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Abstract

The paper presents a control strategy for Markov jump lirsgatems (MJLS) with no access to
the Markov state (or mode). The controller is assumed to biaénlinear state-feedback format and
the aim of the control problem is to design a static modeedeent gain that minimizes a bound to
the corresponding{,-cost. This approach has a practical appeal since it is afifficult to measure
or to estimate the actual operating mode. The proposedt isstbmpared with a previous design, and
its usefulness is illustrated by an application that comrsidhe velocity control of a DC motor device

subject to abrupt failures that is modeled as an MJLS.

. INTRODUCTION

Let us consider the discrete-time Markov jump linear sys{®&iLS), defined on a filtered
probability spac€(?, F, Fi, P), as follows:

L1 = Aekxk + B@kUk + Ekak

Y = Cgkl’k + nguk, k>0, 6y~ 7T(O>, xg €R",
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where the sequencds} on R", {yx} on RY, {u,} onR®, {wx} on R™, represent the system
state, output, control, and noise input, respectively. Makov chain state is represented by
{0;} and the underlying stochastic matrix is denotedPby [p;;], in thati,j € Z := {1,...,0},

o > 1. The initial distribution is denoted by (0). For eachk > 0, the state proces, takes
values in the set, in such a way that, = ¢ points out to a set of matrices\;, B;, C;, D;, E;)
that is assumed to be given for each 7.

Many of the real systems that can be described within the Msking face adversity when
the design of a useful control is the primary concern. Adydl is often difficult to determine
the exact mode of the Markov chain due to physical limitagi@m sensors or nonexistence of
realistic measurement instruments for that task. Howawest of the results in the literature
do not take this practical difficulty into account since tlessume that the controllers have full
access to the mode at each instant of time [1], [2], [3], [8], [6], [7].[8], [9], [10], and [11].

Thus, from this standpoint, it is reasonable to considerddéxsign of controllers that do not
require access to the Markov mode at all. This subject repteghe main line of investigation
in this paper.

The discussion above stresses the need of simple contrtiiesys in real world implemen-
tations, and we choose the control law to be in the lineaicstafite-feedback format with no
mode observation, i.e.,

up = Gxg, Vk >0, Q)

where( is a fixed matrix of dimensions x r to be determined.
With the aid of simple calculations, thi#,-control problem can be cast as that of findiig

the solution of the following optimization problem (Progam 2.2):
st. (4; + B;:G) (Zp” ) i+ BG)+CIC;i—P,=0, i=1,...,0, (3)

whereP, = P/ > 0,i=1,...,0, are matrices with dimensions<r. The problem of minimizing
the H,-cost as in (2) and (3) is, to the best of the authors’ knowdedgpen. Our approach
provides a step towards finding the solution for this probleetause, although it does not

calculate the optimal solution, our approach is capable doetate less conservative results



when compared with the previous method in [12]. This setanhe theoretical novelty of this
paper.

There are two main contributions of this paper. First, a heu#ficient linear matrix inequal-
ity (LMI) relaxation is proposed for the computation of a meothdependent state-feedback
stabilizing gain with a guaranteeld,-cost, says > 0, such thats > g*.

The method is inspired by the two-step design procedurelalese in the context of determin-
istic systems for output feedback control in [13], [14], [1that in [16], [17] have been extended
to incorporate polynomially parameter-dependent madrite this paper, the method is adapted
to cope with MJILS control design as follows: first determinm@de-dependent stabilizing gain;
then use this gain as an input parameter for an LMI based guoedcalled second stage) that,
if feasible, provides a mode-independent stabilizing geigsociated to af{, guaranteed cost.

As the second contribution, the theoretical design proeegdwposed in the paper is validated
in practice, by controlling the angular velocity of a DC motpparatus in real-time. During
the experiments, the DC motor was subject to failures thalived according to a homogeneous
Markov chain.

The paper is organized as follows. Section Il quotes thechastions of mean square stability
and evaluation of thé{,-norm of MJLS. Section Ill presents the main result basechembvel
LMI method. Finally, Section IV illustrates the result vianarkbench experiment involving a
DC motor subject to failures. The method is applied to designode-independent control rule

to control the shaft speed.

[I. NOTATION, DEFINITIONS, AND BASIC RESULTS

Ther-th dimensional Euclidean space is represente®bynd|| - || stands for the correspond-
ing norm; e, € R" represents the standard basis pointing in the directiohe$-th coordinate.
The linear space made up by allx s (r x r) real matrices is denoted byt (M"). Let
7 :={1,...,0} be an index set, and I&{["* denote the linear space formed bymatrices
belonging toM™*, i.e.,, M"™* = {U = (Uy,...,U,) : U; € M™*,i € T}. Take, in particular,
M" = M"".

We employ the ordering/ > V (U > V) for elements ofM", meaning thatl; — V; is

positive definite (semi-definite) for alle Z, and similarly for other mathematical relations. If



Ve M™ andU € M*", then the multiplicationV'U results in(VU,,...,VU,) € M"". The
trace operators is denoted by{-}. The identity matrix is denoted by.

