V0.
and
?I}h osc,y . ﬁ)h oscyy  _ UNJh N oscyy .
(47) 9 wy, 9 wy, 2 w1,3-
€ € € ’

Now let F' € C*°()) and ¢ € C§°(w). With (@) in mind, we compute:
/symeh : (cof V2F) (E) ®
=2 [smvat ot |92 (F (2) ) - 20F) (2) 990 - £ (2) v

_ _52/wsymVu_)h:COf E(VF) (2)eve+F(2) V%]-

We used that the term sym V" is L2-orthogonal to test matrix fields of the form cof V2F.
From this and from (@) and {@7) we deduce that

(48)

[T (1)

_ _/w M :cof [2(VF) (2) © Voo +eF (2) V3] - /w F'g;”h (ot V2F) (2)
. [symy, Vi (-, y) : cof [2(VF) (y) ® V] + (T - @1(-,y)) : (cof VZF) (y) ] -

Recall the identity

(49) guh = Sym ((w)vah> — sym ((vw)va{‘an) + (@ - n)S.

Assume first that h > 2. From the assumption 3 q,» 22\ B and (7)), @8) and Lemma
T we conclude that there exists o € L?(w; H'(Y;R?)) such that

sym <(V1/))TV1Dh> 2, B, + sym Vyo.
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Here B, = B, o 1. This is i) in local coordinates, after defining v; = (9 o 4~1) - 7; for
i =1,2,3. Case ii) we conclude as follows: By dividing the identity ([@9) by € and using

h
T 9 strongly in L2, when h < &,
€

as well as ([46]) and (47) we conclude that w; = 0 from Korn’s inequality. Using (48] and
the identity (@9), after dividing it by €2, we conclude

[ sym (V)T va" : " -
%1_%/{” ym (( 62) ) : (cof V2F) (g> Y= %1_)1% ( > -n)8 : (cof V2F) (g) ®
(50) = / levg(-,y)s : (cof V2F)(y)e.

Lemma [T] again shows that there exists v such that

h 2 2
2, . . . o)
—qh =X By + i}jl(sym Vyv)i 7' @ 77 + <}L1r% - ) w1 38S.

For the case (iii) we argue similarly: as in the case of ii) we conclude w; = 0. Also we
know that ¢"/e2 — 0 strongly in L?. Hence the left-hand side of (50) converges to zero,
S0

| it (ot VR W) =0,
wXY
which by Lemma 1] implies the claim. O

Lemma 4.3. Let (w"),~o C H'(S';R?) be such that

lim sup ( w2 + [ Viw"|| 12 ) < 00.
h—0

Then there exists a map wy € H'(S;R?) and a field H, € L(S x I x Y;R3*3) such that

3 o wy € L*(S; H (V;R?))
Z Vywy, wa); 7'Z ® 77 for some

wy € L*(S x Y x I;R?))
if v=0,

<Vyw1, %83101 ) @7l for some wy € L*(S, H'(I x Y;R?))
ij

2
|
-
<
Il
—

=
|
:Mm

if v € (0,00),

3 wi € L3(8 x T, I (Y, R¥))
Z Vywy, wa), ;T ‘@l for some ) 5
j=1 wy € L*(S x I;R?))

\ lf7 = 00,
such that, up to a subsequence, w" — wq in L? and

h 27 2
Viw" — Vigwo Ts + H, weakly two-scale in L°.

Here, wy is the weak limit in H'(S) of [, w"(z + tn(z))dt.
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Proof. The lemma is an analogue of Proposition 6.3.5 in [Neul(Q], adapted to the manifold
S and the definition of two scale convergence on the manifold. Thus we will only prove
the case v € (0,00). Since the sequence is bounded in H! norm there exists a weak limit
wo € HY(S';R?). Let us denote by @", @ the elements of H'(Q;R?), defined by:

(52) " =wtor;t, g =wgor,l.

By Proposition 6.3.5 in [Neul0], vyhich is proved for planar domains, Wy does not depend
on t and there exists w; € L?(w; H*(I x Y;R3)) such that:

(53) Ty 2% (Veto, 0) + (Vyin, Loy,

Then we have that @, € L2(S; H'(I x Y;R3)). Using (@) and (33) we conclude

(54) Viw" = Vuwh(I +tS)(I), +thS)™!

= Va7 B3I 4 t8) 7 I 4 tS) (I, + thS) !
= Vil rt, 72, BT+ thS) L

By using (53) we conclude that

(55) Vjw" AN ((Vewo) o, 0) (1,72, 73T + (Vi o re, %8,511“)1 ore)[rt, 2, 37T

3

1,7=1

where (wq); = (w1 o7e) - 7;. The last property follows from the fact that wy does not
depend on ¢. O

The following lemma is fairly straightforward; we refer to [Neul(, Corollary 2.3.4] for a
proof.

Lemma 4.4. Let (E" ) C L*(Q;R3*3) be such that

B 2 By in LP(Q x Y;RPD),

Then

_ 2, .
h? <\/(I + B2l )T (1 + h2El,,) — 1) 2L sym By, in LHQ x Y R)

app
Proposition 4.5. Assume that there is B € L?>(S x Y;S) such that
Layn 225 B in L(S;S),
and assume that there is By, € L*(S;S) such that
%th — By, weakly in L*(S;S).
Assume also that

2, Z i j
vtanvt(m(‘/sh : ’I’L) i vtanvtan(v : n) + (a;yj 30)7_ ® T,
ij—=1,2
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and set

ph_ Vv (VyM)IVpyh — 1

h2

(56)

Then there exist
U, € LS5 Ly (I x V)

such that (after passing to a subsequence)

E" 2% B in LX(SY R33),
where E is given by

. 2 . .
(57)  E=(But+B+3aV) —thy) (Ts,To) —t 3 (@2, 0)7 @ 77 + U,
ig—1
and where B = B — [y B(-,y) dy.
In particular, the following are true:
(i) If v € (0,00] then there exists U, € L*(S; Ly(I x )) such that
(58) E = By, + 4(dV)? — tby + U,.

