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Abstract

This article is devoted to the analysis of control properties for a heat equation with singular
potentialµ/δ2, defined on a boundedC2 domainΩ ⊂ RN, whereδ is the distance to the boundary
function. More precisely, we show that for anyµ ≤ 1/4 the system is exactly null controllable
using a distributed control located in any open subset ofΩ, while forµ > 1/4 there is no way of
preventing the solutions of the equation from blowing-up. The result is obtained applying a new
Carleman estimate.
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1. Introduction and main results

Let T > 0 and setQ := Ω × (0,T), whereΩ ⊂ RN, N ≥ 3, is a bounded andC2 domain,
and letΓ := ∂Ω. Moreover, letδ(x) := dist(x, ∂Ω) be the distance to the boundary function. We
are interested in proving the exact null controllability for a heat equation with singular inverse-
square potential of the type−µ/δ2, that is, given the operator

A = A(µ) := −∆ − µ

δ2
I, µ ∈ R, (1.1)

whereI indicates the identical operator, we are going to consider the following parabolic equa-
tion































ut − ∆u− µ

δ2
u = f , (x, t) ∈ Q

u = 0, (x, t) ∈ Γ × (0,T)

u(x, 0) = u0(x), x ∈ Ω,

(1.2)
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with the intent of proving that it is possible to choose the control function f in an appropriate
functional spaceX such that the corresponding solution of (1.2) satisfies

u(x,T) = 0, for all x ∈ Ω. (1.3)

In particular, the main result of this paper will be the following.

Theorem 1.1. LetΩ ⊂ RN be a bounded C2 domain and assumeµ ≤ 1/4. Given any non-empty
open setω ⊂ Ω, for any time T> 0 and any initial datum u0 ∈ L2(Ω), there exists a control
function f ∈ L2(ω × (0,T)) such that the solution of(1.2)satisfies(1.3).

The upper bound for the coefficientµ is related to a generalisation of the classical Hardy-
Poincaré presented in [5] and plays a fundamental role in our analysis. Indeed, in [6] is shown
that, forµ > 1/4, (1.2) admits no positive weak solution for anyu0 positive andf = 0. Moreover,
there is instantaneous and complete blow-up of approximatesolutions.

As it is by now classical, for proving Theorem 1.1 we will apply the Hilbert Uniqueness
Method (HUM, [18]); hence the controllability property will be equivalent to the observability
of the adjoint system associated to (1.2), namely































vt + ∆v+
µ

δ2
v = 0, (x, t) ∈ Q

v = 0, (x, t) ∈ Γ × (0,T)

v(x,T) = vT(x), x ∈ Ω.

(1.4)

More in details, for anyµ ≤ 1/4 we are going to prove that there exists a positive constant
CT such that, for allvT ∈ L2(Ω), the solution of (1.4) satisfies

∫

Ω

v(x, 0)2 dx≤ CT

∫

ω×(0,T)

v(x, t)2 dxdt. (1.5)

The inequality above, in turn, will be obtained as a consequence of a Carleman estimate for
the solution of (1.4), which is derived taking inspiration from the works [8] and [11].

Furthermore, the boundµ ≤ 1/4 is sharp for our controllability result, as we are going to
show later in this work.

Singular inverse-square potentials arise in quantum cosmology ([2]), in electron capture prob-
lems ([16]), but also in the linearisation of reaction-diffusion problems involving the heat equa-
tion with supercritical reaction term ([15]); also for these reasons, evolution problems involving
this kind of potentials have been intensively studied in thelast decades.

In the pioneering work of 1984 [1], Baras and Goldstein considered a heat equation in a
bounded domainΩ ⊂ RN, for N ≥ 3, with potential−µ/|x|2 and positive initial data, and proved
that the Cauchy problem is well posed in the caseµ ≤ µ∗ := (N − 2)2/4, while it has no solution
if µ > µ∗. We remind here thatµ∗ is the critical value for the constant in the Hardy inequality,
guaranteeing that, for anyu ∈ H1

0(Ω), it holds

∫

Ω

|∇u|2 dx≥ µ∗
∫

Ω

u2

|x|2
dx. (1.6)
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The result by Baras and Goldstein was, in our knowledge, the first on the topic and it has later
been improved by Vazquez and Zuazua in [23]. There the authors present a complete description
of the functional framework in which it is possible to obtainwell-posedness for the singular heat
equation they analyse; in particular, they prove that whenµ < µ∗ the corresponding operator
generates a coercive quadratic form form inH1

0(Ω) and this allows to show well-posedness in the
classical variational setting. On the contrary, whenµ = µ∗, the spaceH1

0(Ω) has to be slightly
enlarged, due to the logarithmic singularity of the solutions atx = 0.

Also the question of whether it is possible to control heat equations involving singular
inverse-square potentials has already been addressed in the past, and there is nowadays an ex-
tended literature on this topic.

Among other works, we remind here the one by Ervedoza, [11], and the one by Vancosteno-
ble and Zuazua, [21]. In both, the authors consider the case of an equation defined on a smooth
domain containing the origin and prove exact null controllability choosing a control region inside
of the domain, away from the singularity pointx = 0.

In particular, in [21] the null controllability result is obtained choosing a control region con-
taining an annular set around the singularity and using appropriate cut-off functions in order to
split the problem in two:

• in a region of the domain away from the singularity, in which it is possible to employ
classical Carleman estimates;

• in the remaining part of the domain, a ball centred in the singularity, in which the authors
can apply polar coordinates and reduce themselves to a one-dimensional equation, which
is easier to handle.

In [11], instead, the author generalises the result by Vancostenoble and Zuazua, proving
controllability from any open subset ofΩ that does not contains the singularity. This result is
obtained deriving a new Carleman estimate, involving a weight that permits to avoid the splitting
argument introduced in is [21].

Finally, it is worth to mention also the work [8], by Cazacu. In this paper, it is treated the case
of a potential with singularity located on the boundary of the domain and it is proved again null
controllability with an internal control. Also this resultfollows from a new Carleman estimate
that is derived using the same kind of weight function proposed by Ervedoza, but with some
suitable modifications that permit to deal with the case of boundary singularities. Moreover, the
author shows that the presence of the singularity on the boundary of the domain allows to slightly
enlarge the critical value for the constantµ, up toµ∗ := N2/4.

In this article we analyse the case of a potential with singularity distributed all over the
boundary. To the best of our knowledge, this is a problem thathas never been treated in prece-
dence, although it is a natural generalisation of the results of the works presented above.

This paper is organized as follows: in Section 2 we present the classical Hardy-Poincaré
inequality introduced by Brezis and Marcus in [5], which will then be applied for obtaining well-
posedness of the equation we consider; we also give some extensions of this inequality, needed
for obtaining the Carleman estimate. These results are thenemployed for obtaining the well-
posedness of our equation, applying classical semi-group theory. In Section 3 we present the
Carleman estimate, showing what are the main differences between our result and previous ones
obtained, for instance, in [11], [21] and, later, in [8]. In Section 4 we derive the observability in-
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equality (1.5) and we apply it in the proof of Theorem 1.1. In Section 5 we prove that the bound
1/4 for the Hardy constantµ is sharp for control, showing the impossibility of preventing the
solutions of the equation from blowing-up in the case of supercritical potentials. The Carleman
estimates is proved in Section 6. Section 7 is dedicated to some interesting open problems re-
lated to our results. Finally, we conclude our article with an appendix in which we prove several
technical Lemmas that are fundamental in our analysis.

2. Hardy-Poincaré inequalities and well-posedness

When dealing with equations involving singular inverse-square potentials, it is by now clas-
sical that of great importance is an Hardy-type inequality.Inequalities of this kind have been
proved to hold also in the more general case of for the potential µ/δ2 (see, for instance [5],[19]);
in particular, we have

Proposition 2.1. LetΩ ⊂ RN be a bounded C2 domain; then, for any u∈ H1
0(Ω), and for any

µ ≤ 1/4, the following inequality holds

∫

Ω

|∇u|2 dx≥ µ
∫

Ω

u2

δ2
dx. (2.1)

Inequality (2.1) will be applied for obtaining the well-posedness of (1.2), as well as the
observability inequality (1.5). For obtaining the Carleman estimate, instead, we are going to
need the following Propositions

Proposition 2.2. LetΩ ⊂ RN be a bounded C2 domain. For anyµ ≤ 1/4 and anyγ ∈ (0, 2)
there exist two positive constants A1 and A2, depending onγ andΩ such that, for any u∈ H1

0(Ω),
the following inequality holds

A1

∫

Ω

u2

δγ
dx+ µ

∫

Ω

u2

δ2
dx≤

∫

Ω

|∇u|2 dx+ A2

∫

Ω

u2 dx. (2.2)

Proposition 2.3. LetΩ ⊂ RN be a bounded C2 domain. For anyµ ≤ 1/4 and anyγ ∈ (0, 2)
there exists a positive constant A3 depending onγ, µ andΩ such that, for any u∈ H1

0(Ω), the
following inequality holds

∫

Ω

δ2−γ|∇u|2 dx≤ R2−γ
Ω

∫

Ω

(

|∇u|2 − µu2

δ2

)

dx+ A3

∫

Ω

u2 dx. (2.3)

Proposition 2.4. LetΩ ⊂ RN be a bounded C2 domain. For anyµ ≤ 1/4 and anyγ ∈ (0, 2) there
exist two positive constants A4 and A5 depending onγ, µ andΩ such that, for any u∈ H1

0(Ω),
the following inequality holds

∫

Ω

(

|∇u|2 − µu2

δ2

)

dx+ A4

∫

Ω

u2 dx≥ A5

∫

Ω

(

δ2−γ|∇u|2 + A1
u2

δγ

)

dx, (2.4)

where A1 is the positive constant introduced in Proposition 2.2.

The proof of 2.2 follows immediately from the inequalities with weighted integral presented
in [5, Section 4] and we are going to omit it here; moreover, 2.4 is a direct consequence of the
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application of 2.2 and 2.3. Concerning the proof of Proposition 2.3, instead, we will presented it
in appendix B.

We conclude this section analysing existence and uniqueness of solutions for equation (1.2),
applying classical semi-group theory; at this purpose, we apply the same argument presented in
[8]. Therefore, for any fixedγ ∈ [0, 2) let us define the set

L
γ :=



















A > 0 s.t. inf
u∈H1

0(Ω)

∫

Ω

(

|∇u|2 − µ∗u2/δ2
+ Au2

)

dx

A1

∫

Ω
u2/δγ dx

≥ 1



















. (2.5)

We remind here thatµ∗ is the critical Hardy constant and that in our case we haveµ∗ = 1/4.
Moreover, the set (2.5) is clearly non empty since it contains the constantA2 in the inequality
(2.2). Now, we define

Aγ

0 := inf
A∈Lγ

A (2.6)

and, for anyµ ≤ µ∗, we introduce the functional

Φ
γ
µ(u) :=

∫

Ω

|∇u|2 dx− µ
∫

Ω

u2

δ2
dx+ Aγ

0

∫

Ω

u2 dx;

we remark that this functional is positive for any test function, due to (2.2) and to the particular
choice of the constantAγ

0.
Next, let us define the Hilbert spaceHγ

µ as the closure ofC∞0 (Ω) with respect to the norm
induced byΦγµ; if µ ≤ µ∗ we obtain
(

1−
µ+

µ∗

)
∫

Ω

(

|∇u|2 + Aγ

0u2
)

dx+
µ+

µ∗

∫

Ω

u2

δγ
dx≤ ‖u‖2H ≤

(

1+
µ−

µ∗

)
∫

Ω

(

|∇u|2 + Aγ

0u2
)

dx, (2.7)

whereµ+ := max{0, µ} andµ− := max{0,−µ}.
From the norm equivalence (2.7), in the sub-critical caseµ < µ∗ it follows the identification

Hγ
µ = H1

0(Ω); in the critical caseµ = µ∗, instead, this identification does not hold anymore and
the spaceHγ

µ is slightly larger thanH1
0(Ω). For more details on the characterisation of these kind

of spaces, we refer to [23].
Let us now consider the unbounded operatorB

γ
µ : D(Bγ

µ) ⊂ L2(Ω)→ L2(Ω) defined as

D(Bγ
µ) :=

{

u ∈ Hγ
µ s.t. − ∆u− µ

δ2
u+ Aγ

0u ∈ L2(Ω)
}

,

B
γ
µu := −∆u− µ

δ2
u+ Aγ

0u,

(2.8)

whose norm is given by

‖u‖Bγ
µ
= ‖u‖L2(Ω) +

∥

∥

∥B
γ
µu

∥

∥

∥

L2(Ω)
.

