
ON THE WELL-POSEDNESS OF MATHEMATICAL MODELS FOR
MULTICOMPONENT BIOFILMS

STEFANIE SONNERA, MESSOUD A. EFENDIEVB AND HERMANN J. EBERLC∗

Abstract. Bacterial biofilms are microbial depositions on immersed surfaces. Their mathe-

matical description leads to degenerate diffusion-reaction equations with two non-Fickian effects:

(i) a porous medium equation like degeneracy where the biomass density vanishes, and (ii) a

super-diffusion singularity if the biomass density reaches its threshold density. In the case of

multi-species interactions, several such equations are coupled, both in the reaction terms and

in the nonlinear diffusion operator. In this paper we generalize previous work on existence and

uniqueness of solutions of this type of models and give a general, relatively easy to apply cri-

terion for well-posedness. The use of the criterion is illustrated in several examples from the

biofilm modeling literature.

1. Introduction

The dominant mode of microbial life in aquatic ecosystems are biofilm communities rather than

planktonic cultures [1]. Biofilms are dense aggregations of microbial cells encased in a slimy ex-

tracellular matrix forming on biotic or abiotic surfaces (called substrata) in aqueous surroundings.

Such multicellular communities are a very successful life form and able to tolerate harmful environ-

mental impacts that would eradicate free floating individual cells [4, 21]. Whenever environmental

conditions allow for bacterial growth, microbial cells can attach to a substratum and switch to a

sessile life form. They start to grow and divide and produce a gel-like layer of extracellular poly-

meric substances (EPS) often forming complex spatial structures. The self-produced EPS gives

protection and allows survival in hostile environments. For instance, the mechanisms of antibiotic

resistance in biofilm cultures are essentially different from those of free swimming cells, which

makes it difficult to eradicate bacterial biofilm infections. The EPS retards diffusion of antibiotics

and the antibiotic agents fail to penetrate into the inner core of the biofilm [4, 21, 5].

Biofilms play a significant role in various fields. They are beneficially used in environmental

engineering technologies for groundwater protection and wastewater treatment. However, in most
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occurrences biofilm formations have negative effects. If they form on implants and natural surfaces

in the human body they can provoke bacterial infections such as dental caries and otitis media [4].

Biofilm contamination can lead to health risks in food processing environments, and biofouling of

industrial equipment or ships can cause severe economic defects for the industry [5, 26].

Mathematical models of biofilms have been studied for several decades. They range from tradi-

tional one-dimensional models that describe biofilms as homogeneous flat layers, to more recent

two- and three-dimensional biofilm models that account for the spatial heterogeneity of biofilm

communities. A variety of mathematical modeling concepts has been suggested, including dis-

crete stochastic particle based models and deterministic continuum models, that are based on the

description of the mechanical properties of biofilms [8, 26]. We are concerned with the latter,

where biofilm and liquid surroundings are assumed to be continua, and its time evolution is gov-

erned by systems of deterministic PDEs. The first continuum model [27] was a one-dimensional

biofilm growth model and essentially based on the assumption that biofilms are homogeneous

flat layers. Such models serve well for engineering applications on the macro-scale (larger than

1cm) are, however, not capable to predict the often highly irregular spatial structure of microbial

populations and the behavior of biofilms on the meso-scale (between 50µm and 1mm), the actual

length scale of mature biofilms [8]. Biofilms can form mushroom-like caps and contain clusters and

channels, where substrates can circulate. Cells in different regions of the biofilm live in diverse

micro-environments and exhibit differing behavior [4].

To capture the spatial heterogeneity of biofilms a higher dimensional biofilm growth model was

proposed in [7], which is based on the interpretation of a biofilm as a continuous, spatially struc-

tured microbial population. The essential difficulty is to model the spatial spreading mechanism

of biomass and to reproduce the growth characteristics of biofilms that have been observed in

experiments [7]:

• Biofilm and aqueous surroundings are separated by a sharp interface.

• The biomass density is bounded by a known maximum value.

• Spatial spreading only takes place where the local biomass density approaches values close

to its maximum possible value, while it does not occur in regions where the biomass density

is low.

The mathematical model [7] is formulated as a system of highly non-linear reaction-diffusion

equations for the biomass density and the concentration of a growth limiting nutrient, and is the

prototype of the biofilm models we consider. While the substrate concentration satisfies a standard

semi-linear reaction-diffusion equation the governing equation for the biomass density exhibits

two non-linear diffusion effects. The biomass diffusion coefficient degenerates like the porous

medium equation and shows super diffusion, which causes difficulties in the mathematical analysis

of the model. It was shown by numerical experiments that the model is capable of predicting the

heterogeneous spatial structure of biofilms and is in good agreement with experimental findings
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[7]. In [11, 12] the model was studied analytically. In particular, the well-posedness of the model

and the existence of a compact global attractor was shown.

The prototype single-species single-substrate model was extended to model biofilms which consist

of several types of biomass and account for multiple dissolved substrates [25]. The model intro-

duced in [5] describes the diffusive resistance of biofilms against the penetration by antibiotics. In

[15] an amensalistic biofilm control system was modelled, where a beneficial biofilm controls the

growth of a pathogenic biofilm. The structure of these multi-species models differs essentially from

the mono-species model, and the analytical results for the prototype model could not all be carried

over to the more involved multi-species case. In both articles, existence proofs for the solutions

were given, and numerical studies presented, but the question of uniqueness of solutions remained

unanswered in [5] and [15]. Recently, another multi-component biofilm model was proposed in

[13], which describes quorum-sensing in growing biofilm communities. Quorum-sensing is a cell-

cell communication mechanism used by bacteria to coordinate behavior in groups. The model

behavior was studied by numerical experiments in [13, 26], analytical questions were addressed in

[26]. Compared to the multicomponent biofilm models [5, 15], the particularity of the quorum-

sensing model is, that adding the governing equations for the involved biomass components we

recover exactly the mono-species biofilm growth model. Taking advantage of the known results

for the prototype model the existence and uniqueness of solutions and the continuous dependence

of solutions on initial data could be established in [26]. It is the first uniqueness result for multi-

species reaction-diffusion models of biofilms that extend the single-species model [7]. We aim to

show that the solution theory developed in [26] can be extended to other multicomponent biofilm

models.

In Section 2, for the convenience of the reader, we introduce the prototype biofilm growth model

and summarize important results on which our work is based. Multi-component extensions of the

model are addressed in Section 3. As our main result, we formulate a general existence result

for solutions of multicomponent biofilm models in Subsection 4.1, and the uniqueness of solutions

is shown in Subsection 4.2. In Section 5 we verify that the solution theory applies to the multi-

component models of Section 3. Finally, in Section 6 we present numerical simulations for the

antibiotics model.

2. Prototype Biofilm Growth Model

The multi-dimensional biofilm growth model proposed in [7] is formulated as a non-linear reaction-

diffusion system for the biomass density and the concentration of the growth controlling nutrient

in a bounded domain Ω ⊂ Rn, n = 1, 2, 3, where the boundary of the domain ∂Ω is piecewise

smooth. In dimensionless form the substrate concentration S is scaled with respect to the bulk

concentration, and the biomass density is normalized with respect to the maximal bound for

the cell density. Consequently, the dependent model variable M represents the volume fraction

occupied by biomass. The EPS is implicitly taken into account, in the sense that the biomass

volume fraction M describes the sum of biomass and EPS, assuming that their volume ratio is
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constant. Both unknown functions depend on the spatial variable x ∈ Ω and time t ≥ 0, and

satisfy the parabolic system

∂tS = dS∆S − k1
SM

k2 + S
Ω× (0,∞),

∂tM = dO · (D(M)OM) + k3
SM

k2 + S
− k4M Ω× (0,∞),(1)

M |∂Ω = 0, S|∂Ω = 1 ∂Ω× [0,∞),

M |t=0 = M0, S|t=0 = S0 Ω× {0},

where the constants d, dS and k2 are positive, the constants k1, k3 and k4 are non-negative. Fur-

thermore, ∆ denotes the Laplace operator, O the gradient operator with respect to the spatial

variable x and · the inner product in Rn.

The solid region occupied by the biofilm as well as the liquid surroundings are assumed to be

continua. The actual biofilm is described by the region Ω1(t) := {x ∈ Ω | M(x, t) > 0}, and the

liquid area by Ω2(t) := {x ∈ Ω |M(x, t) = 0}, see Figure 1. The substratum, on which the biofilm

grows, is part of the boundary ∂Ω.

Figure 1. Biofilm Domain

The constants in System (1) have the following meaning, for further details and their typical values

in applications we refer to [7].

dS substrate diffusion coefficient

d biomass motility constant

k1 maximum specific consumption rate

k2 Monod half saturation constant

k3 maximum specific growth rate

k4 biomass decay rate

a, b biomass spreading parameters

Biomass is produced due to the consumption of nutrients, which is described by Monod interaction

functions. Natural cell death is also included in the model and given by the lysis rate k4 in the

equation for the biomass fraction.
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While the nutrient is dissolved in the domain and the substrate concentration satisfies a standard

semi-linear reaction-diffusion equation, the spatial spreading of biomass is determined by the

density-dependent diffusion coefficient

D(M) =
Ma

(1−M)b
a, b ≥ 1.

The biomass motility constant d is small compared to the diffusion coefficient dS of the dissolved

substrate, which reflects that the cells are to some extent immobilized in the EPS matrix. Ac-

cumulation of biomass leads to spatial expansion of the biofilm. We observe that the biomass

diffusion coefficient vanishes when the total biomass approaches zero and blows up when the

biomass density tends to its maximum value. The polynomial degeneracy Ma is well-known from

the porous medium equation and guarantees that spatial spreading is negligible for low values of

M . Moreover, it yields the separation of biofilm and liquid phase, that is, a finite speed of interface

propagation. Spreading of biomass takes place when and where the biomass fraction takes values

close to its maximal value. When M = 1 instantaneous spreading occurs, which is known as the

effect of super diffusion. This singularity at M = 1 of the biomass diffusion coefficient ensures the

maximal bound for the biomass density.

It was shown in numerical experiments that the model (1) is in good agreement with experimental

findings and is capable to reproduce the irregular, heterogeneous spatial structure of biofilms

observed on the mesoscale [7, 12]. More precisely, the simulations show that the biofilm develops

a rather regular, homogeneous structure if nutrients are nowhere limited in the system. On the

other hand, when the nutrient supply is not symmetric and nutrients become limited the colonies

grow in the direction of higher nutrient concentrations, which can lead to cluster and channel

morphologies and mushroom-shaped architectures.

A solution theory for the prototype model (1) was developed in [12]. In particular, the well-

posedness was established and the existence of a compact global attractor was shown.

We recall the main results in [12]. The following theorem yields the existence and regularity results

for the solutions (Theorem 3.1, [12]).

