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Abstract

We present a guidance by repulsion model based on a driver-evader interaction
where the driver, assumed to be faster than the evader, follows the evader but cannot
be arbitrarily close to it, and the evader tries to move away from the driver beyond a
short distance. The key ingredient allowing the driver to guide the evader is that the
driver is able to display a circumvention maneuver around the evader, in such a way
that the trajectory of the evader is modified in the direction of the repulsion that the
driver exerts on the evader. The evader can thus be driven towards any given target
or along a sufficiently smooth path by controlling a single discrete parameter acting
on driver’s behavior. The control parameter serves both to activate/deactivate the
circumvention mode and to select the clockwise/counterclockwise direction of the
circumvention maneuver. Assuming that the circumvention mode is more expensive
than the pursuit mode, and that the activation of the circumvention mode has a
high cost, we formulate an optimal control problem for the optimal strategy to drive
the evader to a given target. By means of numerical shooting methods, we find the
optimal open-loop control which reduces the number of activations of the circum-
vention mode to one and which minimizes the time spent in the active mode. Our
numerical simulations show that the system is highly sensitive to small variations
of the control function, and that the cost function has a nonlinear regime which
contributes to the complexity of the behavior of the system, so that a general open-
loop control would not be of practical interest. We then propose a feedback control
law that corrects from deviations while preventing from an excesive use of the cir-
cumvention mode, finding numerically that the feedback law significantly reduces
the cost obtained with the open-loop control.

Keywords: Guidance by repulsion, Driver-evader agents, Optimal strategies, Feedback
control law, Nonlinear dynamics, Numerical simulations
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1 Introduction

“Follow me” (FM) is probably the most natural strategy to solve the guidance problem,
that is, to guide something or somebody along a given trajectory or towards a specific
target, whether physically along geographical paths (streets, roads, buildings), concep-
tually (language learning, politics) or even spiritually (religion, social networks). The
success of the FM strategy is based on the effect of the attraction that the guide (the
leader, the driver) exerts on the guided (followers, driven). Also successfull is the “Do as
I do” strategy, based on imitation (of behavior) or alignment (of opinion), and used in
the above mentioned fields, among others (social learning).

Less expected is the effectiveness of the opposite strategy, namely, “move away from
me” (MA), based on repulsive interactions. That repulsion can serve to guide something
or somebody is shown by nature itself, not only by means of gradient fields (electromag-
netic, temperature or chemical fields), where attraction towards high densities can be
viewed as repulsion from low densities, but also by specifically repelling targets or agents.
In neural development, axonogenesis takes place by combining attractive and repulsive
guidance, so that the axon growth follows guidance cues presented by chemoattractant
and chemorepellent molecules located in the environment of the cell [1, 2]. In animal herd-
ing, sheepdogs are used to guide sheep flocks through a repulsive force that dogs exert on
sheep [3]. Guidance cues can also be magnetic, as in drug targeting [4, 5], thermotactic,
as in sperm guidance [6], cognitive, as in crowd motion and traffic flow [7, 8] or in opinion
formation [9], acoustic signals, as in animal alarm calls or instrumental conditioning [3],
food trail pheromones in ants [10] (chemical at a scale larger than the cell), etc.

Attractive and alignment guidance problems are being studied for a long time by means
of agent based models [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27],
with attention to guidance by leadership [28, 29, 30], and optimal strategies to minimize
time guidance (optimal evacuation times) or distance travelled by the agents have been
found for several systems [32, 31, 34, 35, 36].

Very recently, in 2015, the optimal strategy for a flocking model to reach a target
point or to follow a given trajectory through attractive and alignment guidance has been
presented [37]. In this model, individuals from the flock interact through attractive-
repulsive and alignment forces with the rest of individuals. Interactions are symmetric,
except for one specific individual –the leader– which exerts on each other individual an
extra attractive force. The result is that the leader is followed by the flock, so that, by
controlling the behavior of the leader, a FM strategy can be used to make the flock reach
a given target or move along a given trajectory.

Repulsive forces in attractive-repulsive models have mostly been considered for colli-
sion avoidance with obstacles or with other agents. Guidance by repulsion has received
much less attention, which is reduced, to our knowledge, to the above mentioned axono-
genesis and animal herding. Also very recently, in 2015, an agent based model has been
introduced to describe a so-called defender-intruder interaction, where repulsion is used
by a defender to expel an intruder away as far as possible from a protected target [38].
The authors in [38] find an optimal MA strategy, which not always consists in approaching

2



the intruder as close as possible, but to simply drive the intruder away beyond a short
distance of security. Repulsion in the intruder-defender interaction is qualitatively dif-
ferent than in collision avoidance or in interception [39, 40], where the attractive and/or
alignment forces determine (most of) the behavior.

Defender-intruder problems fall into the category of “conflicting interactions” [38],
which are well described by the classical pursuit-evasion (PE) framework [41, 42]. The
simplest scenario for a PE interaction consists of a single pursuer that follows and tries
to capture a single evader that tries to escape to infinite from the pursuer [38].

Although our interest does not focus on conflicting interactions, we adopt here the
PE framework. The guidance by repulsion can indeed be described with the simple two-
agents PE framework, provided two considerations are taken into account: first, the guide
is not exactly a pursuer, as it often separates from the direction towards the evader and
the guide cannot be arbitrarily close to the evader, and second, the agent to be guided is
not exactly an evader, as it doesn’t try necessarily to escape to infinite but simply moves
away a short distance from the repelling guide.

We present here a guidance by repulsion model based on the two-agents PE framework.
We will refer to the guiding agent as the driver, which tries to drive the evader. The driver
thus follows the evader but cannot be arbitrarily close to it. This is especially interesting
if the driver cannot approach the evader or contact between agents should be avoided
(because of chemical reactions, animal conflict, etc). The evader moves away from the
driver but doesn’t try to escape beyond a not so large distance. The driver is of course
faster than the evader. At a critical short distance, the driver can display a circumvention
maneuver around the evader that forces the evader to change the direction of its motion.
Thus, by adjusting the onset and offset of the circumvention maneuver, the evader can
be driven towards a desired target or along a given trajectory. Our goal is to find optimal
strategies to drive the evader in the most efficient way.

We use an inertial model where interactions between agents take place through asym-
metric newtonian forces. The asymmetry consists in that one agent is attracted and
repulsed, while the other is simply repulsed. This kind of interaction has been coined
“anti-newtonian” by Sprott [19] and others [20, 38]. Thus, velocities are not constant
(they depend on the state of the system), and no alignment forces are considered.

We denote by D and E (and indexes d and e) the driver and the evader agents
respectively. Both agents obeys the Newton’s second law, that is, ~̇ui(t) = ~vi(t) and

mi~̇vi(t) = ~Fi(t), where ~ui(t) = (ux
i (t), uy

i (t)) ∈ R
2, ~vi(t) = (vxi (t), vyi (t)) =∈ R

2, mi ∈ R
+

and ~Fi(t) = (Fx
i (t),Fy

i (t)) ∈ R
2 denote the position vector, the velocity vector and the

mass of agent i, and the resultant force to which agent i is subject, respectively, for
i = d, e.