With the definitions we just gave, by standard semi-group theory we have that for any
µ ≤ µ∗ the operator (Bγ

µ,D(Bγ
µ)) generates an analytic semi-group in the pivot spaceL2(Ω) for

the equation (1.2). For more details we refer to the Hille-Yosida theory, presented in [4, Chapter
7], which can be adapted in the context of the spaceHγ

µ introduced above.
Therefore, from the construction we just presented we immediately have the following well-

posedness result
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Theorem 2.1. Given u0 ∈ L2(Ω) and f ∈ C([0,T]; L2(Ω)), for anyµ ≤ 1/4 the problem(1.2)
admits a unique weak solution

u ∈ C0([0,T]; L2(Ω)) ∩ L2((0,T); Hγ
µ).

3. Carleman estimate

3.1. Choice of the weightσ

The observability inequality (1.5) will be proved, as it is classical in controllability problems
for parabolic equations, applying a Carleman estimate.

The main problem when designing a Carleman estimate is the choice of a proper weight
functionσ(x, t). In our case, thisσ will be an adaptation of the one used in [8], that we con-
veniently modify in order to deal with the presence of the singularities distributed all over the
boundary. In particular, the weight we propose is the following

σ(x, t) = θ(t)













Cλ − δ2ψ −
(

δ

r0

)λ

φ













, φ = eλψ, (3.1)

where

θ(t) =

(

1
t(T − t)

)3

. (3.2)

Here,Cλ is a positive constant large enough as to ensure the positivity ofσ, andλ is a positive
parameter aimed to be large; besides,r0 satisfies

r0 ≤ min















1,
2|ψ|∞

4|Dψ|∞ + |D2ψ|∞
,

1

RΩ
√

4|Dψ|2∞ + 2|D2ψ|∞
,

|ψ|∞
2(2− γ)|Dψ|∞

,

(

M2

4|µ||Dψ|∞

)1/(γ−1)

,

1
√

8Dψ1 |Dψ|∞/̟0 + 3|D2ψ|∞
,

2|ψ|∞
|Dψ|2∞ + (1+ 2|ψ|∞)|Dψ|∞

,
1

|Dψ|2∞ + 2|Dψ|∞
,

3|ψ|2∞
4|Dψ|∞

,
1

|Dψ|∞
√

D3|ψ|2∞ + D4















, (3.3)

whereγ is the parameter appearing in the Hardy inequalities presented above, with the particular
choiceγ ∈ (1, 2), while M2 is a positive constant that will be introduced later. The choice of r0

as in (3.3) is motivated by technical reasons that will be carefully justified throughout the paper.
Finally,ψ is a bounded regular function (at leastC4(Ω)) defined as

ψ = ̟(ψ1 + 1), (3.4)

with ψ1 ∈ C4(Ω) and bounded, satisfying the conditions































ψ1(x) = δ(x) ∀x ∈ Ωr0,

ψ1(x) > r0 ∀x ∈ Ω \Ωr0,

ψ1(x) = r0 ∀x ∈ Σr0,

|∇ψ1(x)| ≥ ̟0 > 0 ∀x ∈ Ω \ ω0,

(3.5)
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for ̟̟0 > 2CΩ, whereCΩ is the constant introduced in [8, Section 2]. Such function exists
but its construction is not trivial. See [8, Section 2] for more details. In particular, under these
conditionsψ satisfies the following useful properties



















ψ(x) = 1 ∀x ∈ Γ,
ψ(x) > 1 ∀x ∈ Ω,
|∇ψ(x)| ≥ 2CΩ ∀x ∈ Ω \ ω0,

(3.6)

In (3.5) and (3.6),ω0 ⊂⊂ ω is a non-empty subset of the control regionω; moreover, due to
technical computations, we fix̟ such that

̟ ≥ max















1,
1

̟2
0

(

1+
2Dψ1

r0
+ |D2ψ|∞

)

,
2

̟2
0

(

1+
2Dψ1

r0

)

,
4Dψ1

̟2
0

,
24Dψ1RΩ

̟2
0

,
2
̟0















,

(3.7)

whereRΩ is the diameter of the domainΩ, while Dψ1 is a positive constant that will be introduced
later. Furthermore, throughout the paper, formally, for a given functionf we apply the notations

| f |∞ := ‖ f ‖L∞(Ω), |D f |∞ := ‖∇ f ‖L∞(Ω),

D2 f (ξ, ξ) :=
N

∑

i, j=1

∂2
xi x j

f ξiξ j , ∀ξ ∈ RN, |D2 f |∞ :=
N

∑

i, j=1

∥

∥

∥

∥

∂2
xi x j

f
∥

∥

∥

∥

L∞(Ω)
, (3.8)

and we denote

Ωr0 := { x ∈ Ω | δ(x) < r0}, O := Ω \
(

ω0 ∪ Ωr0

)

, Õ := Ω \ Ωr0. (3.9)

3.2. Motivation for the choice ofσ

The weighσ that we propose for our Carleman estimates is not the standard one; we had to
modify it in order to deal with some critical terms that emerge in our computations due to the
presence of the singular potential. We justify here our choice, highlighting the reasons why the
weights presented in previous works ([8],[11],[14]) are not suitable for the problem we consider.

In general, the weight used to obtain Carleman estimates forparabolic equations is assumed
to be positive and to blow-up at the extrema of the time interval; besides, it has to be taken in
separated variables. Therefore, we are looking for a functionσ(x, t) satisfying































σ(x, t) = θ(t)p(x), (x, t) ∈ Q,

σ(x, t) > 0, (x, t) ∈ Q,

lim
t→0+

σ(x, t) = lim
t→T−

σ(x, t) = +∞, x ∈ Ω.

(3.10a)

(3.10b)

(3.10c)

The functionθ is usually chosen in the form

θ(t) =

(

1
t(T − t)

)k

for k ≥ 1, and this choice in particular ensures the validity of (3.10c); in our case we assumek = 3
which, as we will remark later, is the minimum value for obtaining some important estimates that
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we need in the proof of the Carleman inequality.
While the choice ofθ is standard, the main difficulty when building a properσ is to identify

a suitablep(x) which is able to deal with the specificity of the equation weare analysing.
In [14], Fursikov and Imanuvilov obtained the controllability of the standard heat equation

employing a positive weight in the form

σ1 = θ(t)
(

Cλ − eλψ
)

,

with a functionψ ∈ C2(Ω) satisfying



















ψ(x) > 0, x ∈ Ω,
ψ(x) = 0, x ∈ ∂Ω,
|∇ψ(x)| > 0, x ∈ Ω \ ω0.

An example of aψ with this behaviour is shown in Figure 1 below; in particular, we notice
that this function is required to be always strictly monotone outside of the control region.

Figure 1: Functionψ of Fursikov and Imanuvilov in one space dimension on the interval (a, b)

This standard weight was later modified by Ervedoza in [11],for dealing with problems with
interior quadratic singularities; in this case, the authorapplies the weight

σ2 = θ(t)

(

Cλ −
1
2
|x|2 − eλψ(x)

)

,

with a functionψ such that































ψ(x) = ln(|x|), x ∈ B(0, 1),
ψ(x) = 0, x ∈ ∂Ω,
ψ(x) > 0, x ∈ Ω \ B(0, 1),
|∇ψ(x)| ≥ γ > 0, x ∈ Ω \ ω0.

This choice is motivated by some critical terms appearing due to the presence of the potential,



9

a 0 b

ψ
ω

0
cartesian axes

Figure 2: Functionψ of Ervedoza in one space dimension on the interval (a, b)

that must be absorbed outsideω in the Carleman estimate (see [11, Eq. 2.15]).
In particular, in order to take advantage of the Hardy inequality, the author needs to get rid

of singular terms in the form∆σ/|x|2 and (x · ∇σ)/|x|4. The weight proposed allows to deal with
this terms; indeed near the singularity, whenλ is large enoughσ2 behaves like

σ2 ∼ θ(t)
(

Cλ −
1
2
|x|2

)

,

which is the weight employed by Vancostenoble and Zuazua in [22] for their proof of the control-
lability of the heat equation with a singular potential and which satisfies∇σ2 ∼ x and∆σ2 ∼ C
asx→ 0. On the other hand, away from the origin, where no correction is needed,σ2 maintains
the behaviour of the classical weightσ1.

A further modification is proposed by Cazacu in [8], in the case of an equation with boundary
singularity. In this case, indeed, the terms∆σ/|x|2 and (x · ∇σ)/|x|4 generates singularities that
cannot be absorbed in a neighbourhood of the origin employingσ2, since this weight involves a
functionψ which is assumed to be zero on the boundary. Therefore, the author proposes a new
weight

σ3 = θ(t)













Cλ − |x|2ψ −
(

|x|
r0

)λ

eλψ












,

whereψ is now chosen as in (3.4), with the fundamental property of being constant and positive
on the boundary.

Finally, when dealing as in our case with a singularity distributed all over the boundary the
weights presented above do not allow anymore to manage properly the terms containing the
singularities, since they now have a different nature. Therefore, we need to introduce further
modifications in the weight we want to employ, designing it in a way that could compensate this
kind of degeneracies. At this purpose, it is sufficient to modify σ3 replacing the terms of the
form |x| with the distance functionδ; being still in the case of boundary singularities the function
ψ introduced in [8] (see (3.4) above) turns out to be a suitableone also in our case.

For concluding, we want to emphasise the fact that all the changes in the classical weight we
introduced above are purely local, around the points where the singularity of the potential arises.
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0 a

1

ψ
ω

0

cartesian axes

Figure 3: Functionψ of Cazacu in one space dimension on the interval (0, a)

This, of course, because as long as the potential remains bounded it can be handled with the same
techniques as for the classical heat equation.

We now have all we need for introducing the Carleman estimate.

Theorem 3.1. Letσ be the weight defined in(3.1). There exist two positive constantsλ0 andM
such that for anyλ ≥ λ0 there exists R0 = R0(λ) such that for any R≥ R0 and for any solution v
of (1.4) it holds

R
∫

Q
θe−2Rσ

(

δ2−γ|∇v|2 + A1
v2

δγ

)

dxdt+ λR
∫

Ωr0×(0,T)

θ

(

δ

r0

)λ−2

e−2Rσ|∇v|2 dxdt

+λ2R
∫

O×(0,T)

θ

(

δ

r0

)λ

φe−2Rσ|∇v|2 dxdt+ R3
∫

Ωr0×(0,T)

θ3δ2e−2Rσv2 dxdt

+λ4R3
∫

O×(0,T)

θ3

(

δ

r0

)3λ

φ3e−2Rσv2 dxdt

≤M























λ4R3
∫

ω0×(0,T)

θ3

(

δ

r0

)3λ

φ3e−2Rσv2 dxdt+ λ2R
∫

ω0×(0,T)

θ

(

δ

r0

)λ

φe−2Rσ|∇v|2 dxdt























(3.11)

The proof of Theorem 3.1 is very technical and will be presented in Section 6. It relies on
several technical Lemmas that we are going to prove in the appendix.

4. Proof of the observability inequality (1.5)and of the controllability Theorem 1.1

We now apply the Carleman estimate we just obtained for proving the observability inequal-
ity (1.5). This inequality will then be employed in the proofof our main result, Theorem 1.1.
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Prooof of the observability inequality(1.5). Let us fix λ ≥ λ0 andR ≥ R0(λ) such that (3.11)
holds. These parameters now enter in the constantM; in particular we have

∫

Q
θe−2Rσ v2

δγ
dxdt≤M























∫

ω0×(0,T)

θ3φ3e−2Rσv2 dxdt+
∫

ω0×(0,T)

θφe−2Rσ|∇v|2 dxdt























.

Now, it is straightforward to check that there exists a positive constantP such that

θe−2Rσ 1
δγ
≥ P, (x, t) ∈ Ω ×

[

T
4 ,

3T
4

]

,

θ3φ3e−2Rσ ≤ P, (x, t) ∈ ω0 × (0,T),

θφe−2Rσ ≤ Pe−Rσ, (x, t) ∈ ω0 × (0,T).

Thus the inequality above becomes

∫ 3T
4

T
4

∫

Ω

v2 dxdt≤ N























∫

ω0×(0,T)

v2 dxdt+
∫

ω0×(0,T)

e−Rσ|∇v|2 dxdt























.

Moreover, multiplying equation (1.4) byv and integrating overΩ we obtain

1
2

d
dt

∫

Ω

v2 dx=
∫

Ω

|∇v|2 dx− µ
∫

Ω

v2

δ2
dx,

which, applying (2.1), implies

d
dt

∫

Ω

v2 dx≥ −C
∫

Ω

v2 dx.