Theorem 1. We assume the initial data satisfies

S0 ∈ L∞(Ω) ∩H1(Ω), S0|∂Ω = 1,

M0 ∈ L∞(Ω), F (M0) ∈ H1
0 (Ω),

0 ≤ S0 ≤ 1, 0 ≤M0 in Ω, ‖M0‖L∞(Ω) < 1,

where the function F (v) :=
∫ v

0
za

(1−z)b dz, for 0 ≤ v < 1. Then, there exists a solution (S,M)

satisfying System (1) in the sense of distributions, and the solution belongs to the class

M,S ∈ L∞(Ω× (0,∞)) ∩ C([0,∞);L2(Ω)),

F (M), S ∈ L∞((0,∞);H1(Ω)) ∩ C([0,∞);L2(Ω)),

0 ≤ S,M ≤ 1 in Ω× (0,∞), ‖M‖L∞(Ω×(0,∞)) < 1.
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Moreover, it was shown that the solutions are L1(Ω)-Lipschitz continuous with respect to initial

data, which implies its uniqueness. The following result recalls Theorem 3.2 in [12].

Proposition 1. Let (S,M) and (S̃, M̃) be two solutions of System (1) corresponding to initial

data (S0,M0), (S̃0, M̃0) respectively, and the initial data satisfy the assumptions of the previous

theorem. Then, the following estimate holds

‖S(t)− S̃(t)‖L1(Ω) + ‖M(t)− M̃(t)‖L1(Ω) ≤ ect
(
‖S0 − S̃0‖L1(Ω) + ‖M0 − M̃0‖L1(Ω)

)
for t ≥ 0 and some constant c ≥ 0.

3. Multicomponent Biofilm Models

The prototype biofilm growth model (1) was extended to incorporate further biofilm processes. It

requires to distinguish different types of biomass and dissolved substrates and to include governing

equations for these multiple biomass fractions and dissolved substrates in the model. In this section

we discuss multi-component biofilm models, that were proposed and studied in [5, 6, 13, 15, 26]

and recall the analytical results obtained for these models. The pattern of the multi-component

biofilm models is essentially different from the prototype model, the equations for the biomass

components are strongly coupled through the diffusion operators and the analytical results for the

single-species model could not all be carried over. In [5] and [15] the behavior of solutions was

studied in numerical simulations and the existence of solutions was established, but the question

of uniqueness of solutions remained unanswered in both cases. The first uniqueness result for

multispecies models was obtained in [26].

3.1. Antibiotic Disinfection of Biofilms. The first multi-species multi-substrate generaliza-

tion of the prototype model (1) was suggested in [6]. In [5] existence results for the solutions

were established and numerical simulations presented. The model describes a growing biofilm

community and its disinfection by antimicrobial agents. Bacteria in biofilm populations are better

protected than free floating cells and behave essentially different under antibiotic treatment. The

EPS retards diffusion of antimicrobial agents into the biofilm, cells in the outer layers are attacked

first while bacteria in the inner cores are well protected and continue to grow.

The dependent model variables are:

S nutrient concentration

B concentration of the antimicrobial agent

X volume fraction occupied by active biomass

Y volume fraction occupied by inert biomass

The dissolved nutrient S controls the growth of the biomass, and the antimicrobial agent B

regulates the disinfection process. As previously, the EPS is implicitly taken into account, and

the total biomass fraction M := X +Y is normalized with respect to the maximum bound for the
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cell density. In dimensionless form the model is represented by the parabolic system

∂tS = dS∆S − k1
SX

k2 + S
Ω× (0,∞),

∂tB = dB∆B − ζ1BX Ω× (0,∞),(2)

∂tX = dO · (D(M)OX) + k3
SX

k2 + S
− k4X − ζ2BX Ω× (0,∞),

∂tY = dO · (D(M)OY ) + ζ2BX Ω× (0,∞),

with non-negative and bounded initial and boundary data

X|∂Ω = 0, Y |∂Ω = 0, S|∂Ω = Sr, B|∂Ω = Br ∂Ω× [0,∞),

X|t=0 = X0, Y |t=0 = Y0, S|t=0 = S0, B|t=0 = B0 Ω× {0},

where we use the same notations as in (1). The additional constants ζ1, ζ2 and dB in (2) are

positive and have the following meaning:

dB diffusion coefficient of antibiotics

ζ1 antibiotics consumption rate

ζ2 inert biomass production rate

Apart from the diffusion of the dissolved substrates and the death, growth and spatial spreading of

biomass the disinfection mechanism is included in the model. During this process antibiotic agents

are consumed and active biomass is directly converted into inert biomass, which is determined by

the disinfection parameters ζ1 and ζ2. Like in the mono-species model the production of active

biomass due to the consumption of nutrients is described by Monod reaction functions. In the

absence of antimicrobial agents and inert biomass, the model reduces to the single species biofilm

growth model (1).

In [5] numerical simulations were presented to illustrate the model behavior and to analyze the

efficiency of different disinfection strategies. The numerical experiments show that cells in the

outer layers of the biofilm are attacked first while cells in the inner scores remain protected and

survive longer.

The following existence result for solutions of the antibiotics model (2) was shown in [5] (Theorem

2.3). Further analytical results were not obtained; in particular, the uniqueness of solutions

remained unanswered.

Theorem 2. We assume the functions Br and Sr are non-negative and belong to the class

L∞(∂Ω). Moreover, if the initial data X0, Y0, S0, B0 are non-negative, belong to L∞(Ω) and satisfy

0 ≤ S0 ≤ 1 in Ω, ‖X0 + Y0‖L∞(Ω) < 1,
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then, there exists a global solution of the antibiotics model; the functions S,B,X and Y belong to

the space L∞(Ω× (0,∞)), are non-negative and satisfy System (2) in distributional sense.

3.2. Amensalistic Biofilm Control System. The model of an amensalistic biofilm control

system [15] extends the single-species probiotic model [16] and possesses a similar structure as the

model of antibiotic disinfection. In [15] existence results for the solutions were established and

numerical simulations presented.

The model describes how a beneficial biofilm controls the growth of a pathogenic biofilm com-

munity by alternating the environmental conditions. The probiotic biofilm modifies the local

concentration of protonated lactic acids, which decreases the pH concentration and deteriorates

the growth conditions for the pathogens, while the controlling bacteria are more tolerant to these

changes. The dependent model variables are:

C concentration of protonated lactic acids

P concentration of hydrogen ions

X volume fraction occupied by pathogens

Y volume fraction occupied by probiotics

Z volume fraction occupied by inert biomass

In dimensionless form the model is represented by the parabolic system

∂tC = dC∆C + α1X(ζ1 − C) + α2Y (ζ1 − C) Ω× (0,∞),

∂tP = dP∆P + α3C(ζ2 − P ) Ω× (0,∞),(3)

∂tX = dO · (D(M)OX) + µ1ψ1(C,P )X Ω× (0,∞),

∂tY = dO · (D(M)OY ) + µ2ψ2(C,P )Y Ω× (0,∞),

∂tZ = dO · (D(M)OZ)−min{0, µ1ψ1(C,P )X} −min{0, µ2ψ2(C,P )Y } Ω× (0,∞),

with non-negative and bounded initial and boundary data

C|∂Ω = Cr, P |∂Ω = Pr, X|∂Ω = 0, Y |∂Ω = 0, Z|∂Ω = 0 ∂Ω× [0,∞),

C|t=0 = C0, P |t=0 = P0, X|t=0 = X0, Y |t=0 = Y0, Z|t=0 = Z0 Ω× {0},

where we use the same notations as in (1). The constants dC , dP , α1, α2, α3, µi and ζi, i = 1, 2, are

positive and have the following meaning:
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dC diffusion coefficient of protonated lactic acids

dP diffusion coefficient of hydrogen ions

α1 acid production rate by pathogens

α2 acid production rate by probiotics

α3 hydrogen ions production rate

µ1 maximum growth rate of pathogens

µ2 maximum growth rate of probiotics

ζ1 acid saturation level

ζ2 hydrogen ion saturation level

ζ1
i pathogen growth kinetics, i = 1, . . . , 6

ζ2
i probiotics growth kinetics, i = 1, . . . , 6

Inert probiotics and pathogens are not distinguished in the model. As previously, the EPS is

implicitly taken into account, and the total biomass fraction M := X + Y +Z is normalized with

respect to the maximum bound for the cell density. Protonated lactic acids C are produced by

both bacterial species until a saturation level is reached. The hydrogen ion concentration P is

related to the local pH value by pH = − logP. It increases, facilitated by the protonated lactic

acids, until a threshold value is archived.

The growth and inhibition functions ψ1 and ψ2 are piecewise linear such that they are positive

if C and P are small, and negative if C or P becomes large. Between the growth and inhibition

range there is an extended neutral range. More precisely, the functions ψi are piecewise linear and

continuous. They are given for ζi5 > C ≥ 0, ζi6 > P ≥ 0 by

ψi(C,P ) = min

{
1− C

hi1(C)
, 1− P

hi2(P )

}
, i = 1, 2,

where hi1 and hi2 are defined as

hi1(C) = ζi1h(ζi1 − C) + Ch(C − ζi1)h(ζi2 − C) + h(C − ζi2), i = 1, 2,

hi2(P ) = ζi3h(ζi3 − P ) + Ph(P − ζi3)h(ζi4 − P ) + h(P − ζi4), i = 1, 2.

Moreover, the function h is given by

h(s) :=


1 s > 0,

1
2 s = 0,

0 s < 0,

s ∈ R,

and the constants ζ1
j and ζ2

j , j = 1, . . . , 6, are positive with ζi1 < ζi2 � ζi5, ζ
i
3 < ζi4 � ζi6, i = 1, 2.

For the probiotic strategy to be effective we require that ζ2
j < ζ1

j , j = 1, . . . , 6 [15].

Formally ψi(C,P ) can be extended to ranges C > ζi5 by ψ1(C,P ) = ψ(ζi5, P ) and similar for

P > ζi6, C < 0, P < 0. Thus, the functions ψ1,2 are bounded between two constants.

The mechanism of probiotic control is different from traditional antibiotic control strategies of

biofilms, where the inner layers of the film are protected by the outer layers and the antibiotics
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fail to fully penetrate the biofilm. The numerical experiments for the probiotic biofilm model in

[15] show that pathogens in the core of the biofilm, close to the substratum, are eradicated first.

The structures of the antibiotics model (3) and the probiotics model (2) are similar and the

existence of solutions of the probiotic model was shown by similar arguments (Theorem 3.3, [15]).

For the proof of the following theorem we refer to [15]. As for the model of antibiotic disinfection,

further analytical results were not obtained and the uniqueness of solutions remained unanswered.

Theorem 3. We assume the functions Cr and Pr belong to the class L∞(∂Ω) and satisfy

0 ≤ Cr ≤ ζ1, 0 ≤ Pr ≤ ζ2.

Moreover, if the initial data C0, P0, X0, Y0, Z0 are non-negative, belong to L∞(Ω) and satisfy

0 ≤ C0 ≤ ζ1, 0 ≤ P0 ≤ ζ2 in Ω, ‖X0 + Y0 + Z0‖L∞(Ω) < 1,

then, there exists a global solution of the probiotics model, the functions C,P,X, Y and Z belong

to L∞(Ω× (0,∞)), are non-negative and satisfy system (3) in distributional sense.

