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Abstract. This paper is devoted to study the cost of the null controllability for the Stokes
system. Using the control transmutation method we show that the cost of driving the Stokes
system to rest at time T is of order eC/T when T −→ 0+, i.e., the same order of controllability
as for the heat equation. For this to be possible, we are led to prove a new exact controllability
result for a hyperbolic system with a resistance term, which will be done under assumptions on
the control region.

1. Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded connected open set, whose boundary ∂Ω is regular enough.
Let T > 0 and let ω be a nonempty subset of Ω which will usually be referred to as a control
domain. We will use the notation Q := Ω× (0, T ) and Σ := ∂Ω× (0, T ) and we will denote by
ν(x) the outward normal to Ω at the point x ∈ ∂Ω.

Given u0 ∈ L2(Ω), it is well-known (see [4, 5]) that there exists f ∈ L2(ω × (0, T )) such that
the associated solution v to the heat equation∣∣∣∣∣∣

vt −∆v = f1ω in Q,
v = 0 on Σ,
v(0) = v0 in Ω

(1.1)

satisfies:
v(T ) = 0. (1.2)

In other words, the heat equation is null controllable for any control domain and any initial data
v0 ∈ L2(Ω). Moreover, one also has the following estimate:

||f1ω||L2(Q) ≤ Ch||v0||L2(Ω), (1.3)

for a constant Ch, the cost of controllability for the heat equation, of the form eC(Ω,ω)(1+1/T ),
i.e., the heat equation has a cost of controllability of order eC/T as T −→ 0+.

As pointed out in [1] (see also [2, 11, 12, 17]), the main reason for the form of the constant
Ch in (1.3) is due to the fact that the fundamental solution of the heat equation in RN is given
by

Φ(x, t) =
1

(4πt)N/2
e−
|x|2
4t . (1.4)
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As in the case of the heat equation, if one now considers the Stokes system∣∣∣∣∣∣∣∣
yt −∆y +∇p = g1ω in Q,
div y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(1.5)

it is also well-known (see, for instance, [3]) that, given y0 ∈ L2(Ω) with div y0 = 0, there exists
g ∈ L2(ω × (0, T )) such that the associated solution y0 of (1.5) satisfies:

y(T ) = 0.

Nevertheless, unlike the case of the heat equation, for the Stokes system, the known results in
the literature (see, for instance, [3]) give

||g1ω||L2(Q) ≤ CS ||y0||L2(Ω), (1.6)

for a constant CS , the cost of controllability for the Stokes system, of the form eC(Ω,ω)(1+1/T 4),

i.e., the Stokes system has a cost of controllability at most of order eC/T
4

as T −→ 0+.
Since the fundamental solutions of the heat equation and the Stokes system have, at least for

N = 2, 3, the same behavior in time (see [6, 7, 15]), looking to (1.3) and (1.6), the following
natural question arises:

Question 1.1. Do the costs of the controllability for the heat equation and the Stokes system
have the same order in time as T −→ 0+?

When trying to answer Question 1.1, the first attempt is to analyze the different ways one
can prove (1.3) and (1.6). In fact, there are at least two different ways one can prove (1.3). The
first one is based on spectral decompositions, the so-called Lebeau-Robbiano strategy (see [8]),
the second one is based on the use of Carleman inequalities (see [4, 5]). For the Stokes system,
since one must deal with the pressure, it seems that a Lebeau-Robbiano strategy is very difficult
to prove and, as far as we know, it has not been proved yet to hold. Consequently, the most
known method used to prove (1.6) is based on Carleman inequalities (see [3]).

The main difference when proving (1.3) and (1.6) by means of Carleman inequalities are the
weights one must use. Indeed, for the heat equation the weights used are of the form

ρ(t) =
eC/(t(T−t))

t(T − t)
, (1.7)

while for the Stokes system the weights take the form

ρ(t) =
eC/(t

4(T−t)4)

t4(T − t)4
. (1.8)

If we were able to use weights as (1.7) for the Stokes system then the two equations would
have costs of controllability of same order. However, a careful analysis in both proofs indicates
that the obstruction to have weights of the form (1.7) for the Stokes system is due to the pressure
term and that, probably, it is of purely technical nature.

The main objective of this paper is to show that, at least for good geometries, the heat and
the Stokes system have costs of controllability of same order as the time goes to zero. Our
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strategy will not be based on the use of Carleman inequalities but rather on the application of
the Control Transmutation Method (CTM).

In order to use the CTM, we are led to study the null controllability of the following hyperbolic
system with a pressure term: ∣∣∣∣∣∣∣∣

utt −∆u+∇p = h1ω in Q,
div u = 0 in Q,
u = 0 on Σ,
u(0) = u0, ut(0) = u1 in Ω.

(1.9)

The idea is as follows. If one can show that system (1.9) is null controllable, then the CTM
can be applied to guarantee the null controllability of the Stokes system (1.5). Moreover, if the
cost of controlling (1.9) is known, then the cost of the controllability for (1.5) can be obtained
explicitly (see [11]).

