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Abstract. For weak evolution models of fractional order with singularity near the origin, the joint influence
from the principal σ-Laplacian operator, degenerating part and oscillating part is of prime concern in the
discussion of regularity behavior of the solutions. We apply the sophisticated techniques from micro-
local analysis to explore the upper bound of loss of regularity. Furthermore, in order to demonstrate the
optimality of the estimates, a delicate counterexample with periodic coefficients will be constructed to show
the lower bound of loss of regularity by the application of Fourier analysis and instability arguments. This
optimality discussion develops the theory in [4][5][19][20] by combining both oscillation and degeneracy of
the coefficients.

Résumé. Pour les modèles d’évolution d’ordre fractionnaire faibles avec la singularité près de l’origine,
l’influence conjointe d’opérateur principal de σ-Laplace, partie dégénérée et partie oscillante est notre
préoccupation dans la discussion sur le comportement de la régularité des solutions. D’une part, ici nous
appliquons les techniques sophistiquées de l’analyse micro-locale à explorer la limite supérieure de la perte
de régularité. Et d’autre part, afin de démontrer l’optimalité des estimations, les contre-exemples délicats
avec coefficients périodiques seront construits pour montrer la borne inférieure de la perte de régularité
en appliquant l’analyse de Fourier et l’argument d’instabilité. Cette discussion d’optimalité développe la
théorie de [4][5][19][20] en combinant l’oscillation et la dégénérescence des coefficients.

1. Introduction

Pseudodifferential operators, especially fractional order operators (also called Riesz fractional derivatives)
are very important mathematical models which describe plenty of anomalous dynamic behaviors in our daily
life, such as charge carrier transport in amorphous semiconductors, nuclear magnetic resonance diffusometry
in percolative and porous media, transport on fractal geometries, diffusion of a scalar tracer in an array of
convection rolls, dynamics of a bead in a polymeric network, transport in viscoelastic materials, etc. More
interesting industrial applications and modeling processes please refer to [15][16][17][22].

First we recall the regularity behavior of the evolutional operator on [0, T ]× R, L = ∂2
t − λ2(t)∂2

x, where
λ(t) is the measure function of degeneracy, which is defined as follows.

• Let Λ(t) ,
R t

0
λ(τ)dτ , a measure function of degeneracy λ(t) ∈ C2 is a positive function satisfying:

λ(0) = 0, λ′(t) > 0,
λ′(t)
λ(t)

∼ λ(t)

Λ(t)
, |λ′′(t)| . λ(t)

“ λ(t)

Λ(t)

”2

.

It is worth noticing that the above model precisely generalizes the weakly hyperbolic operators with infin-
itely/finitely degenerating coefficients [1][29]. By applying the diagonalization techniques introduced in [6]
while considering the propagation of mild singularities for semi-linear weakly hyperbolic equations, we know
the fact that there exists no loss of regularity for this kind of operator.
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perte de régularité, la différence de régularité des données initiales de Cauchy, forme normale par diagonalisation, l’argument
de l’instabilité.
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In order to consider the impact of oscillation on the regularity behavior from the principal elliptic operator,
we introduced in [20] a brand-new weakly hyperbolic operator with both oscillating and degenerating coeffi-
cients on [0, T ]×R: L = ∂2

t − λ2(t)b2(t)∂2
x, where λ(t) is the measure function of degeneracy, b(t) ∈ C2(0, T ]

describes the oscillation of the principal elliptic operator near the origin 0. More precisely,

• b0 , inf
t∈(0,T ]

b(t) ≤ b(t) ≤ b1 , sup
t∈(0,T ]

b(t), b0, b1 > 0;

• |b(k)(t)| ≤ C
“

λ(t)
Λ(t)

ν(t)
”k

, C > 0, k = 1, 2, where ν(t) is a measure function of oscillation, which is

defined as a continuous and decreasing positive function on a finite time interval.