(ii) If e < h < €, there exists U € L?(S; LY(I x V)) such that

(59) E = By, + 3(dV)?* — tby + U.

(iii) If h ~ €2, with limy, g % = 711 € (0,00), there exists U € L*(S,; L(l)m(f x Y)) such
that
(60) E = By, + 4(dV)?* — tby + U.

. 2,
Proof. By Lemmal[B.11] there exists a subsequence such that E” 22 F for some E. Denote

by Egpp the approximate strain

T . h
noo (R Vypy' =1
(61) Eapp = 2

By Lemma (4] it is enough to identify the two-scale limit of sym Egpp. Let us write

Vot -1 RM—T
h h hYy
(62) R'EL = T

We have sym(RhEgpp) 2, E, because R" — I boundedly in measure. By property (vi)

of Lemma B.7] the symmetric part of the second term converges strongly in L? (and thus
two-scale) to Q% /2. So we need to identify the two scale limit of

Viyh =1
sym ( —5— |-
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For brevity we set pu* = Py As usual, we extend V/*, n and p trivially to S*.

In what follows we abuse notation using ¢ also as an independent variable. We define the
maps 2" : S — R3 by setting

Ma)y=z+h <Vsh(x) + t(x)u?(x)) for all 2 € S".

Define Q(x) as in (I9) and define (compare (IGl))

b (2) = byp(@) = ~Vianpl (2)Ts () + Vian V' (2)S(x)
and (compare (I4]))

0 (2) = Oy () = VeV (@)Ts(2) + () @ ()
Then Lemma 2.4 shows that

(63) Vel = T+ Q" — ht b — iV iS + h (vtanvj + tvtanuﬁ) TsQ.

Note that |Q| < Ct?> < Ch? on S”, so
Q] p2(sny < CHP2.

In what follows ©" € L?(S") denote maps which may change from expression to expression,
but which always satisfy
18" 125y < CR/2.

We see from ([63]) that
V2 =1+ hQ" + 6" =R+ 0"

by @I). On the other hand, Lemma 3.7 shows that Vu" = R" + ©". Hence
(64) VUl — V2P| 2 (gny < CRY/2.

However, by the definition of V" and of z" we have, for z € S,

1
7 /Ih M+ tn(x)) — uP(z + tn(z)) dt = h <V8h(x) — Vh(x)) .

Hence Poincaré’s inequality implies that

Huh — Zh||L2(Sh) S Huh — Zh —h (‘/Sh — Vh)‘

h h
s T hIVE" = V2l p2(sm)
< |Vul = V2" g2 (sny + B2V = V| 125y < CRY2,

by (64) and @7). Defining Z" : S' — R? by setting Z"(®") = 2" on S*, we have the
equivalent bounds

19" — ZM| 251y + VA" — Z")|| 1251y < CR®.

Thus, using Lemma [£3] we conclude that there exists

H, € L*(S' x Y; R**®)
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of the form given in Lemma A3 and ¢ € H'(S;R?) such that (after passing to a subse-
quence)

(65) = 1, ( Zh> 2% Vyane T + Hs.

Here c is a weak limit in H'(S;R3) of thvsh.

We will now identify the two scale limit on S' of the quantity sym (VhZ =1 > By (G3) we

have for all x € S":

(6) Vo) 1 _

1 t(z)
12 EQh(x) _Tbh(x)+Mh(x)a

where
”MhHL2(Sh) < Ch3/2.

We must therefore identify the two-scale limits on .S of the first two terms.
Lemma implies

1 1 2,
(67) E Sym Qh = Equh (Ts, Ts) N B(Ts, Ts)

weakly two-scale in L2(S;R3*3), by definition of B.

It remains to identify the two-scale limit of b* on S. Its weak L2-limit clearly is by. This
follows by comparing the definition of " with (I6]). Next note that, since V* — V strongly
in H(S), we know that V,, VS does not contribute to the oscillating part. On the other
hand, we have from (I3):

Viant" = ~VianVian (7 V) + Vian (V- 8).

The last term converges strongly in L?(S) to Vi, (V - S), so it does not contribute to the
oscillating part. The contribution of the term ViunVian (n . Vsh) is given by the assump-
tion.

We conclude that
(68) o 2 by 4 2, o T T

on S. By (@66), the above convergence results on S imply that

VipZh —TY\ o P
(69) sym (T) = (B — thy) (Ts, Ts) — (05, )7 @ 7/

weakly two-scale on S?.

We conclude from (65]) and (69) that

FE =B+ sym (VtancTS) QQ —t Z iy P e — tby + U“/
t,j=1

for some U, € L?(S; L, (I x ))). Notice that

(70) B+ sym (vtaHCTS) = Bw + B + U’w
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where

2
7::%ZVCTZ, Y(n@T + 1 @n).
i=1

Notice that U € L*(S;L ~(I x Y)).

Define )
U, =U,+U, € L*(S;L,(I xY)).

Hence (B7)) is proven, using the identity (I5). The remaining claims now follow from
Proposition Namely, ii) and iii) are direct and i) is the consequence of the identity

tayl ¥

2
( t(ayiyj(;p)i,jzl 8 ) = Sym(vy,%ag,) t8y2(p € L,(IxY),
—SD

for v € (0, 00).

For lower bound we need the following lemma.