Hence, the functiont 7→ e2Ct‖v(·, t)‖L2(Ω) is increasing, that is

e−2CT
∫

Ω

v(x, 0)2 dx≤
∫

Ω

v(x, t)2 dx,

and, integrating in time betweenT/4 and 3T/4 we have

T
2

e−2CT
∫

Ω

v(x, 0)2 dx≤
∫ 3T

4

T
4

∫

Ω

v(x, t)2 dx.

Thus, we obtain the inequality

∫

Ω

v(x, 0)2 dxdt≤
2Ne2CT

T























∫

ω0×(0,T)

v2 dxdt+
∫

ω0×(0,T)

e−Rσ|∇v|2 dxdt























.

Therefore to conclude the proof of (1.5), it is sufficient toapply the following lemma:
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Lemma 4.1 (Cacciopoli’s inequality). Let σ̄ : (0,T) × ω0 → R∗+ be a smooth non-negative
function such that

σ̄(x, t)→ +∞, as t→ 0+ and as t→ T−,

and letµ ≤ µ∗. Then, there exists a constantΥ independent ofµ such that any solution v of(1.4)
satisfies

∫

ω0×(0,T)

e−Rσ̄|∇v|2 dxdt≤ Υ
∫

ω×(0,T)

v2 dxdt. (4.1)

Lemma 4.1 is a trivial adaptation of an analogous result, [21, Lemma 3.3], and its proof is
left to the reader. It is now straightforward that, applying(4.1) forσ as in (3.1) we finally get

∫

Ω

v(x, 0)2 dxdt≤ CT

∫

ω0×(0,T)

v2 dxdt,

that clearly implies (1.5), due to the definition ofω0. �

Proof of Theorem(1.1). Once the observability inequality (1.5) is known to hold, wecan imme-
diately obtain the controllability of our equation througha controlf ∈ L2(ω× (0,T)). To do that,
we are going to introduce the functional

J(vT) :=
1
2

∫

ω×(0,T)

v2 dxdt+
∫

Ω

v(x, 0)u0(x) dx, (4.2)

defined over the Hilbert space

H :=























vT ∈ L2(Ω)
∣

∣

∣ the solutionv of (1.4) satisfies
∫

ω×(0,T)

v2 dxdt≤ +∞























. (4.3)

To be more precise,H is the completion ofL2(Ω) with respect to the norm
(

∫ T

0

∫

ω
v2 dxdt

)1/2
.

Observe thatJ is convex and, according to (1.5), it is also continuous inH; on the other hand,
again (1.5) gives us also the coercivity ofJ. Therefore, there existsv∗ ∈ H minimizing J.
The corresponding Euler-Lagrange equation is

∫

ω×(0,T)

v(x, t)F(x, t) dxdt+
∫

Ω

u0(x)v(x, 0)dx= 0, (4.4)

whereF(x, t) := v∗(x, t)χω. F will be our control function; we observe that, by definitionF ∈
L2(ω × (0,T)). Now, considering equation (1.2) withf = F, multiplying it by v and integrating
by parts, we get

∫ 1

0
u(x,T)vT(x) dx=

∫

ω×(0,T)

v(x, t)F(x, t) dxdt+
∫

Ω

u0(x)v(x, 0)dx,

for anyvT ∈ L2(Ω). Hence, from (4.4) we immediately concludeu(x,T) = 0. �
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5. Non existence of a control in the supercritical case

As we mentioned before, in [6] is proved that in the super-critical case, i.e. forµ > 1/4, the
Cauchy problem for our singular heat equation is severely ill-posed. However, a priori this fact
does not exclude that, givenu0 ∈ L2(Ω), it is possible to find a controlf ∈ L2((0,T); L2(Ω))
localised inω such that there exists a solution of (1.2). If this fact occurs, it would mean that we
can prevent blow-up phenomena by acting on a subset of the domain.

However, as we are going to show in this section, this controlfunction f turns out to be
impossible to find forµ > 1/4 and, in this case, we cannot prevent the system from blowingup.
Therefore, the upper bound 1/4 for the Hardy constantµ shows up to be sharp for control.

The proof of this fact will rely on an analogous result presented in [11]; therefore, following
the ideas of optimal control, for anyu0 ∈ L2(Ω) we consider the functional

Ju0(u, f ) :=
1
2

∫

Q
|u(x, t)|2 dxdt+

1
2

∫ T

0
‖ f (t)‖2L2(Ω) dt,

defined on the set

C(u0) :=
{

(u, f ) ∈ L2((0,T),H1
0(Ω)) × L2((0,T), L2(Ω))

∣

∣

∣ u satisfies (1.2)
}

.

We say that it is possible to stabilise system (1.2) if we can find a constantA such that

inf
(u, f ) ∈C(u0)

Ju0(u, f ) ≤ A‖u0‖2L2(Ω).

Now, for ε > 0, we approximate (1.2) by the system






























ut − ∆u−
µ

δ2 + ε2
u = f , (x, t) ∈ Q

u = 0, (x, t) ∈ Γ × (0,T)

u(x, 0) = u0(x), x ∈ Ω,

(5.1)

Due to the boundedness of the potential, (5.1) is well-posed; therefore, we can define the
functional

Jεu0
( f ) :=

1
2

∫

Q
|u(x, t)|2 dxdt+

1
2

∫ T

0
‖ f (t)‖2L2(Ω) dt,

where f ∈ L2((0,T); L2(Ω)) is localised inω andu is the corresponding solution of (5.1). We
are going to prove the following

Theorem 5.1. Assume thatµ > 1/4. There is no constant A such that, for allε > 0 and all
u0 ∈ L2(Ω),

inf
f∈L2((0,T);L2(Ω))

Jεu0
( f ) ≤ A‖u0‖2L2(Ω).

We are going to prove Theorem 5.1 in two steps: firstly, we give some basic estimates on the
spectrum of the operator

L
ε := −∆ − µ

δ2 + ε2
I (5.2)

onΩ with Dirichlet boundary conditions; secondly, we will apply these estimates for proving
the main result of this section, Theorem 5.1.
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5.1. Spectral estimates

Since the function 1/(δ2
+ ε2) is smooth and bounded inΩ for anyε > 0, the spectrum ofLε

is given by a sequence of real eigenvaluesλε0 ≤ λ
ε
1 ≤ . . . ≤ λ

ε
k ≤ . . . , with λεk → +∞ ask→ +∞,

to which corresponds a family of eigenfunctionsφεk that forms an orthonormal basis ofL2(Ω).

Proposition 5.1. Assumeµ > 1/4 and letΩβ be as in(3.9). Then we have

lim
ε→0+

λε0 = −∞ (5.3)

and, for allβ > 0,

lim
ε→0+

∥

∥

∥φε0

∥

∥

∥

H1(Ω\Ωβ)
= 0. (5.4)

Proof. We argue by contradiction and we assume thatλε0 is bounded from below by some con-
stantM. From the Rayleigh formula we have

µ

∫

Ω

u2

δ2 + ε2
dx≤

∫

Ω

|∇u|2 dx− M
∫

Ω

u2 dx,

for all ε > 0 and anyu ∈ H1
0(Ω). Taking nowu ∈ D(Ω), we pass to the limit asε → 0+ in the

inequality above and we get

µ

∫

Ω

u2

δ2
dx≤

∫

Ω

|∇u|2 dx− M
∫

Ω

u2 dx, (5.5)

that holds for anyu ∈ H1
0(Ω) by a density argument.

Now, givenβ0 > 0, let us chooseu ∈ H1
0(Ωβ0), that we extend by zero onRN, and let us

define, fora ≥ 1,

ua(x) := aNu(ax).

This function is clearly inH1
0(Ωβ0), and consequently inH1

0(Ω); therefore, we can apply (5.5)
to it and find

a2

(

µ

∫

Ω

u2

δ2
dx−

∫

Ω

|∇u|2 dx

)

≤ −M
∫

Ω

u2 dx.

Passing to the limit asa→ +∞, we obtain

µ

∫

Ω

u2

δ2
dx≤

∫

Ω

|∇u|2 dx,

for anyu ∈ H1
0(Ωβ0). Therefore, we should haveµ ≤ 1/4, since this is the Hardy inequality in

the setΩβ0; then, we have a contradiction.
Now, consider the first eigenfunctionφε0 ∈ H1

0(Ω) of Lε, that by definition satisfies

−∆φε0 − µ
φε0

δ2 + ε2
= λε0φ

ε
0, (5.6)

in Ω. Observe that, since the potential is smooth inΩ, also the functionφε0 is smooth by classical
elliptic regularity.
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Setβ > 0 and letξβ be a non-negative smooth function, vanishing inΩβ/2 and equals to 1 in
R

N \Ωβ, with
∥

∥

∥ξβ
∥

∥

∥∞ ≤ 1. Multiplying 5.6 byξβφε0 and integrating by parts we obtain

∫

Ω

ξβ
∣

∣

∣∇φε0
∣

∣

∣

2
dx+

∣

∣

∣λε0

∣

∣

∣

∫

Ω

ξβ
(

φε0

)2
dx= µ

∫

Ω

ξβ

(

φε0

)2

δ2 + ε2
dx+

1
2

∫

Ω

∆ξβ
(

φε0

)2
dx. (5.7)

Therefore, sinceφε0 is of unit L2-norm, and due to the definition ofξβ, we get

∣

∣

∣λε0

∣

∣

∣

∫

Ω\Ωβ

(

φε0

)2
dx≤ 4µ

β2
+

1
2

∥

∥

∥∆ξβ
∥

∥

∥

L∞(Ω)
.

Since
∣

∣

∣λε0

∣

∣

∣→ ∞ asε→ 0+, we obtain that for anyβ > 0

lim
ε→0+

∫

Ω\Ωβ

(

φε0

)2
dx= 0. (5.8)

Furthermore, using again (5.7) and the definition ofξβ

∫

Ω\Ωβ

∣

∣

∣∇φε0
∣

∣

∣

2
dx≤

(

4µ
β2
+

1
2

∥

∥

∥∆ξβ
∥

∥

∥

L∞(Ω)

) ∫

Ω\Ωβ/2

(

φε0

)2
dx.

Hence, the proof of (5.4) is completed by using (5.8) forβ/2. �

Proof of Theorem 5.1.Fix ε > 0 and chooseuε0 = φ
ε
0, that by definition is of unitL2-norm. We

want to show that

inf
f∈L2((0,T);L2(Ω))

Jεuε0( f )→ +∞

asε→ 0+.
Hence, let f ∈ L2((0,T); L2(Ω)) and consider the corresponding solutionu of (1.2) with

initial datauε0 = φ
ε
0. Set

ρ(t) =
∫

Ω

u(x, t)φε0(x) dx, and ζ(t) = 〈 f (t), φε0〉L2(Ω);

then,ρ(t) satisfies the first order differential equation
{

ρ′(t) + λε0 ρ(t) = ζ(t),
ρ(0) = 1.

By the Duhamel’s formula we obtain

ρ(t) = e−λ
ε
0t
+

∫ t

0
e−λ

ε
0(t−s)ζ(s) ds.

Therefore,

∫

Q
u2 dxdt≥

∫ T

0
ρ(t)2 dt ≥ 1

2

∫ T

0
e−λ

ε
0t dt−

∫ T

0

(∫ t

0
e−λ

ε
0(t−s)ζ(s) ds

)2

dt. (5.9)
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Of course

1
2

∫ T

0
e−λ

ε
0t dt =

1
4λε0

(

e2λε0T − 1
)

;

on the other hand, by trivial computations we have

∫ T

0

(∫ t

0
e−λ

ε
0(t−s)ζ(s) ds

)2

dt ≤ 1

4
(

λε0

)2
e2λε0T

∫ T

0
ζ(s)2 ds.

Besides, from the definition ofζ(t), and sincef is localized inω, it immediately follows

|ζ(t)|2 ≤ ‖ f (t)‖2L2(Ω)

∥

∥

∥φε0

∥

∥

∥

2

L2(ω)
.

Hence, we deduce from (5.9) that

1
4λε0

(

e2λε0T − 1
)

≤
∫

Q
u2 dxdt+

∥

∥

∥φε0

∥

∥

∥

2

L2(ω)

4
(

λε0

)2
e2λε0T

∫ T

0
‖ f (t)‖2L2(Ω) dt,

that implies either

1
8λε0

(

e2λε0T − 1
)

≤
∫

Q
u2 dxdt

or

1
8λε0

(

e2λε0T − 1
)

≤

∥

∥

∥φε0

∥

∥

∥

2

L2(ω)

4
(

λε0

)2
e2λε0T

∫ T

0
‖ f (t)‖2L2(Ω) dt.