By two steps of diagonalization procedure, we have an insightful understanding of the impact from the
oscillating coefficients. Detailed description of both the loss of regularity and difference of regularity of the
initial Cauchy data are given in [20]. In previous literature [6][11][12][13][14][18][20], one mainly discussed the
wave equation with lower order terms. As a matter of fact, the finite propagation speed holds for this kind of
operator. In reality, most of the operators have infinite propagation speed, such as heat equation ut−∆u = 0,
Petrowsky equation utt + ∆2u = 0, etc. In this manuscript, the weak evolution operator of fractional order
with oscillating and degenerating coefficients, which has infinite propagation speed, is of prime concern:

(1) L = ∂2
t + A0(t,

√−∆),

where

A0(t,
√−∆) , λ2(t)b2(t)(−∆)σ,

with σ > 1 and (−∆)σ defined on the torus TN . In this model, we call A0(t,
√−∆) the principal part in the

sense of Petrowsky. One typical example of the coefficients on the principal part is b(t) = 2+sin
`
(log(1/t))κ

´
,

κ ∈ (1,∞), which satisfies the assumptions with ν(t) = (log(1/t))κ−1. Up to now, there is still no complete
conclusion about Levi-condition with oscillation [12]. However, the theory of pseudodifferential operators as-
sures the existence and uniqueness of the solution for the Cauchy problem of (1). As an important application
of this model, actually, through Nirenberg’s transformation v = 1 − exp(−u), the problem of the semi-linear
Cauchy problem utt − a2(t)∆u = u2

t − a2(t)|∇u|2 can be turned into the linear problem vtt − a2(t)∆v = 0.
More discussion in this respect please refer to [8]. In the following, we explore carefully the joint influence
upon the regularity behavior of (1) from both oscillation and degeneracy of the principal elliptic operator
A0(t,

√−∆).

Under the above assumptions of λ(t) and b(t), one has the following regularity statement:

Theorem 1.1. Let us consider the Cauchy problem of model (1) on [0, T ]× TN ,

(2) L u = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

If the initial Cauchy data satisfy

u0 ∈ Hs(TN ), u1 ∈ 1

Λ−1
“

2P1

(
√

1−∆)σ

”Hs(TN ),

where P1 ∈ N+ is a fixed constant and the Sobolev index s is sufficiently large, then there exists a unique
solution u in the following function spaces:

u ∈ C
“
[0, T ], exp

“
Cαν

““Λ

ν

”−1“ 2P2

(
√

1−∆)σ

”””
Hs(TN )

”
,

ut ∈ C
“
[0, T ], exp

“
Cαν

““Λ

ν

”−1“ 2P2

(
√

1−∆)σ

”””
Hs−σ(TN )

”
;

where Cα ∈ R+ and P2 ∈ N+ are fixed constants. In this theorem, Λ−1 and
“

Λ
ν

”−1

denote respectively the

corresponding inverse functions. In fact, according to the monotonicity of λ(t) and ν(t), both inverse functions
are well-defined.

Proof. Similar as in [20], the above theorem can be proved by applying comparison lemma and two steps of
diagonalization procedure. Here we do not go to details. Interested readers please refer to [16][17]. Q. E.
D. ¤
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In the following, we give some typical examples to explain the different influence from various kinds of
degenerating and oscillating coefficients. First we consider the influence of degenerating coefficients for the
Cauchy problem

(3) utt + λ2(t)(−∆)σu = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

According to Theorem 1.1, one has

• λ(t) = 1

log[n] 1
t

, n ≥ 1, (Logarithmically degenerating coefficient)

(u0, u1) ∈
“
Hs × 1

Λ−1
“

2P1

(
√

1−∆)σ

”Hs
”
⇒ u ∈ C([0, T ], Hs)

\
C1([0, T ], Hs−σ),

where Λ(t) = O( t

log[n] 1
t

);

• λ(t) = t`, ` ≥ 1, (Finitely degenerating coefficient)

(u0, u1) ∈
“
Hs ×Hs− σ

`+1

”
⇒ u ∈ C([0, T ], Hs)

\
C1([0, T ], Hs−σ);

• λ(t) = 1
t2

exp(− 1
t
), (Infinitely degenerating coefficient)

(u0, u1) ∈
“
Hs × σ log(

√
1−∆)Hs

”
⇒ u ∈ C([0, T ], Hs)

\
C1([0, T ], Hs−σ);

• λ(t) = d
dt

exp
“
− exp[n]

“
1
t

””
, n ≥ 1, (Super infinitely degenerating coefficient)

(u0, u1) ∈
“
Hs × log[n]+1(

√
1−∆)σHs

”
⇒ u ∈ C([0, T ], Hs)

\
C1([0, T ], Hs−σ).