3.3. Quorum-Sensing in Patchy Biofilm Communities. A model for quorum-sensing in

growing biofilm communities was proposed and studied by numerical simulations in [13]. It ex-

tends the prototype biofilm growth model (1) and combines it with the model for quorum-sensing

in planktonic cultures in [20]. Analytical aspects of the quorum-sensing model [13] were addressed

in [26].

Quorum-sensing is a cell-cell communication mechanism used by bacteria to coordinate gene ex-

pression and behavior in groups. Bacteria constantly produce low amounts of signaling molecules

that are released into the environment. Accumulation of signaling molecules triggers a response

by the cells and since the producing cells respond to their own signals the molecules are also called

autoinducers [20, 14]. When the concentration of autoinducers locally passes a certain threshold,

the cells are rapidly induced, and switch from a so-called down-regulated to an up-regulated state.

In an up-regulated state they typically produce the signaling molecule at a highly increased rate

[13].

The dependent model variables are:

S concentration of growth controlling substrate

A concentration of autoinducers

X volume fraction occupied by down-regulated cells

Y volume fraction occupied by up-regulated cells
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In dimensionless form the model is represented by the parabolic system

∂tS = dS∆S − k1
SM

k2 + S
Ω× (0,∞),

∂tA = dA∆A− γA+ αX + (α+ β)Y Ω× (0,∞),(4)

∂tX = dO · (D(M)OX) + k3
XS

k2 + S
− k4X − k5|A|mX + k5|Y | Ω× (0,∞),

∂tY = dO · (D(M)OY ) + k3
Y S

k2 + S
− k4Y + k5|A|mX − k5|Y | Ω× (0,∞),

with non-negative and bounded initial and boundary data

S|∂Ω = 1, A|∂Ω = 0, X|∂Ω = 1, Y |∂Ω = 0 ∂Ω× [0,∞),

S|t=0 = S0, A|t=0 = A0, X|t=0 = X0, Y |t=0 = Y0 Ω× {0},

where we use the same notations as in (1) and | · | denotes the absolute value. The constants dA
and γ are positive, m ≥ 1, and α, β and k5 are non-negative. Moreover, we require that α+β > γ.

Apart from the constants in the prototype model (1) the parameters in (3) have the following

meaning:

dA diffusion coefficient of autoinducers

k5 up-regulation rate

α autoinducer production rate of down-regulated cells

β increased autoinducer production rate of up-regulated cells

γ abiotic decay rate of autoinducers

m polymerization exponent

The total biomass density M = X + Y is normalized with respect to the maximum bound for

the cell density and the EPS is implicitly taken into account. Assuming that induction switches

the cells between down- and up-regulated states without changing their growth behavior we can

assume that the spatial spreading of both biomass fractions is described by the same diffusion

operator. The biomass motility constant d is small compared to the diffusion coefficients dS and

dA of the dissolved substrates. Like in the mono-species biofilm model, biomass is produced due to

the consumption of nutrients, which is described by Monod reaction functions. Natural cell death

is included and determined by the lysis rate k4. If we do not distinguish between up-regulated and

down-regulated cells in the model (4) we recover the prototype biofilm growth model (1) for the

total biomass M and the growth controlling nutrient S.

The autoinducer concentration A is normalized with respect to the threshold concentration for

induction. Down-regulated cells produce the signaling molecule at rate α, while up-regulated cells

produce it at the increased rate α+β, where β is one order of magnitude larger than α. Due to an

increase of the autoinducer concentration A down-regulated cells are converted into up-regulated

cells at rate k5A
m. In applications typical values for the degree of polymerization are 2 < m < 3

[13, 26]. Up-regulated cells are converted back into down-regulated cells at constant rate k5. If the

molecule concentration A < 1 the latter effect dominates, if A > 1 up-regulation is super-linear.
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Moreover, abiotic decay of signaling molecules is taken into account in the model and determined

by the constant rate γ.

The numerical simulations for the model in [26] indicate that quorum-sensing in spatially struc-

tured biofilm populations does not only depend on the local cell density of the population but also

on mass transfer effects. Namely, the location of the cell colonies relative to each other and on the

prescribed boundary conditions for the substrates.

The particularity of the quorum-sensing model is that adding the governing equations for the

biomass components X and Y we recover exactly the mono-species biofilm growth model (1) for

the total biomass M and the nutrient concentration S. Using the known results for the prototype

model a different approach than for the previous multi-component models was developed in [26],

which led to a uniqueness result for the solutions. The following theorem states the well-posedness

of the quorum-sensing model (4) (Theorem 3.5 and Theorem 3.11, [26]).

Theorem 4. Let the initial data satisfy X0, Y0, A0 ∈ H1
0 (Ω), S0 ∈ H1(Ω) such that S0|∂Ω = 1,

and

0 ≤ S0, X0, Y0, A0 ≤ 1 in Ω, ‖X0 + Y0‖L∞(Ω) < 1.

Then, there exists a unique global solution of the quorum-sensing model (4),

A,S,X, Y ∈ C([0,∞);L2(Ω)) ∩ L∞(Ω× [0,∞)),

A, S ∈ L2((0,∞);H1(Ω)),

D(M)OX, D(M)OY ∈ L2((0,∞);L2(Ω;Rn)),

the functions A,S,X and Y are non-negative and satisfy system (4) in distributional sense.

4. Well-Posedness of Multi-Component Models

We consider multi-component biofilm models that are formulated as systems of reaction-diffusion

equations for the concentrations of the dissolved substrates S1, . . . , Sk and the biomass fractions

M1, . . . ,Ml in a bounded domain Ω ⊂ Rn, n = 1, 2, 3, with piecewise smooth boundary ∂Ω. The

models are of the form

∂tSi = di∆Si + fi(S,M) Ω× (0,∞), i = 1, . . . , k

∂tMj = dO · (D(M)OMj) + gj(S,M) Ω× (0,∞), j = 1, . . . , l,(5)

Si|∂Ω = Ŝi ∂Ω× [0,∞), i = 1, . . . , k,

Mj |∂Ω = 0 ∂Ω× [0,∞), j = 1, . . . , l,

Si|t=0 = Si,0 Ω× {0}, i = 1, . . . , k,

Mj |t=0 = Mj,0 Ω× {0}, j = 1, . . . , l,

where (S,M) := (S1, . . . , Sk,M1, . . . ,Ml) and M :=
∑l
j=1Mj denotes the total biomass. More-

over, the constants d and d1, . . . , dk are positive, and the functions Ŝ1, . . . Ŝk are non-negative and

belong to the class L∞(∂Ω).
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While the substrates S1, . . . , Sk are dissolved in the domain and satisfy a standard semi-linear

reaction-diffusion equation the spatial spreading of the biomass fractions is described by the

density-dependent diffusion coefficient

D(M) :=
Ma

(1−M)
b
, a, b ≥ 1, M ∈ R.

The solid region as well as the liquid surroundings are assumed to be continua. The actual biofilm

consists of several types of biomass and is described by the region Ω1(t) = {x ∈ Ω | M(x, t) > 0}.
The liquid area is determined by Ω2(t) = {x ∈ Ω | M(x, t) = 0}.
If the functions Ŝi are strictly positive, the boundary conditions imposed on the substrate con-

centrations in (5) reflect a constant unlimited substrate supply through the boundary of the

considered domain. Similarly, keeping the substrate concentration Si equal to zero at the bound-

ary, i.e., Ŝi = 0, enforces a removal of the substrate from the domain. The boundary conditions

for the biomass fractions describe the situation that the growing biofilm is contained in the inner

region of the domain, away from the boundary ∂Ω. Such biofilms in the absence of a substratum

are often called microbial flocs. Such bacterial aggregates enclosed in an EPS matrix are used in

the industry for wastewater treatment and also occur in natural settings [22]. These are specific

boundary conditions, primarily chosen for convenience. Boundary conditions of mixed type are

often more appropriate in applications. Typically, Dirichlet conditions are specified on some part

of the boundary, while Neumann or Robin conditions are imposed on the other parts. In particu-

lar, the substratum, on which the biofilm grows is impermeable for all dependent variables, which

is described by homogeneous Neumann boundary values. The solution theory we develop in the

following sections carries over to these more general boundary conditions as long as homogeneous

Dirichlet boundary conditions are imposed for the biomass fractions on one part of the boundary.

We assume the initial data S1,0, . . . , Sk,0,M1,0 . . . ,Ml,0 belong to the class L∞(Ω), are non-negative

in Ω and satisfy

Si,0 ∈ L∞(Ω) ∩H1(Ω), Si,0|∂Ω = Ŝi, i = 1, . . . , k,(6)

Mj,0, F (M0) ∈ H1
0 (Ω), ‖M0‖L∞(Ω) < 1, j = 1, . . . , l,

where M0 =
∑l
j=1Mj,0 and

F (M) :=

∫ M

0

sa

(1− s)b
ds for 0 ≤M < 1.

In the sequel, we denote by QT := Ω× [0, T ), T > 0, the parabolic cylinder.

Definition 1. We call the vector-valued function (S,M) a solution of System (5) if its components

belong to the class

Si,Mj ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ), i = 1, . . . , k, j = 1, . . . , l,

Si ∈ L2((0, T );H1(Ω)), i = 1, . . . , k,

D(M)OMj ∈ L2((0, T );L2(Ω;Rn)), j = 1, . . . , l,
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for any T > 0, and satisfy System (5) in distributional sense.

If (S,M) is a solution according to Definition 1, then the equalities∫
Ω

Si(x, T )ϕ(x)dx−
∫

Ω

Si,0(x)ϕ(x)dx+ di

∫
QT

OSi(x, t) · Oϕ(x)dtdx

=

∫
QT

fi (S(x, t),M(x, t))ϕ(x)dtdx, i = 1, . . . , k,∫
Ω

Mj(x, T )ϕ(x)dx−
∫

Ω

Mj,0(x)ϕ(x)dx+ d

∫
QT

D(M(x, t))OMj(x, t) · Oϕ(x)dtdx

=

∫
QT

gj (S(x, t),M(x, t))ϕ(x)dtdx, j = 1, . . . , l,

hold for all test-functions ϕ ∈ C∞0 (Ω) and almost every T > 0.

4.1. Existence. To prove the existence of solutions of the degenerate problem (5) we consider

smooth regular approximations and show that the solutions of the approximating systems converge

to the solution of the degenerate problem when the regularization parameter tends to zero. The

ideas are based on the method developed in [12] for the mono-species model and the ideas applied

in [5], [15] and [26] for multi-species biofilm models.