The force acting on the evader ~Fe(t) has only one component, which is in the direction

of escape from the pursuer, ~ud−~ue. The force acting on the pursuer ~Fd(t) has a component

collinear to ~Fe(t) and a lateral perpendicular component (~ud − ~ue)
⊥ which allows the

pursuer to surround the evader, therefore forcing the evader to change the direction of
escape. Here (x, y)⊥ = (−y, x).
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The perpendicular component of the force acting on the pursuer ~Fd(t) can be switched
on and off by means of the control parameter κ(t) which takes values on {−1, 0, 1}. The
control parameter κ(t) is the key ingredient of the model, as it determines the behavior of
the pursuer, which in turn determines the behavior of the evader. The resulting dynamical
system can be considered as a driver-evader system with two operating modes controlled
by a single parameter.

Contents of the paper and sketch of the results Section titles are self-explanatory.
In Sec. 2, we introduce the model equations and parameters, describing in detail the

interactions between agents and with the environment. We show that the driver-evader
system can be viewed as having two operating modes controlled by a single parameter,
so that the system can be moved from one state to another in order to make the driver
to guide the evader from any point to any other point. We study the controllability of
the system, and prove that, although the system is not fully controllable, agents positions
remain asymptotically close to each other (i.e., an agent can not go to infinity).

In Sec. 3, we consider what are the optimal strategies which allow the driver to guide
the evader to a desired target. Activating a system has a cost, as well as keeping it in the
active mode. As an illustrating example, the driver can be viewed as a spacecraft with
two lateral propellers whose ignition process and fuel consumption are very high with
respect to the consumption of the back propeller. Our interest is in reducing the cost by
minimizing 1) the number of activation and 2) the time of use of the lateral propellers.

To do that, we formulate an optimal control problem (OCP ) for a cost functional
including these two costs. Whe then find, in Sec. 3.1, the (unique) optimal strategy al-
lowing the reach the target in an initially active system (κ(t0) = 1), and the (unique)
optimal strategy which reduces the length of the time interval [tON, tOFF] during which the
control parameter has a non-zero value. This second strategy also reduces the number
of manipulations of the control to two (one switch on and one switch off). In this mini-
mization process, the cost of back propellers (which are always switched on, the driver is
a self-propelled agent which is always attracted by the evader) is neglected compared to
the cost of using the lateral propellers, so that there is not (too much) concern by long
trajectories or long execution times where lateral propellers are switched off.

These open-loop controls are subject to the reproducibility of the initial and environ-
mental conditions and to uncertainty about the model [32, 31]. In fact, we show here in
detail that the system is highly sensitive to small variations of the values of the control,
thus suggesting the appropriateness of the use of closed-loop controls that can afford for
the random perturbations arising in real systems.

We then present in Sec. 3.2 a feedback control law allowing to drive the evader to any
desired target with an arbitrary accuracy. This feedback law is especially advantageous
as it yields a similar cost than the open-loop controls, in real conditions (i.e., under
perturbations). Moreover, the feedback control law provides an excellent insight for the
search of a control function yielding a substantially lower cost; as an example, we report
numerical simulations of a case in which the resulting cost is reduced almost a 60% of the
cost provided by the open-loop controls.
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Finally, in Sec. 4, we present our conclusions and we comment on future directions.
in the last section

2 Model formulation and first analysis

2.1 Equations and parameters

The system consists of 8 ordinary differential equations (ODEs) and 8 initial conditions
for the components ux

i (t), uy
i (t), v

x
i (t) and vyi (t), for i = d, e. Expanding the resultant

force acting on the ith-agent ~Fi(~ud(t), ~ue(t), ~vd(t), ~ve(t)), the system can be written as the
following 4 vectorial ODEs with 4 initial conditions:

~̇ud(t) = ~vd(t), (1)

~̇ue(t) = ~ve(t), (2)

~̇vd(t) =
1

md

[

−CE
D

~ud(t) − ~ue(t)

‖~ud(t) − ~ue(t)‖2
(

1 − δ2c
‖~ud(t) − ~ue(t)‖2

)

−CR
δ41

‖~ud(t) − ~ue(t)‖4
(

~ud(t) − ~ue(t) − κ(t)δ2
(~ud − ~ue)

⊥

‖~ue(t) − ~ud(t)‖

)

− νd~vd(t)

]

,

(3)

~̇ve(t) =
1

me

[

CD
E

~ue(t) − ~ud(t)

‖~ue(t) − ~ud(t)‖2
− νe~ve(t)

]

, (4)

~ud(t0) = ~u0
d, ~ue(t0) = ~u0

e, ~vd(t0) = 0 and ~ve(t0) = 0. (5)

Interactions between agents are as follows.
The expression between brackets in Eq. (3) consists of two terms with respective

coefficients CE
D and CR. The first term corresponds to the long-range attraction and

short-range repulsion force that the evader exerts on the driver. Here δc is the distance
at which the attraction balances the repulsion: if ‖~ue(t) − ~ud(t)‖ > δc, then the evader
attracts the driver (and therefore the driver accelerates towards the evader), while if
‖~ue(t)− ~ud(t)‖ < δc, then the driver is repulsed by the evader (and the driver decelerates
in the direction opposed to the evader).

The term with coefficient CR corresponds to the circumvention force, which as a
component collinear to the attraction-repulsion interaction with the evader, given by
~ud − ~ue, and a component perpendicular to this direction, denoted by (~ud − ~ue)

⊥, where
(x, y)⊥ = (−y, x). The circumvention force is thus a force that attracts the driver to-
wards one of the two sides of the evader, where the side is determined by the sign of the
parameter κ(t).

The model considers two other critical distances, δ1, which is the (short) distance
at which the intensity of the circumvention force is effective, and δ2, which denotes the
distance between agents left by the driver during the circumvention maneuver. In (4), the
evader is simply subject to the repulsion from the driver, which has the same expression

5



than the force that the evader exerts on the driver but with a different (and smaller)
coefficient CD

E .
Finally, both agents are subject to friction forces with the ground, which have the

same form, in the opposite direction of the motion: −νi~vi, for i = d, e.
The model can be formulated in different ways. The formulation presented in (1)–(5)

is based on the general expressions of the attraction-repulsion forces introduced by Gazi
& Passino [22, 23], later widely used in realistic (biological) models [25, 20, 24, 26, 27].
Agents are prevented from collisions by means of strong short-range repulsive forces (large
exponents of ‖~ue(t) − ~ud(t)‖ in the denominator), so that, although it is theoretically
possible, in practice, the denominators are never (too close to) zero, and the model is
in this sense well-posed. Another advantage of this formulation is that each ingredient
of the model, especially the circumvention behavior, appears explicitly in the equations,
thus facilitating the realistic interpretation of the contribution of each component of the
model. For example, the exponent −4 of ‖~ud − ~ue‖ in the circumvention force (which is
large compared to the exponent −2 in the attracting force) shows that the circumvention
maneuver will only be effective when both agents are sufficiently close to each other.