Next we show the influence of oscillating coefficients for the Cauchy problem

utt + λ2(t)b2(t)(−∆)σu = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Suppose that the initial Cauchy data satisfy

(u0, u1) ∈
“
Hs × 1

Λ−1
“

2P1

(
√

1−∆)σ

”Hs
”
,

then according to Theorem 1.1, we have: (Cα ∈ R+)

• No loss of derivatives, ν(t) ∼ 1,

u ∈ C([0, T ], Hs), ut ∈ C([0, T ], Hs−σ);

• Finite loss of derivatives, ν(t) = log 1
Λ(t)

,

u ∈ C([0, T ], (
√

1−∆)σCαHs), ut ∈ C([0, T ], (
√

1−∆)σCαHs−σ);

• Arbitrarily small loss of derivatives, ν(t) =
“

log 1
Λ(t)

”γ

, γ ∈ (0, 1),

u ∈ C
“
[0, T ], (

√
1−∆)

σCα

“
log

(
√

1−∆)σ

2P2

”γ−1

Hs
”
,

ut ∈ C
“
[0, T ], (

√
1−∆)

σCα

“
log

(
√

1−∆)σ

2P2

”γ−1

Hs−σ
”
;

• Infinite loss of derivatives,

ν(t) =
“

log 1
Λ(t)

”“
log[2] 1

Λ(t)

”γ2 · · ·
“

log[n] 1
Λ(t)

”γn

, γi ∈ (0, 1], i = 2, · · · , n

u ∈ C
“
[0, T ], (

√
1−∆)

σCα

“
log[2] (

√
1−∆)σ

2P2

”γ2
···
“

log[n] (
√

1−∆)σ

2P2

”γn

Hs
”
,

ut ∈ C
“
[0, T ], (

√
1−∆)

σCα

“
log[2] (

√
1−∆)σ

2P2

”γ2
···
“

log[n] (
√

1−∆)σ

2P2

”γn

Hs−σ
”
.
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We call all the above losses incurred by the oscillation measure function ν-loss of derivatives. In the following,
we construct a delicate counterexample to demonstrate the existence of ν-loss when the infinite propagation
speed appears. Related topics please refer to [2][3][4][11][13][14][24].

Let us consider the following Cauchy problem on [0, T ]× T
(4) ∂2

t u + λ2(t)b2(t)(−∂2
x)σu = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x),

with 2π-periodic initial Cauchy data u0, u1. Actually, on the torus TN , one can apply the same procedure.

Definition 1.2. For a 2π-periodic solution u = u(t, x) in the x-variable, we introduce the homogeneous energy

(5) Ės(u)(t) , λ2(t)‖u(t, ·)‖2Ḣs(T) + ‖∂tu(t, ·)‖2Ḣs−σ(T), s > σ,

where Ḣs(T) denotes the homogeneous Sobolev space of exponent s on the torus T = R/2πZ.

Actually, Theorem 1.1. indicates the following conclusion which shows at most a ν-loss.

Corollary 1.3. Let us consider a family of Cauchy problems on [0, T ]× T,

(6) ∂2
t uk + λ2(t)b2

k(t)(−∂2
x)σuk = 0, uk(0, x) = uk

0(x), ∂tu
k(0) = uk

1(x).

Define µ(s) as Λ(s)/ν(s) and {bk}k satisfy all the assumptions in Theorem 1.3. with constants independent
of k. If the initial Cauchy data satisfy

uk
0 ∈ Hs(T), uk

1 ∈ 1

Λ−1
“

2P1

(
√

1−∆)σ

”Hs(T),

where P1 ∈ N+ is a fixed constant, then there exists a unique solution uk in the following function spaces:

uk ∈ C
“
[0, T ]; exp

“
Cαν(µ−1(2P2/(

√
1−∆)σ)

”
Hs(T)

”
,

uk
t ∈ C

“
[0, T ]; exp

“
Cαν(µ−1(2P2/(

√
1−∆)σ))

”
Hs−σ(T)

”
,

with positive constants Cα and P2 ∈ N+ is a fixed constant. Moreover, µ−1 denotes the inverse function of µ.