For small ε > 0 we define the non-degenerate approximations for Problem (5) by

∂tSi = di∆Si + fi(S,M) Ω× (0,∞), i = 1, . . . , k,(7)

∂tMj = dO · (Dε(M)OMj) + gj(S,M) Ω× (0,∞), j = 1, . . . , l,

Si|∂Ω = Ŝi ∂Ω× [0,∞), i = 1, . . . , k,

Mj |∂Ω = 0 ∂Ω× [0,∞), j = 1, . . . , l,

Si|t=0 = Si,0 Ω× {0}, i = 1, . . . , k,

Mj |t=0 = Mj,0 Ω× {0}, j = 1, . . . , l,

where the regularized diffusion coefficient Dε is defined by

Dε(M) :=


εa M < 0,

(M+ε)a

(1−M)b
0 ≤M ≤ 1− ε,

1
εb

M ≥ 1− ε,

M ∈ R.

Adding the equations for the biomass fractions leads to the system

∂tSi = di∆Si + fi(S,M) Ω× (0,∞), i = 1, . . . , k,(8)

∂tM = dO · (Dε(M)OM) +

l∑
j=1

gj(S,M) Ω× (0,∞),

for the total biomass M and the dissolved substrates S1, . . . , Sk.

We denote by (M ε, Sε) = (Sε1, . . . , S
ε
k,M

ε
1 , . . . ,M

ε
l ) the solutions of the auxiliary systems (7).

The well-posedness of the model (5) will be shown under the following hypotheses, which will be

justified for each of the multicomponent models in Subsection 5.



ON THE WELL-POSEDNESS OF MULTICOMPONENT BIOFILM MODELS 15

(A1) There exists ε′0 > 0 such that all components of the solutions (M ε, Sε) of the non-

degenerate approximations are non-negative and uniformly bounded for all ε < ε′0.

(A2) There exists a unique solution for the total biomass M and the functions f1, . . . , fk and

g1, . . . , gl, satisfy

fi(x)− fi(y) ≤ C

(
k+l∑
m=1

xm − ym

)
i = 1, . . . , k,

gj(x)− gj(y) ≤ C

(
k+l∑
m=1

xm − ym

)
j = 1, . . . , l,

for some constant C ≥ 0 and x, y in bounded subsets of

Rk+l
+ = {x ∈ Rk+l : xi ≥ 0, i = 1, . . . , k + l}.

Remark 1. If hypothesis (A1) is satisfied a sufficient condition for the uniqueness of the total

biomass M is the following:

k∑
i=1

∣∣fi(S,M)− fi(S̃, M̃)
∣∣+
∣∣ l∑
j=1

gj(S,M)− gj(S̃, M̃)
∣∣ ≤ c(|M − M̃ |+ k∑

i=1

|Si − S̃i|

)
,

for (S,M) and (S̃, M̃) in bounded subsets of Rk+l
+ and some constant c ≥ 0, where M :=∑l

j=1Mj , M̃ :=
∑l
j=1 M̃j . In this case, the uniqueness of system (8) can be shown as for the

prototype model in [12] (see Lemma 3.4, [12]).

First, we show that the total biomass M ε is uniformly bounded away from the singularity for all

sufficiently small ε > 0.

Lemma 1. Let the assumption (A1) be satisfied and the initial data belong to the class (6). Then,

there exists 0 < η < 1 and ε0 > 0 such that the constant 1 − η is an upper solution for the total

biomass M ε for all ε < ε0.

Proof. Let ε′0 > 0 be as in (A1). To show the lemma we construct a suitable barrier function and

consider the elliptic problem

∆ϕ(x) = −c1, x ∈ Ω,

ϕ(x)|∂Ω = c2, x ∈ ∂Ω,

where the constants c1 and c2 are defined by

c1 := sup
0<ε<ε′0

{
‖

l∑
j=1

fj(S
ε,M ε)‖L∞(QT )

}
,

c2 := sup
0<ε<ε′0

{
‖F ε(M0)‖L∞(Ω)

}
,

and Fε(M0) :=
∫M0

0
(s+ε)a

(1−s)b ds, if M0 ≤ 1− ε. Defining the constant c1 we use the hypotheses (A1)

and (A2) and remark that there exists 0 < ε1 ≤ ε′0 such that the constant c2 can be chosen uniform
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for all ε < ε1. Moreover, the solution ϕ is bounded on Ω, and by the maximum principle follows

ϕ ≥ c2 in Ω.

For ε < ε1 we define Zε := F−1
ε (ϕ) and observe that

∂tZε −∆(Fε(Zε)) = c1 = sup
0<ε<ε1

{
‖

l∑
j=1

fj(S
ε,M ε)‖L∞(QT )

}
≥ ∂tM ε −∆(Fε(M

ε))

in QT . Moreover, the boundary conditions imply

Zε|∂Ω = F−1
ε (ϕ)|∂Ω = F−1

ε (c2) ≥M ε|∂Ω = 0,

and the initial data satisfies

Zε|t=0 = F−1
ε (ϕ)|t=0 ≥ F−1

ε (c2) ≥ F−1
ε (Fε(M0)) = M0,

where we used the monotonicity of the function F−1
ε . Consequently, the function Zε is an upper

solution for the total biomass M ε. Using the fact that ϕ is bounded in Ω and that Fε converges

pointwise to infinity in the interval (0, 1), we conclude that there exist 0 < ε0 ≤ ε1 and η ∈ (0, 1)

such that M ε ≤ Zε = F−1
ε (ϕ) < 1− η for all ε < ε0. �

We particularly emphasize that the non-degenerate approximations for the total biomass M ε are

uniformly bounded away from the singularity,

‖M ε(·, t)‖L∞(Ω) ≤ 1− η ∀ε < ε0, t ≥ 0,

if the initial data satisfies ‖M0‖L∞(Ω) < 1.

Lemma 2. We assume the assumption (A1) is satisfied and the initial data belong to the class

(6). Then, for all sufficiently small ε > 0 there exists a unique solution (Sε,M ε) of the auxiliary

system (7) satisfying

Sεi ,M
ε
j ∈ L2((0, T );H1(Ω)) ∩ C([0, T ];L2(Ω)) ∩ L∞(QT ),

∂tS
ε
i , ∂tM

ε
j ∈ L2((0, T );H−1(Ω)), i = 1, . . . , k, j = 1, . . . , l.

Moreover, the solutions are uniformly bounded with respect to the regularization parameter ε > 0,

and satisfy the estimates

max
t∈[0,T ]

‖Sεi (·, t)‖L2(Ω) + ‖Sεi ‖L2((0,T );H1(Ω)) + ‖∂tSεi ‖L2((0,T );H−1(Ω)) ≤ C(1 + ‖Si,0‖L2(Ω)),

max
t∈[0,T ]

‖M ε
j (·, t)‖L2(Ω) + ‖M ε

j ‖L2((0,T );H1
0 (Ω)) + ‖∂tM ε

j ‖L2((0,T );H−1(Ω)) ≤ Cε
(
1 + ‖Mj,0‖L2(Ω)

)
,

i = 1, . . . , k, j = 1, . . . , l, for t > 0 and some constants Cε, C ≥ 0, where the constant C is

independent of ε > 0. The solutions are Hölder-continuous

Sεi ∈ Cα,
α
2 (QT ), M ε

j ∈ Cαε,
αε
2 (QT ), i = 1, . . . , k, j = 1, . . . , l,

where constants αε and α are positive. The Hölder exponent αε depends on the parameter ε, the

data and uniform bound of the approximate solutions only, the constant α is independent of ε > 0.
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Proof. If the initial data (M0, S0) belongs to the class (6), Lemma 1 implies that there exists

ε0 > 0 and η ∈ (0, 1) such that the approximate solutions for the total biomass density M ε satisfy

M ε < 1− η in QT for all ε < ε0, where the constant η is independent of ε. This implies that the

diffusion coefficient Dε(M
ε) is positive and uniformly bounded from above by a constant, which

is independent of ε. Indeed, for all ε < min{η, ε0} we obtain

εa ≤ Dε(M
ε(x, t)) =

(M ε(x, t) + ε)a

(1−M ε(x, t))b
≤ (1− η + ε)a

(1− (1− η))b
≤ 1

ηb
, (x, t) ∈ QT ,

which shows that Dε(M
ε) ∈ L∞(QT ) and Dε(M

ε) is strictly positive. Hence, for all sufficiently

small ε > 0 the semi-linear auxiliary system (7) is regular and uniformly parabolic.

The functions Sεi and M ε
j are uniformly bounded with respect to the regularization parameter

ε > 0 by Hypothesis (A1), which implies that the interaction functions fi(Sε,M ε) and gj(Sε,M ε)

are uniformly bounded in QT , i = 1, . . . , k, j = 1, . . . , l. By standard arguments follow the

existence and uniqueness of the approximate solutions (Sε,M ε), the solutions belong to the class

stated in the lemma and satisfy the given estimates (see Section 11.1 in [23]). Moreover, the

Hölder-continuity of solutions follows from Theorem 10.1, Chapter III in [17].

Due to the uniform boundedness of the approximate solutions the components Sε1, . . . , Sεk, satisfy

the parabolic equation

∂tS
ε
i − di∆Sεi = Hε

i , i = 1, . . . , k,

where the function Hε
i is uniformly bounded, ‖Hε

i ‖L∞(QT ) ≤ ci for some constant ci ≥ 0, i =

1, . . . , k. Hence, the constants in the estimates for the components Sε1, . . . , Sεk can be chosen uniform

with respect to the regularization parameter ε > 0. �

We will show that the limit of the solutions of the non-degenerate approximations (Sε,M ε) yields a

solution of the degenerate problem (S,M). To show the convergence we treat the region, where the

total biomass density is small, and its complement in QT separately. For δ ∈ (0, 1) and sufficiently

small ε0 > 0 we define the domains

Qδ,T := {(x, t) ∈ QT | M ε(t, x) < δ ∀ε < ε0}

and Qcδ,T := QT \ Qδ,T . We note that both sets are open due to the Hölder-continuity of the

solutions.

Remark 2. Restricted to the domain Qcδ,T the solutions M ε
1 , . . . ,M

ε
l satisfy the estimates in

Lemma 2 uniformly. To be more precise, the constant Cε in the inequality and the Hölder exponent

αε are independent of ε > 0 for the family of approximate solutions M̃ ε
j , where M̃ ε

j := M ε
j |Qcδ,T ,

j = 1 . . . , l.

Indeed, if ε > 0 is sufficiently small, then M ε > δ in the region Qcδ,T . Consequently, the diffusion

coefficient restricted to the domain Qcδ,T is uniformly bounded from above and below by a positive

constant which is independent of ε > 0,(
δ

2

)a
≤ (

δ

2
+ ε)a ≤ Dε(M

ε(x, t)) =
(Mε(x, t) + ε)a

(1−Mε(x, t))b
≤ 1

ηb
, (x, t) ∈ Qcδ,T .
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Solutions of non-degenerate parabolic equations of second order with coefficients in L∞(Ω) satisfy

the estimates stated in the lemma, and the bounds are determined in terms of the coefficients of

the equation (see [17], Chapter V). Consequently, the estimates in the region Qcδ,T are uniform

and do not dependent on ε > 0.