With this formulation, the control parameter κ(t) appears as a factor of the perpen-
dicular component of the force acting on the evader, and, by the simple choice of a value
in {−1, 0, 1}, practically determines the behavior of the system.

2.2 Two operating modes, a single control parameter

Let us define the instantaneous distance between agents r(t) = ‖~ud(t) − ~ue(t)‖.
Then, omitting time-dependence to lighten notation, Eqs. (3)–(4) can be rewritten as

~̇vd = −CE
D

md

~ud − ~ue

r2

[

1 +
1

r2

(

CR

CE
D

δ41 − δ2c

)]

+ κ
δ41δ2
r3

CR

md

(~ud − ~ue)
⊥

r2
− νd

md

~vd, (6)

~̇ve = −CD
E

me

~ud − ~ue

r2
− νe

me

~ve. (7)

We have solved the system (1)-(5) numerically with several classical methods (Runge-
Kutta, adaptive or not, Crank-Nicolson), finding that a simple explicit Euler method
with time-step of order 10−6 is sufficiently effective and provides a sufficiently accurate
solution for our purposes. Our results are based on exhaustive numerical simulations for
a wide range of the parameters preserving the significance of the model. The behavior
of the model is stable and coherent under reasonable variations of the parameters. The
results we describe here are not dataset dependent. The values we have chosen are those
providing the more illustrative figures.

Eq. (6) shows that a necessary condition to have an effective short-range repulsion
acting on the driver is therefore that CRδ

4
1 − CE

Dδ
2
c is negative, as it is the case for the

dataset considered in our study. Similarly, in order to have a faster and more reactive
behavior of the driver, we assume that CE

D > CD
E and that md and νd are sufficiently

smaller than me and νe respectively.
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For the numerical simulations and graphical descriptions presented here, we have con-
sidered the following dataset for the typical values of the constant parameters of the
model: first, mi and νi are the mass and the friction coefficients of agent i respectively,
with md = 0.4, me = 1, νd = 1 and νe = 2; then, CE

D = 3 is the coefficient of the
attractive-repulsive force that the evader exerts on the driver, CD

E = 2 is the coefficient
of the repulsive force that the driver exerts on the evader, and CR = 0.5 is the coefficient
of the circumvention component of the force exerted on the driver when κ = ±1. Finally,
the critical distances are as follows: δc = 2, δ1 = 2 and δ2 = 2.

Parameter values are dimensionless (of order one) and chosen so that their relative
value allow the system to reproduce the behavior of a realistic driving phenomenon.

The numerical simulations allow us to establish that the system has two operating
modes, depending on the value of κ:

• Pursuit mode (κ = 0): the driver D pursues the evader E, which moves away from
D. Both agents tend to move in the same direction, given by their acceleration
vectors, along the straight line DE. If κ = 0 continuously during a sufficiently long
interval of time, both agents’ velocities converge asymptotically to the same vector
of norm vas (due to the friction), and the driver stays at a constant distance from
the evader, δas. See Appendix A for an analytical estimate of these values, and
the left panels in Fig. 1: the lower panel shows that, before reaching the constant
value vas ≈ 0.71, the pursuer is faster than the evader. For the values we have used,
δas =

√
2.

• Circumvention mode (κ = ±1): the driver D separates from the straight line DE
and starts a circumvention maneuver around the evader E (clockwise or counter-
clockwise, depending on the sign of κ). The response of the evader is to move away
from the driver. If κ = 1 continuously during a sufficiently long interval of time,
as the driver is faster than the evader, the asymptotic behavior of the system is a
circular motion of the evader around a fixed point and a circular motion of the driver
around the circle described by the evader. See Fig. 1, where the right panels show
that, for t ∈ [0, 80], the system tends to a periodic configuration where both agents
are separated by a constant distance δangas ≈ 1.82 (not shown in the figure) and have
the same angular velocity of norm ωas ≈ π/4 (the period s of the oscillations is
s = 2π/ωas; bottom-right panel of Fig. 1 shows that s ≈ 8).

When the driver is sufficiently close to the evader, the circumvention mode is effective
and triggers the circular behavior of the agents. See the right panels of Fig. 1, where the
driver initial position at (−6, 0) is so far from the initial position of the evader (6, 0) that,
although the control is set to κ = 1 from t0 = 0 to tf = 100, the first part of the trajectory
is almost a straight line. Until t ≈ 32, both agents are almost still in the horizontal axis:
~ud = (5,−0.09), ~ue = (9.7, 0.02). At t ≈ 37, ~ud = (8.62,−0.37) and ~ue = (11.05, 0.1), the
driver is close enough to the evader and the circular behavior becomes perceptible. See
the oscillations of uy

d(t) and uy
e(t), of period s ≈ 40/5 = 8, in the right-bottom panel of

Fig. 1.
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Figure 1: The two operating modes of the system. Left panels: pursuit mode (κ = 0).
Right panels: circumvention mode (κ = 1). Initial configuration, in both cases: ~ud =
(−6, 0), ~ue = (6, 0) and ~uT = (1, 1), with zero initial velocities. Upper panels: agents’
trajectories. Arrows denote the direction of motion of the agents. For sufficiently long
times, the velocities converge asymptotically to a constant value vs. When κ = 1, the
driver turns counterclockwise around the evader, which also turns counterclockwise. Left-
bottom panel: time variation of the norm of the velocities ‖~vd,e(t)‖, both reaching vas ≈
0.71 at t ≈ 38.9. Right-bottom panel: time variation of agents’ ordinates: uy

d(t) < 0.1
until t ≈ 32, while uy

e(t) < 0.1 until t ≈ 37. For t > 40, periodic behavior (of period
s ≈ 8) with constant angular velocity ωas ≈ π/4 and constant separation δangas ≈ 1.82.

Remark 1: When the driver is far from the evader (i.e., r ≫ 1), the term between
brackets in Eq. (6) is such that 1 ≫ 1/r2, so the first term of this equation (which has
coefficient CE

D) is of order O(r−1), while the term with κ(t) is of order O(r−4). Then,
Eq. (6) can be reduced to

~̇vd = −CE
D

md

~ud − ~ue

r2
− νd

md

~vd. (8)

Remark 2: In particular, it can be observed that, when r3 ≫ δ2, then

∥

∥

∥

∥

CRδ
4
1

md

~ud − ~ue

r2

∥

∥

∥

∥

=
CRδ

4
1

mdr
≫

∥

∥

∥

∥

CRδ
4
1δ2

md

(~ud − ~ue)
⊥

r5

∥

∥

∥

∥

=
CRδ

4
1δ2

mdr4
, (9)

so that the term deviating the driver from the pure pursuit trajectory is negligible with
respect to the term corresponding to the attracting force exerted by the evader. Therefore,
when the driver is sufficiently far from the evader, the value of κ(t) has no influence on
the behavior of the driver, meaning that κ can be set to zero.
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2.3 On the controllability of the system

The circumvention mode can be viewed as the active state of the system, where the control
parameter κ is set to ON, while the pursuit mode is the rest state of the system, where
κ is set to OFF. With the appropriate combination of both modes, the driver is able to
make the evader reach any given target point or move along any (relatively smooth) given
trajectory. The resulting behavior of such combination is what we call a driving behavior.
See Fig. 2.
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Figure 2: Agents’ trajectories (driver: small black circles; evader: large red circles) for an
admissible control function κ(t). Left: whole trajectories, right: zoom for ux(t) ∈ [0, 15].
Symbols are equidistant in time; filled symbols labeled with the same number denote same
instant of time (evader’s labels are shown in parentheses).