Now we are ready to introduce the main theorem of this paper, which shows that the ν-loss of derivatives
really appears. For convenience’s sake, we only prove the the case for homogeneous energy. Similarly, one can
define the non-homogeneous energy as

(7) Es(u)(t) , λ2(t)‖u(t, ·)‖2Hs(T) + ‖∂tu(t, ·)‖2Hs−σ(T), s > σ,

where Hs(T) denotes the standard Sobolev space of exponent s on the torus T = R/2πZ. And the result also
holds for the inhomogeneous energy case. This will be explained during the proof.

Theorem 1.4. For the Cauchy problem (4), there exists

• a sequence of coefficients {bk(t)}k satisfying all assumptions of Theorem 1.1 with constants indepen-
dent of k;

• a sequence of initial Cauchy data {(uk
0(x), uk

1(x))}k ∈ Ḣs(T)× 1

Λ−1

“
2P1

(
√

1−∆)σ

” Ḣs(T);

such that the sequence of corresponding solutions {uk(t, x)}k from C∞([0, T ]× T) satisfies

(8) sup
k
Ėσ(uk)(0) ≤ C(ε),

(9) sup
k
Ėσ(exp(−c1(ε)ν(µ−1(2P2/(

√
1−∆)σ)))uk)(t) = +∞, for any t ∈ (0, T ],

where C(ε) and c1(ε) depending on the sufficiently small positive constant ε.

The rest of the paper is organized as follows. Section 2 is a brief introduction of pseudodifferential operators
on the torus. In Section 3, we discuss the optimality of the statement for general σ > 1 on the torus T by the
application of instability argument, which develops the discussion in [5] by adding degenerating coefficients.
This is an important complement of the discussion in [26] for σ ∈ (0, 1], in which case, the finite propagation
speed holds.
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2. Prerequisite: A brief review of PDOs on the torus

In this section we mainly recall the pseudodifferential operators (PDOs) defined on the torus TN , which
is a typical compact smooth manifold without boundary. The discussion can be applied to general Laplace-
Beltrami operators successfully, such as on the sphere SN , etc. First and foremost, we give the precise definition
of PDOs on the torus.

Definition 2.1. On the torus TN , let u ∈ C∞(TN ), then the sequence of Fourier series {û(m)}m∈ZN defined
by

(10) û(m) , (2π)−N

Z

TN

u(x) exp(−i〈m, x〉)dx,

is a rapidly decreasing sequence.([25]) By duality, we may produce an extension to the periodic distributions:

F : D ′(TN ) → S ′(ZN ), F−1 : S ′(ZN ) → D ′(TN ).

With the Fourier transform, we define a generalized linear pseudodifferential operator

F (
√−∆) : D(F (

√−∆)) ⊂ L2(TN ) → L2(TN )

as

(11) F (
√−∆)u(x) ,

X

m∈ZN

F (|m|)Fu(m) exp(i〈m, x〉).

The sequence {F (|m|) : m ∈ ZN} is referred to as the torus symbol of F (
√−∆), which is also a polynomially

bounded sequence. Furthermore, when F = |x|s, then one has the homogeneous Sobolev space Ḣs(TN ). While

when F = (1 + |x|2) s
2 , one has the inhomogeneous Sobolev space Hs(TN ).

Lemma 2.2. The RHS of (11) converges in the distributional sense. Moreover, when F is a real-valued
functional, then the operator F (

√−∆) in Definition 2.1 is a self-adjoint operator.

Proof. (I) Actually, in Definition 2.1, F
“√−∆

”
is defined in the distributional sense. Indeed, for ∀η ∈ D(TN ),

since −∆(D(TN )) = D(TN ), then there exists a unique ηk ∈ D(TN ) such that −∆ · · · −∆| {z }
k

η = ηk for each

k ∈ N. As a result,
“

exp(i〈m, x〉), ηk

”
L2(TN )

=
“

exp(i〈m, x〉),−∆ · · · −∆| {z }
k

η
”

L2(TN )

=
“
−∆exp(i〈m, x〉),−∆ · · · −∆| {z }

k−1

η
”

L2(TN )

= |m|2
“

exp(i〈m, x〉),−∆ · · · −∆| {z }
k−1

η
”

L2(TN )

= |m|2k
“

exp(i〈m, x〉), η
”

L2(TN )
.