We will use Lemma 2 to pass to the limit in the region Qcδ,T . To pass to the limit in the region

Qδ,T requires further uniform estimates for the family of approximate solutions.

Lemma 3. Let Hypothesis (A1) be satisfied and the initial data belong to the class (6). If ε0 > 0

is sufficiently small, the product
√
Dε(M ε)OM ε

j is uniformly bounded in L2(QT ;Rn) for all ε < ε0.

Moreover, the approximate solutions satisfy M ε
j (·, t) ∈ Hs(Ω) for some s > 0 and almost every

t ∈ [0, T ], and

‖M ε
j ‖L2((0,T );Hs(Ω)) ≤ C ∀ 0 < ε < ε0, j = 1, . . . , l,

where the constant C ≥ 0 is independent of the regularization parameter ε.

Proof. Multiplying the governing equation for M ε
j of System (7) by M ε

j and integrating over Ω we

obtain

1

2

d

dt
‖M ε

j (·, t)‖2L2(Ω) + d
〈
Dε(M

ε(·, t))OM ε
j (·, t),OM ε

j (·, t)
〉
L2(Ω;Rn)

=

∫
Ω

M ε
j (x, t)gj(S

ε(x, t),M ε(x, t))dx ≤ C,

for some constant C ≥ 0. Due to Lemma 1 the constant C is independent of ε > 0. If we integrate

this inequality from 0 to T follows the first statement of the lemma.

Furthermore, for sufficiently small ε > 0 we observe thatM ε
j ≤M ε ≤ 1−η in QT and consequently,

(M ε
j (x, t))a ≤ Dε(M

ε
j (x, t)) =

(M ε
j (x, t) + ε)a

(1−M ε
j (x, t))b

≤ (M ε(x, t) + ε)a

(1− (M ε(x, t)))b
= Dε(M

ε(x, t)),

for (x, t) ∈ QT , j = 1, . . . , l. This implies the estimate∫
Ω

(M ε
j (x, t))a‖OM ε

j (x, t)‖2dx ≤
∫

Ω

Dε(M
ε(x, t))‖OM ε

j (x, t)‖2dx ≤ C,

for some constant C ≥ 0, which is independent of the regularization parameter ε > 0. This

shows that (M ε
j )

a
2 (·, t)OM ε

j (·, t) ∈ L2(Ω;Rn) or equivalently, (M ε
j )

a
2 +1(t) ∈ H1(Ω) for almost

every t ∈ (0, T ]. Finally, if a function satisfies ϕβ ∈ H1(Ω) for some β > 1, then ϕ ∈ W s,2β(Ω)

holds for all s ≤ 1
β (see [10], Lemma 1.3). This implies that M ε

j (·, t) ∈W s,2( a2 +1)(Ω) for s ≤ 1
a
2 +1 .

Since the domain Ω is bounded and a ≥ 1 the embedding W s,2+a(Ω) ↪→ Hs(Ω) is continuous and

we obtain M ε
j (·, t) ∈ Hs(Ω) for some positive s > 0. In particular, the family of approximate

solutions M ε
j , j = 1, . . . , l, is uniformly bounded in the Hilbert space L2((0, T );Hs(Ω)). �

Lemma 4. We assume Hypothesis (A1) is satisfied and the initial data belong to the class (6).

Then, there exist functions

S∗i ∈ L∞(QT ) ∩ L2((0, T );H1
0 (Ω)), i = 1, . . . , k,

M∗j ∈ L∞(QT ) ∩ L2((0, T );Hs(Ω)), j = 1, . . . , l,
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and a sequence (εk)k∈N tending to zero as k →∞, such that the solutions of the auxiliary systems

(7) converge weakly

Sεki ⇀ S∗i in L2((0, T );H1
0 (Ω)), M εk

j ⇀M∗j in L2((0, T );Hs(Ω)),

and strongly

M εk
j →M∗j , S

εk
i → S∗i in C([0, T ];L2(Ω))

when k tends to infinity.

Proof. We prove the convergence and existence of the limit for the biomass fractions M∗1 , . . . ,M∗l ,

the arguments are similar for the substrate concentrations S∗1 , . . . , S∗k . For sufficiently small ε > 0

the family of approximate solutionsM ε
j is uniformly bounded in the Hilbert space L2((0, T );Hs(Ω))

for some s > 0 by Lemma 3. Consequently, there exists an element M∗j ∈ L2((0, T );Hs(Ω)) and

a sequence (εk)k∈N tending to zero as k →∞ such that the sequence (M εk
j )k∈N converges weakly

to M∗j in L2((0, T );Hs(Ω)), j = 1, . . . , l.

Furthermore, Lemma 3 implies that the product
√
Dε(M ε)OM ε

j is uniformly bounded in L2(QT ;Rn),

and that the diffusion coefficient satisfies Dε(M
ε) ∈ L∞(QT ). Consequently, we obtain

‖Dε(M
ε)OM ε

j ‖2L2(QT ;Rn) ≤ ‖Dε(M
ε)‖L∞(QT )‖

√
Dε(M ε)OM ε

j ‖2L2(QT ;Rn) ≤ c,

for some constant c ≥ 0, which is independent of ε > 0. This proves the uniform boundedness of

the derivatives ∂tM ε
j in L2((0, T );H−1(Ω)), j = 1, . . . , l.

By Theorem 1.5, Chapter II in [3] now follows the strong convergence of the sequence of approxi-

mate solutions in the space C([0, T ];L2(Ω)). �

It remains to show that the limits of the approximate solutions yield a solution of the degenerate

problem.

Theorem 5. If Hypothesis (A1) is satisfied and the initial data belong to the class (6), the limits

S∗1 , . . . , S
∗
k , and M

∗
1 , . . . ,M

∗
l , of the solutions of the non-degenerate approximations in Lemma 4

are weak solutions of the degenerate system (5).

Proof. We show that we can pass to the limit ε→ 0 in the distributional formulation of the non-

degenerate auxiliary system (7). Since the arguments are the same or simplify for the substrate

concentrations S∗1 , . . . , S∗k , we only prove the convergence for the biomass fractions M∗1 , . . . ,M∗l .

The functions M ε
j are weak solutions of the auxiliary systems (7). Consequently, the equalities∫

Ω

M ε
j (x, T )ϕ(x)dx−

∫
Ω

Mj,0(x)ϕ(x)dx+ d

∫
QT

Dε(M
ε(x, t))OM ε

j (x, t) · Oϕ(x)dtdx

=

∫
QT

fj(S
ε(x, t),M ε(x, t))ϕ(x)dtdx, j = 1, . . . , l,

are satisfied for all test-functions ϕ ∈ C∞0 (Ω) and almost every T > 0. The family of approximate

solutions is uniformly bounded in L∞(QT ) by Lemma 1, and we can immediately pass to the limit
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in all integrals, except for the diffusion term. Hence, it remains to show the convergence of the

terms ∫
QT

Dε(M
ε(x, t))OM ε

j (x, t) · Oϕ(x)dtdx →
∫
QT

D(M∗(x, t))OM∗j (x, t) · Oϕ(x)dtdx,

j = 1, . . . , l, when the regularization parameter ε tends to zero. We remark that the integrals are

well-defined by Lemma 3. We split the difference and treat the domains Qδ,T and Qcδ,T separately.

To this end we define the integrals

Rεj :=Iεj + Jεj

:=

∫
Qδ,T

(
Dε(M

ε(x, t))OM ε
j (x, t)−D(M∗(x, t))OM∗j (x, t)

)
· Oϕ(x)dtdx

+

∫
Qcδ,T

(
Dε(M

ε(x, t))OM ε
j (x, t)−D(M∗(x, t))OM∗j (x, t)

)
· Oϕ(x)dtdx,

j = 1, . . . , l, and show that the terms Rε1, . . . , Rεl vanish when ε tends to zero. To estimate the

integral Jεj we express the difference as follows

Dε(M
ε(x, t))OM ε

j −D(M∗)OM∗j = (Dε(M
ε)−D(M∗))OM ε

j +D(M∗)
(
OM ε

j − OM∗j
)
.

For the first term in the integral we obtain∣∣〈(Dε(M
ε)−D(M∗))OM ε

j ,Oϕ
〉
L2(Qcδ,T ;Rn)

∣∣
≤ ‖Dε(M

ε)−D(M∗)‖L∞(Qcδ,T )

∣∣〈OM ε
j ,Oϕ〉L2(Qcδ,T ;Rn)

∣∣
≤ ‖Dε(M

ε)−D(M∗)‖L∞(Qcδ,T )‖Oϕ‖L2(Qcδ,T ;Rn)‖OM ε
j ‖L2(Qcδ,T ;Rn)

≤ C‖Dε(M
ε)−D(M∗)‖L∞(Qcδ,T )

for some constant C ≥ 0 and j = 1, . . . , l. Here, we used the Cauchy-Schwarz inequality and the

uniform boundedness of the family of approximate solutions M ε
j , when restricted to the domain

Qcδ,T in the norm induced by L2((0, T );H1
0 (Ω)) (see Lemma 2). The family of solutions M ε of the

non-degenerate approximations for the total biomass is uniformly bounded in the Hölder space

Cα̃,
α̃
2 (QT ) for some α̃ > 0 (see [5]), which implies the strong convergence in the space C(QT ).

Furthermore, the solutions of the auxiliary systems satisfy the uniform estimate M ε ≤ 1 − η in

QT , and we conclude that M∗ ≤ 1 − η in QT . On the interval [0, 1 − η] the truncated function

Dε : [0, 1−η]→ R converges uniformly to the function D when ε tends to zero. Therefore, splitting

the remaining term

‖Dε(M
ε)−D(M∗)‖L∞(Qcδ,T ) ≤ ‖Dε(M

ε)−Dε(M
∗)‖L∞(Qcδ,T ) + ‖Dε(M

∗)−D(M∗)‖L∞(Qcδ,T )

we see that it vanishes when ε tends to zero.

Finally, the convergence of the second integral in Jεj ,〈
D(M∗)Oϕ,OM ε

j − OM∗j
〉
L2(Qcδ,T ;Rn)

,

is an immediate consequence of Lemma 2. Indeed, restricted to the domain Qcδ,T the family of

approximate solutions is uniformly bounded in the norm induced by L2((0, T );H1
0 (Ω)), which
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implies the weak convergence in this space. Since the diffusion coefficient D(M∗) belongs to

L∞(QT ) by Lemma 1, the product D(M∗)Oϕ defines an element in the dual space and implies

the convergence of the integral. Summarizing the above estimates we conclude that for every

µ > 0 there exists ε0 > 0, which is independent of δ, such that the terms |Jεj | < µ for all ε < ε0

and j = 1, . . . , l.

It remains to estimate the integrals Iε1, . . . , Iεk. We recall that for sufficiently small ε0 > 0 the

domain Qδ,T was defined as the subset of QT where the approximate solutions for the total

biomass density satisfy M ε < δ for all ε < ε0. For ε < min{ε0, δ} we therefore obtain

Dε(M
ε(x, t)) =

(M ε(x, t) + ε)a

(1−M ε(x, t))b
≤ (2δ)a

(1− δ)b
∀(x, t) ∈ Qδ,T .