This strongly suggests that the system can be controlled with a single control parameter,
κ(t). In control theory, a system is said to be fully controllable when, starting from any
arbitrary initial state, every possible state of the system can be reached by appropriately
adjusting the control parameters (see, e.g., [33]). In this sense, our numerical simulations
have shown that agents cannot be separated an arbitrarily long distance, so that the
driver-evader system cannot be labelled as fully controllable.

In fact, we prove analytically in Appendix A that, for any initial state, the separation
between agents is bounded by above and tends to a distance (of order 1), showing that the
evader cannot escape from the driver to infinity, and the driver cannot move away from
the evader to infinity. Moreover, numerical simulations show that agents’ velocities are
also bounded and that, when κ(t) remains unchanged for sufficiently long time intervals,
both velocities tend asymptotically to the same constant value (vas or ωas). Finally, agents
are prevented from occupying the same place at the same time (i.e., ~ud(t) = ~ue(t)) by the
strong short-range repulsion force that the driver exerts on the evader, as our numerical
simulations confirm.

We will say instead that the driver-evader system is partially controllable, in the sense
that each agent can be controlled separately: the driver can force the evader to reach any
point in the plane (this is shown in the successive sections), and vice-versa, a series of
targets for the evader can be selected so that the driver is driven to reach any point in
the plane.

The question arises now as how the driver-evader system behavior can be optimized
to minimize a given cost functional accounting for the use of the lateral propellers.
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3 Optimal control: two optimal open-loop controls,

one feedback control law

Denote by Bρ(T ) a ball of radius ρ centered in T , assume that the evader is initially far
from the driver (e.g., r(t0) = ‖~ud(t0)− ~ue(t0)‖ ≫ δ1), and assume also that D, E and the
ball Bρ(T ) are not aligned, that is, DE ∩ Bρ(T ) = Ø.

Consider now the objective of driving the evader E into the target ball Bρ(T ) at a
final time tf by controlling the driver D with an appropriate strategy κ(t). As D, E and
Bρ(T ) are not aligned, the circumvention mode has to be activated and/or has to remain
active a suitable time to modify the trajectory of the evader and guide it towards the
target ball Bρ(T ).

Such an objective must appraise the cost of 1) forcing the system to leave its resting
state, and/or 2) keeping the system in an active state. This cost is given by the functional

J(κ)
def
= σ1Nig(κ) + σ2 C(κ), (10)

where Nig(κ) is the number of times that the system is forced to leave its resting state
in the time interval [t0, tf ] (that is, the number of ignition processes, where κ(t) changes
from 0 to ±1), and C(κ) is the total time during which the system is active in [t0, tf ] (i.e.,
the time spent with a lateral propeller in active mode, where κ(t) has a non zero value),

C(κ) =

∫ tf

t0

|κ(t)|dt, (11)

and σ1,2 are nonnegative weights fixed to balance the contribution of each partial cost.
An optimal control problem (OCP ) can then be formulated as

(OCP )

{

Min J(κ) = σ1Nig(κ) + σ2 C(κ)
κ ∈ Uad =

{

κ : [t0, tf ] → {−1, 0, 1} such that ~ue(tf) ∈ Bρ(T )
} , (12)

where Uad is the set of admissible controls.
Here we solve (OCP ) for Nig = 0 and Nig = 1 in sections 3.1 and 3.2 respectively,

finding the corresponding optimal open-loop controls. Our results show that the system
is highly sensitive to small variations of the conditions of the problem, so that a general
open-loop control for Nig > 1 would not be of practical interest. Instead, we provide in
section 3.3 a feedback control law for Nig > 1 that substantially reduces the cost of the
open-loop controls for Nig ≤ 1, and preserves the number of ignitions at a relatively low
value (Nig = 4; see later).

3.1 Optimal open-loop guidance strategies for Nig ≤ 1

Solving (OCP ) for Nig = 0 consists in minimizing C(κ) for κ(t0) = κ0, with κ0 = ±1.
Indeed, if κ(t0) = 0, then κ /∈ Uad, because D and E are initially not aligned with the
target ball and no inition process can be used to modify the trajectory of the evader,
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so ~ue(t) /∈ Bρ(T ) for all t ∈ [t0,+∞). Similarly, solving (OCP ) for Nig = 1 consists in
minimizing C(κ) for κ(t) of the form κ(t) = κ0 in a time interval [tON, tOFF] and κ(t) = 0
outside.

We thus seek two control function profiles like those sketched in Fig. 3.

t

−0.5

0

0.5

1

1.5

κ(t)

0 tf

t

−0.5

0

0.5

1

1.5

κ(t)

0 tf

(a)
τ∗ tON tOFF

(b)

Figure 3: Profiles of the control function κ(t) with κ0 = 1 for each case (a) Nig = 0 and
(b) Nig = 1.

3.1.1 Nig = 0:

The following result holds:
Let κτ (t): R → {−1, 0, 1} be the following step-function in the time interval [t0, tf ],

κτ (t) =

{

κ0 if t < τ
0 if t ≥ τ

, (13)

where κ0 = ±1 is the initial value at time t0: κτ (t0) = κ0. Then, if tf is sufficiently large,
there exists an interval [τα, τω] ⊂ (t0, tf) such that, for all τ ∈ [τα, τω], there exists a time
t ∈ (t0, tf) for which the evader is in the interior of the ball of radius r centered in the
target T . That is:

∀ τ ∈ [τα, τω], ∃ t ∈ (t0, tf) such that ‖~ue(t) − ~uT‖ < r. (14)

Moreover, if r → 0, then the interval [τα, τω] shrinks to a single point τ ∗ such that there
exists a time t ∈ (t0, tf) for which ~ue(t) = ~uT . See τ ∗ in Fig. 3(a).

The proof is based on a continuity argument applied to a (numerical) shooting method.
Fig. 4 shows the trajectories of the evader for different values of τ . By a continuity

argument, it is possible to find the values of τα, τω and τ ∗ with a simple shooting method
based on comparing the direction of the velocity vector of the evader ~ve with respect to
the direction towards the target when the control is switched off. See Appendix B for a
more detailed description of the decision test of the shooting method.