Hölder’s inequality tells that

|(exp(i〈m, x〉), ηk)L2(TN )| ≤ ‖ exp(i〈m, x〉)‖L2(TN )‖ηk‖L2 =

sZ

TN

1dx‖ηk‖L2(TN ).

As a result, {|(exp(i〈m, x〉), η)L2(TN )|}m is a rapidly decreasing sequence w. r. p. to m. On the other hand,

{û(m)}m is a polynomially bounded sequence w. r. p. to m. Since F is also a polynomially bounded function,
consequently, the series on the RHS converges. i.e.

X

m∈ZN

F (|m|)Fu(m)(exp(i〈m, x〉), η)L2(TN ) < ∞.
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(II) Let u, v ∈ D(F (
√−∆)), then apply Definition 2.1, and one has

(F (
√−∆)u, v)L2(TN ) =

“ X

m∈ZN

F (|m|)Fu(m) exp(i〈m, x〉),
X

n∈ZN

Fv(n) exp(i〈n, x〉)
”

L2(TN )

=
X

m∈ZN

“
F (|m|)Fu(m) exp(i〈m, x〉),Fv(m) exp(i〈m, x〉)

”
L2(TN )

=
“ X

m∈ZN

Fu(m) exp(i〈m, x〉),
X

n∈ZN

F (|n|)Fv(n) exp(i〈n, x〉)
”

L2(TN )

= (u, F (
√−∆)v)L2(TN ).

Q. E. D. ¤

Remark 2.3. As a matter of fact, the spectrum of Laplace-Beltrami operator ∆T on the torus TN is
{0,−12,−22,−32, · · · }. And the associated orthonormal basis for L2(TN ) is

n“Z

TN

1dx
”− 1

2
exp(i〈m, x〉) : |m| = 0, 1, 2, 3, · · ·

o
.

And in contrast, the spectrum of Laplace-Beltrami operator ∆S on the unit sphere SN is

{λk = −k(k + N − 1), k = 0, 1, 2, · · · }.
Applying Definition 2.1. of the pseudodifferential operator

√−∂2
x on the compact manifold T, we obtain

the following lemma.

Lemma 2.4. For a ∈ Z, x ∈ T and a continuous function F : R→ R, one has

F (
p
−∂2

x) exp(i|a|x) = F (|a|) exp(i|a|x).

Proof. For u(x) = exp(i|a|x), a ∈ Z, the Fourier series expansion is

u(x) =
X

k∈Z
û(k) exp(ikx),

where

û(k) = (2π)−1

Z

T
u(x) exp(−ikx)dx =


1, k = |a|;
0, k 6= |a|.

Then apply the definition of pseudodifferential operators on the compact manifold T, and we have

F (
p
−∂2

x) exp(i|a|x) =
X

k∈Z
û(k)F (|k|) exp(ikx) = F (|a|) exp(i|a|x).

The statement is proved. Q. E. D. ¤

3. Proof of Theorem 1.4.

First we introduce some auxiliary functions and sequences.

Definition 3.1. For a sufficiently small ε > 0, we define:

wε(t) , sin t exp(2ε

Z t

0

ψ(τ) sin2 τdτ),

aε(t) , 1− 4εψ(t) sin(2t)− 2εψ′(t) sin2 t− 4ε2ψ2(t) sin4 t,

where the real-valued non-negative smooth function ψ is 2π-periodic on R and identically 0 in a neighborhood
of 0. And assume that ψ satisfies Z 2π

0

ψ(τ) sin2(τ)dτ = π.

It is easy to verify the following fact after simple calculation.

Lemma 3.2. According to Definition 3.1, aε ∈ C∞(R) and wε ∈ C∞(R). Particularly, wε is the unique
solution of the following ordinary differential equation with initial data

∂2
t wε(t) + aε(t)wε(t) = 0, wε(0) = 0, ∂twε(0) = 1.
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Definition 3.3. Define

{ρk}k ,
n

2−P2+2π
Λ(tk)

λ(tk)

[ν(tk)]

ν(tk)

o
k
,

{hk}k ,
n

2P2ν(tk)
λ(tk)

Λ(tk)

o
k
,

{δk}k ,
n

λ(tk)
o

k
,

where {tk}k is a zero sequence satisfying

“
2P2ν(tk)/Λ(tk)

” 1
σ ∈ N+,

for each k ∈ N. [a] represents the integer part of a.