Furthermore, the products
√
Dε(M ε)OM ε

j , j = 1, . . . , l, are uniformly bounded in L2(QT ;Rn) by

Lemma 3, which allows us to use Hölder’s inequality to estimate the integral∣∣∣ ∫
Qδ,T

Dε(M
ε(x, t))OM ε

j (x, t) · Oϕ(x)dtdx
∣∣∣

≤
∥∥√Dε(M ε(x, t))OM ε

j

∥∥
L2(QT ;Rn)

∥∥√Dε(M ε)Oϕ
∥∥
L2(Qδ,T ;Rn)

≤ C

(∫
Qδ,T

Dε(M
ε(x, t))‖Oϕ(x)‖2dtdx

) 1
2

≤ C (3δ)
a
2

(1− 2δ)
b
2

‖ϕ‖2L2((0,T );H1(Ω)),

for some constant C ≥ 0 and j = 1, . . . , l. Estimating the second term of the integral Iεj in the

same way we obtain

|Iε| ≤
∫
Qδ,T

∣∣Dε(M
ε(x, t))OM ε

j (x, t) · Oϕ(x)
∣∣dtdx

+

∫
Qδ,T

∣∣D(M∗(x, t))OM∗j (x, t) · Oϕ(x)
∣∣dtdx ≤ C (2δ)

a
2

(1− δ) b2
,

for some constant C ≥ 0 and j = 1, . . . , l.

To conclude the proof of the theorem let µ > 0 be arbitrary. We first choose δ > 0 and a

corresponding ε1 > 0 such that

|Iεj | <
µ

2l
∀ ε < ε1, j = 1, . . . , l.

According to the first part of the proof there exists ε0 > 0, which does not dependent on δ > 0,

such that the integrals

|Jεj | <
µ

2l
∀ ε < ε0, j = 1, . . . , l.

Consequently, we obtain

l∑
j=1

|Rε| ≤
l∑

j=1

|Iε|+
l∑

j=1

|Jε| < µ ∀ ε < min{ε0, ε1}.

This proves that the limit (S∗,M∗) is a solution of System (5) in the sense of Definition 1. �
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4.2. Uniqueness. In this paragraph we prove the uniqueness and L2(Ω)-Lipschitz-continuity of

solutions with respect to initial data.

We recall that if the initial data belongs to class (6), then there exists a constant η ∈ (0, 1) such

that the total biomass satisfies

0 ≤M(x, t) ≤ 1− η, (x, t) ∈ Ω× R+.

Consequently, we obtain

0 ≤ D(M(x, t)) =
(M(x, t))a

(1−M(x, t))b
≤ 1

(1−M(x, t))b
≤ 1

ηb
, (x, t) ∈ Ω× R+,

which shows that the diffusion coefficient D(M) for the biomass components is non-negative and

satisfies D(M) ∈ L∞(Ω× R+).

Theorem 6. Let the initial data belong to the class (6) and Hypotheses (A1) and (A2) be satisfied.

Then, there exists a unique non-negative weak solution (S,M) of the multi-component biofilm

model (5).

Proof. The existence of solutions follows from Theorem 5. We assume that (S,M) and (Ŝ, M̂) are

two such solutions of System (5) corresponding to initial data (S0,M0) and define the differences

ui := Si − Ŝi and vj := Mj − M̂j , where i = 1, . . . , k, j = 1, . . . , l. Then, ui belongs to the space

L2((0, T );H1
0 (Ω)), vj satisfies D(M(·, t))Ovj(·, t) ∈ L2(Ω;Rn) for almost every t ∈ (0, T ] and

∂tui, ∂tvj ∈ L2((0, T );H−1(Ω)) for every T > 0. Moreover, since by (A2) there exists a unique

solution for the total biomass M the functions ui and vj satisfy the system

∂tui = di∆ui + fi(S,M)− fi(Ŝ, M̂) Ω× (0,∞), i = 1, . . . , k,

∂tvj = dO · (D(M)Ovj) + gj(S,M)− gj(Ŝ, M̂) Ω× (0,∞), j = 1, . . . , l,

with initial and boundary conditions

ui|∂Ω = vj |∂Ω = 0 ∂Ω× [0,∞),

ui|t=0 = vj |t=0 = 0 Ω× {0},

where i = 1, . . . , k, j = 1, . . . , l. If we multiply the first equation by ui and integrate over Ω, we

obtain the estimate

1

2

d

dt
‖ui(·, t)‖2L2(Ω) =− di‖Oui(·, t)‖2L2(Ω;Rn)

+
〈
fi(S(·, t),M(·, t))− fi(Ŝ(·, t), M̂(·, t)), ui(·, t)

〉
L2(Ω)

≤ c

 k∑
i=1

‖ui(·, t)‖2L2(Ω) +

l∑
j=1

‖vj(·, t)‖2L2(Ω)

 ,
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for some constant c ≥ 0, where we used Hypothesis (A2). Moreover, multiplying the second

equation by vj and integrating over Ω yields

1

2

d

dt
‖vj(·, t)‖2L2(Ω) =− d

〈
D(M(x, t))Ovj(·, t),Ovj(·, t)

〉
L2(Ω;Rn)

+
〈
gj(S(·, t),M(·, t))− gj(Ŝ(·, t), M̂(·, t)), vj(·, t)

〉
L2(Ω)

≤ c

 k∑
i=1

‖ui(·, t)‖2L2(Ω) +

l∑
j=1

‖vj(·, t)‖2L2(Ω)

 ,

where we used Assumption (A2) in the last inequality.

Adding the inequalities for i = 1, . . . , k and j = 1, . . . , l yields

d

dt

( k∑
i=1

‖ui(., t)‖2L2(Ω) +

l∑
j=1

‖vj(., t)‖2L2(Ω)

)
≤ C

( k∑
i=1

‖ui(., t)‖2L2(Ω) +

l∑
j=1

‖vj(., t)‖2L2(Ω)

)
,

for some constant C ≥ 0. Invoking Gronwall’s Lemma and using the initial conditions ui|t=0 =

vj |t=0 = 0, we conclude that ‖ui(·, t)‖L2(Ω) = ‖vj(·, t)‖L2(Ω) = 0 for all t > 0 and i = 1, . . . , k, j =

1, . . . , l. �

We remark that the proof of Theorem 6 implies the Lipschitz-continuity of the solutions with

respect to initial data.

Corollary 1. Let the assumptions of the previous theorem be satisfied. If (S,M) and (Ŝ, M̂) are

two solutions of System (5) corresponding to initial data (S0,M0) and (Ŝ0, M̂0), then

k∑
i=1

‖Si(·, t)− Ŝi(·, t)‖2L2(Ω) +

l∑
j=1

‖Mj(·, t)− M̂j(·, t)‖2L2(Ω)

≤ eCt
( k∑
i=1

‖Si0 − Ŝi0‖2L2(Ω) +

l∑
j=1

‖Mj0 − M̂j0‖2L2(Ω)

)
,

for some constant C ≥ 0.

Proof. The estimate follows immediately from the last inequality in the proof of Theorem 6 and

Gronwall’s Lemma. �

5. Application to Multicomponent Models

We show that the general solution theory developed in Section 4 applies to the multicomponent

models of Section 3. To this end it suffices to verify Hypotheses (A1) and (A2) in each partic-

ular case. Hypothesis (A1) implies the existence of solutions. If additionally Hypothesis (A2) is

satisfied, then the solutions are unique.
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5.1. Antibiotic Disinfection of Biofilms. The non-degenerate approximations for the antibi-

otics model are defined as the system (2), where the diffusion coefficient D(M) for the biomass

fractions is replaced by the regularized function Dε(M), i.e.,

∂tS = dS∆S − k1
SX

k2 + S
Ω× (0,∞),

∂tB = dB∆B − ζ1BX Ω× (0,∞),

∂tX = dO · (Dε(M)OX) + k3
SX

k2 + S
− k4X − ζ2BX Ω× (0,∞),

∂tY = dO · (Dε(M)OY ) + ζ2BX Ω× (0,∞).

To abbreviate notations we introduce the functions

f1(S,B,X, Y ) := −k1
SX

k2 + S
, f2(S,B,X, Y ) := −ζ1BX,

g1(S,B,X, Y ) := k3
SX

k2 + S
− k4X − ζ2BX, g2(S,B,X, Y ) := ζ2BX.

Proposition 2. We assume the functions Sr and Br are non-negative and belong to L∞(∂Ω), the

initial data S0, B0, X0, Y0 belong to the class L∞(Ω), are non-negative in Ω and satisfy

S0, B0 ∈ L∞(Ω) ∩H1(Ω), S0|∂Ω = Sr, B0|∂Ω = Br,

X0, Y0, F (M0) ∈ H1
0 (Ω), ‖M0‖L∞(Ω) < 1.

Then, there exists ε0 > 0 such that the solutions (Sε, Bε, Xε, Y ε) of the non-degenerate approxi-

mations for the antibiotics model are non-negative and uniformly bounded for all ε < ε0.

Proof. We observe that the interaction functions satisfy

f1(0, B,X, Y ) = f2(S, 0, X, Y ) = g1(S,B, 0, Y ) = 0,

and all components of the solution take non-negative values on the boundary ∂Ω. Moreover,

the initial data S0, B0 and X0 are non-negative in Ω, which implies that the constant zero is

a subsolution for Sε, Bε and Xε, and the non-negativity of these components follows from a

comparison principle for parabolic equations (e.g., see [2]). The non-negativity of Bε and Xε

implies that

g2(S,B,X, 0) ≥ 0,

and we conclude by the same arguments that the biomass fraction Y ε is non-negative.

To show the uniform boundedness of the substrate concentrations Sε and Bε we define the

constants Smax := max{‖S0‖L∞(Ω), ‖Sr‖L∞(∂Ω)} and Bmax := max{‖B0‖L∞(Ω), ‖Br‖L∞(∂Ω)}.
We observe that Smax|∂Ω ≥ Sr = Sε|∂Ω, Bmax|∂Ω ≥ Br = Bε|∂Ω, Smax|t=0 ≥ S0 = Sε|t=0,

Bmax|t=0 ≥ B0 = Bε|t=0 and

∂tSmax − dS∆Smax + κ1
SmaxX

ε

k2 + Smax
= κ1

SmaxX
ε

k2 + Smax
≥ 0,

∂tBmax − dB∆Bmax + ζ1BmaxX
ε = ζ1BmaxX

ε ≥ 0,
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where we used the non-negativity of Xε. This shows that Smax and Bmax are upper solutions for

Sε and Bε, and the parabolic comparison principle implies the uniform boundedness of Sε and

Bε (see [2]). To conclude the proof it remains to show the uniform boundedness of the biomass

fractions Xε and Y ε.