Lemma 4.6. Let (y") c H'(S';R3), define E" : ST — R3*3 by

\/(Vhyh)T(Vhyh) =1+ thh,
and assume that Eh 2. E. Then we have

o h 2
hmlnf/S/IQ(x+tn(x),r(x+tn(x))/6,E (x +tn(zx)))dtdH* >

h—0

], e+t Bt e

and

hznl(r]lf — / /W x4 tn(z),r(x + tn(x)) /e, I + h2E"(z + tn(x))) dt dH? >
—

/S/I/y Q(x + tn(x),y, E(x + tn(x),y)) dy dt dH>.

Proof. For the first claim we refer to [Vis06l [Vis07]. The second claim then follows from
the standard truncation argument. O

The lower bound parts of Theorem and Theorem is now a direct consequence of
Proposition and of Lemma
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5 Upper bound

We start with the following observation.

Remark 5. It is easy to see, by using Korn’s inequality, that L. (I x y,Rg’erg) as well as

LY(I x Y, R:3), L, (I x Y,R3x3) for € [0,00] and 71 € (0,00) are closed subspaces of

sym Sym

L2(I x Y, R3X3). Also by using Korn’s inequality it is easy to see (see also [Neul2l Neul0),

sym

NV]) that the following coercivity bounds are satisfied:

ICIEr + llgllze S [1Uo(Cs 9) 172,
V¢ € HY(V;R?),g € L*(I x Y;R?),

I1<HZ + ellzz + HgHiQ < U, fp,g)H%z,
V¢ e HY(Y;R?), p € H*(Y),g € L*(I x Y;R?) and

11 + el + 9172 S oq, (Cos9)iZes
V¢ e H'(V;R?), o € H*(Y), g € L*(I x Y;R?) and 1 € (0,00)

ICH7 + ol +llelFe S 1Uso(C €)1 2,
¥¢ e HY (iR, v € LI H' (V) c € L* (I RY),
617 < CONUy ()17, Yo € HY(I x Y3 R?).
Here the constant absorbed into the symbol < depends on 71, 7.

The following two lemmas and remark are analogous to [NV, Lemma 2.10, 2.11].

Lemma 5.1. For v € (0,00] there exists a bounded linear operator
I, : L*(S,S) x L*(S,S) — L*(S, L,(I x V)

such that for almost every x € S we have

Q\(z,q", ¢%) = /I/y Q(fﬂ +tn(x),y,q" +tq° + Hw[ql,qQ](w,t,y)) dy dt.
Moreover, if ¢',q*> € C(S,S) then

(z,t,y) = IL[¢", ¢*)(x, t,y)
18 continuous as well.

Lemma 5.2. The function Q: S xS xS — RT is continuous. Moreover for any x € S
the function Q(x) : S(x)sym X S(x)sym — R satisfies

(lg'? +1°) £ 9z d',¢®) = 9 (x,q", ¢%)
< g+ e

The constant in < depends only on «, B,m1,72.
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Lemma (.1l and Lemma remain true for the quadratic forms QU, Qém, the spaces
LY(I x V), L(l]m (I x Y), and the appropriate operators

I3 : L*(S,S) x L2(S,S) — L*(S, LY(I x V)

and
I, : L*(S,S) x L*(S,S) — L*(S, Lj ,, (I x V)

for 1 € (0, 00).

We need the following auxiliary result concerning the linearization of the square root of a
matrix. Its proof is straighforward by Taylor expansion.

Lemma 5.3. There exists n > 0 and a nondecreasing function m : (0,n7) — R such that
m(d) — 0 as § — 0 such that the following is true:
Let G" € L?(S',R3*3) and K" € L*(S',R3*3) satisfy the following conditions:

(i) There exists M € R such that

timsup (|| sym G" | 20 + 1K | a0y ) < M.
h—0

(ii) We have h='sym K" — 0 strongly in L?(Q) as h — 0.
(iii) There exists 0 < n such that

limsup h||[ K"z~ < &

h—0

and
lim sup h2|| G| < 0.
h—0

(iv) We have hG" — 0 strongly in L*(Q) as h — 0.

Set

fo ;2 <\/(I + K + h2GR)H(T + hECh + h2Gh) — I>
and
(71) El =symG" — %(Kh)Q.
Then we have
(72) limsup [ E* — Elb [l 12 < M2m(s),

h—0

and
(73

lim sup|— / /W z+tn(z),r(z + tn(x)) /e, I + h2E"(z + tn(x))) dt dH>
h—0

- /S/IQ(QC + tn(z),r(x + tn(x)) /e, app(x +tn(z)) dt dH?| < (M + 1)*m(5).
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If, moreover, Egpp 27, E(x,y) strongly two scale, then

(74) limsup|— / /W x4 tn(x), r(z + tn(z)) /e, I + h2E" (@ + tn(z)) dt dH>
h—0

—/// Q(:U—l—tn(a:),y,E(x—i—tn(:c),y))dydtd’Hde < (M—|—1)4m(6).
SJIJY

Proof. We will just give the sketch of the proof. By Taylor expansion there exists n; > 0
and nondecreasing function my : (0,71) — RT such that m;(6) — 0 as § — 0 and for
every A € R3*3 which satisfies |4 — I| < 11 we have

(75) ‘\/(I + A (I + A) - <I+ sym A + %A%)' <my(|A 1) <symA - %ATA> .