In this case, the cost of a strategy κτ (t) given by (13) is C(κτ ) = τ for all τ ∈ [τα, τω],
so that the optimal strategy is κτα(t). For a sufficiently small value of r (we used r = 10−4

in Fig. 4), the interval [τα, τω] colapses to the value τ ∗ and the cost of the optimal control
is C(κ∗

τ ) = τ ∗.
Noticeably, Fig. 4 reveals that the system is highly sensitive to small variations of τ

around the optimal value τ ∗: the same variation of τ produces a larger variation of the

11
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Figure 4: Shooting method for finding the optimal value τ ∗ of the control function shown
in Fig. 3(a), for which ‖~ue(t) − ~uT‖ < ρ for some t ∈ (0, tf) (here we used ρ = 10−4).
Filled (blue) square denotes target’s position ~uT = (1, 1), empty (red) circle evader’s
initial position ~ue(0) = (6, 0); driver’s initial position ~ud(0) = (−6, 0) is not depicted. Line
with (red) circles denote the trajectory of the evader for the optimal value τ ∗ = 41.15.
Wide (black) line denotes the accumulation circle around which the evader turns if the
control is kept to one. Thin (black) lines denote trajectories of the evader for the following
non-equispaced values of τ : 34, 36, 37, 37.5, 38, 38.4, 38.7, 39, 39.3, 39.6, 39.9, 40.2, 40.4,
40.6, 40.8, 41, 41.3, 41.6, 42 and 43.

deviation of ~ve with respect to a reference line (e.g., the horizontal line) when τ is close
to τ ∗ than when τ is far from τ ∗: for ∆τ = 2, the angular variation θ from τ = 39.9 to 42
is larger than π/2 (actually, θ42 − θ39.91 ≈ 1.62), and is 10 times smaller from τ = 34 to
36 (θ36 − θ34 ≈ 0.16).

3.1.2 Nig = 1:

In the previous case, the optimal control is set to 1 in the whole interval [0, τα). The
possibility of using one ignition process allows us to consider controls where the system is
at rest while the driver is approaching the evader, taking advantage of the fact that when
the driver is far from the evader the circumvention term has (practically) no influence on
the trajectory of the driver (and therefore, on the behavior of the system); see Remark 2.

This delay in the ignition process substantially reduces the cost by allowing the use of
a control function profile like the one depicted in Fig. 3(b), defined by

κtOFF
tON

(t) =

{

κ0 if tON ≤ t < tOFF
0 elsewhere

, (15)

where tON and tOFF are the instants of time in which the control is switched on (κ = κ0 =
±1) and off (κ = 0) respectively. For these control functions, the cost is given by

C(κtOFF
tON

) =

∫ tf

t0

∣

∣κtOFF
tON

(t)
∣

∣ dt = tOFF − tON, (16)
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so that the (OCP ) problem is reduced to find the values of tON and tOFF minimizing tOFF−tON.
These values are found by means of two successive (numerical) shooting methods. Let

us consider the extreme case where ρ = 0 (numerically we used ρ = 10−8), so that the
solution of the shooting method described in the previous section for Nig = 0 is unique.

The first shooting method consists in finding, for each value of tON, the (unique) value
t∗
OFF

(tON) for which there exists a time t ∈ (t0, tf ) such that ~ue(t) = ~uT . This shooting
method is the one presented in the previous case where Nig = 0. In fact, in that case,
tON = 0. This procedure allows us to build a function t∗

OFF
(tON) in such a way that the

function κ
t∗
OFF

tON
(t) is admissible: κ

t∗
OFF

tON
∈ Uad.

Then, the second shooting method consists in finding the value of tON for which the
characteristic function of the interval [tON, t

∗

OFF
(tON)] minimizes C(κtOFF

tON
).

34 36 38 40 42 44 46 48 50
  tON
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6

   
   

t*
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F
F −

 t O
N

tf = 60
tf = 50

38 40 42 44 46 48 50 52
  tON

3.52

3.53

3.54

3.55

   
   

t*
O

F
F −

 t O
N

tf = 60
tf = 50

Figure 5: Shooting method to find the optimal values t∗
ON

and t∗
OFF

for which ‖~ue(t)−~uT ‖ <
ρ for some t ∈ (0, tf) (ρ = 10−8), for two different values of tf : solid (black) line, tf = 60;
dashed (red) line, tf = 50. Left panel: cost function C(tON) = t∗

OFF
(tON) − tON, exhibiting a

plateau starting at t∗
ON

≈ 38.92 (arrow) and situated at C∗ ≈ 3.52. Right panel: zoom of
the vertical axis, revealing the nonlinear shape of the curve with a minimum at t∗

ON
, closely

followed by a local maximum at tON ≈ 39.82, and a decreasing regime for tf sufficiently
large. The relative amplitude of the nonlinearity is ≈ 7 × 10−3.

Fig. 5 shows the cost function C as a function of tON: C(tON) = t∗
OFF

(tON) − tON.
When tf is sufficiently large, the cost C(tON) tends to a constant value C∗ ≈ 3.52 which

is the time is takes to the driver to make the evader turn back towards the target. See
Fig. 6, where two examples with different ignition times tON yield (approximately) the
same cost C∗.

This value C∗ constitutes a substantial reduction of the optimal cost found for Nig = 0.
In fact, Fig. 5 shows that there is a wide range of values of tON yielding a similar value

of the cost, so that, for a tolerance larger than 10−2, the optimal control would not be
unique. This would allow the system to accept another criteria or another restriction to
determine the optimal strategy, which can be for instance to minimize the total time or
the total distance travelled by the agents (and which would be equivalent to consider the
cost of back-propellers).

However, if the variations of C∗ of order 10−3 are relevant, a closer analisys shows
that the first linear decreasing range in Fig. 5, which lasts until t∗

ON
≈ 38.9, is due to

the fact that during this interval of time [0, t∗] the driver is far from the evader, that is,
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Figure 6: Agents’ trajectories for two ON–OFF controls yielding the same cost C∗ ≈ 3.53
in Fig. 5. Wide lines (short trajectories, black and red): tON = 42, t∗

OFF
= 45.5337; thin

lines (long trajectories, blue and orange): tON = 50, t∗
OFF

= 53.5221. Solid lines denote the
driver, dotted lines the evader. In the short trajectory the evader reaches the target at
tf = 65, while it must go until tf = 81 in the long trajectory. In both cases the turning
back maneuver takes the same time C∗ and has the same shape. Right panel: trajectories
during the turning back maneuver overlap when shifted t = t− 5.64.

r = ‖~ud − ~ue‖ ≫ 1, so that the term with κ in Eq. (3) can be neglected (it is of order
O(r−4)) with respect to the terms corresponding to the attracting force (of order O(r−2)).
This means that switching on the control before t∗

ON
doesn’t contribute effectively to reach

the target and is a waste of resources. In fact, the optimal value of the cost is reached at
t∗
ON

: C(38.9) = 3.5228. When tf is so short that the turning back maneuver can not be
completed, then t∗