It is important to mention that systems like (1.9) are simple models of dynamical elasticity
for incompressible materials. They also appear in coupled elasto-thermicity problems where one
of the coupling parameters (related to compressibility properties) tends to infinity (see [10]).

Concerning the controllability of (1.9), as far as we know, the only result available in the
literature is [13]. There, the author shows the exact controllability of (1.9) when the control is
acting on a part of the boundary. However, it seems that no controllability results are known
when the control is acting internally, i.e., acting on a part of the domain. The main reason for
that seems to be the fact that system (1.9) is not of Cauchy-Kowalewski type, which makes
impossible to use directly Holgrem’s Theorem as in the case of the wave equation.

This paper is organized as follows. In section 2, we prove that, for regular initial data, system
(1.5) has the a cost of controllability of the same order of the one for the heat equation. In
section 3, we consider less regular data and improve the results of section 2. Section 4 is devoted
to prove the internal null controllability of system (1.9).

2. The Stokes system with regular initial data

In this section, we prove that if the initial data is regular enough then the Stokes system (1.5)

is null controllable with a cost of order eC/T as T −→ 0+. Our proof is based on the Control
Transmutation Method in the spirit of [11] and a null controllability result for system (1.9).

We assume that Ω is star-shaped with respect to the origin, i.e., there exists γ > 0 such that

x · ν(x) ≥ γ > 0, ∀x ∈ ∂Ω.

and we define

R0 = max{|m(x)|, x ∈ Ω̄}. (2.1)

Our control region ω will be a nonempty subset of Ω satisfying

∃O ⊂ RN ,O being a neighborhood of ∂Ω and ω = Ω ∩ O. (2.2)

We also define the following usual spaces in the context of fluid mechanics:

V = {v ∈ C∞0 (Ω); div v = 0},

V = V
H1

0 (Ω)N
= {u ∈ H1

0 (Ω)N ; div u = 0},
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H = V
L2(Ω)N

= {u ∈ L2(Ω)N ; div u = 0, u · ν = 0 on ∂Ω}.
The main result of this section is stated as follows.

Theorem 2.1. Assume ω satisfies (2.2), y0 ∈ V and let 0 < T ≤ 1. Then there exists a control
g ∈ L2(ω × (0, T )) such that the solution y of (1.5) satisfies:

y(T ) = 0.

Moreover, there exist positive constants C1 and C2, depending only on Ω and ω, such that∫∫
ω×(0,T )

|g|2dxdt ≤ C1e
C2/T ||y0||2V . (2.3)

Proof of Theorem 2.1. For the proof of Theorem 2.1, we need the following results.

Theorem 2.2. Assume ω satisfies (2.2). Then there exists T0 > 0 such that, for any T > T0

and any (u0, u1) ∈ V ×H, we can find a control h ∈ L2(0, T ;H) such that the associated solution
u of (1.9) satisfies:

u(T ) = ut(T ) = 0.

Moreover, there exists C > 0 such that∫∫
ω×(0,T )

|h|2dxdt ≤ C
(
||u0||2V + |u1|2H

)
. (2.4)

Lemma 2.3. There exists a positive constant α∗ such that, for all α > α∗, there exists γ > 0
having the property that, for all L > 0 and T ∈ (0, inf(π/2, L)2], there exists a distribution
k ∈ C([0, T ];M(−L,L)) satisfying∣∣∣∣∣∣∣∣

kt = ∂2
sk in D′((0, T )× (−L,L)),

k(0, x) = δ(0),
k(T, x) = 0,

||k||2L2((0,T )×(−L,L)) ≤ γe
αL2/T .

(2.5)

We prove Theorem 2.2 in section 4. A proof of Lemma 2.3 can be found in [11].
Let us now introduce two different time intervals (0, T ) and (0, L) and consider the two systems∣∣∣∣∣∣∣∣

yt −∆y +∇p = g1ω in Qt := Ω× (0, T ),
div y = 0 in Qt,
y = 0 on Σt := ∂Ω× (0, T ),
y(0) = y0 in Ω

(2.6)

and ∣∣∣∣∣∣∣∣
ull −∆u+∇q = h1ω in Ql := Ω× (0, L),
div u = 0 in Ql,
u = 0 on Σl := ∂Ω× (0, L),
u(0) = y0, ul(0) = 0 in Ω

(2.7)

in Ω× (0, T ) and Ω× (0, L), respectively. Here, l plays the role of a pseudo-timevariable.

Taking L > T0, where T0 is the minimal time of Theorem 2.2, it follows from Theorem 2.2
that the system (2.7) is null controllable, with a control h ∈ L2(ω × (0, L)) satisfying (2.4).
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Next, we extend k by zero outside [0, T ] × (−L,L), u and h by reflection to [−L, 0] and by
zero outside [−L,L] and set

y(t) =

∫
k(t, s)u(s)ds (2.8)

and

g(t) =

∫
k(t, s)h(s)ds. (2.9)

From (2.5), we see that

y(0) = y0 and y(T ) = 0

and from (2.4) and (2.5)4, we have that∫∫
ω×(0,T )

|g|2dxdt ≤ CγeαL2/T ||y0||2V .