We introduce the barrier function Xϕ := 1 + ϕ, where ϕ is the solution of the elliptic problem

∆ϕ(x) = −1, x ∈ Ω,

ϕ|∂Ω(x) = 0, x ∈ ∂Ω.

The maximum principle implies that ϕ ≥ 0 in Ω and

1 ≤ Xϕ(x) ≤ 1 + C, x ∈ Ω,

for some constant C ≥ 0. Furthermore, we observe that X0 = Xε|t=0 ≤ Xϕ|t=0, 0 = Xε|∂Ω ≤
Xϕ|∂Ω and

∂tXϕ − dO · (Dε(Xϕ + Y ε)OXϕ)− k3
SεXϕ

k2 + Sε
+ k4Xϕ + ζ2BXϕ

=
d

εb
− k3

SεXϕ

k2 + Sε
+ k4Xϕ + ζ2BXϕ ≥

d

εb
− k3Xϕ + k4Xϕ + ζ2BXϕ ≥

d

εb
− k3(1 + C)

≥ 0 = ∂tX
ε − dO · (Dε(X

ε + Y ε)OXε)− k3
SεXε

k2 + Sε
+ k4X

ε + ζ2B
εXε,

for all sufficiently small ε > 0. This shows that Xϕ is an upper solution for the biomass fraction

Xε. Similarly, we can show that Yϕ := 1 + ϕ is a barrier function for the approximations of the

inert biomass Y ε. The uniform boundedness of the biomass fractions Xε and Y ε now follows from

a parabolic comparison principle (e.g., [2]). �

Theorem 7. Let the hypothesis of Proposition 2 be satisfied. Then, there exists a solution of the

antibiotics model (2), and it belongs to the class

S,B,X, Y ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ),

S,B ∈ L2((0, T );H1(Ω)),

D(M)OX,D(M)OY ∈ L2((0, T );L2(Ω;Rn)).

Proof. By Proposition 2 the hypotheses (A1) is satisfied, and the statement is an immediate

consequence of Theorem. �

The reaction functions satisfy the hypothesis in (A2), but we are currently not able to prove the

uniqueness of the total biomass M = X + Y for the antibiotics model and the uniqueness of

solutions remains open.
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However, for the following modified model (we do not focus here on its biological relevance) a

uniqueness result can be established:

∂tS = dS∆S − k1
S(X + Y )

k2 + S
= dS∆S + f̃1(S,B,X, Y ),

∂tB = dB∆B − ζ1BX = dB∆B + f2(S,B,X, Y ),

∂tX = dO · (Dε(M)OX) + k3
S(X + Y )

k2 + S
− k4X − ζ2BX = dO · (Dε(M)OX) + g̃1(S,B,X, Y ),

∂tY = dO · (Dε(M)OY ) + ζ2BX + k4X = dO · (Dε(M)OY ) + g̃2(S,B,X, Y ).

Proposition 3. The total biomass of the modified model is unique and the functions f̃1, f2, g̃1 and

g̃2 satisfy the hypotheses in (A2).

Proof. Adding the governing equations for the biomass fractions X and Y we obtain the prototype

biofilm growth model for the total biomass M and nutrient S in Section 2. It was shown in [12]

that this system possesses a unique solution. Moreover, let D be a bounded subset of R4
+ and

(S1, B1, X1, Y1), (S2, B2, X2, Y2) ∈ D. We observe that

f̃1(S1, B1, X1, Y1)− f̃1(S2, B2, X2, Y2) = −k1

(
S1X1

k2 + S1
− S2X2

k2 + S2

)
− k1

(
S1Y1

k2 + S1
− S2Y2

k2 + S2

)
=− k1

(
S1

k2 + S1
(X1 −X2) +X2

(
S1

k2 + S1
− S2

k2 + S2

))
− k1

(
S1

k2 + S1
(Y1 − Y2) + Y2

(
S1

k2 + S1
− S2

k2 + S2

))
=− k1

(
S1

k2 + S1
(X1 −X2) +

k2X2

(k2 + S1)(k2 + S2)
(S1 − S2)

)
− k1

(
S1

k2 + S1
(Y1 − Y2) +

k2Y2

(k2 + S1)(k2 + S2)
(S1 − S2)

)
,

f2(S1, B1, X1, Y1)− f2(S2, B2, X2, Y2) = −ζ1(B1X1 −B2X2)

=− ζ1X1(B1 −B2) +B2(X1 −X2),

which shows that the functions f̃1 and f2 satisfy Hypothesis (A2). Using these representations we

can analogously verify the assumption for the functions g̃1 and g̃2. �

Theorem 8. Let the hypothesis of Proposition 2 be satisfied. Then, there exists a unique solution

of the modified antibiotic model, and it belongs to the class

S,B,X, Y ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ),

S,B ∈ L2((0, T );H1(Ω)),

D(M)OX,D(M)OY ∈ L2((0, T );L2(Ω;Rn)).

Proof. Hypothesis (A1) for the modified model can be shown following the arguments in the proof

of Proposition 2. By Proposition 3 the hypothesis (A2) is satisfied, and the statement is an

immediate consequence of Theorem 5 and Theorem 6. �
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5.2. Amensalistic Biofilm Control System. The non-degenerate approximations for the pro-

biotics model are obtained by replacing the diffusion coefficient D(M) in the equations for the

biomass fractions in (3) by the regularized function Dε(M), i.e.,

∂tC = dC∆C + α1X(ζ1 − C) + α2Y (ζ1 − C) Ω× (0,∞),

∂tP = dP∆P + α3C(ζ2 − P ) Ω× (0,∞),

∂tX = dO · (Dε(M)OX) + µ1ψ1(C,P )X Ω× (0,∞),

∂tY = dO · (Dε(M)OY ) + µ2ψ2(C,P )Y Ω× (0,∞),

∂tZ = dO · (Dε(M)OZ)−min{0, µ1ψ1(C,P )X} −min{0, µ2ψ2(C,P )Y } Ω× (0,∞).

To abbreviate notations we define the functions

f1(C,P,X, Y, Z) := α1X(ζ1 − C) + α2Y (ζ1 − C), f2(C,P,X, Y, Z) := α3C(ζ2 − P ),

g1(C,P,X, Y, Z) := µ1ψ1(C,P )X, g2(C,P,X, Y, Z) := µ2ψ2(C,P )Y,

g3(C,P,X, Y, Z) := −min{0, µ1ψ1(C,P )X} −min{0, µ2ψ2(C,P )Y }.

Proposition 4. Let the functions Cr and Pr be non-negative, belong to L∞(∂Ω) and satisfy

0 ≤ Cr ≤ ζ1, 0 ≤ Pr ≤ ζ2.

Moreover, we assume the initial data C0, P0, X0, Y0, Z0 belong to the class L∞(Ω), are non-negative

in Ω and satisfy

C0, P0 ∈ L∞(Ω) ∩H1(Ω), 0 ≤ C0 ≤ ζ1, 0 ≤ P0 ≤ ζ2, C0|∂Ω = Cr, P0|∂Ω = Pr,

X0, Y0, Z0, F (M0) ∈ H1
0 (Ω), ‖M0‖L∞(Ω) < 1.

Then, there exists ε0 > 0 such that the solutions (Cε, P ε, Xε, Y ε, Zε) of the non-degenerate ap-

proximations for the probiotics model are non-negative and uniformly bounded for all ε < ε0.

Proof. We observe that the interaction functions in the equations for the biomass components

satisfy

g1(C,P, 0, Y, Z) = g2(C,P,X, 0, Z) = 0, g3(C,P,X, Y, 0) ≥ 0,

and Xε, Y ε and Zε take non-negative values on the boundary ∂Ω.Moreover, the initial data X0, Y0

and Z0 are non-negative in Ω, which implies that the constant zero is a subsolution for Xε, Y ε

and Zε, and the non-negativity of the biomass fractions follows from a comparison principle for

parabolic equations. Using the non-negativity of the biomass fractions we observe that

f1(0, P,X, Y, Z) ≥ 0, f2(C, 0, X, Y, Z) ≥ 0,

which implies that the constant zero is also a subsolution for the substrate concentrations Cε and

P ε.

The initial and boundary data satisfy Cr ≤ ζ1, Pr ≤ ζ2 and 0 ≤ C0 ≤ ζ1, 0 ≤ P0 ≤ ζ2. Moreover,

since

f1(ζ1, P,X, Y, Z) = 0, f2(C, ζ2, X, Y, Z) = 0,
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the constants ζ1 and ζ2 are upper solutions for the substrate concentrations Cε and P ε. To show

the uniform boundedness of the biomass fractions we consider the barrier function Xϕ = 1 +ϕ as

in the proof of Proposition 2. It satisfies X0 = Xε|t=0 ≤ Xϕ|t=0, 0 = Xε|∂Ω ≤ Xϕ|∂Ω and

∂tXϕ − dO · (Dε(Xϕ + Y ε + Zε)OXϕ)− µ1ψ1(Cε, P ε)Xϕ

=
d

εb
− µ1ψ1(Cε, P ε)Xϕ ≥

d

εb
− µ1(1 + ϕ) ≥ 0,

for all sufficiently small ε > 0. This shows that Xϕ is an upper solution for the biomass fraction

Xε. Similarly, we can show that Yϕ = 1 + ϕ and Zϕ = 1 + ϕ are upper solutions for the biomass

fractions Y ε and Zε, which concludes the proof. �

Theorem 9. Let the assumptions of Proposition 4 be satisfied. Then, there exists a solution of

the probiotics model (3), and it belongs to the class

C,P,X, Y, Z ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ),

C, P ∈ L2((0, T );H1(Ω)),

D(M)OX,D(M)OY,D(M)OZ ∈ L2((0, T );L2(Ω;Rn)).

Proof. By Proposition 4 the Hypotheses (A1) is satisfied, and the statement is an immediate

consequence Theorem 5. �

Similarly to the antibiotics model, at the moment we cannot prove the uniqueness of the total

biomass M for the probiotics model, and the uniqueness of solutions remains open.

5.3. Quorum-Sensing in Patchy Biofilm Communities. We define the non-degenerate ap-

proximations for the quorum-sensing model (4) as the system

∂tS = dS∆S − k1
SM

k2 + S
Ω× (0,∞),

∂tA = dA∆A− γA+ αX + (α+ β)Y Ω× (0,∞),

∂tX = dO · (Dε(M)OX) + k3
XS

k2 + S
− k4X − k5|A|mX + k5|Y | Ω× (0,∞),

∂tY = dO · (Dε(M)OY ) + k3
Y S

k2 + S
− k4Y + k5|A|mX − k5|Y | Ω× (0,∞),

where the diffusion coefficient D(M) for the biomass fractions is replaced by the regularized

function Dε(M). Moreover, to abbreviate notations we introduce the functions

f1(S,A,X, Y ) := −k1
SM

k2 + S
, f2(S,A,X, Y ) := −γA+ αX + (α+ β)Y,

g1(S,A,X, Y ) := k3
XS

k2 + S
− k4X − k5|A|mX + k5|Y |,

g2(S,A,X, Y ) := k3
Y S

k2 + S
− k4Y + k5|A|mX − k5|Y |.
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Proposition 5. We assume the initial data S0, A0, X0, Y0 belong to the class L∞(Ω), are non-

negative in Ω and satisfy

S0 ∈ L∞(Ω) ∩H1(Ω), S0|∂Ω = 1,

A0, X0, Y0, F (M0) ∈ H1
0 (Ω), ‖M0‖L∞(Ω) < 1.