If we plug into this identity A = hK" + h2G", divide by h? and integrate and let h — 0
we obtain

lim sup HEh appHL2 < ml( )HEappHL2
h—0
where
Kh
ER = Sy”; +sym G + LK"Y K" + hsym ((Gh)tf(h) +in2ehiah,

Using the assumptions it is easy to prove that

lim || app — appHL2 — 0.

h—0

Now (72) immediatelly follows. (73 follows from Lemma [3.4] and triangular inequality.
([@3) follows from the fact that

/S/IQ(x—i—tn(:c),r(:c—Ftn( x))/e, app(:c+tn(:c))dtd7-[2—>
///Q(x—i—tn(w),y,E(x—i—tn(w),y))dydtd?—ﬂdm,
sJrty

as h — 0 which is the consequence of the continuity of the integral functionals with respect
to strong two scale convergence, see [Vis06l [Vis07].

O

We give here a general computation that will be needed in the proof of the next proposition.
Let P € CY(SY;CY(Y;R?)) define P" : S — R3 by P" = P(-,r/¢), where, as usual, r is
extended trivially from S to S'. Then by (B5)

1
VP = Eanph ®n+ VP"Ts(I +tS)(I + htS) ' Ts

= %8,1P(-,T/e) Qn

+ <VP(-,7”/€) + éVyP(-,r/E)Vt(mr Ts(I + tS)_1> (I +1tS)(I+ htS)_lTS7
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because having extended r trivially to S*, we have 9,r = 0 and (8) applies. We use the
notation 9, P to denote the n-derivative with respect to the first argument only. Since
(I + htS)~! agrees with I up to a term that on S is uniformly bounded by h, and since
h < Ce, we conclude that

<C.

1 1
(76) HVhPh — =0 P(-,1r/e) @n — =V P(-,7/e)Vianr Ts
h € Loo(81)

Note that the linear operator Vi,,rTs on the tangent space can be expressed as, see (@),
ViantTs =1 @ 71 + €9 @ 72,

which is just the pullback operator ¢* from the tangent space to R2.
Proposition 5.4. For every B,, € B and for every infinitesimal bending V € H?(S;R3*3)
of S, there exists a sequence (y") C H'(S',R3) satisfying the following:

(i) y" — 7 strongly in H'(S';R3).

(i) The maps V" (x iy (@ +tn(z)) dt — z satisfy

V' =V strongly in H'(S;R?)

and
%th — By, weakly in L2(S; S).

(i1i) We have

L,(V,By) if limh/e =~ € (0, 00];
lim /.~ My = L 19(V, By) if > h > e?;
—
15, (V,By) if h~e* with lime®/h = 1/y.
Proof. The proof is a modification of the proof of the recovery sequence in [LMPI0], cf.
also [F.JMO6].
By definition and by density, since B,, € B, there exist w,, € C§°(S;R?) such that q,, —
By, strongly in L2(S). Hence

lim sup lim sup (qun BwHL2(S;S) + hHwnHWQ,oo(S;RS)) = 0.
n—o0 h—0

Lemma [A.6] yields a sequence nj, with n, — oo as h — 0, such that the maps

h

w" = wy,

satisfy

(77) lim sup A w"[|y2.00 (s;3) = 0,
h—0

and

(78) qun — By strongly in L?(S;S).
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In order to have common proof for all cases (see the case v = 0) we will assume that there
exists a constant M; > 0 such that and double index sequence ¢, such that

(79) lquenl|lre < M,

and for all § > 0 we have

(80) lim sup h||Vw®"|| 4 = 0, limsup h||VZw®"| 2 < My;
h—0 h—0
lim sup h?||Vw®"|| o = 0, limsup h®|| V2w || = 0.
h—0 h—0
and
(81) Qus — By, weakly in L

Now let V € H?(S,R?) be an infinitesimal bending of S. We approximate V' by a sequence
V" € W22°(S;R3) such that, for each § > 0 we have:

limsup [|o*" — Vlmzs) =0, limsup th‘s’hHWzoo(s) <9
h—0 h—0

(82)

IPL% %7—[2 ({x €S : v (x) # V(w)}) =0.

The existence of such v>" follows by Proposition [A.5] in the appendix. We claim that

(83) qq’% — 0 strongly in L*(S)

as h — 0. In fact,

1/

1 1 2
84)  llgwrllzs) = 5 {z € 8;0"M@) AV (@)} [IVianv™ | oo (usinsvy),

and this converges to zero by (82) and because ¢,s» is uniformly bounded in L*°(S) (see
below). From this we deduce (83)).

To see that g,s» is uniformly bounded in L*°(S), note that the Lipschitz constants of all
qys.n are bounded by 6/h. Since g5, = 0 almost everywhere on {v>" =V}, we have

lgys.n ()] < C% dist (a:, {v5’h = V}) <C.

The last estimate is true because (due to (82)) and bounded curvature of S) for small h
the set {v>" # V} cannot contain a disk of radius h.
Now let 0°,p? € C1(S; C1(V;R3)) and set p®* = p?(-,r/e) and 0" = 0%(-, 7 /¢).
We define 2% : §» — R3 by
2h —id+ h <v‘$’h + hw®" + tuvé,h+hw6,h) + h3p5’h(<1>h) + €h205’h(<1>h),
and we define y" : ST — R3 by y>"(®") = 25", Clearly, for each §, as h — 0 we have
5.k

y?>" — 7 strongly in H(S').
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For x € S we define

VOh(z) = % </Ih (x4 tn(z)) dt — g;> _ % </l yh (@ 4 tn(z) dt — x) .

Hence
VOl = O 4 hwdt 4 ehd® + hzﬁs.