We finish the proof showing that the pair (y, g) solves, together with some p, the Stokes
system (2.6).

First, it is not difficult to see that

div y = 0 in Qt and y = 0 on Σt.

Now, for any ϕ ∈ V , we have

< y(t), ϕ >H=<

∫
k(t, s)u(s)ds, ϕ >H ,

which implies

< yt(t), ϕ >H=<

∫
kt(t, s)u(s)ds, ϕ >H .

Using the properties of k, we see that

< yt(t), ϕ >H=<

∫
kss(t, s)u(s)ds, ϕ >H .

Integrating by parts, and using the fact that u(−L) = u(L) = ul(−L) = ul(L) = 0, we obtain

< yt(t), ϕ >H=<

∫
k(t, s)uss(s)ds, ϕ >H ds,

i.e.,

< yt(t), ϕ >H=

∫
k(t, s) < uss(s), ϕ >H ds.

Since u is, together with some q, solution of (2.7), we have

< yt(t), ϕ >H=

∫
k(t, s) < ∆u(s) + h1ω, ϕ >H ds.

Therefore,

< yt(t), ϕ >H=<

∫
k(t, s)∆u(s)ds, ϕ >H + <

∫
k(t, s)h1ωds, ϕ >H .
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This last identity gives

< yt(t)−∆y(t), ϕ >H=< g(t)1ω, ϕ >H , (2.10)

and the proof is finished. �

3. The Stokes system with less regular data

In this section we improve the result obtained in section 2. Indeed, we prove that we can
take less regular initial data and still have null controllability for the Stokes system with a
cost of order eC/T as T −→ 0+. In order to show the result, we combine Theorem 2.1, energy
inequalities and the smoothing effect of the Stokes system.

The result is as follows.

Theorem 3.1. Assume ω satisfies (2.2), y0 ∈ H and let 0 < T ≤ 1. Then there exists a control
g ∈ L2(ω × (0, T )) such that the solution y of (1.5) satisfies:

y(T ) = 0.

Moreover, there exist positive constants C1 and C2, depending only on Ω and ω, such that∫∫
ω×(0,T )

|g|2dxdt ≤ C1e
C2/T |y0|2H . (3.1)

Proof. We begin choosing ε > 0 small enough and letting system (2.6) evolve freely in the
interval (0, ε). From the smoothing effect of the Stokes system, we have that y(ε) = yε belongs
to V . We also have, thanks to Theorem 2.1, that there exists g ∈ L2(ω × (0, T − ε)) such that
the associated solution y to the problem∣∣∣∣∣∣∣∣

yt −∆y +∇p = gχω in (0, T − ε)× Ω,
div y = 0 in (0, T − ε)× Ω,
y = 0 on (0, T − ε)× ∂Ω,
y(0) = yε in Ω,

(3.2)

satisfies
y(T − ε) = 0.

Moreover, ∫ T−ε

0

∫
ω
|g|2dxdt ≤ CγeαL2/T ||yε||2V . (3.3)

Let us now define the functions y and g by y(t+ ε) = y(t), g(t+ ε) = g(t) for 0 < t < T − ε.
The functions y and g are defined in (ε, T ) and satisfy∣∣∣∣∣∣∣∣

yt −∆y +∇p = gχω in (ε, T )× Ω,
div y = 0 in (ε, T )× Ω,
y = 0 on (ε, T )× ∂Ω,
y(ε) = yε in Ω.

(3.4)

Inequality (3.3) then becomes ∫ T

ε

∫
ω
|g|2dxdt ≤ CγeαL2/T ||yε||2V . (3.5)
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Next, we set

g(t) =

{
0; if 0 < t < ε,

g(t); if ε ≤ t < T.

It is not difficult to see that the solution y of (2.6), with g as a control, fulfils y(T ) = 0. From
(3.5), and the definition of g, we have the following estimate∫ T

0

∫
ω
|g|2dxdt ≤ CγeαL2/T ||yε||2V . (3.6)

Let us now consider system (2.6) in the interval [0, ε], i.e., we consider the system∣∣∣∣∣∣∣∣
yt −∆y +∇p = 0 in (0, ε)× Ω,
div y = 0 in (0, ε)× Ω,
y = 0 on (0, ε)× ∂Ω,
y(0) = y0 in Ω,

(3.7)

with y0 ∈ H.

We make the change of variable z(t) = e−
1
t y(t). This new function z solves∣∣∣∣∣∣∣∣

zt −∆z +∇p = 1
t2
e−

1
t y in (0, ε)× Ω,

div z = 0 in (0, ε)× Ω,
z = 0 on (0, ε)× ∂Ω,
z(0) = 0 in Ω.