Then, there exists ε0 > 0 such that the solutions (Sε, Aε, Xε, Y ε) of the non-degenerate approxi-

mations for the quorum-sensing model (4) are non-negative and uniformly bounded for all ε < ε0.

Proof. The interaction functions in the governing equations for Sε and Xε satisfy

f1(0, A,X, Y ) = 0, g1(S,A, 0, Y ) ≥ 0,

all components of the solution take non-negative values on the boundary ∂Ω, and the initial data

S0 and X0 are non-negative in Ω. This implies that the constant zero is a subsolution for Sε and

Xε, and the non-negativity of these components follows from a comparison principle for parabolic

equations (see [2]). The non-negativity of Sε and Xε imply that

g2(S, 0, X, Y ) ≥ 0, f2(S,A,X, 0) ≥ 0,

and we conclude by the same arguments that the autoinducer concentration Aε and the biomass

fraction Y ε are non-negative.

The particularity of the quorum-sensing model is, that adding the equations for the biomass

fractions Xε and Y ε leads to the system

∂tS = dS∆S − k1
SM

k2 + S
Ω× (0,∞),

∂tM = dO · (Dε(M)OM) + k3
SM

k2 + S
− k4M Ω× (0,∞),

M |∂Ω = 0, S|∂Ω = 1 ∂Ω× [0,∞),

M |t=0 = X0 + Y0, S|t=0 = S0 Ω× {0},

which are the non-degenerate approximations for the prototype biofilm growth model discussed

in Section 2. By Proposition 1 and Proposition 6 in [12], the solutions Sε and M ε are uniformly

bounded by the constant 1 for all sufficiently small ε > 0. Since the biomass fractions are non-

negative this implies that Xε and Y ε are uniformly bounded.

Finally, we show that the constant Amax := max
{
α+β
γ , ‖A0‖L∞(Ω)

}
> 1 is an upper solution for

Aε. It satisfies Amax|∂Ω ≥ 0 = Aε|∂Ω, Amax|t=0 ≥ A0 = Aε|t=0 and

∂tAmax − dA∆Amax + γAmax − αXε − (α+ β)Y ε = γAmax − αXε − (α+ β)Y ε

≥ γAmax − α− β = 0,

where we used the assumption α+ β > γ in Section 3.3. �

Proposition 6. There exists a unique solution for the total biomassM, and the functions f1, f2, g1

and g2 satisfy Hypothesis (A2).
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Adding the equations for the biomass fractions X and Y leads to the prototype biofilm growth

model discussed in Section 2, for which the existence and uniqueness of solutions was shown in

[12]. Moreover, hypothesis (A2) is certainly satisfied by the function f2, and for the function f1 it

can be verified as in the proof of Proposition 3. To show the property for the functions g1 and g2

we observe that

Am1 X1 −Am2 X2 = Am1 (X1 −X2) +X2(Am1 −Am2 )

= Am1 (X1 −X2) +mX2(A1 −A2)

∫ 1

0

(sA1 + (1− s)A2)m−1ds,

which implies that

Am1 X1 −Am2 X2 ≤ C ((X1 −X2) +X2(A1 −A2)) ,

for some constant C ≥ 0 and (X1, A1), (X2, A2) in bounded subsets of R2
+. All remaining terms

can be decomposed as in the proof of Proposition 3.

Theorem 10. Let the assumptions of Proposition 5 be satisfied. Then, there exists a unique

solution of the quorum-sensing model (4), and it belongs to the class

S,A,X, Y ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ),

S, A ∈ L2((0, T );H1(Ω)),

D(M)OX,D(M)OY ∈ L2((0, T );L2(Ω;Rn)).

Proof. This is an immediate consequence of Proposition 5, Proposition 6, Theorem 5 and Theorem

6. �

6. Computer simulations

For illustration we include computer simulations of the antibiotics model (2), in the form

∂tS = dS∆S − k1
SX

k2 + S
Ω× (0,∞),

∂tB = dB∆B − ζ1BX Ω× (0,∞),

∂tX = dO · (D(M)OX) + k3
SX

k2 + S
− k4X − ζ2BX Ω× (0,∞),

∂tY = dO · (D(M)OY ) + ζ2BX Ω× (0,∞),

with M = X + Y and

D(M) =
Ma

(1−M)b

and initial and boundary data

X|∂Ω = 0, Y |∂Ω = 0, S|∂Ω = Sr, B|∂Ω = Br ∂Ω× [0,∞),

X|t=0 = X0, Y |t=0 = Y0, S|t=0 = S0, B|t=0 = B0 Ω× {0}.

The model parameters are summarized in Table 1. The method of discretization has been described

and discussed in some detail in [18, 19]. A standard Finite Volume discretization on a rectangular



ON THE WELL-POSEDNESS OF MULTICOMPONENT BIOFILM MODELS 31

grid is used for treatment of spatial terms, and a semi-implicit time integration method. In every

time step this requires the solution of one sparse linear system for each dependent variable. By

construction, the system matrices are at least weakly diagonally dominant. The Jacobi precondi-

tioned Conjugate Gradient method [24] is used for their inversion. It is implemented in Fortran

and prepared for parallel execution on GPU accelerators using OpenACC, as described in [9].

Table 1. Parameters used in the computer simulations of the growth-disinfection

model (2)

parameter symbol value units

maximum substrate uptake rate k1 95238 1/d

substrate half saturation concentration k2 4 gm3

maximum growth rate k3 6 1/d

lysis rate k4 0.4 1/d

antibiotic uptake rate ζ1 4762 1/d

relative disinfection rate ζ2 12 m3/(gd)

substrate diffusion coefficient dS 10−4 m2/d

antibiotics diffusion coefficient dB 0.15 · 10−4 m2/d

biomass motility rate d 10−12 m2/d

biofilm exponent a 4 –

biofilm exponent b 4 –

bulk substrate concentration Sr 20 g/m3

antibiotics substrate concentration Br 1 g/m3

system length L 10−3 m

We simulate the case of a biofilm without substratum, i.e. microbial flocs. We place initially five

identical spherical flocs in a square domain Ω of size L × L. One floc is placed in the center of

the domain, the other four in the centers of the quadrants. Initially, we solve the biofilm growth

model only, i.e. no antibiotics is added, the boundary concentration is kept at 0. In this case the

disinfection model reduces to the single species growth model. At a given disinfection start time ts,

the boundary antibiotics concentration is switched to 1 and the growth/disinfection model is simu-

lated. We repeat the simulation for different disinfection start times ts = 2.802, 4.002, 4.402, 4.802.

In Figure 2 we plot the following normalized lumped results:

(a) active biomass Xtotal(t) =
∫

Ω
X(t, x)dx,

(b) inactive biomass Ytotal(t) =
∫

Ω
Y (t, x)dx,

(c) amount of antibiotics Atotal(t) =
∫

Ω
A(t, x)dx, and

(d) biofilm size ω(t) =
∫
X(t)+Y (t)>0

dx.

We observe that for the smallest disinfection start time ts = 2.802 the active biomass in the system

begins to decline and eventually the biofilm is eradicated. For ts = 4.002 the active biomass first
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Figure 2. Simulation of the biofilm disinfection model for different starting times

of treatment (lumped results) and for the model without disinfection (growth only,

bold line). Shown are (a) active biomass, (b) inactive biomass, (c) antibiotics

concentration, (d) biofilm size.

remains at a plateau and then slowly decays. For the remaining larger disinfection start times

the active biomass keeps increasing even in the presence of antibiotics. In all cases the amount

of inactive biomass increases monotonically. Biofilm size increases in all cases but levels off in

the case of the smallest disinfection start time where all active biomass is killed off. The amount

of antibiotics in the system increases in the case where treatment is efficient, due to the decline

of active biomass that degrades the antibiotics. In all other cases, the antibiotics concentration

decreases, indicating that less antibiotics is used up than added.

In Figure 3 we plot for the simulation with disinfection start time ts = 4.402 for six selected time

instances the fraction of active biomass relative to the overall biomass, Z(t, x) = X(t,x)
X(t,x)+Y (t,x) ,

in the biofilm, i.e. in the region Ω1(t) = {x ∈ Ω : X(t, x) + Y (t, x) > 0}. This is a scenario

for which the treatment ultimately fails, i.e. the active biomass in the system continues growing.

Our results show, that the local efficiency of treatment is not homogeneous. In the outer colonies,

closer to substrate and antibiotic source, active biomass declines (note also the slight biomass

gradients within these colonies), whereas the colony in the centre remains strongly dominated by

active biomass, protected by the outer colonies that degrade the antibiotics. This illustrates the
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t = 4.404 t = 4.604

t = 4.804 t = 5.004

t = 5.204 t = 5.388

Figure 3. Simulation of concurrent disinfection and growth: shown is the active

biomass at different times t. Disinfection was started at t = 4.402 after a period

of growth only. Color coded is the fraction of active biomass Z = X/(X + Y ).

role of spatial structure in antibiotic treatment of biofilms. Note that also the outer colonies still

have a substantial amount of active biomass at t = 5.388.

7. Concluding Remarks

In this study we provided relatively easy to verify criteria for existence and uniqueness to solutions

to a class of multicomponent biofilm models. These generalize and expand earlier results that were

previously obtained for specific applications.



34 STEFANIE SONNER, MESSOUD A. EFENDIEV AND HERMANN J. EBERL

The existence results in the previous section are formulated assuming homogeneous Dirichlet

boundary conditions for the biomass components. This situation resembles growing biofilms with-

out substratum, which are commonly called microbial flocs. Such bacterial aggregates enclosed

in an EPS matrix are used in wastewater treatment in activated sludge systems and also occur

in natural settings [22]. Boundary conditions of mixed type are, however, often more appropriate

in applications. Typically, Dirichlet conditions are specified on some part of the boundary, while

Neumann or Robin conditions are imposed on the other parts. In particular, the substratum,

on which the biofilm grows is impermeable for all dependent variables, which is described by

homogeneous Neumann boundary values. The boundary conditions for the dissolved substrates,

which describe mechanisms of substrate replenishment and removal are rather uncritical. The

well-posedness proof carries over to these more general situations as long as homogeneous Dirich-

let conditions are imposed for the biomass fractions on one part of the boundary (for details see

Theorem 4.1, [12]). On the other hand, if homogeneous Neumann conditions are assumed for

all biomass components and constant Dirichlet conditions for the nutrient concentration, which

reflects the situation that no biomass can leave the system and nutrients are constantly added, it

was shown that the biomass density reaches the singular value in finite time (Proposition 7 and

Proposition 8, [12]).
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