OFF
(tON) = tf , so that the cost function C(tON) decreases (again linearly

with tON) to zero (but of course the target is not reached). Note that, for all tON, the value
t∗
OFF

(tON) will exist provided tf is sufficiently large.
Interestingly, C(tON) exhibits an abrupt nonlinearity of small amplitude at t∗

ON
; see the

right panel of Fig. 5. In a pure pursuit regime, the velocity of the agents both converge
to a constant value vas due to the friction with the ground. See the lower left panel
in Fig. 1. The nonlinearity is located precisely at the time where the evader reaches
this constant velocity (vas ≈ 0.71). The curve of C(tON) reaches a (local) maximum at
a value of tON slightly larger than t∗

ON
, due to that the driver is close to the evader and

both agents’ velocities have converged to vas. For larger values of tON in the horizontal
plateau of Fig. 5, the turning back maneuver is practically identical in space and time;
see Fig. 6, especially the right panel, where we show that two different values of tON in the
plateau yield two turning back maneuvers that practically overlap. The slight decrease
of the plateau shown in the right Panel of Fig. 5 is due to the fact that turning back
maneuvers are less consuming the farther from the target they takes place, because the
angle at which the control is switched off is smaller. This situation is reversed (that is,
the plateau increases) when the target point is above the turning back region –e.g., at
(x, y) = (1, 2).

Although the relative amplitude of the nonlinearity of C(tON) is very small (0.024 with
respect to 3.52), it unexpectedly adds an important complexity to the study of the system:
the minimum located at t∗

ON
can be global or local depending on tf , therefore complicating
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the search for optimal directions of descent in numerical minimization methods.
Moreover, the high sensitivity of the system detected in the previous section is also in

action if control functions like κ
t∗
OFF

tON
(t) are used when small variations of t∗

OFF
with respect

to tON can occur.
This section shows that, despite a quite predictive general behavior of the system

(no signs of chaos have been detected), its high sensitivity strongly suggests the use of
closed-loop controls.

3.2 A feedback control law for Nig > 1

For systems that are subject to conditions of high sensitivity like those described in sec-
tion 3.1, closed-loop or feedback controls offer the possibility of correcting instantaneously
the state of the system for deviations from the desired behavior [31, 32]. Moreover, the
explicit form of the control as a function of time need not to be known a priori in the
whole time interval [t0, tf ]. In turn, feedback laws have to pay the cost of continuously
monitoring the position and velocity of the agents.

We present here a feedback control law based on the following observations:

1. In real situations, the orientation of the vector ~ve(t) used in the shooting method
can be difficult to observe with the accuracy required by the high sensitivity of the
system.

Instead, the alignment a(t) of the driver D and the evader E with the target point
T is easier to observe and is a good approximation of ~ve(t).

2. When the driver is sufficiently far from the evader, κ(t) can be set to zero (Remarks 1
& 2).

The instantaneous information about the state of the system is processed in real
time to determine the distance separating both agents r(t) and the alignment a(t). The
alignment a(t) can be charaterized by the following scalar product (time dependence is
omitted to lighten notation):

a(t) = (~uT − ~ud) · (~ue − ~ud)
⊥ = (ux

T − ux
d)(uy

d − uy
e) + (uy

T − uy
d)(u

x
e − ux

d). (17)

The sign of a(t) reveals in which half-plane the target T is with respect to the line DE,
and can be used to determine the sign of κ(t).

Moreover, |a(t)| is an instantaneous measure of how urgently the control must be set
to ON. Let us consider a maximal tolerance of deviation ā. The feedback control law is
based on the idea that when |a(t)| is smaller than ā, it is possible to consider that T is
practically on the line DE, so that κ(t) can be set to OFF, thus saving cost, and when
|a(t)| > ā, the deviation is excessive and the control must be set to ON. The tolerance of
deviation ā is an effective bound for both the angle and the intensities of the velocities
(a = ‖~uT − ~ud‖ ‖~ue − ~ud‖ cos(~uT − ~ud, ~ue − ~ud)

∧), so |a| < ā restricts also the velocities
of the agents: a slightly deviated evader at a high speed can miss the target as well as a
largely deviated evader at a lower speed.
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Note also that when |a(t)| < ā, the control can be switched off provided the evader
and the target are at the same side with respect to the driver, in order to prevent the
driver from driving the evader away from the target; that is, κ(t) can be set to zero only
if the scalar product (~ue − ~uT ) · (~ue − ~ud) is negative.

Finally, Remark 2 is introduced into the feedback law by means of the characteristic
function

X (t) =

{

0 if r3(t) ≫ δ2,
1 if not,

(18)

which serves to switch off the control when the driver is far (r3(t) ≫ δ2) from the evader.
The feedback control law can then be written as follows:

κF(t) = X (t) ×
{

0 if |a(t)| ≤ ā and (~ue − ~uT ) · (~ue − ~ud) < 0,
sign{a(t)} if |a(t)| > ā or (~ue − ~uT ) · (~ue − ~ud) ≥ 0.

(19)

We have solved the system (1)–(5) numerically using the condition r3(t) > 3δ2/2 to
have X (t) = 0 in expression (19). We have considered an alignment tolerance ā = 4×10−1.
The rest of values are as in previous sections. Let us refer to this case as case (a).

The result is that the feedback law reduces substantially the cost obtained with the
open-loop control in Sec. 3.1: C(a)

F = 1.43, so an improvement of 60% with respect to
C∗ = 3.53, with however a slight increase of the number of ignition processes, from N∗

ig = 1

to N
(a)
ig = 4.

See Figs. 7, 9 and 8(a1),(a2).

−6 0 6 12 18
u

x
(t)

−1

0

1

2

3

4

u
y
(t)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
u

x
(t)

−2

−1

0

1

2

3

4

1

2

3

4
(4)

(3)

(2)

(1)

Figure 7: Agents’ trajectories for the feedback law κF(t) given in (19), with alignment
tolerance ā = 4×10−1. Left, whole trajectories; right, detail. Wide solid segments denote
intervals of time with active control (ON). Small solid circles correspond to onsets and
ends of such intervals. Numbers denote segments of the same interval of time: S1 =
[39.17, 39.55], S2 = [41.54, 41.89], S3 = [43.77, 44.11] and S4 = [45.98, 46.32]. The cost is

C(a)
F = 1.43.

Figs. 7 shows the trajectories of the agents (the whole trajectories in the left panel,
and a zoom of ux(t) ∈ [0, 15] in the right panel). Surprisingly, the trajectory of the driver
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exhibits an oscillatory behavior around the circular trajectory of the evader, allowing
the driver to remain closer to the evader than in the previous cases (see, e.g., Fig. 6).
Moreover, the time spent with the control in active mode (κF = 1) is surprisingly short
compared to the time spent in this state in the open-loop control κtOFF

tON (t).
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Figure 8: Feedback control laws resulting from the three previous situations denoted
(a), (b) and (c) in Figs. 7 and 9, showing the extreme sensitivity of the system under
variations of the alignment a∗ and the switching times of the control κ(t). Lower panels

(abc2): zoom of upper panels (abc1). Resulting costs: C(a)
F = 1.43, C(b)

F = 4.275 and

C(c)
F = 4.13. Number of ignition processes are N

(a)
ig = 4, N

(b)
ig = 43 and N

(c)
ig = 16.