Here we have introduced o%" : § — R3 by

and p>" is defined similarly.
From (BI]) and (83) we deduce that for each J, as h — 0 we have

1 1
(85) Eqva,h = Eqv(s,h + quo.r + EqQz + hqua — B, weakly in LQ(S; S)

Thus the first two parts of the claim are satisfied (for each ¢). Also from (83) we deduce

(86) lim sup
h—0

1 .
aven| | < Rmsup sl + 108 ogsn vy
h—0

L2
+ lu}r;s)élp hllay, ps dtHL?)a

for some R > 0. Notice that for w®" that satisfies (Z8) we have for all § > 0

(87) limsup ||qsnllr2 = | Bwllz2-
h—0

In order to prove the third part, we need to understand the limiting behaviour of

1
ok _ X <\/(Vhy5,h)thy5,h _ [) _

Define Q : S" — R3*3 by ([[@). Lemma 24 shows that
Viy?H(®h) = V20t = T+ hQsn + 2GS (D),
where G¥" : ST — R3%3 is defined by the following equation on S":

t 12
G5’h(<1)h) = Qon — Ebvé,h (Ts,Ts) — tbysn(Ts, Ts) — Evtanuva,h_i_hwa,hs
1
+ E <vtan7}6’h + hvtanw&h + tvtanﬂy&h-{-hw&h) TSQ
+ WV (@") + eV,0" " (@7),

In the case v = lim h/¢ is nonzero, we deduce from (76) (applied with P = p? and P = 0°)
that, as h — 0,

(88) WV p®h + eV ot 27, 28,
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Here we have introduced Z° : S x ) — R3%3 by
—_ 1
= (2,y) = <anp6<w,y> + ;ano%x,y>>®n<x>+(wyp5<x,y> + V40 (2,)) Viant () T (2).

Observe that (88)) remains true for 4 = 0 provided that 9,0° = 0, and for v = oo provided
that p" does not depend on y. This follows from (IZ6)).
Lemma [2.2] and ([78]) shows that

(89) symQon = quon(Ts, Ts) — By (Ts, Ts) strongly in L?(S).

And
bU(S,h (Ts,Ts) — bv(Ts,Ts) in LQ(S).

This holds for each § > 0 as h — 0.
We conclude that

(90) sym GO 2% B (T, Ts) — thy (T, Ts) + sym 9

strongly two-scale in S' as h — 0. Hence the map Eg},};, : ST — R3X3 defined by

1
oy = sym G — 2 (@)’

converges strongly two-scale on S to E% : ST x ) — R3*3, given by
E’(z,y) = Bu(2)(Ts(x), Ts(x)) — t(z)by (¢)(Ts(x), Ts(x)) — 595 (x) + sym Z° (2, ).

We now wish to apply Lemma 5.3 to E>" and Eg},f;, in order to conclude that

I /5 /l W (:g +tn(z), r(z + tn(z)) /e, I + W2ES(z + tn(m))) dt dH? —
/ // Oz + tn(z), E*(z + tn(x),y)) dy dt dH* + E(5),
SJIJY

where |E(5)] — 0 as § — 0. In order to prove this, it remains to verify that the hypotheses
of Lemma [5.3] are indeed satisfied.

But in fact, it is not difficult to see that there exists a constant M such that for all § > 0
small enough

(92) timsup (|| sym G251y + 12 1) ) < M
—

This follows from (86]) and the construction of p?, 0o° below.

Moreover, hypotheses (ii) and (iii) of Lemma [5.3] are clearly satisfied by virtue of Sobolev
embedding and by (80), ([82), (83]). Hypothesis (iv) is a direct consequence of (80) and
that, as h — 0,

BV 4 < Oy 9209 | oo /[ V2099 12— 0,

R2(V20 o < B2 /|[V208h | e[ [920] 12 5 0,
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which follow from (80) and (82]). Hence the hypotheses of Lemma [5.3] are indeed satisfied,
and (@) follows.

It remains to choose the oscillations p? and o in an optimal way. We have to distinguish
the three cases.

The case v € (0,00). Let As € C?(S;50(3)) be such that A5 — Qy strongly in H(S) as
§ — 0. Define p° : S x Y — R3 by

As(z)n(x)]?
plen) =t (FEEE T a0 ) i)
Then clearly Vyp5 = 0. We claim that
5 Lo Lo
(93) sym <0np ® n) — 545 = —545(Ts, Ts).
2 2
In fact,
A} = TsAjTs = (n@n)Af — (n @ n)Af(n @ n) + Af(n © n)
2
= 2sym <A5n®n+ 4 52 | n®n>

because Aj is skew symmetric. And this equals 2sym(9,p° ® n) because clearly

|Asn|?
2

Onp’ = n+ Ain.

Thus ([@3)) is proven.
From (@3] and from the definition of £ and Z° we conclude:

B = (B — thy — 5(A4°2)(T,Ts) + 1, (o),

where

Z;{ ( ) = Sym (vyoévtaanS + '}’7167105 & n> .
U

Notice that U, (0%) = U, (5 ) which is just ¢, as in Definition 5 and 6} = 0° - 7;. Now we
choose &° € Cl( ST CY(Y;R?)) in such a way that

94 U,(3°) = I, (By + (dV)2, strongly in L?(S;R3*3
v v 2

as § — 0. Here, the operator IL, is as in Lemma 5.1l Then

(dv)?
2

(dV)?
2

(95) E° — (B —tby)(Ts, Ts) + +11, (B + ,—by) strongly in L*(S; R**?),

as & — 0 because —A%(Ts,Ts) — (dV')? by (IH).
By (@5)) and by the above results, we see that

9(6,h) = [ly™" = =l g1y + IV = Vi s) +d" (Gayon, Bw) + | 71" (y") = I, (V. By)

h4
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satisfies lim supg_, limsupy, .o g(6,h) = 0. Here d : L2(S; M3) x L*(S; M?) — R is
defined in the following way: For K > 0 we know there exists a metric d® which defines
the weak topology on the ball of radius K. We define:

d¥(My, My), if || My||;2 < K and ||My]|;2 < K,

400, otherwise.

d¥(My, My) = {

The constant K = K (R, ||Buw||r2, |V ||z2) we choose in a way that the right hand side of
(86) is bounded by e.g. & — 1.