The Markov chain{f,} is driven by the probability distributiom;(k) := Pr(6, = i), for all
k > 0 and each € Z. Notice thatr(0) = {m1(0),...,7,(0)}.

Let ¢, denote the Hilbert space formed by the sequenee{y,}, a second order, real-valued

stochastic processes that dt&; }-adapted and satisfies

Iyl =~ Elllyel®] < oo
k=0

Assumption 2.1:The noise inpufw;} in S belongs to the class,.

A. Preliminary results for the system with no control

Next we recall the definition of mean square stability.
Definition 2.1: ([2], [18], [19]). MS-stability. We say the systei§ with u;, = 0 is mean
square stable (MS-stable) if
E[|zi|?] =0 as k— oo, (4)

for eachxy € R" and eachy, € 7.
Proposition 2.1:([2, Th. 3.9], [18, Th. 2]). The following assertions are a@lent.
(i) The systemS with u;, = 0 is MS-stable.
(i) For someV € M"", V =V’ > 0, there holds

A;(Zpij‘G)Ai—Vi<O, i1=1,...,0 (5)
j=1

Next we present the definition of ti,-norm for MJLS.
Definition 2.2: ([2, Ch. 4.4], [12]). TheH,-norm associated with the systefnis represented

by the value

ISII” = ZE:m )ly*]

s=1 =1
wherey** denotes the output = {y:} due to the specific inputy = e, € R™, wy = 0,Vk > 1,
and initial conditionzg = 0 andf, = i.

The next result presents an expression for the evaluatigheot;-norm.



Proposition 2.2:([12, Append. A)). IfS with u;, = 0 is MS-stable and there exists € M"",

P = P’ > 0, the unique solution of the equation
j=1

then||S||*> = >0, X7, m(0)pytr{ B[P B}
Remark 2.1:If the ||S||?-norm is finite, then the systei® is MS-stable. Indeed, this assertion
comes from the fact that, withS||? finite, the equation (6) has a solution and implies that (5)

holds true.

B. Control structure

The LMI method introduced in the sequel requires an inpua,datthe sense that the method
should be initialized with a gain that depends on the Markaxden To compute a gain that
does not depend on the mode, i.e., some gain € M*", a mode dependent ga(®;,; € M*"
is used in the design conditions. The single condition ireposn G,,,;, € M*" is that it is
MS-stabilizing, a basic concept as defined next.

Definition 2.3: ([20, p. 1283]). A gainG € M*" is called MS-stabilizing if the resulting
closed loop system i (i.e., replacingA by A + BG) is MS-stable.

Remark 2.2:Recall that there exists a solution to the coupled Riccati iopusif and only if
the corresponding gain is MS-stabilizing [20, Prop. 2].sTktabilizing property of the Riccati

gain will be used in the design control project of Section IV.

[11. M AIN RESULT

This section is devoted to present and prove the main reagkdon an LMI strategy. An
advantage of our LMI method is that it generates less coatieevresults than the existing ones
(see Table Il for a pragmatic comparison). Next we presemttlin result of this paper.

Theorem 3.1:Let K = {K,,...,K,} € M*" be a given MS-stabilizing gain. If there exist a
set of matricesP e M™", P=P' >0, W e M™™, F € M"", H € M%4, matricesk € M?*?,

L e M*", and a scalap such that the following LMIs hold:



ﬁ>2m@mmx 7

Wi—E£<ZpijF’j>Ei>0,izl,...,a; (8)
j=1
—P (A} + K;B)F; (Ci+ KiD)H; L — KR
s (Sapsh) - F- 0 F/B,
<2j1 Y <0, i=1,...,0; (9

* * * —-R—R
thenG = R~'L is a mode-independent MS-stabilizing gain ayi@ is an upper bound (guar-

anteed cost) for thé{,-norm of the systens.
Proof: By multiplying (9) on the left byT" and on the right byr”, with

I 00 95
T=10710 0|, S=R'L-K,
0 0rI O
we obtain
P, AL F, ' H,
x (2;’:1 pijpj) —F - F 0 <0, (10)
* * I—H,—H]

with A, = A; + B;R™'L and C,, = C; + D;R~'L. Now, multiply (10) on the left by
[[ Al (jéli] and on the right by its transpose, and as a result, we get that

AL (Z pijpj> Ag, — P+ Cl.Cy, <0, Viel (11)
j=1

The inequalities in (7), (8), and (11) assure that the gaitrim& = R~ 'L is MS-stabilizing
(Remark 2.1) and thay/3 is a guaranteed cost for thé,-norm of the systens. [ ]
Remark 3.1:Notice that Theorem 3.1 is a two-steps procedure, i.e.guires as input data
a previous calculated MS-stabilizable gain (with full mauleservation), and in the second step
the set of LMIs in (7)—(9), if feasible, generates a corresiag MS-stabilizing gain (with no
mode observation). This is the main novelty of our designhoet As illustrated in the next

section, the numerical evaluation confirms that the reslt loe less conservative than the one



Fig. 1. Laboratory testbed used in the practical experiments of Section IV

available in the literature [12]. To the best of the authdrsdwledge, the result in [12] for the
design of mode-independent controllers presents the tassecvative result described so far in

the literature in the context of the present work.