The improvement consists in that the circumvention mode is interrupted (κF = 0)
during the surrounding motion of the driver around the evader, reducing the time spent
with κF = 1 to four small intervals Sj , j = 1, . . . , 4, of total length C(a)

F = 1.43, and,

accordingly, N
(a)
ig = 4. See the wide solid segments in the trajectories of the agents

in Fig. 7 and Figs 8(a1) and (a2), which show the resulting control function κF(t) for
t ∈ [t0, tf ], with t0 = 0 and tf = 63.

The solution found in Fig. 7 with the feedback law (19) can indeed be considered a
good solution of the control problem. However, this is not a general situation, as shown
by the wide range of cases analysed in our numerical simulations, because of the high
sensitivity exhibited by the system. Let us illustrate this observation here by showing the
results for two slightly different external conditions; see the cases (b) and (c) in Figs. 8
and 9.

Case (b) and (c) use an alignment tolerance ā = 10−1. Fig. 9 shows that the evader
follows almost the same trajectory than in case (a) (depicted in the figure to facilitate
the comparison) and reaches the target with a more accurate orientation. However, such
a small deviation requires an enormous increase of the use of the lateral propellers, as
shown in Fig. 8(b2). Not only the cost of having the control set to 1 is larger, C(b)

F = 4.275
(and larger than with the open-loop controls), but a much greater number of ignition

processes is required (N
(b)
ig = 43), moreover involving both the right and the left propellers

alternatively (i.e., κF = +1, 0,−1, 0,+1, . . . ).
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Figure 9: Perturbations of the previous case depicted in Fig. 7: (a) perturbation of
the alignment tolerance: here ā = 10−1 instead of 4 × 10−1, and (b) perturbation of
relative order 10−3 of the first interval of activation: here S ′

1 = [39.17, 39.6] instead of
S1 = [39.17, 39.55]. For t ≥ 39.6 the same feedback law (19) is used. In (c) the target
is not reached because tf is too small; for a larger tf , the target is reached with no
additional cost (κF = 0 during this extra-time). Dashed lines represent the solution of
case (a), depicted here for comparison.

On the other hand, case (c) shows that small variations of the switching times of the
feedback control can produce huge qualitative differences in the behavior of the agents. We
have introduced a small perturbation of the first interval of activation S1 = [39.17, 39.55],
by keeping κ = 1 until 39.6 instead of until 39.55 (a perturbation of relative size 1 −
39.55/39.6 = 1.3 × 10−3). For t ≥ 39.6, we use again the feedback law (19), so that a
different control function profile arises. The resulting behavior of the agents is depicted
in Fig. 9(c).

Fig. 9(c) shows that after the perturbation, the agents describe a widely deviated
trajectory, especially in the case of the driver, with respect to the one described with the
unperturbed feedback law shown in Fig. 7. Accordingly, the perturbed control function
profile, depicted in Fig. 8(c), is significantly different from the unperturbed feedback law.
The driver requires more time to reach the target (tcf = tf + 1 = 64) than in cases (a) and

(b). Compared with case (b), the cost is higher, although not excessively, C(c)
F = 4.13 (with

no additional cost for the extra time because the evader moves in the right direction),

and the number of ignition process is much smaller: N
(c)
ig = 16.

Perturbations of the rest of switching times produce similar results, that is, qualitative
deviations of the trajectories and a larger number of ignition processes, with respect to
the unperturbed case (a), meaning that, in cases where delays can appear in the instants
of time in which the control has to be manipulated, important changes of the behavior of
the system may arise.

The oscillatory behavior arisen in case (c) can appear to be less convenient but, ac-
cording to our numerical simulations, it is not necessarily worse than the smooth evader-
following trajectory; oscillations can contribute to reduce the number of ignition processes,
with a low increase of the cost; see left panels (a) in Fig. 10.

The feedback control law is able to drive the evader along a given trajectory, provided
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Figure 10: Left panels: (a1) agents’ trajectories and (a2) feedback control producing an
oscillatory behavior of the driver and a surprisingly low cost C ≈ 4.1. Panel (b): agent’s
trajectories in a case where the path to follow is a series of 7 targets randomly distributed
in a radius smaller than 8 from the original location of the evader. Note that for some
targets the trajectory is smooth (T1, T2, T3, T5 and T7) but for some others oscillations
are necessary to adjust the alignment (T4 and T6). Panel (c): evader’s trajectory along a
sinusoidal path described by a large number of closely spaced targets.

the trajectory is sufficiently smooth, that is, the trajectory can be described by a series
of targets; see Fig. 10(b) for a series of random targets, and (c) for a sinusoidal trajectory
described by a large number of closely spaced targets. The study of the behavior of the
system when the path to follow has a very high curvature or describes very acute corners
is matter for future work.

4 Conclusion

We have presented an agent based model for the guidance by repulsion problem, consisting
of a system of equations corresponding to Newton’s second law. The system can adopt
two operating modes that can be controlled by a single parameter κ(t): for κ = 0, the
system is in the pure pursuit mode (control in mode OFF, i.e., resting state), and for κ = 1,
the system is in the circumvention mode (control in mode ON, i.e., active state). We have
shown that by appropriately defining the function κ(t) : [t0, tf ] → {−1, 0, 1}, the driver
can guide the evader to any desired target or along any (relatively smooth) path. We
have then formulated an optimal control problem (OCP ) to find the optimal guidance
strategy minimizing the cost in terms of the number of times the system is activated
from its resting state and the time the system spends in the active mode. By means of
(numerical) shooting methods, we have obtained the optimal open-loop strategies for the
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case where the number of activations is equal or smaller than one, finding that the system
is highly sensitive to small variations of the activation/deactivation times.

These results show that open-loop controls would not be of practical interest in real
problems due to the presence of external perturbations, thus suggesting the use of a
feedback law. Taking advantage of the information provided in the study of the behavior
of the system under open-loop controls for Nig ≤ 1, we have designed a feedback law for
the case where Nig > 1, which allows to correct in real time for deviations from the desired
trajectory. We have found that the feedback law is also highly sensitive to small variations
of the conditions of the problem, in this case, of the accuracy with which the target is
reached (i.e., the radius of the target ball). Moreover, our results show that the feedback
law, and therefore the resulting behavior of the system, are highly sensitive to possible
delays in the switching times of the control. This means that, in systems or devices where
the manipulation of the control cannot be carried out at arbitrarily close instants of time,
the behavior of the driver can exhibit large oscillations that can produce an increase of the
cost. This may happen in situations where time delays exist in collecting and interpreting
the data about the state of the system or in the reaction time of the system once the
control is changed, especially when two consecutive changes are very close in time.