In any case, for anyf ∈ L2((0,T); L2(Ω)) with support inω we get

Jεuε0( f ) ≥ inf



















e2λε0T − 1
16λε0

,
λε0

4
∥

∥

∥φε0

∥

∥

∥

2

L2(ω)

(

1− e2λε0T
)



















.

This last bound blows up asε → 0+, due to the estimates (5.3) and (5.4). Indeed, by definition
of ω, we can findβ > 0 such thatω ⊂ Ω \Ωβ and therefore

∥

∥

∥φε0

∥

∥

∥

L2(ω)
≤

∥

∥

∥φε0

∥

∥

∥

L2(Ω\Ωβ)
≤

∥

∥

∥φε0

∥

∥

∥

H1(Ω\Ωβ)
→ 0,

asε→ 0+. This concludes the proof. �

6. Proof of the Carleman estimate

Before giving the proof of the Carleman estimate (3.11), it is important to remark that, in
principle, the solutions of (1.4) do not have enough regularity to justify the computations; in
particular, theH2 regularity in the space variable that would be required for applying standard
integration by parts may not be guaranteed. For this reason,we need to add some regularisation
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argument.
In our case, this can be done by regularising the potential, i.e. by considering, instead of the

operatorA defined in (1.1), the following

Anv := ∆v+
µ1

(δ + 1/n)2
v, n > 0. (6.1)

The domain of this new operator isD(An) = D(−∆) = H1
0(Ω) ∩ H2(Ω), due to the fact that

now our potential is bounded onΩ, and the solutionvn of the corresponding parabolic equation
possess all the regularity needed to justify the computations. Passing to the limit asn→ +∞, we
can then recover our result for the solutionv of (1.4).

In order to simplify our presentation, we will skip this regularisation process and we will
write directly the formal computations for the solution of (1.4). Moreover, we are going to
present here the main ideas of the proof of the inequality, using some some technical Lemmas,
which will be proved in appendix A.

Step 1. Notation and rewriting of the problem
For any solutionv of the adjoint problem (1.4), and for anyR> 0, we define

z(x, t) := v(x, t)e−Rσ(x,t), (6.2)

which satisfies

z(x, 0) = z(x,T) = 0 (6.3)

in H1
0(Ω), due to the definition ofσ. The positive parameterR is meant to be large. Plugging

v(x, t) = z(x, t)eRσ(x,t) in (1.4), we obtain thatzsatisfies

zt + ∆z+
µ

δ2
z+ 2R∇z · ∇σ + Rz∆σ + z

(

Rσt + R2|∇σ|2
)

= 0, (x, t) ∈ Ω × (0,T) (6.4)

with boundary conditions

z(x, t) = 0, (x, t) ∈ Γ × (0,T). (6.5)

Next, we define a smooth positive functionα(x) such that

α(x) =

{

0 x ∈ Ωr0/2

1 x ∈ Ω \Ωr0

(6.6)

whereΩr0 has been introduced in (3.9). Setting

Sz := ∆z+
µ

δ2
z+ z

(

Rσt + R2|∇σ|2
)

, Az := zt + 2R∇z · ∇σ + Rz∆σ(1+ α), Pz := −Rαz∆σ,

one easily deduce from (6.4) that

Sz+ Az+ Pz= 0, ‖Sz‖2L2(Q) + ‖Az‖2L2(Q) + 2〈S,A〉L2(Q) = ‖Pz‖2L2(Q).

In particular, we obtain that the quantity

I = 〈Sz,Az〉L2(Q) −
1
2
‖Rαz∆σ‖2L2(Q) (6.7)

is not positive.
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Step 2. Computation of the scalar product
Lemma 6.1. The following identity holds:

I = R
∫

Q
|∂nz|2∂nσdxdt− 2R

∫

Q
D2σ(∇z,∇z) dxdt− R

∫

Q
α∆σ|∇z|2 dxdt

+ R
∫

Q
(∇(∆σ) · ∇α) z2 dxdt+

R
2

∫

Q
∆σ∆α z2 dxdt+ Rµ

∫

Q
α∆σ

z2

δ2
dxdt

+ 2Rµ
∫

Q
(∇δ · ∇σ)

z2

δ3
dxdt+

R
2

∫

Q
∆

2σ(1+ α)z2 dxdt− 2R3
∫

Q
D2σ(∇σ,∇σ)z2 dxdt

+ R3
∫

Q
α∆σ|∇σ|2z2 dxdt− R2

2

∫

Q
α2|∆σ|2z2 dxdt− 1

2

∫

Q

(

Rσtt + 2R2(|∇σ|2)t

)

z2 dxdt

+ R2
∫

Q
ασt∆σ z2 dxdt. (6.8)

The proof of Lemma 6.1 will be presented in the appendix. Moreover, in what follows we
will split (6.8) in four parts; first of all, let us define theboundary term

Ibd = R
∫

Σ

|∂nz|2∂nσdsdt, (6.9)

whereΣ := ∂Ω × (0,T).
Secondly, we defineI l as the sum of the integrals linear inσ which do not involve any time

derivative

I l = −2R
∫

Q
D2σ(∇z,∇z) dxdt− R

∫

Q
α∆σ|∇z|2 dxdt+ R

∫

Q
(∇(∆σ) · ∇α) z2 dxdt

+
R
2

∫

Q
∆σ∆α z2 dxdt+ Rµ

∫

Q
α∆σ

z2

δ2
dxdt

+ 2Rµ
∫

Q
(∇δ · ∇σ)

z2

δ3
dxdt+

R
2

∫

Q
∆

2σ(1+ α)z2 dxdt. (6.10)

Then, we consider the sum of the integrals involving non-linear terms inσ and without any
time derivative, that is

Inl = −2R3
∫

Q
D2σ(∇σ,∇σ)z2 dxdt+ R3

∫

Q
α∆σ|∇σ|2z2 dxdt− R2

2

∫

Q
α2|∆σ|2z2 dxdt. (6.11)

Finally, we define the terms involving the time derivative inσ as

I t = −
1
2

∫

Q

(

Rσtt + 2R2(|∇σ|2)t

)

z2 dxdt+ R2
∫

Q
ασt∆σ z2 dxdt. (6.12)

Step 3. Bounds for the quantities Ib, Il , Inl and It
We now estimates the four quantities (6.9), (6.10), (6.11) and (6.12) separately.

Lemma 6.2. It holds that Ibd = 0 for anyλ > 1
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Lemma 6.3. There existsλ0 such that for anyλ ≥ λ0 and any R> 0, and for any r0 as in (3.3),
it holds

I l ≥ B1R
∫

Q
θ

(

δ2−γ|∇z|2 + z2

δγ

)

dxdt+
λR
2

∫

Ωr0×(0,T)

θ

(

δ

r0

)λ−2

|∇z|2 dxdt

− B2λ
2R

∫

ω0×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt+ B3λ
2R

∫

O×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt− BλR
∫

Q
θz2 dxdt,

(6.13)

where B1, B2 and B3 are positive constants independent on R andλ, and Bλ is a positive constant
independent on R.

Lemma 6.4. There existsλ0 such that for anyλ ≥ λ0 there exists R0 = R0(λ) such that for any
R≥ R0 and for any r0 as in(3.3) it holds

Inl ≥
R3

2

∫

Ωr0×(0,T)

θ3δ2z2 dxdt+ B5λ
4R3

∫

O×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt

− B6λ
4R3

∫

ω0×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt, (6.14)

for some positive constants B5 and B6 uniform in R andλ.

Taking into account the negative terms in the expression ofI l that we want to get rid of, we
define

Ir = I t − BλR
∫

Q
θz2 dxdt. (6.15)

Lemma 6.5. There existsλ0 such that for anyλ ≥ λ0 there exists R0 = R0(λ) such that for any
R≥ R0 and for any r0 as in(3.3) it holds

|Ir | ≤
B1

2
R

∫

Q
θ

z2

δγ
dxdt+

B5

2
λ4R3

∫

O×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt+
R3

4

∫

Ωr0×(0,T)

θ3δ2z2 dxdt, (6.16)

where B1 and B5 are the positive constants introduced in Lemmas 6.3 and 6.4,respectively.

The proofs of Lemmas 6.2, 6.3, 6.4 and 6.5 will be presented again in the appendix.

Step 4. Conclusion
From the Lemmas above, we obtain the Carleman estimates in the variablezas follows

Theorem 6.1. There exist two positive constantsλ0 andL such that for anyλ ≥ λ0 there exists
R0 = R0(λ) such that for any R≥ R0 it holds

R
∫

Q
θ

(

δ2−γ|∇z|2 + 1
2

z2

δγ

)

dxdt+ λR
∫

Ωr0×(0,T)

θ

(

δ

r0

)λ−2

|∇z|2 dxdt+ λ2R
∫

O×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt
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+ R3
∫

Ωr0×(0,T)

θ3δ2z2 dxdt+ λ4R3
∫

O×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt

≤ L























λ4R3
∫

ω0×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt+ λ2R
∫

ω0×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt























(6.17)

Coming back from the variablez to the solutionv of (1.4), we finally obtain Theorem 3.1.

7. Open problems and perspectives

We conclude this paper with some open problem and perspective related to our work.

• Boundary controllability. In this article it is treated the controllability problem for the
equation

ut − ∆u− µ

δ2
u = 0, (x, t) ∈ Ω × (0,T) (7.1)

with a distributed control located in an open setω ⊂ Ω. An immediate and interesting
extension of the result we obtained, would be the analysis ofboundary controllability for
equation (7.1). In this framework, a first approach to this problem in one space dimen-
sion is given in [3], where the author is able to obtain boundary controllability for a heat
equation with an inverse-square potential presenting singularities all-over the boundary.
The multi-dimensional case, instead, remains at the momentunaddressed. As it is ex-
plained in [3], the main difficulty of this problem is to understand the behaviour of the
normal derivative of the solution when approaching the boundary. Indeed, due to the
presence of the singularity this normal derivative degenerates and this degeneracy would
need to be properly compensated, in order to build the control for our equation. More
in details, always referring to [3], we believe that we need to introduce a weighted nor-
mal derivative in the formδα∂νu, with a coefficientα which has to be identified. Then,
the weightσ we employ in our Carleman has to be modified accordingly; we propose
σ̃(x, t) = θ(t)(Cλ + δ

1+2αψ − (δ/r0)λφ), with θ andψ as in (3.1), since this function would
allow to obtain the weighted normal derivative we mentionedabove in the boundary term
of the Carleman inequality. The main difficulty would then be to show that, with this
choice of the weight, it is possible to obtain suitable bounds for the distributed terms that
shall lead to the inequality we seek.

• Wave equation.It would be interesting to investigate controllability properties also for
a wave equation with singular inverse-square potential of the typeµ/δ2. Even if there
are already results in the literature on this topic (see, forinstance [7] and [22]), in our
knowledge nobody treated the case of a potential with singularities arising all over the
boundary. This is a very challenging issue; indeed, alreadyin the one dimensional case, the
presence of the singularity all over the boundary makes the multiplier approach extremely
tricky, in the sense that is very difficult to identify, if possible, the correct multiplier for
obtaining a Pohozaev identity. On the other hand, this wouldbe surely a problem which
deserves a more deep analysis.
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• Optimality of our results.In the definition of the weightσ we consider an exponentk = 3
for our functionθ; the motivation of this choice is that for lower exponents weare not
able to bound some terms in our Carleman inequality. However, this has consequences
on the cost of the control as the time tends to zero (see, for instance, [12], [20]), which is
not of the order of exp(C/T), as expected for the heat equation, but rather of exp(C/T3).
Therefore, it would be interesting to reduce the exponent inthe definition ofθ up tok = 1
and try to obtain a Carleman estimate with this new choice forthe weight.

A. Proof of technical Lemmas

The computations for obtaining the Carleman estimate are very long; in order to simplify the
presentation, in Section 6 we divided these computations infour step and we introduced several
preliminary results, Lemmas 6.1 to 6.5. We present now the proof of these Lemmas.
At this purpose, we remind that the distance functionδ satisfies the following properties

δ ∈ C0,1(Ω),

|∇u| = 1, a.e. inΩ,

there exists a constantP > 0 such that|∆δ| ≤ P/δ, a.e. inΩ.