(3.8)

Using the fact that 1
t2
e−

1
t y ∈ L2(0, ε;H), and the regularity of the Stokes system, we conclude

that z ∈ L2(0, ε;H2(Ω)) and that zt ∈ L2(0, ε;H).
Multiplying (3.8) by zt and integrating by parts, we get

2|zt(t)|2H +
d

dt
||z(t)||2V = 2(

1

t2
e−

1
t y(t), zt)H . (3.9)

Integrating (3.9) from 0 to ε and using Young’s inequality, we obtain

2

∫ ε

0
|zt(t)|2Hdt+ ||z(ε)||2V ≤ Cδ

∫ ε

0
| 1
t2
e−

1
t y(t)|2Hdt+ δ

∫ ε

0
|zt|2Hdt,

for any δ > 0.
Taking δ small enough, we have

||z(ε)||2V ≤ C
∫ ε

0
| 1
t2
e−

1
t y(t)|2Hdt (3.10)

and since, for ε sufficiently small, 1
t4
e−

2
t ≤ e

1
ε , it follows that

||z(ε)||2V ≤ e
1
ε

∫ ε

0
|y(t)|2Hdt.

Finally, using the fact that ||y||2L2(0,ε;H) ≤ ε|y0|2H , we get from (3.10) that

||z(ε)||2V ≤ εe
1
ε |y0|2H ,
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and, in particular, using the fact that z(t) = e−
1
t y(t), we conclude that

||y(ε)||2V ≤ εe
2
ε |y0|2H . (3.11)

From (3.6) and (3.11), the result follows. �

Remark 3.2. Since yε −→ y0 in H, the norm of yε is not bounded in V . Hence, the right-hand
side of (3.6) is unbounded when ε −→ 0.

4. Null controllability for the hyperbolic system

This section is devoted to prove Theorem 2.2 used in the proof of Theorem 2.1. In order to
prove the result, it is convenient to write system (1.9) in an abstract way. For that, we introduce
the Stokes operator A : H2(Ω)N ∩ V −→ H given by

Au := P (∆u), (4.1)

where P : L2(Ω)N −→ H is the orthogonal projection onto H and ∆ : H2(Ω)N ∩H1
0 (Ω)N −→

L2(Ω)N is the Laplace operator with Dirichlet boundary conditions. Thus, system (1.9) is
equivalent to ∣∣∣∣ utt = Au+ h1ω,

u(0) = u0, ut(0) = u1.
(4.2)

The following theorem holds.

Theorem 4.1. Let (u0, u1, h) ∈ V ×H × L2(0, T ;H). There exists a unique (weak) solution u
of the problem (4.2) such that

u ∈ C([0, T ];V ) ∩ C1([0, T ];H)

and u satisfies:

1

2
|ut(t)|2H +

1

2
||u(t)||2V =

1

2
|u1|2H +

1

2
||u0||2V +

∫ t

0
(h(s)1ω, ut(s))Hds, ∀t ∈ [0, T ].

Moreover, the linear mapping

V ×H × L2(0, T ;H) −→ C([0, T ];V ) ∩ C1([0, T ];H)

(u0, u1, f) 7→ u

is continuous.

The proof of Theorem 4.1 is standard and, being far from the aim of this paper, it will not
be reproduced here (for a proof see, for instance, [18]).

Remark 4.2. Arguing as in chapter 2 of [16] or in [14], it is possible to show the existence of
a function p ∈ H−1(0, T ;L2

0(Ω)) such that (1.9) is satisfied in D′(Q). Moreover, there exists
C > 0 such that

||p||2H−1(0,T ;L2
0(Ω)) ≤ C(|u1|2H + ||u0||2V + ||h1ω||2L2(0,T ;H)).
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By a classical duality argument (see, for instance, [5, 9] ), it is not difficult to see that proving
Theorem 2.2 is equivalent to show the existence of a positive constant C such that

|φ0|2H + ||φ1||2V ′ ≤ C
∫∫

ω×(0,T )
|φ|2dxdt, (4.3)

for all solutions of ∣∣∣∣ φtt = Aφ,
φ(0) = φ0, φt(0) = φ1,

(4.4)

where φ0 ∈ H and φ1 ∈ V ′.
Remark 4.3. Since the Stokes operator A is an isomorphism from V to V ′, given (φ0, φ1) ∈
H × V ′, we define the solution φ of (4.4) as

φ = ψt,

where ψ is the unique solution of∣∣∣∣ ψtt = Aψ,
ψ(0) = A−1φ1, ψt(0) = φ0.

(4.5)

Following the arguments of [14], we can show that for regular initial data the abstract problem
(4.4) is equivalent to ∣∣∣∣∣∣∣∣

φtt −∆φ+∇p = 0 in Q,
div φ = 0 in Q,
φ = 0 on Σ,
φ(0) = φ0, φt(0) = φ1 in Ω.

(4.6)

Let us now concentrate on proving (4.3). The proof relies on some results that we prove
below.