Lemma [A.6] then yields a sequence §, — 0 such that g(d,,h) — 0 as h — 0.

The case v = co. Let A5 € C?%(S;s0(3)) be such that As — A strongly in H'(S)asd — 0.
Define ¢? € C1(S; CH(I x Y;R?)), ¢° € CH(S;CH(I x V), ¢ € C1(S; CH(I;R?)) such that

Uso (010, %) = Tl (Bw + %, —by) strongly in L?(S; R**?)

as 0 — 0. We will use the following fact: if f: I x )Y — ]R3 then F(z,y) fo ) ds
satisfies 0, F(x,y) = f(t(x),y). Again we wish to have p’ independent of y, in order to
ensure the validity of (88]). We define

O(x =t(x 7’145@)“(%)‘2 2(2) ) n(z t(w)c s) dst® t(x)c s) dst3
pen) =) (IS L ) ) )42 [ alo) dsre o [ et st

Then
|Asn|?

O’ = 2 + A2n 4 2¢, ()T + e3(t) 7.

For z € St and y € ) set

o’ (w,y) = Qm(x), t(x), y)7* () + 20’ (w(x), t(x), y)n(x).
Then
V,0° = 1@V, +2n 0 Vil

Since v = oo, we have
sym =% = sym (Bnp‘s @n+ Vyo‘svtanr T5> = L{OO(C‘S, AR c‘s),

From now on the proof is analogous to the case v € (0, 00).

e(h)?

Construction for v =0 and limj,_,o =3~ € [0,00) :

In this one has to modify, in addition, the maps w®". Let As be as before. In the case
2 . . N

liny, 0 <25 = 0 choose ¢* € C1(S;CH(V;R?)), ¢° € CL(S;C2(V)), ¢° € C(S;CY(I x

Y;R3)) such that

av)?
(96) Us(¢°,¢°,9°) = T3 (Bu + ( 2) ,—by) strongly in L*(S;R?*?),
as 0 — 0. In the case limj,_,q # = % € (0,00) choose them such that
av)?
(97) U&m(Cé, ¢, q°) — Hém (Buw (dv) ) strongly in L*(S").

2
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Extend ¢° trivially to S' and define 0®(z,y) = ¢2(z,9)7%(2z). Then 9,0° = 0, so (88)
remains true. We define

2nlx 2 t(zx)
P = 0 (P g )42 [ i) ds 7@

t(z)
—i—/o gg(w(m),s,y) ds 73(x).

We define the modified fields

"

= w20/,
where w®" is defined by the property ).

Notice that w" satisfies the condition (80) with M; < C||V3305H, for some constant C' > 0,
independent of §. Also using the following facts valid for every fixed § > O:

(98) h <V{176’h - Vw‘s’h) bounded in L*°(S)
5
(99) g (Qps.n — Qgsn) bounded in L(S)

2
(100) g basn — | B + . Z Oysy; Orie bounded in L*(S5)
ig=1

27
(101) Qo = Quon + %cp‘s(-,r/s)s =% By + 7—11<p6(x,y)S,

we can repeat the same argument as in the case 7 € (0,00). Namely, notice that (79)) is
valid and thus the right hand side of (86 can be bounded, by a bound independently of
d. It can be easily seen that (80), (81) are valid. Instead of (89) we have (I0T]).

O

6 Convex shell

In this chapter we shall identify the I'-limit for convex shells in the remaining case, i.e.
h < €2. We want to demonstrate the stronger influence of the geometry in this case. We
work under the assumption that there exists C' > 0 such that

(102) S(x)r-7>Cr-1,Vr e S,7eT,5S.
Definition 6.1. For z € S we define the following operator

UTE: F2(V;R2X2) x LA(I x Y;R3) — L2(I x Y;RESD),

sym sym
) 3 B g1 ' ‘
Us“(B,g) = g | rer

wi=L \ (91, 92) 93 ]

and function space of relaxzation fields

sym sym

(103) L2 x Y;R3:3) = {ug’c(B,g) . B e L2(V;R22), g e L¥(I x y;R?’)} :
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Again as before it can be seen that LS’C(I x V; R3%3) is a closed subspace of L?(I xY;R3%3).

sym Sym

We also define the functional Ig’c : H?(S;R3) x L%(S;S)) - R
2,c _ 2,c 1 2
(104) I5“(V,By) = | Qy“(x, Bw + 5(dV)?, —by) dz,
S
with the quadratic form Q(Z)’c(x) :S(2)sym X S(2)sym — R:

(105) Qg’c(m, ¢ = inf // Q(m + tn(x),y, ¢* +tg* + U> dt dy.
UeL2(IxY;REE) M xy

As before, it is easy to see that the definition is equivalent to the following one:

(106) Qo (x, ¢4, ¢?) =

2
~_inf // Qs <x + tn(x),y, q1 + tq2 + Z Bl-jn ® 1) dt dy.
Bel2(ViM2,,,) M 1xy

i,j=1

In the case when Q does not depend on ¢ we have that
~ 2 ' ‘
Gt = it [ Oueydt s Y (Bl e ) dy

BelL2(y;M2

sym

1 2
— dy.
+12/sz(w,y,q) y

1,7=1

Under the assumption (I02) it is well-known that B = L2(S,S), cf. e.g. [Cia00], [LMP10].
Thus if one wants to additionally to relax the functional Ig “ with respect to B, one in
this case obtains the functional 1:02’0 cH2(S;R3) - R

~ 1
(107) BV =55 [ [ @b dye

This functional is the same as in the ordinary von Karman model. For the form Qg’c

one can make assertions analogous to Lemma [5.I] with the appropriate operator Hg’c and
Lemma We introduce the space

FL(S;C>®(Y)) = {(x,y) — Z F(x)e? kY
keZ2, |k|<n, k0
n € N and ¢* € C}(S;C) with & = c_k}.