(A.1a)

(A.1b)

(A.1c)

Furthermore, we are going to need the following result

Lemma A.1. Assume thatψ is the function defined in(3.4)by means ofψ1 and̟. Then, there
exists a constant Dψ1 > 0, which depends onψ1, such that

|∇δ · ∇ψ(x) −̟ψ1(x)| ≤ ̟Dψ1. (A.2)

Proof. By definition ofψ and Cauchy-Scwarz inequality, using (A.1b) and sinceψ1 is bounded,
we immediately have

|∇δ · ∇ψ(x) −̟ψ1(x)| = ̟|∇δ · ∇ψ1(x) − ψ1(x)| ≤ ̟|∇ψ1 − ψ1| ≤ ̟Dψ1 .

�

Now, forσ as in (3.1) we introduce the notations

σδ = −θτδ = −θδ2ψ, σφ = −θτφ = −θ
(

δ

r0

)λ

φ, τ = τδ + τφ,

so thatσ(x, t) = Cλθ(t)+σδ(x, t)+σφ(x, t). Next, we deduce some formulas forτδ andτφ that we
are going to use later in our computations. More precisely, for all x ∈ RN and anyi, j ∈ {1, . . . ,N}
we have

∂xiτδ = 2ψδδxi + δ
2ψxi , (A.3)

∂2
xi x j
τδ = 2ψδxiδx j + 2δ(ψx jδxi + ψδxi x j ) + 2δψxiδx j + δ

2ψxi x j (A.4)

and

∆τδ = 2ψ + 4δ(∇δ · ∇ψ) + 2δψ∆δ + δ2
∆ψ, (A.5)
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D2τδ(ξ, ξ) = 2ψ(ξ · ∇δ)2
+ 2δψD2δ(ξ, ξ) + 4δ(ξ · ∇δ)(ξ · ∇ψ) + δ2D2ψ(ξ, ξ), ∀ξ ∈ RN. (A.6)

On the other hand

∂xiτφ =
φ

rλ0
(λδλ−1δxi + λδ

λψxi ), (A.7)

∂2
xi x j
τφ =

φ

rλ0

(

λ(λ − 1)δλ−2δxiδx j + λδ
λ−1δxi x j + λ

2δλ−1(ψx jδxi + ψxiδx j ) + λδ
λψxi x j + λ

2δλψxiψx j

)

(A.8)

and

∆τφ =
φ

rλ0

(

λ(λ − 1)δλ−2
+ λδλ−1

∆δ + 2λ2δλ−1(∇δ · ∇ψ) + λδλ∆ψ + λ2δλ|∇ψ|2
)

, (A.9)

D2τφ(ξ, ξ) =
φ

rλ0

(

λ(λ − 1)δλ−2(ξ · ∇δ)2
+ λδλ−1D2δ(ξ, ξ) + 2λ2δλ−1(ξ · ∇δ)(ξ · ∇ψ)

+ λδλD2ψ(ξ, ξ) + λ2δλ(ξ · ∇ψ)2
)

, ∀ξ ∈ RN. (A.10)

Upper and lower bounds for∆τδ, ∆τφ, D2τδ(ξ, ξ) and D2τφ(ξ, ξ)

Proposition A.1. For r0 as in(3.3)we have

∆τδ ≥ 0,D2τδ ≥ 0, ∀x ∈ Ωr0, ∀ξ ∈ RN, (A.11)

|D2τδ(ξ, ξ)| ≤ C1|ξ|2, ∀x ∈ Ω, ∀ξ ∈ RN, (A.12)

|∆τδ| ≤ C2, ∀x ∈ Ωr0. (A.13)

where C1 and C2 are constants depending onΩ andψ.

Proposition A.2. For r0 and̟ as in(3.3)and(3.7)we have

D2τφ ≥
λ

2

(

δ

r0

)λ−2

φ|ξ|2, ∀x ∈ Ωr0, ∀ξ ∈ RN, (A.14)

∆τφ ≥ λ2

(

δ

r0

)λ

φ, ∀x ∈ O, (A.15)

D2τφ ≥ −λC3

(

δ

r0

)λ−2

φ|ξ|2, ∀x ∈ Ω, ∀ξ ∈ RN, (A.16)

for λ large enough, where C3 is a constant depending onΩ, r0 andψ.

Proof of Proposition A.1.Observe that the proofs of (A.12) and (A.13) are trivial. To prove
(A.11), instead, it is enough to show thatD2τδ(ξ, ξ) ≥ 0 in Ωr0 since this also implies that
∆τδ ≥ 0 inΩr0, simply choosingξ = ei for all i ∈ {1, . . . ,N}. Now, we have that, forx ∈ Ωr0

δ(x) = |x− pr(x)| (A.17)

where pr(x) is the projection ofx onΓ. Hence (A.6) becomes

D2τδ(ξ, ξ) = 2ψ|ξ|2 + 4
(

ξ ·
(

x− pr(x)
))

(ξ · ∇ψ) + δ2D2ψ(ξ, ξ), ∀ξ ∈ RN.
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Now, using Cauchy-Scwarz inequality we obtain

D2τδ(ξ, ξ) ≥ (2ψ − 4δ|Dψ|∞ − δ2|D2ψ|∞)|ξ|2 ≥ (2ψ − r0(4|Dψ|∞ + |D2ψ|∞))|ξ|2 ≥ 0.

sincer0 satisfies (3.3). �

Proof of Proposition A.2.First of all, we rewrite (A.10) asD2τφ(ξ, ξ) = φ(1/r0)λ Sφ, where

Sφ = λ(λ − 1)δλ−2(ξ · ∇δ)2
+ λδλ−1D2δ(ξ, ξ) + 2λ2δλ−1(ξ · ∇δ)(ξ · ∇ψ)

+ λδλD2ψ(ξ, ξ) + λ2δλ(ξ · ∇ψ)2. (A.18)

Next, we have

|2λ2δλ−1(ξ · ∇δ)(ξ · ∇ψ)| ≤ aλ2δλ−2(ξ · ∇δ)2
+
λ2

a
δλ(ξ · ∇ψ)2, ∀a > 0,

which combined with (A.18) leads to

Sφ ≥ (λ2 − λ − aλ2)δλ−2(ξ · ∇δ)2
+ λδλ−1D2δ(ξ, ξ) + λδλD2ψ(ξ, ξ) +

(

λ2 − λ
2

a

)

δλ(ξ · ∇ψ)2.

Choosing nowa such thatλ2(1− a) − λ = 0, i.e.a = (λ − 1)/λ, we have

Sφ ≥ λδλ−1D2δ(ξ, ξ) + λδλD2ψ(ξ, ξ) − − λ2

λ − 1
δλ|∇ψ|2|ξ|2. (A.19)

Applying (A.19) for x ∈ Ωr0 we deduce

Sφ ≥
λ

2
δλ−2|ξ|2 + λδλ−2|ξ|2

(

1
2
−

λ

λ − 1
δ2|Dψ|2∞ − δ2|D2ψ|∞

)

≥
λ

2
δλ−2|ξ|2 + λδλ−2|ξ|2

(

1
2
− r2

0

(

2|Dψ|2∞ + |D2ψ|∞
)

)

≥
λ

2
δλ−2|ξ|2,

for r0 as in (3.3). This immediately yields the proof of (A.14).
Let us now prove (A.15). According to Lemma A.1, to the definition of ψ and to (A.1c) and

(A.9) we get

∆τφ ≥
φ

rλ0

(

λ(λ − 1− P)δλ−2
+ 2λ2δλ−1(̟ψ1 −̟Dψ1) + λδ

λ
∆ψ + λ2δλ|∇ψ|2

)

≥ λ2

(

δ

r0

)λ

φ

(

|∇ψ|2 −
2̟Dψ1

r0
−̟ |∆ψ|

λ

)

≥ λ2

(

δ

r0

)λ

φ

(

̟2̟2
0 −

2̟Dψ1

r0
−̟ |∆ψ|

λ

)

≥ λ2

(

δ

r0

)λ

φ

for all x ∈ O, if we take̟ as in (3.7) andλ large enough.
We conclude with the proof of (A.16). From (A.10) for anyx ∈ Ω we have

D2τφ(ξ, ξ) =
φ

rλ0

(

λ2
(

δ
λ
2−1(ξ · ∇δ) + δ

λ
2 (ξ · ∇ψ)

)2
+ λδλ−1D2δ(ξ, ξ) + λδλD2ψ(ξ, ξ) − λδλ−2(ξ · ∇δ)2

)
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≥ λ
(

δ

r0

)λ−2

φ













1

r2
0

(

δD2δ(ξ, ξ) + δ2D2ψ(ξ, ξ) − (ξ · ∇δ)2
)













≥ −λ
(

δ

r0

)λ−2

φ













1

r2
0

(

|D2δ|∞ + R2
Ω
|D2ψ|∞ + 1

)













|ξ|2,

which gives us the validity of (A.16) forC3 =
(

|D2δ|∞ + R2
Ω
|D2ψ|∞ + 1

)

/r2
0. �

Bounds for2D2τ(∇τ,∇τ) − α∆τ|∇τ|2

We provide here pointwise estimates for the quantity

2D2τ(∇τ,∇τ) − α∆τ|∇τ|2,

which appears in the identity in Lemma 6.1.
First of all, we have

∂xiτ = 2ψδδxi + δ
2ψxi +

φ

rλ0
(λδλ−1δxi + λδ

λψxi ),

∂2
xi x j
τ = 2ψδxiδx j + 2δ(ψx jδxi + ψδxi x j ) + 2δψxiδx j + δ

2ψxi x j

+
φ

rλ0

(

λ(λ − 1)δλ−2δxiδx j + λδ
λ−1δxi x j + λ

2δλ−1(ψx jδxi + ψxiδx j ) + λδ
λψxi x j + λ

2δλψxiψx j

)

,

and in consequence

∆τ = 2ψ + 4δ(∇δ · ∇ψ) + 2ψ∆δ + δ2
∆ψ

+
φ

rλ0

(

λ(λ − 1)δλ−2
+ λδλ−1

∆δ + 2λ2δλ−1(∇δ · ∇ψ) + λδλ∆ψ + λ2δλ|∇ψ|2
)

, (A.20)

D2τ(∇τ,∇τ) = 2ψ(∇τ · ∇δ)2
+ 2δψD2δ(∇τ,∇τ) + 4δ(∇τ · ∇δ)(∇τ · ∇ψ) + δ2D2ψ(∇τ,∇τ)

+
φ

rλ0

(

λ(λ − 1)δλ−2(∇τ · ∇δ)2
+ λδλ−1D2δ(∇τ,∇τ) + 2λ2δλ−1(∇τ · ∇δ)(∇τ · ∇ψ)

+ λδλD2ψ(∇τ,∇τ) + λ2δλ(∇τ · ∇ψ)2
)

. (A.21)

Using the expressions above we obtain the following useful formulas

(∇δ · ∇τ)2
= |∇τ|2 +

(

(∇δ · ∇ψ)2 − |∇ψ|2
)













δ2
+ λ

φ

rλ0
δλ













2

,

(∇δ · ∇τ)(∇ψ · ∇τ) = |∇τ|2(∇δ · ∇ψ) +
(

|∇ψ|2 − (∇δ · ∇ψ)2
)













2δψ + λ
φ

rλ0
δλ−1

























δ2
+ λ

φ

rλ0
δλ













,

(∇ψ · ∇τ)2
= |∇ψ|2|∇τ|2 +

(

(∇δ · ∇ψ)2 − |∇ψ|2
)













2δψ + λ
φ

rλ0
δλ−1













2

,

and we finally conclude

2D2τ(∇τ,∇τ) − α∆τ|∇τ|2 = T1 + T2 + T3,
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where

T1 = 2ψ(2− α)|∇τ|2 + 4δψD2δ(∇τ,∇τ) + 2δ2D2ψ(∇τ,∇τ) + 4(2− α)δ(∇δ · ∇ψ)|∇τ|2

− 2δψα∆δ|∇τ|2 − δ2α∆ψ|∇τ|2, (A.22)

T2 = 4
(

|∇ψ|2 − (∇δ · ∇ψ)2
)













δ2
+ λ

φ

rλ0
δλ

























5δ2ψ + λ(2− ψ)
φ

rλ0
δλ













+
φ

rλ0

(

|∇ψ|2 − (∇δ · ∇ψ)2
)















2λ3δ3λ−2













φ

rλ0













2

+ λ2(8ψ(1− ψ) − 2)δλ+2
+ 4λ2 φ

rλ0
δ2λ
+ 2λδλ+2















,

(A.23)

T3 =
φ

rλ0

{[

(λ2(2− α) − λ(2− α + αδ∆δ))δλ−2
+ 2λ2δλ−1(2− α)(∇δ · ∇ψ)

+ λ2δλ(2− α)|∇ψ|2 − λαδλ∆ψ
]

|∇τ|2 + 2λδλ−1D2δ(∇τ,∇τ) + 2λδλD2ψ(∇τ,∇τ)
}

. (A.24)

Proposition A.3. For r0 as in(3.3), there exist two positive constants D1 and D2 depending on
Ω andψ such that the term T1 in (A.22) satisfies

T1 ≥ |∇τ|2, ∀x ∈ Ωr0, (A.25)

T1 ≥ −D1|∇τ|2, ∀x ∈ O, (A.26)

|T1| ≤ D2|∇τ|2, ∀x ∈ ω0. (A.27)

Proposition A.4. There existsλ0 large enough such that, for anyλ ≥ λ0 and r0 as in (3.3), the
term T2 in (A.23) satisfies

T2 ≥ −
φ

rλ0
|Dψ|2∞

(

D3λ
2ψ2
+ D4λ

2
)

δλ+2, ∀x ∈ Ωr0, (A.28)

T2 ≥ 0, ∀x ∈ Õ, (A.29)

for some positive constants D3and D4 depending on ...