Definition 3.4. In addition, we introduce two time-sequences:

{t′k} , {tk + ρk}k

and

{t′′k} , {tk − ρk}k,

and accordingly, one defines three time intervals Ik, I ′k and I ′′k ,

Ik ,
h
tk − ρk

2
, tk +

ρk

2

i
,

I ′k ,
h
t′k − ρk

2
, t′k +

ρk

2

i
,

I ′′k ,
h
t′′k − ρk

2
, t′′k +

ρk

2

i
.

Remark 3.5. {Ik}k is called sequence of oscillation intervals, {I ′k}k is sequence of right buffer intervals, and
{I ′′k }k is sequence of left buffer intervals.

Remark 3.6. It is easy to see that the sequences {tk}k, {ρk}k, tend to 0, while the sequence {hk}k tends to

+∞. Such choice of ρk guarantees that Ik is contained in (0, T ]. Furthermore, hkρk/(4π), (hk/δk)
1
σ ∈ N+.

We divide our proof of Theorem 1.4. into three steps.

Step 1: Construction of a sequence of oscillating coefficients

Define a monotonously increasing function µ ∈ C∞(R) as

µ(x) ,


0, x ∈ (−∞,− 1
3
];

1, x ∈ [ 1
3
, +∞).

Now we introduce a family of coefficients {ak = ak(t)}k:

ak(t) ,

8
>>>>>>>>>><
>>>>>>>>>>:

λ2(t), t ∈ [0, T ] \ (I ′k ∪ Ik ∪ I ′′k );

δ2
kaε(hk(t− tk)), t ∈ Ik;

δ2
k

“
1− µ

“
t−t′k
ρk

””
+ λ2(t)µ

“
t−t′k
ρk

”
, t ∈ I ′k;

δ2
kµ
“

t−t′′k
ρk

”
+ λ2(t)

“
1− µ

“
t−t′′k

ρk

””
, t ∈ I ′′k .

Consequently, the oscillating part {bk(t)}k is

b2
k(t) ,

8
>>>>>>>>>>><
>>>>>>>>>>>:

1, t ∈ [0, T ] \ (I ′k ∪ Ik ∪ I ′′k );

δ2
k

λ2(t)
aε(hk(t− tk)), t ∈ Ik;

δ2
k

λ2(t)

“
1− µ

“
t−t′k
ρk

””
+ µ

“
t−t′k
ρk

”
, t ∈ I ′k;

δ2
k

λ2(t)
µ
“

t−t′′k
ρk

”
+
“
1− µ

“
t−t′′k

ρk

””
, t ∈ I ′′k .
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In addition, we suppose

d+
0 ≤ inf

k

λ(tk)

λ(tk + ρk)
≤ sup

k

λ(tk)

λ(tk + ρk)
≤ d+

1 ,

d−0 ≤ inf
k

λ(tk)

λ(tk − ρk)
≤ sup

k

λ(tk)

λ(tk − ρk)
≤ d−1 ,

where d+
1 , d−1 , d+

2 and d−2 are all positive constants. Actually, when P2 is sufficiently large, then tk is always
the dominating part. Interested readers can verify this fact with specific finitely or infinitely degenerating
coefficients. Simple calculations lead to

0 < b0 ≤ inf
t∈(0,T ]

bk(t) ≤ sup
t∈(0,T ]

bk(t) ≤ b1 < ∞,

where b0 and b1 are independent of k. Moreover, in the interval Ik

S
I ′k
S

I ′′k , one has

|b′k(t)| ≤ C
λ(t)ν(t)

Λ(t)
; |b′′k(t)| ≤ C

“λ(t)ν(t)

Λ(t)

”2

,

where C is independent of k.

Step 2: Construction of auxiliary functions

Next we study the family of Cauchy problems in [tk − ρk/2, tk + ρk/2]× T,

(12) ∂2
t uk + δ2

kaε(hk(t− tk))(−∂2
x)σuk = 0, uk(tk, x) = 0, ∂tu

k(tk, x) = uk
1(x).

Let the initial Cauchy data be

uk
1(x) = exp

“
i
“hk

δk

” 1
σ

x
”

and apply the coordinate transform

s = hk(t− tk).