Lemma 4.4. If, for every (φ0, φ1) ∈ V ×H, the solution φ of (4.4) satisfies

||φ0||2V + |φ1|2H ≤ C
∫∫

ω×(0,T )
|φt|2dxdt, (4.7)

for some constant C > 0, then inequality (4.3) holds for all solutions of (4.4) with initial data
(φ0, φ1) in H × V ′.
Proof of Lemma 4.4. Given (φ0, φ1) ∈ H × V ′, we consider ψ solution of (4.5), i.e.,∣∣∣∣ ψtt = Aψ,

ψ(0) = A−1φ1, ψt(0) = φ0.
(4.8)

Next, using the fact that φ = ψt, and inequality (4.7), we see that

||A−1φ1||2V + |φ0|2H ≤ C
∫∫

ω×(0,T )
|φ|2dxdt. (4.9)

From (4.9) and the fact that A : V −→ V ′ is an isomorphism, we finish the proof. �

Lemma 4.5. Let m ∈ C1(Ω)N . Then, for all regular solutions of (4.4), the following identity
holds

〈∇p,m · ∇φ〉L2(Q)N = −〈∇p, φ · ∇m〉L2(Q)N + 〈∇p, φ(div m)〉L2(Q)N . (4.10)
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Proof. Let us set

X = −
∫∫

Q

∂p

∂xi
mk

∂φi

∂xk
dxdt.

Integrating by parts with respect to xk, and using the fact that φ = 0 on Σ, we get

X =

∫∫
Q

∂2p

∂xk∂xi
mkφ

idxdt+

∫∫
Q

∂p

∂xi

∂mk

∂xk
φidxdt.

Next, we integrate by parts again the first integral, this time with respect to xi, and we obtain∫∫
Q

∂p

∂xk

∂

∂xi

(
mkφ

i

)
dxdt = −

∫∫
Q
∇pφ · ∇mdxdt.

Hence, we conclude that

X = −
∫∫

Q
∇pφ · ∇mdxdt+

∫∫
Q
∇pφ(div m)dxdt,

and the proof is finished. �

Lemma 4.6. Assume ω satisfies (2.2) and let T > 2R0. Then there exists C > 0 such that, for
every (φ0, φ1) ∈ V ×H, the weak solution φ of (4.4) satisfies:

||φ0||2V + |φ1|2H ≤ C
∫∫

ω×(0,T )

(
|φt|2 + |φ|2

)
dxdt. (4.11)

Proof. Along the proof we use the following notation:

E(t) = |φt(t)|2H + ||φ(t)||2V , ∀t ∈ [0, T ].

Without loss of generality, we assume that φ is regular and work with the equivalent problem
(4.6), this is the case if we take, for instance, φ0 ∈ V ∩H4(Ω) and φ1 ∈ V ∩H2(Ω).

Using the change of variables Tτ = (T − 2ε)t + Tε, which implies ε ≤ τ ≤ T − ε, from the
boundary observability inequality given in Theorem A.1 in the appendix, we have

E(0) ≤ C
∫ T−ε

ε

∫
∂Ω

(
∂φ

∂ν

)2

dΣ.

Next, we consider a vector field h ∈ C2(Ω)N such that h = ν on ∂Ω and h = 0 on Ω \ ω
and let η ∈ C2([0, T ]) be such that η(0) = η(T ) = 0 and η(t) = 1 in (ε, T − ε). We define
θ(x, t) = η(t)h(x), which belongs to W 2,∞(Q) and satisfies∣∣∣∣∣∣∣∣

θ(x, t) = ν(x) for all (x, t) ∈ (ε, T − ε)× ∂Ω,
θ(x, t) · ν(x) ≥ 0, for all (x, t) ∈ (0, T )× ∂Ω,
θ(x, 0) = θ(x, T ) = 0, for all x ∈ Ω,
θ(x, t) = 0 in

(
Ω \ ω

)
×(0, T ).
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Then we consider the multiplier θ · ∇φ and, from Lemma A.2 in the appendix, we obtain the
following identity for all weak solution φ of (4.4):

1

2

∫∫
Σ
θk(x, t)νk(x)

(
∂φ

∂ν

)2

dΣ = (φt(.), θ(x, .) · ∇φ(.))
∣∣T
0

+

∫∫
Q

∂θk
∂xj

∂φi

∂xk

∂φi

∂xj
dxdt (4.12)

+
1

2

∫∫
Q

∂θk
∂xk

(
|φt|2 − |∇φ|2

)
dxdt+

∫∫
Q

∂p

∂xi
θk
∂φi

∂xk
dxdt.

Using the definition of θ, we have

1

2

∫ T−ε

ε

∫
∂Ω

(
∂φ

∂ν

)2

dΣ ≤ 1

2

∫∫
Σ
θk(x, t)νk(x)

(
∂φ

∂ν

)2

dΣ,

because θ(x, t) = ν(x) on ∂Ω× (ε, T − ε) and

(φt(.), θ(x, .) · ∇φ(.))
∣∣T
0

= 0.