Proposition A.5. There existsλ0 large enough such that, for anyλ ≥ λ0 and r0 and̟ as in
(3.3)and (3.7), the term T3 in (A.24) satisfies

T3 ≥ λ2













φ

rλ0
δλ−2
+

(

δ

r0

)λ

φ













|∇τ|2, ∀x ∈ Ω \ ω0, (A.30)

T3 ≤ λ2D5
φ

rλ0
δλ−2|∇τ|2, ∀x ∈ Ω, (A.31)

for some positive constant D5, not depending onλ.

Proposition A.6. For any r0 and̟ as in(3.3)and (3.7) it holds

|∇τ|2 ≥ δ2, ∀x ∈ Ωr0, (A.32)

|∇τ|2 ≥ λ2

(

δ

r0

)2λ

φ2, ∀x ∈ O, (A.33)

|∇τ|2 ≤ λ2D6

(

δ

r0

)2λ

φ2, ∀x ∈ ω0, (A.34)

where D6 is a positive constant depending only onΩ andψ.
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Proof of Proposition A.3.The inequalities (A.26) and (A.27) are obvious. Hence, we only need
to prove (A.25). Due to the definition ofα, to the properties ofψ and to Lemma A.1, and using
(A.17), we have (see also [8, Prop. 3.4])

T1 ≥
(

2− r2
0(8̟Dψ1 + 3|D2ψ|∞)

)

|∇τ|2 ≥
(

2− r2
0

(

8
Dψ1

̟0
|Dψ|∞ + 3|D2ψ|∞

))

|∇τ|2 ≥ |∇τ|2,

in Ωr0, for r0 as in (3.3). �

Proof of Proposition A.4.Due to Cuachy-Scwarz inequality, the term|∇ψ|2−(∇δ·∇ψ)2 in (A.23)
is positive; hence

4
(

|∇ψ|2 − (∇δ · ∇ψ)2
)













δ2
+ λ

φ

rλ0
δλ

























5δ2ψ + λ(2− ψ)
φ

rλ0
δλ













≥ 4D7δ
2













5δ2ψ + λ(2− ψ)
φ

rλ0
δλ













≥ −4D7λψ
φ

rλ0
δλ+2 ≥ −D8λ

2 φ

rλ0
δλ+2

for λ large enough. From this (A.28) follows trivially.
Concerning (A.29), it is straightforward to check that the inequality holds forλ large enough,

since the term inλ3 is positive and it dominates all the other terms far away fromthe boundary.
�

Proof of Proposition A.5.For x ∈ Ωr0, due to (A.17), the proof is analogous to the one of [8,
Prop. 3.6] and we omit it here. Therefore, let us assume nowx ∈ Õ. Due to the definition ofα,
for λ large enough we have

λ2(2− α) − λ(2− α − αδ∆δ) ≥ λ2.

Hence, from Lemma A.1 and from the properties ofψ, for x ∈ Ω \ ω0 we have

T3 ≥
φ

rλ0

(

λ2δλ−2
+ 2λ2δλ−1(2− α)(̟ψ1 −̟Dψ1) + λ

2δλ(2− α)|∇ψ|2 − λαδλ|D2ψ|∞

−2λδλ−2|D2δ|∞ − 2λδλ|D2ψ|∞
)

|∇τ|2

≥ λ2 φ

rλ0
δλ−2|∇τ|2 + λ2 φ

rλ0
δλ

(

̟2|∇ψ1|2 −
2̟Dψ1

δ
−

2+ α
λ
|D2ψ|∞ − 2

|D2δ|∞
δ2λ

)

|∇τ|2

≥ λ2 φ

rλ0
δλ−2|∇τ|2 + λ2 φ

rλ0
δλ













̟2|∇ψ1|2 −
2̟Dψ1

r0
− 2+ α

λ
|D2ψ|∞ − 2

|D2δ|∞
r2
0λ













|∇τ|2

≥ λ2 φ

rλ0
δλ−2|∇τ|2 + λ2 φ

rλ0
δλ













̟2̟2
0

2
−

2̟Dψ1

r0













|∇τ|2 ≥ λ2 φ

rλ0
δλ−2|∇τ|2 + λ2 φ

rλ0
δλ|∇τ|2,

for λ large enough and̟ as in (3.7). Concerning (A.31), once again the proof is trivial and we
omit it here. �

Proof of Proposition A.6.We have

|∇τ|2 = 4δ2ψ2
+ δ4|∇ψ|2 + 4δ3(∇δ · ∇ψ) + λ2













φ

rλ0













2
(

δ2λ−2
+ δ2λ|∇ψ|2 + 2δ2λ−1(∇δ · ∇ψ)

)
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+ λ
φ

rλ0

(

2δ2+λ|∇ψ|2 + 4δλψ + 2(1+ 2ψ)δ1+λ(∇δ · ∇ψ)
)

(A.35)

Now we observe that, forr0 as in (3.3), we have

3δ2ψ2
+ 4δ3(∇δ · ∇ψ) ≥ δ2(3ψ2 − 4δ|∇ψ|) ≥ δ2(3ψ2 − 4r0|∇ψ|) ≥ 0,

2δ2+λ|∇ψ|2 + 4δλψ + 2(1+ 2ψ)δ1+λ(∇δ · ∇ψ) ≥ 2δλ
(

2ψ − δ2|∇ψ|2 − (1+ 2ψ)δ(∇δ · ∇ψ)
)

≥ 2δλ
(

2ψ − r0

(

|∇ψ|2 + (1+ 2ψ)|∇ψ|
))

≥ 0

and

δ2λ−2
+ δ2λ|∇ψ|2 + 2δ2λ−1(∇δ · ∇ψ) = δ2λ−2

(

1+ δ2|∇ψ|2 + 2δ(∇δ · ∇ψ)
)

≥ δ2λ−2
(

1− δ2|∇ψ|2 − 2δ|∇ψ|
)

≥ δ2λ−2
(

1− r0

(

|∇ψ|2 + 2|∇ψ|
))

≥ 0.

Therefore, (A.32) immediately follows.
Let us now prove (A.33). Firstly, we observe that, thanks to Lemma A.1 and to the properties

of ψ, we get

δ2λ−2
+ δ2λ|∇ψ|2 + 2δ2λ−1(∇δ · ∇ψ) ≥ δ2λ

(

|∇ψ|2 +
2
δ

(∇δ · ∇ψ)

)

≥ δ2λ

(

̟2̟2
0 −

2̟Dψ1

r0

)

≥
̟2̟2

0

2
δ2λ,

for all x ∈ Õ and for̟ as in (3.7). Moreover,

2δ2+λ|∇ψ|2 + 4δλψ + 2(1+ 2ψ)δ1+λ(∇δ · ∇ψ) ≥ −2(1+ 2ψ)̟Dψ1δ
λ+1;

hence

|∇τ|2 ≥ λ2̟
2̟2

0

2

(

δ

r0

)2λ

φ2 − 2(1+ 2ψ)̟Dψ1RΩ

(

δ

r0

)λ

φ.

Now, since by definitionλψ ≤ φ,

λ2̟
2̟2

0

4

(

δ

r0

)2λ

φ2 − 2(1+ 2ψ)̟Dψ1RΩ

(

δ

r0

)λ

φ

=
̟2̟2

0

4

(

δ

r0

)2λ

φ2













λ2 − λ
8(1+ 2ψ)̟Dψ1RΩ

̟2̟2
0

( r0

δ

)λ 1
φ













≥
̟2̟2

0

4

(

δ

r0

)2λ

φ2













λ2 − λ
24ψ̟Dψ1RΩ

̟2̟2
0

1
φ













≥
̟2̟2

0

2

(

δ

r0

)2λ

φ2

(

λ2 − λψ
φ

)

≥
̟2̟2

0

2

(

δ

r0

)2λ

φ2
(

λ2 − 1
)

for ̟ as in (3.7). Therefore we can conclude

|∇τ|2 ≥ λ2̟
2̟2

0

4

(

δ

r0

)2λ

φ2,

which implies (A.34), again for̟ as in (3.7). �
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A.1. Proof of the lemmas from Section 6

Proof of Lemma 6.1.To simplify the presentation, we define

S1 := ∆z, S2 :=
µ

δ2
z, S3 :=

(

Rσt + R2|∇σ|2
)

z,

A1 := zt, A2 := 2R∇σ · ∇z, A3 := R∆σ(1+ α)z,

and we denote byI i, j , i, j = 1, 2, 3, the scalar product〈Si ,A j〉. We compute each term separately.
Moreover, the computations forI1, j andI3, j , j = 1, 2, 3, are the same as in [11, Lemma 2.4] and
we will omit them here.

Computations for I2,1. Due to the boundary conditions (6.3), we immediately have

I2,1 =
µ

2

∫

Q

∂t(z2)
δ2

dxdt=
µ

2

∫

Ω

z2

δ2

∣

∣

∣

∣

∣

∣

T

0

dx− µ
2

∫

Q
z2∂t

(

1
δ2

)

dxdt= 0.

Computations for I2,2. Applying integration by parts and (6.5) we have

I2,2 = Rµ
∫

Q

1
δ2

(

∇σ · ∇(z2)
)

dxdt= −Rµ
∫

Q
∆σ

z2

δ2
dxdt+ 2Rµ

∫

Q
(∇δ · ∇σ)

z2

δ3
dxdt.

Computations for I2,3.

I2,3 = Rµ
∫

Q
∆σ(1+ α)

z2

δ2
dxdt.

Identity (6.8) follows immediately �

Proof of Lemma 6.2.It is sufficient to prove that∇σ · n = 0 for all (x, t) ∈ Γ × (0,T) andλ > 1.
First of all, we have

∇σ = θ












−2δψ∇δ − δ2∇ψ − λ

rλ0

(

δλ−1∇δ + δλ∇ψ
)

φ













.

Moreover, because of the assumptions we made on the functionψ, for any x ∈ Γ we have
∇ψ · n = −|∇ψ|; furthermore, it is a classical property of the distance function that∇δ · n = −1.
Therefore,

∇σ · n = θ












−2δψ(∇δ · n) + δ2|∇ψ| − λ

rλ0

(

δλ−1∇δ · n− δλ|∇ψ|
)

φ













= θ













2δ + δ2|∇ψ| +
λ

rλ0
δλ−1

(

1+ δ|∇ψ|
)

φ













.

It is thus evident that, for anyλ > 1,∇σ · n = 0 onΓ × (0,T). �

Proof of Lemma 6.3.We split I l in two parts,I l = I1
l + I2

l , where

I1
l = − 2R

∫

Q
D2σ(∇z,∇z) dxdt− R

∫

Q
α∆σ|∇z|2 dxdt+ 2Rµ

∫

Q
(∇δ · ∇σ)

z2

δ3
dxdt, (A.36)
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I2
l = −

R
2

∫

Q
∆

2σ(1+ α)z2 dxdt+ R
∫

Q
(∇(∆σ) · ∇α) z2 dxdt+

R
2

∫

Q
∆σ∆αz2 dxdt

+ Rµ
∫

Q
α∆σ

z2

δ2
dxdt. (A.37)

Moreover, we also splitI1
l = I1

l,δ + I1
l,φ where

I1
l,δ = −2R

∫

Q
D2σδ(∇z,∇z) dxdt− R

∫

Q
α∆σδ |∇z|2 dxdt+ 2Rµ

∫

Q
(∇δ · ∇σδ)

z2

δ3
dxdt, (A.38)

I1
l,φ = −2R

∫

Q
D2σφ(∇z,∇z) dxdt− R

∫

Q
α∆σφ |∇z|2 dxdt+ 2Rµ

∫

Q
(∇δ · ∇σφ)

z2

δ3
dxdt. (A.39)

Estimates for I1l,δ. From (A.5) and (A.6) we have

I1
l,δ = 4R

∫

Q
θψ(∇δ · ∇z)2 dxdt+ 4R

∫

Q
θψδD2δ(∇z,∇z) dxdt

+ 8R
∫

Q
θδ(∇δ · ∇z)(∇ψ · ∇z) dxdt+ R

∫

Q
θδ2D2ψ(∇z,∇z) dxdt− R

∫

Q
α∆σδ|∇z|2 dxdt

− 4Rµ
∫

Q
θψ

z2

δ2
dxdt− 2Rµ

∫

Q
θ(∇δ · ∇ψ)

z2

δ
dxdt.