At the same time, define

vk(s, x) , uk(t(s), x),

then for s ∈ [−hkρk/2, hkρk/2], one has

(13) ∂2
svk + δ2

kh−2
k aε(s)(−∂2

x)σvk = 0, vk(0, x) = 0, ∂sv
k(0, x) = uk

1(x)/hk.

As a matter of fact, when we take Lemma 3.2. into account, then we have a unique solution for (13) in the
form of

vk(s, x) = h−1
k uk

1(x)wε(s).

Transforming back to uk(t, x), we arrive at

uk(t, x) = h−1
k exp

“
i
“hk

δk

” 1
σ
x
”
wε(hk(t− tk))

in Ik. Further calculations lead to

(14)

uk
`
tk − ρk/2, x

´
= 0, ∂tu

k
`
tk − ρk/2, x

´
= exp

`
i
“

hk
δk

” 1
σ
x
´
exp(−ερkhk/2),

uk
`
tk + ρk/2, x

´
= 0, ∂tu

k
`
tk + ρk/2, x

´
= exp

`
i
“

hk
δk

” 1
σ
x
´
exp(ερkhk/2).

Step 3: Existence of ν-loss of regularity

Now we introduce an energy-increasing property in the sense of pseudo-differential operators.

Lemma 3.7. For the Cauchy problem with (t, x) ∈ R× T,

(15) ∂2
t u + z2(t)(−∂2

x)σu = 0, u(t0, x) = 0, ∂tu(t0, x) = c exp(i|a|x),

with σ > 0, c ∈ R and a ∈ Z. If z(t) is non-negative and zt(t) ≥ 0, then the homogeneous energy increases,
that is,

Ės(u)(t) ≥ Ės(u)(t0).
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Proof. In effect, we have the following explicit representation of the unique solution by virtue of separation of
variables:

u(t, x) = cy(t) exp(i|a|x),

where y(t) satisfies the ordinary differential equation:

ytt + |a|2σz2(t)y = 0, y(t0) = 0, yt(t0) = 1.

By applying the definition of homogeneous Sobolev spaces Ḣs(T), s ∈ R, we calculate the homogeneous energy
for the solution u = u(t, x). It holds by applying Lemma 2.4.

∂
∂t
Ės(u)(t) = ∂

∂t

“
‖u(t, ·)‖2

Ḣs(T) + ‖∂tu(t, ·)‖2
Ḣs−σ(T)

”

= ∂
∂t

“X

k∈Z
|û(t, k)|2|k|2s +

X

k∈Z
|∂tû(t, k)|2|k|2(s−σ)

”

= ∂
∂t

“
c2z2(t)y2(t)|a|2s + c2y2

t |a|2(s−σ)
”

= 2c2
“
zzty

2|a|2s + z2yyt|a|2s + ytytt|a|2(sσ)
”

= 2c2zzty
2|a|2s ≥ 0.

Q. E. D. ¤

From the definition of ak(t), it is easy to verify that ak(t) is monotonously increasing and differentiable in
the intervals except for Ik. Therefore, according to Lemma 3.7, one has

Ėσ(uk)(t) ≤ exp(−ερkhk), for t ∈ [0, tk − ρk/2];(16)

Ėσ(uk)(t) ≥ exp(ερkhk), for t ∈ [tk + ρk/2, T ].(17)

It is clear that (8) can be deduced immediately from (16). While for t = tk + ρk/2, we apply Lemma 2.4. and
obtain

Ėσ(exp(−c1ν(µ−1(2P2/(
√

1−∆)σ)))uk)(t)

= Ėσ(exp(−c1ν(µ−1(2P2δk/hk)))uk)(t)

= exp(−2c1ν(µ−1(2P2δk/hk)))Ėσ(uk)(t)

= exp(−2c1ν(µ−1(2P2δk/hk)) + ερkhk)

= exp(−2c1ν(tk) + ερkhk).

Taking into account the choice of ρk, hk, we can choose a sufficiently small c1(ε) independent of k such that (9)

holds. This concludes the proof. Similarly, as for the non-homogeneous energy Es(u)(t) , λ2(t)‖u(t, ·)‖2Hs(T)+

‖∂tu(t, ·)‖2Hs−σ(T), s > σ, once we notice the fact (14), it is easy to check that, (8) and (9) also hold for the

non-homogeneous energy Eσ(u)(t).
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