We also have ∣∣∣∣∫∫
Q

∂θk
∂xj

∂φi

∂xk

∂φi

∂xj
dxdt

∣∣∣∣≤ C ∫∫
ω×(0,T )

|∇φ|2dxdt,

since θ ∈ C1(Ω× (0, T )).
For the pressure, we use Lemma 4.5 to see that∫∫

Q

∂p

∂xi
θk
∂φi

∂xk
dxdt = 〈∇p,−φ · ∇θ + φ(div θ)〉

H−1(Q)N ,H1
0 (Q)N

.

Consequently ∣∣∣∣∫∫
Q

∂p

∂xi
θk
∂φi

∂xk
dxdt

∣∣∣∣ ≤ Cδ

∫∫
ω×(0,T )

(|φ|2 + |φt|2 + |∇φ|2)dxdt

+ δ ‖∇p‖2H−1(Q)N , (4.13)

for any δ > 0. Thus,

1

2

∫∫
Σ
θk(x, t)νk(x)

(
∂φ

∂ν

)2

dΣ ≤ C
∫∫

ω×(0,T )

(
|φ|2 + |φt|2 + |∇φ|2

)
dxdt+ δ ‖∇p‖2H−1(Q)N .

Using the fact that

‖∇p‖2H−1(Q)N ≤ CE(0),

and choosing δ small enough, we conclude that

E(0) ≤ C
∫ T−ε

ε

∫
∂Ω

(
∂φ

∂ν

)2

dΣ ≤ C
∫∫

ω×(0,T )

(
|φt|2 + |φ|2 + |∇φ|2

)
dxdt. (4.14)

Hence, by change of variables, we have that

E(0) ≤ C
∫ T−ε

ε

∫
ω

(
|φ|2 + |φt|2 + |∇φ|2

)
dxdt. (4.15)
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Now, let ω0 be a neighborhood of ∂Ω such that Ω∩ω0 ⊂ ω. We observe that inequality (4.15)
is true for each neighborhood of ∂Ω, and in particular for ω0, that is to say

E(0) ≤ C
∫ T−ε

ε

∫
ω0

(
|φ|2 + |φt|2 + |∇φ|2

)
dxdt.

Now, we consider ρ ∈W 1,∞(Ω), ρ ≥ 0, such that

ρ = 1 in ω0, and ρ = 0 in Ω \ ω.

Defining h = h(x, t) by h(x, t) = η(t)ρ2(x), where η is defined above, it follows that∣∣∣∣∣∣∣∣
h(x, t) = 1 for all (x, t) ∈ ω0 × (ε, T − ε),
h(x, t) = 0, for all (x, t) ∈

(
Ω \ ω

)
×(0, T ),

h(x, 0) = h(x, T ) = 0, for all x ∈ Ω,
|∇h|
h ∈ L

∞(Q).

Multiplying both sides of (4.6)1 by hφ and integrating by parts in Q, we obtain∫∫
Q
hφ · φttdxdt−

∫∫
Q
hφ ·∆φdxdt+

∫∫
Q
h∇p · φdxdt = 0.

We have ∫∫
Q
hφtt · φdxdt = −

∫∫
Q
h|φt|2dxdt−

∫∫
Q
htφ · φtdxdt. (4.16)

For the second term in the right hand side of (4.16), since φ = 0 on Σ, we have

−
∫∫

Q
h∆φ · φdxdt =

∫∫
Q
h|∇φ|2dxdt+

∫∫
Q
φ ·
(
∇φ · ∇h

)
dxdt.

Consequently,∫∫
Q
h|∇φ|2dxdt =

∫∫
Q
h|φt|2dxdt+

∫∫
Q
htφ ·φtdxdt−

∫∫
Q
φ ·
(
∇φ ·∇h

)
dxdt−

∫∫
Q
h∇p ·φdxdt.

It is immediate that∣∣∣∣∫∫
Q
φ ·
(
∇φ · ∇h

)
dxdt

∣∣∣∣≤ 1

2

∫∫
Q
h|∇φ|2dxdt+

1

2

∫∫
Q

|∇h|2

h
|φ|2dxdt.

Hence ∫∫
Q
h|∇φ|2dxdt ≤ C

∫∫
ω×(0,T )

(
|φt|2 + |φ|2

)
dxdt+ 2

∣∣∣∣∫∫
Q
h∇p · φdxdt

∣∣∣∣.
Next, observing that∫∫

Q
h∇p · φdxdt ≤ δ||p||2H−1(0,T ;L2(Ω)N ) + Cδ||hφ||2H1

0 (0,T ;L2(Ω)N ),

for any δ > 0, we conclude that∫ T−ε

ε

∫
ω0

|∇φ|2dxdt ≤ C
∫∫

ω×(0,T )

(
|φt|2 + |φ|2

)
dxdt+ δ||p||2H−1(0,T ;L2(Ω)N ).
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From this last estimate we infer that

E(0) ≤ C
∫∫

ω×(0,T )

(
|φt|2 + |φ|2

)
dxdt+ δ||p||2H−1(0,T ;L2(Ω)N ).