By Fourier transform it can be easily seen that FL(S;C())) is dense in L*(S; H™(Y)),
for any m € Ny. The following lemma resembles Lemma 3.3 in [Sch07]:
Lemma 6.2. Assume (102) and let B e L*(S; L*(Y;S)). Then there exist unique w €
L2(S; HY(Y;R?)) and ¢ € L*(S; L*(Y)) such that
(108) > (sym Vyw), 7' © 7 + ¢S = B.

ij=1,2
Moreover, if By € FL(S; C>®(Y)) for every i,j = 1,2 then w; € FL(S;H'(Y)), for
i=1,2 and p € FL(S; H (Y))
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Proof. One possible proof is to apply the operator curl, curl, to both sides of (I08]), which
leads to the PDE .
cof S: V?/(p = curl, curly, B,

which by virtue of (I02]) is an elliptic PDE with constant coefficients (for each z). We
prefer to give a direct proof.
There exist bf“'j such that for all 4,5 =1, 2:

i . —k _
B(z,y)ij = Z bfj(x)ezwmy, where Z HbfjHLz < 00,b;; = bl-jk7 bgj =0.
kez? kez?

We assume that for ¢ = 1,2:

o kioN2miky —k _ —k 0 _
wj = E cj(z)e G =c", =0
kez?

and ' .
o= d()e™*, d =d* d=0.
kez?

The equation (I0R)) is equivalent to the following problem for every (ki,ks) € Z2 find

complex coefficients cg‘?, bfj, d* such that

kich +d*s; = ok,
1
§(k2c’f+k1c’§)+dksm = Wf,
kock +d*Sey = b5,

By () and ([I02]) it is easy to see that there exists C' > 0 such that the determinant of the
system is bounded from below by C(k? + k3). Using this it follows that there exists C' > 0
such that

2 2
(" @)+ D kP | (@) < C(Y bl(2)), Yz € S.
i=1 ij=1

Now all claims follow easily. O

Theorem 6.3. Assume (I02) and that h < €2 and that W satisfies Assumption[33. Let
(uh) c HY(S"; R3) satisfy

(109) lim sup %Eh(uh) < 00,
h—0
where
1 -
EM"u") = 7 W (" (x),r(x) /e, Vu)dx.
Sh

Define y" € H'(S';R3) by the equation §"(®"(x)) = u"(x). Then the following are true

(i) (compactness). There exists a subsequence of ("), still denoted by (y") and there
exist Q" € SO(3) and c* € R3 such that the sequences y" = (QM)Ty" — " and
Vh .= % (f;y"(z +tn(z)) dt — z) satisfy the following
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(a) y"* — 7 strongly in H*(S';R?).

(b) There exists an infinitesimal bending V. € H?(S;R3) of S such that Vh —
V strongly in H'(S;RR3).

(c) There exists By, € L*(S;S) such that

Fqyn — By, weakly in L*(S;S).
1) (lower bound). Definin, I b we have
(ii) (1 9io OY

. . h h 27 ~
hin_:gfh—ﬂE (u") > Iy°(V, By),
(iii) (recovery sequence) For any infintesimal bending V € H?(S',R3) and B,, € L*(S;S)
there exists uh € H'(S";R3) satisfying (I09) and such that conclusions of part (i)
are true with Q" = I and " = 0. Moreover, equality holds in (ii).

Proof. We will only give the sketch of the proof since it is analogous to the previous cases.
Since V is an infinitesimal bending, we have

(110) 0,V (x) = A(x)r, for all 7 € T,.S for some A € H'(S;s0(3)),

Let us assume as in Proposition that

2
27 i j
V‘camnv‘can(‘/sh : ’I’L) = vtanvtan(vn) + Z (agiyj SD)T @7,
i,7=1

for some ¢ € L*(S; H*(Y). Using (iii) of Proposition B2 as well as Lemma 6.2 we conclude
that ¢ = 0. Thus from Proposition we conclude that for E" defined in (56) we have

Bh 20 E(z,y) where
(111) E = B,+B+3dV)?—tby +U,

for some U € L%(S; Lo(I x Y)) and B € L*(S; L*(¥;S)). The lower bound easily follows
from Lemma and the definition of the functional 102 <.

To prove the upper bound we follow the proof of Proposition [5.4] the case =0. Namely,
let us again take A° € C?(S;50(3)) such that lims g |A° — Al|;2 = 0 and B° such that
for every i,j = 1,2, (B%);; € FL(S;C®(Y)), ¢° € C*(S;C* (I x Y;R3)) and

. 2,crHd 0 2,c 1 2
(112) lim Huo (B%,¢") = g“(Bw + 3(dV) ’—bv)‘ (s

6—0

By Lemma there exist 20 € (FL(S;C())))? and ¢® € FL(S;C>®(Y) solving the
system

(113) Z (symvyz‘s)iﬁi @711 +¢°S;; = B°.
ij=1,2
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We define
Foh = h.

w&h = w&h + 906('7 T/E)n +eh) (Zis(a T/g)Tl + Zg(a T/8)72)7

2 nlx)]2 t(zx)
plen) = to) (P L ) ) o) +2 [ e ) ds 7 (a)
t(zx)
+ [ (e 5.) ds ()

where v>" is defined in (82)) and w®" is defined by the property (77).