The main direction for the immediate future work consists in taking into account the
cost for the driver to get close to the evader, both in time and travelled distance. This
would correspond to add the cost of back propellers to the cost functional:

JB(tf) = η1

∫ tf

t0

‖~ud(t) − ~ud(t0)‖2 dt + η2tf , (20)

and find a feedback control law for the two controls κ(t) and tf .
The interest of guidance by repulsion could also be extended to the case where the

evader’s behavior has a stochastic component and when multiple agents (evaders and/or
drivers) are considered. The feedback law will be especially relevant when noise is con-
sidered in both the behavior of the agents and in the manipulation of the data.
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A Asymptotic value of the velocities at long times

when κ = 0

Numerical simulations show that when κ(t) = 0 continuously for a sufficiently large time,
both agent’s velocities converge asymptotically to the same constant velocity ~vsat. In that
state, ~̇vd(t) = ~̇ve(t) = 0 and, from Eqs. (6)–(7), we have

−CE
D

νd

~ud − ~ue

δ2as

[

1 +
1

δ2as

(

CR

CE
D

δ41 − δ2c

)]

= −CD
E

νe

~ud − ~ue

δ2as
= ~vas. (21)

Thus, comparing norms, we obtain vas = CD
E /(νe δas), and extracting δas, we obtain

δas =

√

νe(CE
Dδ

2
c − CRδ41)

νeCE
D − νdCD

E

, (22)

provided νeC
E
D > νdC

D
E , as it is the case for the values we are considering. Note also that

a necessary condition to have an effective short-range repulsion acting on the driver is
that the factor between large parentheses in Eq. (6) is positive, so CE

Dδ
2
c − CRδ

4
1 > 0 and

the radicand in expression (22) is positive.

B On the controllability of the driver-evader system

We show here that driver and evader are prevented from separating infinitely from each
other and tend asymptotically to be separated a distance of order one. The proof follows
the idea of “free agents” used in [24] (see also [27] for a more similar model).

Definition A driver agent D is said to be a free agent at time t if its distance to the
evader E is greater than an arbitrarily large positive constant δ ≫ 1; that is, r(t) =
‖~ud(t) − ~ue(t)‖ ≥ δ.

Proposition 1. If the driver D is a free agent, then the system (1)–(4) can be reduced
as follows:

~̇ud(t) = ~vd(t), (23)

~̇ue(t) = ~ve(t), (24)

~̇vd(t) = −CE
D

md

~ud(t) − ~ue(t)

‖~ud(t) − ~ue(t)‖2
− νd

md

~vd(t), (25)

~̇ve(t) =
CD

E

me

~ue(t) − ~ud(t)

‖~ue(t) − ~ud(t)‖2
− νe

me

~ve(t). (26)

Proof. Using Remark 1.
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Lemma 2. If md/νd < me/νe, then, ∀t > 0,

‖~ve(t)‖2 ≤
CD

E

CE
D

md

me

‖~vd(t)‖2 =⇒ ‖~ve(t)‖2 ≤
CD

E

CE
D

νd
νe

‖~vd(t)‖2 . (27)

Definition Let q = (~ud, ~vd, ~ue, ~ve) ∈ R
8 and V (q): R

8 → R be the following potential
functional:

V (q) = ln(‖~ud − ~ue‖) +
1

2

md

CE
D

‖~vd‖2 −
1

2

me

CD
E

‖~ve‖2 . (28)

Then, for free agents (i.e., r(t) ≥ δ) and under the hypotheses of Lemma 2, V (q) is
positive.

Theorem 3. If the driver D is a free agent, then V (q) is bounded from below and V̇ (q)
is negative along the agents’ trajectories defined by the system (1)–(4). Consequently,
V (q(t)) converges in time to a minimum which is reached when the distance between both
agents is δ.

Proof. The time-derivative of V (q) along the agents’ trajectories is given by:

V̇ (q) = ∇~ud
V · d~ud

dt
+ ∇~vdV · d~vd

dt
+ ∇~ue

V · d~ue

dt
+ ∇~veV · d~ve

dt
, (29)

where ∇~ud
V = −∇~ue

V =
~ud − ~ue

‖~ud − ~ue‖2
, ∇~vdV =

md

CE
D

~vd and ∇~veV = −me

CD
E

~ve. (30)

Then:

V̇ (q) =
~ud − ~ue

‖~ud − ~ue‖2
· ~vd +

md

CE
D

~vd ·
(

−CE
D

md

~ud − ~ue

‖~ud − ~ue‖2
− νd

md

~vd

)

(31)

− ~ud − ~ue

‖~ud − ~ue‖2
· ~ve −

me

CD
E

~ve ·
(

−CD
E

me

~ud − ~ue

‖~ud − ~ue‖2
− νe

me

~ve

)

(32)

= − νd
CE

D

‖~vd‖2 +
νe
CD

E

‖~ve‖2, (33)

which, under the conditions of Lemma 2, is negative. Then V (q) decreases and is bounded
from below, so V (q) has a minimum, which is reached when ‖~vd(t)‖ = ‖~ve(t)‖ = 0 and
r(t) = ‖~ud(t) − ~ue(t)‖ = δ (which is the minimum value of r(t) for a free agent).

Thus, agents are prevented from separating infinitely from each other because as soon
as r(t) ≥ δ, the driver becomes a free agent and is forced to move back towards the evader,
provided the balance between the mass and the friction of the agents verifies Lemma 2.
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C Simple shooting method

Once the evader is turning back towards the target, that is, vxe (t) < 0, we check the
direction of the velocity vector of the evader with the line ET described by the evader
and the target. Then, if for some time t ∈ (t0, tf ) the vector ~ve(t) points towards a point
located below T , the tentative value of tOFF must be reduced; if instead, at the final time
tf , the vector ~ve(t) points towards a point located above T , then the tentative value of
tOFF must be augmented.

That is: Given a value of tON, take an initial value of tOFF larger than tON and:

0. Solve the system (1)–(5) with κtOFF
tON

(t) for t ∈ (t0, tf ) and anotate the value of tb,
which is the first time such that vxe (tb) < 0. If no such time is reached, this means
that tOFF < tb, so take a larger value of tOFF and shoot again (goto 0).

1. For each time t ∈ (tb, tf), evaluate the instantaneous alignment α(t) of the velocity
vector of the evader ~ve(t) with respect to the target point ~uT :

α(t) =
(

uy
T − uy

e(t)
)

vxe (t) −
(

ux
T − ux

e(t)
)

vye (t). (34)

Then, if α(t) < 0, take a smaller value of tOFF and shoot again (goto 0).

2. If at time tf the velocity vector of the evader is still pointing above the target, that
is, α(tf) > 0, then take a larger value of tOFF and shoot again (goto 0).

The new value of tOFF for the next shoot can be selected with a simple method (e.g.,
bisection).
Stop when |α(t)| < ǫ, for a small value of the tolerance ǫ; the value of t∗

OFF
(tON) has been

found, proceed to the next value of tON.
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