Hence

I1
l,δ ≥ −4R

∫

Q
θψ(∇δ · ∇z)2 dxdt+ 4R

∫

Q
θψδD2δ(∇z,∇z) dxdt

+ 8R
∫

Q
θδ(∇δ · ∇z)(∇ψ · ∇z) dxdt+ R

∫

Q
θδ2D2ψ(∇z,∇z) dxdt− R

∫

Q
α∆σδ|∇z|2 dxdt

− 4Rµ
∫

Q
θψ

z2

δ2
dxdt− 2Rµ

∫

Q
θ(∇δ · ∇ψ)

z2

δ
dxdt

≥ 4R
∫

Q
θψ

(

|∇z|2 − µ z2

δ2

)

dxdt− 8R
∫

Q
θψ|∇z|2 dxdt+ 4R

∫

Q
θψδD2δ(∇z,∇z) dxdt

+ 8R
∫

Q
θδ(∇δ · ∇z)(∇ψ · ∇z) dxdt+ R

∫

Q
θδ2D2ψ(∇z,∇z) dxdt− R

∫

Q
α∆σδ|∇z|2 dxdt

− 2Rµ
∫

Q
θ(∇δ · ∇ψ)

z2

δ
dxdt.

Therefore,

I1
l,δ ≥ 4R

∫

Q
θψ

(

|∇z|2 − µ z2

δ2

)

dxdt− 8R
∫

Q
θψ|∇z|2 dxdt− 4R|D2δ|∞

∫

Q
θψ|∇z|2 dxdt

− 8R|Dψ|∞RΩ

∫

Q
θ|∇z|2 dxdt− R|D2ψ|∞R2

Ω

∫

Q
θ|∇z|2 dxdt− R

∫

Q
α∆σδ|∇z|2 dxdt

− 2Rµ
∫

Q
θ(∇δ · ∇ψ)

z2

δ
dxdt
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≥ 4R
∫

Q
θψ

(

|∇z|2 − µ z2

δ2

)

dxdt− RM1

∫

Q
θ|∇z|2 dxdt− R

∫

Q
α∆σδ|∇z|2 dxdt

− 2Rµ
∫

Q
θ(∇δ · ∇ψ)

z2

δ
dxdt.

whereM1 = M1(µ, ψ,Ω) is a positive constant.
Next, we estimate the first term in the expression above applying the Hardy-Poincaré inequal-

ity (2.4). First of all, by integration by parts we obtain theidentities
∫

Ω

z(∇ψ · ∇z) dx= −
1
2

∫

Ω

z2
∆ψdx

∫

Ω

δ2−γz(∇ψ · ∇z) dx= −1
2

∫

Ω

δ2−γ
∆ψz2 dx− 2− γ

2

∫

Ω

δ1−γ(∇δ · ∇ψ) dx.

Secondly, we apply (2.4) foru := z
√
ψ and, after integrating in time, we get

A4

∫

Q
θψz2 dxdx+

∫

Q
θψ

(

|∇z|2 − µ z2

δ2

)

dxdt+
1
4

∫

Q
θ
|∇ψ|2

ψ
z2 dxdt− 1

2

∫

Q
θz2
∆ψdxdt

≥ A5

∫

Q
θψ

(

δ2−γ|∇z|2 + A1
z2

δγ

)

dxdt+
A5

4

∫

Q
θδ2−γ |∇ψ|2

ψ
z2 dxdt− A5

2

∫

Q
θδ2−γz2

∆ψdxdt

− A5
2− γ

2

∫

Q
θδ1−γ(∇δ · ∇ψ)z2 dxdt,

whereA5 andA5 are the constants of Proposition 2.4. Now, forr0 as in (3.3) we have

A5ψ

4δγ
≥ A5

2
(2− γ)δ1−γ|Dψ|∞, ∀x ∈ Ωr0;

therefore,

A5

2

∫

Q
θψ

(

δ2−γ|∇z|2 + 1
2

z2

δγ

)

dxdt− A5
2− γ

2

∫

Q
θδ1−γ(∇δ · ∇ψ)z2 dxdt

≥ −A5

2
(2− γ)|Dψ|∞

∣

∣

∣

∣

∣

∣

sup
δ>r0

δ1−γ
∣

∣

∣

∣

∣

∣

∫

Õ×(0,T)

θz2 dxdt;

combing the two expressions above, we finally obtain
∫

Q
θψ

(

|∇z|2 − µ∗
z2

δ2

)

dxdt≥
A5

2

∫

Q
θψ

(

δ2−γ|∇z|2 +
1
2

z2

δγ

)

dxdt− A6

∫

Q
θz2 dxdx,

where

A6 :=
A5

4

(

R2−γ
Ω
|Dψ|2∞ + 2R2−γ

Ω
+ 2(2− γ)|Dψ|∞

∣

∣

∣

∣

∣

∣

sup
δ>r0

δ1−γ
∣

∣

∣

∣

∣

∣

)

.

Therefore

I1
l,δ ≥ M2R

∫

Q
θψ

(

δ2−γ|∇z|2 + z2

δγ

)

dxdt− RM1

∫

Q
θ|∇z|2 dxdt− R

∫

Q
α∆σδ|∇z|2 dxdt
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− 2Rµ
∫

Q
θ(∇δ · ∇ψ)

z2

δ
dxdt− A6R

∫

Q
θz2 dxdx.

Sinceγ > 1, for r0 as in (3.3) we have

2|µ||Dψ|∞
δ

≤ M2

2δγ
, ∀x ∈ Ωr0;

knowing this, we can finally conclude

I1
l,δ ≥ B1R

∫

Q
θψ

(

δ2−γ|∇z|2 + z2

δγ

)

dxdt− RM1

∫

Q
θ|∇z|2 dxdt− R

∫

Q
α∆σδ|∇z|2 dxdt

− A6R
∫

Q
θz2 dxdx, (A.40)

whereB1 := M2/2.

Estimates for I1l,φ. In order to get rid of the gradient terms with negative signs in (A.40), we
introduce the quantity

T = I1
l,φ − R

∫

Q
α∆σδ|∇z|2 dxdt− RM1

∫

Q
θ|∇z|2 dxdt

= − 2R
∫

Q
D2σφ(∇z,∇z) dxdt− R

∫

Q
α∆σφ |∇z|2 dxdt+ 2Rµ

∫

Q
(∇δ · ∇σφ)

z2

δ3
dxdt

− R
∫

Q
α∆σδ|∇z|2 dxdt− RM1

∫

Q
θ|∇z|2 dxdt (A.41)

and we need to estimate it from below. To do that, according toPropositions A.1 and A.2 we
remark that

2D2τφ(∇z,∇z) + α∆τφ |∇z|2 + α∆τδ |∇z|2 ≥ λ
(

δ

r0

)λ−2

φ|∇z|2, ∀x ∈ Ωr0,

∣

∣

∣2D2τφ(∇z,∇z) + α∆τφ |∇z|2 + (α∆τδ − M1)|∇z|2
∣

∣

∣ ≤ M2λ
2

(

δ

r0

)λ

φ|∇z|2, ∀x ∈ ω0,

2D2τφ(∇z,∇z) + α∆τφ |∇z|2 + (α∆τδ − M1)|∇z|2 ≥ M3λ
2

(

δ

r0

)λ

φ|∇z|2, ∀x ∈ O,

for λ large enough and for some positive constantsM2 andM3 not depending onλ. On the other
hand, there exists a positive constantM4, again not depending onλ, such that it holds

∣

∣

∣

∣

∣

∣

2|µ||(∇δ · ∇τφ)|
δ3

∣

∣

∣

∣

∣

∣

≤ M4λ

(

δ

r0

)λ−4

φ, ∀x ∈ Ω.

Therefore it follows

T ≥ λR
2

∫

Ωr0×(0,T)

θ

(

δ

r0

)λ−2

|∇z|2 dxdt− M2λ
2R

∫

ω0×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt
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+ M3λ
2R

∫

O×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt− M4λR
∫

Q
θ

(

δ

r0

)λ−4

φz2 dxdt,

for λ large enough. Joining the two expression obtained forI1
l,δ andT we finally have

I1
l ≥ B1R

∫

Q
θψ

(

δ2−γ|∇z|2 +
z2

δγ

)

dxdt− A6R
∫

Q
θz2 dxdx+

λR
2

∫

Ωr0×(0,T)

θ

(

δ

r0

)λ−2

|∇z|2 dxdt

− B2λ
2R

∫

ω0×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt+ B3λ
2R

∫

O×(0,T)

θ

(

δ

r0

)λ

φ|∇z|2 dxdt

− M5λR
∫

Q
θ

(

δ

r0

)λ−4

φz2 dxdt, (A.42)

Estimates for I2l . Using the fact that the support ofα is located away from the origin, we note
that
∣

∣

∣

∣

∣

α
∆τδ

δ2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

α
∆τψ

δ2

∣

∣

∣

∣

∣

∣

, |∆α∆τδ |, |∆α∆τψ |, |∇(∆τδ) · ∇α|, |∇(∆τψ) · ∇α|, |∆2τδ| ≤ Aλ, ∀x ∈ Ω.

Moreover, there exists a positive constantΥ such that

|∆2τδ(1+ α)| ≤
2Υ
δ2
, ∀x ∈ Ω.

Hence

I2
l ≥ −AλR

∫

Q
θz2 dxdt− ΥR

∫

Q
θ|∇z|2 dxdt

and, forλ large enough, we finally have (6.13) withBλ := Aλ +A6+M5λ sup∈Ω{(δ/r0)λ−4φ}. �

Proof of Lemma 6.4.We split Inl = Inl,1 + Inl,2, whereInl,1 indicates the integrals inInl restricted
to Ωr0, while Inl,2 are the terms inInl restricted toÕ. Moreover, if we putσ = −θτ, thenInl can
be rewritten as

Inl = 2R3
∫

Q
θ3D2τ(∇τ,∇τ)z2 dxdt− R3

∫

Q
θ3α∆τ|∇τ|2z2 dxdt−

R2

2

∫

Q
θ2α2|∆τ|2z2 dxdt.

Computations for Inl,1. From (A.28), (A.30) and (A.32), for anyx ∈ Ωr0 we have

T2 + T3 ≥ λ2













φ

rλ0
δλ−2
+

(

δ

r0

)λ

φ













|∇τ|2 − λ2 φ

rλ0
|Dψ|2∞

(

D3ψ
2
+ D4

)

δλ+2

= λ2 φ

rλ0
δλ−2

(

|∇τ|2 + δ2|∇τ|2 − |Dψ|2∞
(

D3ψ
2
+ D4

)

δ4
)

≥ λ2 φ

rλ0
δλ

(

1− |Dψ|2∞
(

D3ψ
2
+ D4

)

δ2
)

≥ λ2 φ

rλ0
δλ

(

1− |Dψ|2∞
(

D3ψ
2
+ D4

)

r2
0

)

≥ 0
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for r0 as in (3.3). Hence, using (A.25) and (A.32) we conclude

2D2τ(∇τ,∇τ) − α∆τ|∇τ|2 ≥ δ2, ∀x ∈ Ωr0;

as a consequence,

Inl,1 ≥ R3
∫

Ωr0×(0,T)

θ3δ2z2 dxdt− R2

2

∫

Ωr0×(0,T)

θ2α2|∆τ|2z2 dxdt.

Moreover, sinceα is supported away from the boundary we also have

α2|∆τ|2 ≤ A′λδ
2, ∀x ∈ Ωr0;

hence, finally, there existsR0 = R0(λ) large enough such that, for anyR≥ R0

Inl,1 ≥
R3

2

∫

Ωr0×(0,T)

θ3δ2z2 dxdt.