Notice that, similarly as before:

(114) € <V@5’h - Vw5’h) bounded in L*(S)
(115) € (Qysn — Qgsn) bounded in L>(S)

2
(116) e | bgon — | 05" + 6% Z Oy, Ot @ 7 bounded in L*°(S5)
ij=1
(117) llggs.n || 2 bounded independately of 4, h

(118) L <q@5,h — (qwé,h + 35)) bounded in L*°(S5).

€

Now we continue as in the proof of Proposition [5.4] after concluding that w®" satisfies the
condition (80). Boundedness of the right hand side of (88 follows easily. It can be easily
seen that ([80), (8I) are valid. Instead of (89) we have (IIS]). O

A Auxiliary results

In the sequel we consider the sequence (h) — 0 as h — 0 and Q C R3 a Lipschitz domain
and 7; = e;, for i = 1,2,3, where e; are standard coordinate vectors. The set ) can be
considered as the set [0,1)% i.e. [0,1)? with the topology of torrus. The claims can be
trivially extended to R™. For the proofs see e.g. [All92]. For the last claim see [Velbl
Lemma 3.

Lemma A.1. (i) Any sequence that is bounded in L*() admits a two-scale convergence
subsequence.

(i) Let f € L2(Q x ) and {f"}ns0 C L?(Q) be such that f* 27, f(z,y) weakly. Then
fhr— fy f(,y) dy weakly in L?(Q).

(i4i) Let fO € L2(Q) and {f"}n>0 C L*(Q) be such that f* — fO weakly in L?. Then (after
passing to subsequences) we have fh 2, fO>x) + f(w,y) for some ]7 € L2(QxY)
with [y f(-,y) dy =0 almost everywhere in Q.

(iv) Let fO ¢ L?(Q) and {f"}n>0 C L?() be such that f" — f° strongly in L?. Then
25 ).
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(v) Let fO ¢ HY(Q) and {f"}n>0 C H' () be such that f* — fO weakly in H'. Then

(after passing to subsequences)
2,
VIt =R V4 Vyo(a,y)
for some ¢ € L*(Q, H'(Y)).

(vi) Let fO ¢ H*(Q) and {f"}ns0 C H?(Q) be such that f* — fO weakly in H?. Then
(after passing to subsequences)

V2V 0 4 V(. y)
for some ¢ € L, H*(Y)).

For brevity we shall write ¢ instead of £(r). At several places in our argument we are only
interested in the oscillatory part of the two-scale limit. In the following, we introduce as
in [HNV] the special notation 22590 for that purpose. As a motivation consider a sequence
{f"}r>0 C L?(Q) with weak two-scale limit f € L*(Q x Y). Consider

N /yf(x,y) dy and Flz,y) = fa,y) — ).

According to Lemma [A] the function fO is the weak limit of f?. We call f(:c,y) the
oscillatory part of f. Evidently we have

(119) hm/fh %dm—/ﬂ Yfacy) w(x)g(y) dy dz

h—0

for all p € C5°(R2) and g € C*°(Y) with / gdy = 0.
Y

Motivated by that we introduce the following vocabulary (see [HNV]):

Definition A.2. For asequence ()5~ C L2(Q) and f € L2(QxY) with Iy fly)dy =0
almost everywhere in {2 we write

22 fay),
if (I19) holds for all ¢ € C§°(2) and g € C*(Y) with [, gdy = 0.
Lemma A.3. Let f° and f* € L?(Q) be such that f* — fO weakly in L?(Q) and f" 220
f(m,y) Then f" 2, fO>x) + f(m,y) weakly two-scale.
Proof. Straightforward. O

The following Lemma was needed in the proof of Proposition

Lemma A.4. (i) Let O and f* € HY(Q) be such that f* — fO weakly in H*(Q) and
assume that )
VRV (. y)

for some ¢ € L2(; H'(Y)). Then

h
f_ 0sc,y ¢

43



(ii) Let fO and f* € H (Q) be such that f* — fO weakly in H*(Q) and assume that
v2fh 277 VZfO + VZQS( )
for some ¢ € L?(; H*(Y)). Then

fh 08¢,y

e2

Proof. The proof of (i) is given in [HNV], Lemma 3.7]. Here we prove (ii) which goes in
an analogous way. Let G denote the unique solution in C*°()) to

Y

We put G*(z) = g(%l) Then A,G"(z) = a%g(g) and VG"(z) = %VyG(g).

120 5 [ F'@e @ = [ rachds
/ V- v(GMY) da / VGt - V) dx
- / PG AY da
/ AfMGMp) d / VG- V) da
- / P GM Ay da
Q
> [ AtaGaddy
= || ewwgwdsay
QOxY

where we have used (i) for the claim % 222000 that is used to conclude fo fH(VGh -
Vi)dr — 0.

O
The following proposition can be found in [F.JMO06, Proposition 2]

Proposition A.5. Let Q be a bounded Lipschitz domain in R™ and let 1 < p < oo, k € N
and X\ > 0. Suppose that u € Wk’p(Q) and let

Julp(z) = > [Vu(
|o| <K
Then there exists u* € W+ such that

||u)\||Wk’°° S C(p’kaQ)Aa

Cp, k)
weo: w@ua| < T2 [ pga

[t lwro < Clp, b, Q)llullwrs-

IN
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In particular

and

lim N [{z € Q: uz) #u(z)}| =0,

A—00

lim [Ju® — ullyyep = 0.
A—00

The following diagonalization lemma is due to [Att84] Corollary 1.16]:

Lemma A.6. Let g:[0,00) x [0,00) — [0,00) and suppose that

lim sup lim sup g(d, h) = 0.
6—0 h—0

Then there is a monotone function (0,00) > h +— 6(h) € (0,00) with limp_,0d(h) =0 and
limsupy, 9 9(0(h), h) = 0.
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