Finally, taking δ small enough, we obtain

E(0) ≤ C
∫∫

ω×(0,T )

(
|φt|2 + |φ|2

)
dxdt, (4.17)

which is exactly (4.11). �

Proposition 4.7. Assume ω satisfies (2.2). Then there exist T0 > 0 and a constant C > 0 such
that, for any T > T0 and any (φ0, φ1) ∈ V ×H, the solution φ of (4.4) satisfies (4.7).

Proof of Proposition 4.7 . Let us suppose that (4.7) is not true. Then, given a natural number

n, there exists an initial data (φ̃0
n, φ̃

1
n) such that φ̃n, the solution of (4.4) corresponding to this

initial data, satisfies

||φ̃0
n||2V + |φ̃1

n|2H ≥ n||φ̃n,t||L2(ω×(0,T )).

Without loss of generality, we assume that (φ̃0
n, φ̃

1
n) is smooth and set

K =

(
||φ̃0

n||2V + |φ̃1
n|2H
)1/2

and

φ0
n =

φ̃0
n

K
, φ1

n =
φ̃1
n

K
, φn =

φ̃n
K
.

We have

||φn,t||2L2(ω×(0,T )) ≤
1

n
(4.18)

and

||φ0
n||2V + |φ1

n|2H = 1. (4.19)

From (4.18), there exist subsequences, denoted by the same index, such that

lim inf
n−→∞

∫∫
ω×(0,T )

|φn,t|2dxdt = 0, (4.20)

φ0
n ⇀ φ0 in V (4.21)

and

φ1
n ⇀ φ1 in H. (4.22)

Since φn is the solution of (4.4) associated to the initial data (φ0
n, φ

1
n), we have:∣∣∣∣ φn is bounded in L∞(0, T ;V ),

φn,t is bounded in L∞(0, T ;H).
(4.23)

Therefore, there exists a subsequence {φn} such that∣∣∣∣ φn −→ φ weak star in L∞(0, T ;V ),
φn,t −→ φt weak star in L∞(0, T ;H).

(4.24)
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From (4.24), it is not difficult to show that φ is the weak solution of (4.4) corresponding to
the initial data (φ0, φ1).

Next, since V ↪→ H compactly, estimate (4.24) and the Aubin-Lions compactness theorem
give

φn −→ φ in L2(0, T ;H). (4.25)

Hence, it follows from (4.20) and (4.24) that

φt ≡ 0 in ω × (0, T ) (4.26)

and φ is independent of t in ω.
Let us now consider the system ∣∣∣∣ ξtt = Aξ,

ξ(0) = φ1, ξt(0) = Aφ0.
(4.27)

Taking ψ(x, t) = φ0(x) +
∫ t

0 ξ(x, s)ds, it is not difficult to see that ψ solves (4.4), with (φ0, φ1)
as initial data. Therefore, from the uniqueness of solutions of (4.4), we have that ψ ≡ φ and
thanks to (4.26) we have that ξ ≡ 0 in ω × (0, T ).

Let us now show that ξ ≡ 0. Indeed, applying the curl operator in (4.27), we see that
v = curl ξ satisfies ∣∣∣∣ vtt −∆v = 0 in Q,

v ≡ 0 in ω × (0, T ).
(4.28)

Then, by Holmgren’s Uniqueness Theorem (see [9]), there exists T0 > 0 such that if T > T0

then v ≡ 0. Therefore, there exists a scalar function Φ = Φ(x, t) such that

ξ = ∇Φ in Q.

In view of (4.27)2, we have
∆Φ = 0 in Q.

Since ξ = 0 in ω × (0, T ), we also have that

Φ = f(t) in ω × (0, T ).

From the unique continuation for the Laplace equation, we deduce that

Φ = f(t) in Q,

which implies
ξ = ∇Φ = 0 in Q. (4.29)

Hence,
φ1 = φ0 = 0. (4.30)

From (4.11), (4.25) and (4.30), we get a contradiction, and the proof is finished. �

As a consequence of Lemmas 4.4 and 4.6, and Proposition 4.7, we have the following result.

Theorem 4.8. Assume ω satisfies (2.2). Then there exist T0 > 0 and a constant C > 0 such
that for any T > T0 and any (φ0, φ1) ∈ H × V ′, the solution φ of (4.4) satisfies (4.3).

We end this section proving Theorem 2.2.
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Proof of Theorem 2.2. We consider the functional

J : H × V ′ −→ R (4.31)

given by

J(φ0, φ1) =
1

2

∫∫
ω×(0,T )

|φ|2dxdt+ < ϕ1, u0 >V,V ′ −(φ0, u1)H ,

where ϕ is the solution of (4.4) corresponding to the initial data (φ0, φ1).
Using the observability inequality (4.3) and energy estimates, we can show that the functional

J is continuous, strictly convex and coercive. Therefore, J has a unique minimizer (φ̂0, φ̂1). Using

the Euler-Lagrange equation of J, we conclude that φ̂, solution of (4.4) associated to (φ̂0, φ̂1), is
a control which drives u to zero at time T . Inequality (2.4) then follows from the observability

inequality (4.3) and the fact that J(φ̂0, φ̂1) ≤ 0. This finishes the proof of Theorem 2.2.
�

Remark 4.9. The minimal time T0 in Proposition 4.7 and Theorems 2.2 and 4.8 must satisfy
T0 > 2R0 and be such that Holgrem’s Theorem can be applied to conclude that the solution of
(4.28) is zero (see [9]).
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Appendix A. Boundary observability for the hyperbolic system

This section is devoted to prove the following result.