Computations for Inl,2. According to Propositions A.3, A.4 and A.5 and to (A.33), forall x ∈ O
we have

2D2τ(∇τ,∇τ) − α∆τ|∇τ|2 ≥ G1λ
2

(

δ

r0

)λ

φ|∇τ|2 ≥ G1λ
4

(

δ

r0

)3λ

φ3.

In addition, it holds

α2|∆τ|2 ≤ G2λ
4

(

δ

r0

)2λ

φ2, ∀x ∈ Õ,

∣

∣

∣2D2τ(∇τ,∇τ) − α∆τ|∇τ|2
∣

∣

∣ ≤ G3λ
2

(

δ

r0

)λ

φ|∇τ|2 ≤ G4λ
4

(

δ

r0

)3λ

φ3, ∀x ∈ ω0.

The previous inequalities follows from (A.20), (A.21) and (A.34); the constantsG1, G2, G3

andG4 are all positive and independent onλ. Therefore we obtain

Inl,2 ≥ G1λ
4R3

∫

O×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt−G4λ
4R3

∫

ω0×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt

− G2

2
λ4R2

∫

Õ×(0,T)

θ2

(

δ

r0

)2λ

φ2 dxdt.

Joining now the two expressions we get forInl.1 andInl,2, we finally obtain that there exists
R0 = R0(λ) large enough such that forR≥ R0

Inl ≥
R3

2

∫

Ωr0×(0,T)

θ3δ2z2 dxdt+G5λ
4R3

∫

O×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt

−G6λ
4R3

∫

ω0×(0,T)

θ3

(

δ

r0

)3λ

φ3z2 dxdt,

whereG5 := G1/2 andG6 := G2/2+G4. �
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Proof of Lemma 6.5.According to the expression ofθ, there exists a constantς > 0 such that

|θθt | ≤ ςθ 3, |θtt | ≤ ςθ 5/3;

on the other hand, from the definition ofσ we obtain

|∆σ| ≤ Eλθ, |σt| ≤ Eλθt, ∀x ∈ Ω,

∂t

(

|∇σ|2
)

≤ Eλθθtδ
2, ∀x ∈ Ωr0,

∂t

(

|∇σ|2
)

≤ Eλθθt

(

δ

r0

)2λ

φ2 ∀x ∈ Õ, (A.43)

for some positive constantEλ big enough.
Sinceα is supported away from the boundary, we can write

R2
∫

Q

∣

∣

∣ασt∆σz2
∣

∣

∣ dxdt≤
ςE2

λ

r2
0

R2
∫

Ωr0×(0,T)

θ 3δ2z2 dxdt+ ςE2
λR

2
∫

Õ×(0,T)

θ 3δ2z2 dxdt.

Furthermore, from (A.43) we obtain

R2

∣

∣

∣

∣

∣

∣

∫

Q
∂t

(

|∇σ|2
)

z2 dxdt

∣

∣

∣

∣

∣

∣

≤ ςEλR
2

∫

Ωr0×(0,T)

θ 3δ2z2 dxdt+ ςEλR
2

∫

Õ×(0,T)

θ 3

(

δ

r0

)2λ

φ2z2 dxdt.

Now we define

Θ := −R
2

∫

Q
σttz

2 dxdt− BλR
∫

Q
θz2 dxdt,

whereBλ is the same introduced in Lemma 6.3. It is straightforward that there exists a positive
constantFλ such that

|Θ| ≤ 2FλR
∫

Q
θ 5/3z2 dxdt.

Next, for 1< q, q′ < ∞ such that 1/q+ 1/q′ = 1 andℓ > 0 we can write

∫

Q
θ 5/3z2 dxdt=

∫

Q

(

ℓθ 5/3−1/q′δ1/q′z2/q
)

(

1
ℓ
θ1/q′δ−1/q′z2/q′

)

dxdt;

choosingq = 3 andq′ = 3/2 in the previous expression, and using Young’s inequality,we obtain

∫

Q
θ 5/3z2 dxdt≤ ℓ3

3

∫

Q
θ3δ2z2 dxdt+

2Rγ−1
Ω

3ℓ 3/2

∫

Q
θ

z2

δγ
dxdt,

for some positive parameterγ ∈ (1, 2). Therefore we have

|Θ| ≤ 2FλR















ℓ3

3

∫

Q
θ3δ2z2 dxdt+

2Rγ−1
Ω

3ℓ 3/2

∫

Q
θ

z2

δγ
dxdt















.
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Consequently, it follows that

|Ir | ≤ Gλ

























R2
∫

Ωr0×(0,T)

θ3δ2z2 dxdt

+ℓ3R
∫

Q
θ3δ2z2 dxdt+

R
ℓ 3/2

∫

Q
θ

z2

δγ
dxdt+ R2

∫

Õ

θ3

(

δ

r0

)2λ

z2 dxdt























,

for some new constantGλ > 0. Take nowℓ such thatGλ/ℓ
3/2
= B1/2; then there existsR0 =

R0(λ) such that for anyR≥ R0 (6.16) holds.
We conclude pointing out that, if we choose an exponentk < 3 for the functionθ in the

definition of our weightσ (see Section 3), it is straightforward to check that some of the passages
in the computations above are not true anymore and there are terms in the expressionIr that we
are not able to handle. Therefore, the valuek = 3 turns out to be sharp for obtaining our Carleman
inequality. �

B. Proof of the Propositions of Section 2

Proof of Proposition 2.3.We split the proof in two parts: firstly, we derive (2.3) inΩr0 and, in
a second moment, we extend the result to the wholeΩ.

Step 1. inequality onΩr0. Let us consider a smooth functionφ > 0 which satisfies

− ∆φ ≥ µ φ
δ2
+ φp, ∀p ∈

[

1,
N − k+ 2
N − k− 2

)

, (B.1)

for k ∈ (1,N − 2). According to [13], forδ < 1 the function

δ−A1/2
k (1−δ1/2)

(

1+
1

logδ

)

, Ak :=

(

N − k− 2
2

)2

(B.2)

satisfies (B.1). Hence, for anyx ∈ Ωr0 with r0 ≤ 1 we definev := φz for z ∈ C∞0 (Ωr0); in
particular,v ∈ C∞0 (Ωr0) and

|∇v|2 = φ2|∇z|2 + z2|∇φ|2 + 1
2
∇(φ2) · ∇(z2).

By applying integration by parts, it is simply a matter of computations to show
∫

Ωr0

|∇v|2 dx=
∫

Ωr0

φ2|∇z|2 dx−
∫

Ωr0

∆φ

φ
v2 dx

and

1
2

∫

Ωr0

δ2−γ∇(φ2) · ∇(z2) dx= −(2− γ)
∫

Ωr0

δ1−γ∇φ · ∇δ
φ

v2 dx−
∫

Ωr0

δ2−γ∆φ

φ
v2 dx

−
∫

Ωr0

δ2−γ|∇φ|2z2 dx.
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The two identities above implies
∫

Ωr0

δ2−γφ2|∇z|2 dx≤ R2−γ
Ω

∫

Ωr0

φ2|∇z|2 dx= R2−γ
Ω

∫

Ωr0

(

|∇v|2 +
∆φ

φ
v2

)

dx

≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µ
v2

δ2

)

dx− R2−γ
Ω

∫

Ωr0

φp−1v2 dx

and
∫

Ωr0

δ2−γ|∇v|2 dx=
∫

Ωr0

δ2−γφ2|∇z|2 dx− (2− γ)
∫

Ωr0

δ1−γ∇φ · ∇δ
φ

v2 dx−
∫

Ωr0

δ2−γ∆φ

φ
v2 dx;

hence
∫

Ωr0

δ2−γ|∇v|2 dx≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µ
v2

δ2

)

dx− R2−γ
Ω

∫

Ωr0

φp−1v2 dx+ µ
∫

Ωr0

δ2−γ v2

δ2
dx

+

∫

Ωr0

δ2−γφp−1v2 dx− (2− γ)
∫

Ωr0

δ1−γ∇φ · ∇δ
φ

v2 dx.

Now, again by integration by parts we have

−(2− γ)
∫

Ωr0

δ1−γ∇φ · ∇δ
φ

v2 dx

=

∫

Ωr0

δ2−γ∆φ

φ
v2 dx−

∫

Ωr0

δ2−γ

φ2
|∇φ|2v2 dx+ 2

∫

Ωr0

δ2−γ∇φ · ∇v
φ

v dx

≤ −µ
∫

Ωr0

δ2−γ v2

δ2
dx−

∫

Ωr0

δ2−γφp−1v2 dx+ 2
∫

Ωr0

δ2−γ∇φ · ∇v
φ

v dx;

therefore
∫

Ωr0

δ2−γ|∇v|2 dx

≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µv2

δ2

)

dx− R2−γ
Ω

∫

Ωr0

φp−1v2 dx+ 2
∫

Ωr0

δ2−γ∇φ · ∇v
φ

v dx

≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µv2

δ2

)

dx+ P1

∫

Ωr0

φp−1v2 dx+ 2
∫

Ωr0

δ2−γ∇φ · ∇v
φ

v dx

≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µv2

δ2

)

dx+ P2

∫

Ωr0

v2 dx+ 2
∫

Ωr0

δ2−γ∇φ · ∇v
φ

v dx.

By definition ofφ we have

∇φ · ∇v
φ

=

(

1+
1

logδ

)−1 













A1/2
k

2
logδ
δ1/2

− A1/2
k

1− δ1/2

δ
− 1

δ log2 δ















(∇δ · ∇v);

plugging this expression in the inequality above we immediately get
∫

Ωr0

δ2−γ|∇v|2dx≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µv2

δ2

)

dx+ P2

∫

Ωr0

v2dx+ P3

∫

Ωr0

δ2−γ logδ
δ1/2

(∇δ · ∇v)v dx
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with

P3 := A1/2
k

∣

∣

∣

∣

∣

∣

∣

sup
x∈Ωr0

(

1+
1

logδ

)−1
∣

∣

∣

∣

∣

∣

∣

.

Now, using another time integration by parts, and since logδ < δ3/2, we finally obtain
∫

Ωr0

δ2−γ|∇v|2 dx≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µv2

δ2

)

dx+ P2

∫

Ωr0

v2 dx+ P3

∫

Ωr0

δ3−γ(∇δ · ∇(v2)) dx

≤ R2−γ
Ω

∫

Ωr0

(

|∇v|2 − µv2

δ2

)

dx+ A2

∫

Ωr0

v2 dx,

where

A2 := P2 + P3

[

R2−γ
Ω

(3− γ) + R3−γ
Ω
|∆δ|

]

.

Step 2. inequality onΩ. We apply a cut-off argument to recover the validity of the inequality
on the wholeΩ. More in details, we consider a functionψ ∈ C∞0 (RN) such that

ψ(x) =

{

1, ∀x ∈ Ωr0/2,

0, ∀x ∈ Ω \Ωr0

and we splitv ∈ C∞0 (Ω) asv = ψv+ (1− ψ)v := v1 + v2. Thus, we get
∫

Ω

δ2−γ|∇v|2 dx=
∫

Ωr0

δ2−γ|∇v1|2 dx+
∫

Ω\Ωr0/2

δ2−γ|∇v2|2 dx+ 2
∫

Ωr0\Ωr0/2

δ2−γ(∇v1 · ∇v2) dx.

Applying (2.3) to the previous identity we obtain
∫

Ω

δ2−γ|∇v|2 dx≤ R2−γ
Ω















∫

Ω

|∇v|2 dx− µ
∫

Ωr0

v2

δ2
dx















−
∫

Ωr0\Ωr0/2

2
(

R2−γ
Ω
− δ2−γ

)

(∇v1 · ∇v2) dx

+ J1

∫

Ω

v2 dx.

As shown in [7, Lemma 5.1], for a smooth functionq : C∞(Ω) → R which is bounded and
non-negative, there exists a constantC > 0 depending onΩ andq such that it holds

∫

Ω

q(x)(∇v1 · ∇v2) dx≥ −C
∫

Ω

v2 dx; (B.3)

hence, considering (B.3) with

q = 2
(

R2−γ
Ω
− δ2−γ

)

∣

∣

∣

∣

Ωr0\Ωr0/2

we get
∫

Ω

δ2−γ|∇v|2 dx≤ R2−γ
Ω















∫

Ω

|∇v|2 dx− µ
∫

Ωr0

v2

δ2
dx















+ J2

∫

Ω

v2 dx. (B.4)

On the other hand we have
∫

Ωr0

v2

δ2
dx≥

∫

Ω

v2

δ2
dx− J3

∫

Ω

v2 dx.

Plugging this last inequality in (B.4), we finally obtain (2.3). �
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