Theorem A.1. If we take T > 2R0 then, for every solution of (4.4) with initial data (φ0, φ1) ∈
V ×H, the following estimate holds:

|φ1|2H + ||φ0||2V ≤
R0

2(T − 2R0)

∫∫
Σ

(
∂φ

∂ν

)2

dΣ. (A.1)

For the proof of Theorem A.1, we need the following two lemmas.

Lemma A.2. Let q = q(x) be in C1(Ω̄)N , then, for every regular solution u of (4.2), the
following identity holds:

1

2

∫∫
Σ
qk(x)νk(x)

(
∂u

∂ν

)2

dΣ = (ut(t), q(x)∇u(t))
∣∣T
0

+

∫∫
Q

∂qk
∂xj

∂ui

∂xk

∂ui

∂xj
dxdt

+
1

2

∫∫
Q

∂qk
∂xk

(
|ut|2 − |∇u|2

)
dxdt

+

∫∫
Q

∂p

∂xi
qk
∂ui

∂xk
dxdt+

∫∫
Q
hiqk

∂ui

∂xk
dxdt. (A.2)
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The proof of Lemma A.2 is the same as in the case of a single wave equation, the difference
being that here we see the pressure as a force term in the right-hand side.

Lemma A.3. Let (u0, u1, h) ∈ V ×H × L2(Q)N , then the weak solution of (4.2) satisfies:∫∫
Σ

(
∂u

∂ν

)2

dΣ ≤ C
(
|u1|2H + ||u0||2V + ||h||2L2(Q)N

)
.

Proof. The proof is obtained exactly as in the case of the wave equation, first showing the result
for regular solutions. Indeed, in this case we must take the vector field q in Lemma A.2 to be
the vector field q(x) = x and use the fact that∫∫

Q

∂p

∂xi
qk
∂ui

∂xk
dxdt = 0.

�

Proof of Lemma A.1. Without loss of generality, we assume that φ is regular and then work
with the equivalent problem (4.6). Using Lemma A.2, with q being the vector field m(x) = x,
we have

1

2

∫∫
Σ
m · ν

(
∂φ

∂ν

)2

dΣ = (φt(.),m(x)∇φ(.))
∣∣T
0

+

∫∫
Q
|∇φ|2dxdt+

N

2

∫∫
Q

(
|φt|2 − |∇φ|2

)
dxdt.

Next, multiplying (4.6)1 by φ and integrating by parts, we easily see that

(φt(.), φ(.))
∣∣T
0

=

∫∫
Q
|φt|2dxdt−

∫∫
Q
|∇φ|2dxdt.

Then, using this last identity and the fact that

|φt(t)|2H + ||φ(t)||2V = |φ1|2H + ||φ0||2V ∀t ∈ [0, T ],

we obtain

(φt(.),m∇u(.) +
N − 1

2
u(.))

∣∣T
0

+T
(
|φ1|2H + ||φ0||2V

)
=

1

2

∫∫
Σ
m · ν

(
∂φ

∂ν

)2

dΣ.

We also have ∣∣m∇u(t) +
N − 1

2
u(t)

∣∣2≤ R0|∇φ(t)|2 ∀t ∈ [0, T ],

which implies, by Gronwall inequality, that∣∣∣∣(φt(.),m∇φ(.) +
N − 1

2
φ(.))

∣∣T
0

∣∣∣∣≤ 2R0

(
|φ1|2H + ||φ0||2V

)
.

Finally, combining all the above estimates, we conclude that(
T − 2R0

)(
|φ1|2H + ||φ0||2V

)
≤ R0

2

∫
Σ

(
∂φ

∂ν

)2

dΣ,

which is exactly (A.1).
�



THE COST OF NULL CONTROLLABILITY FOR THE STOKES SYSTEM 17

References

[1] S. Ervedoza, E. Zuazua, Sharp observability estimates for heat equations, Arch. Rational Mech. Anal., 202
(3)(2011), 975–1017.

[2] S. Ervedoza, E. Zuazua, Observability of heat processes by transmutation without geometric restrictions,
Mathematical Control and Rel. Fields, 1 (2)(2011), 177–187.

[3] E. Fernández-Cara, S. Guerrero, O. Yu. Ymanuvilov, J.-P. Puel, Local exact controllability of the Navier-
Stokes system, J. Math. Pures Appl., 83 (12)(2004), 1501–1542.

[4] E. Fernández-Cara, E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat
equations, Ann. I. H. Poincaré A.N., 17 (5)(2000), 583–616.
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