V. PRACTICAL APPLICATION: CONTROL OF VELOCITY IN ADC MOTOR DEVICE

This section describes a practical experiment of contrgplithe angular velocity of a DC motor
device subject to abrupt failures. These failures changetjuipment behavior from the normal
mode of operation to the failure modes, and vice versa, irchvia computer is responsible
to make these triggers to occur. To control the velocity & EBC motor in this scenario, we
implement the control strategy suggested by Theorem 3.ltl@dontrol design method from
[12] for sake of comparison. As we will see in the sequenoe ctintrol strategy from Theorem
3.1 produces a better response for the DC motor device urmteptafailures.

The laboratory testbed used in this section is composed efD@ motor Module 2208,
Datapool Eletronica Ltda, Brazil (Fig. 1), linked with a Natal Instruments USB-6008 data
card and a computer running an instance of Matlab. This &boy setup was used previously
by some of the authors in a time-varying feedback experipssg [21].

We design a controller based on Theorem 3.1, consideringetpalator problem, and then
implement it in the DC motor testbed with a nonzero constdms p sinusoid reference. The
idea of the experiment is to adjust the DC motor to track tmasoid reference with null steady-

state error. To accomplish this goal, we implemented thegnmnal-integrative (PI) scheme



as described in [22, Sec. 1.8.2, p. 56] to cope with the ststatg error and it is included in
the synthesis by augmenting the system state. Let us setyiens stater, as follows: take
xr = g i 3], Wherewv, andi, represent the angular velocity of the rotor and the eleitric
current consumed by the motor, and the third element denb&estegrator term from the PI
scheme.

The failures occur on the power delivered to the shaft, wiadh triggered by a computer.
They are based on three distinct operation modes, i.e.,dhaat ¢, = 1), low (/. = 2), and
medium {,, = 3) power modes. In fact, the DC motor Module 2208 has a roundngioimeter,
coupled with an electronic driver, that allows us to the geabruptly the power delivered to
the shaft, but respecting certain limits for the power shaf arranged the circuitry to bypass
the potentiometer and commanded its functionality by a aderpso that the jumps were chosen
so as to correspond to the three levels:0(i) of rotary (normal mode); (iiH-20% of rotary for
improving the power (low mode); (iii) and-40% of rotary for decreasing the power (medium
mode).

These elements allow us to represent the DC motor deviceahithpt failures as the Markov

jump linear system:

Tpt1 = Agkl'k + BQkuk + E9kwk + Fekrk’a

yr = CoTp + Do up, 9 € R?, (12)
aﬁ) agi) 0 bﬁi) 0
Ai=1d¥) a9 o |, Bi=| |,Ti=| 0 |, BE;=01I, i=123.
al) 0 af 0 )

where the parameters are given in Table | ([21, Sec. 4]). Teigdethe mode-independent

controller, let us define

/

1 0 0 0O
Ci=10 15 0 00 7D¢E[00000.5
0 0 25 00

/

The sequence$u;} on R and {w;} on R? obey the definitions of the previous sections,

whereas{r,} on R represents a reference tracking input. The Markov chainthasinitial



distribution7, = [1 0 0] and the transition probability matriR is defined as

095 0.05 O
P=1036 06 0.04
0.1 0.1 0.8

The controller applied to the DC motor device is in the statate-feedback format
up = Gy, Vk >0, (13)

where the value of the gai ¢ M'? is determined according to Theorem 3.1 (taking (12)
with ., = 0). Indeed, we use the Riccati gains as the first step, as deddnbRemark 2.2. In
the second step, we solve the LMIs in Theorem 3.1 with the Rigeéns to obtain thé{,-cost
and the corresponding admissible géinwhich stabilizes the system and attains #ecost in
Table Il. Note that theéH,-cost we obtain represents a good improvement when compdétid
the one obtained with the method in [12], see Table II.

In practice, the failures tend to deviate the velocity of B motor device from its nominal
path. To illustrate how the designed controller deals wiitse fluctuations, we set the apparatus

to run with the sinusoid reference signal

r, =14 0.2sin(k/70), Yk > 0.

TABLE |
THE DISCRETETIME MJLS THAT MODELS THE DC MOTOR DEVICE.

Parameters =1 1 =2 2=3
al? —0.4799 —1.6026  0.6346
aly) 51546  9.1632  0.9178
al? —3.8162 —0.5918 —0.5056
al) 14.4723  3.0317  2.4811
a$) 0.1399  0.0740  0.3865
al) —0.9255 —0.4338  0.0982
b{" 5.8705  10.2851  0.7874
3% 155010  2.2282  1.5302

A® 0.1176  —0.1328  0.1632
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Fig. 2. Upper: The curve in blue represents the velocity (rad/s) of themid@r measured in practice and the black one

represents the reference. Lower: The states of the Markov chamaés@ in the experiment.

Although the failures produce a significant deviation of fystem from its desired path in the
moment of their occurrence, we observed in practice thattmrol rule (13) tends to restore
the equilibrium of the system (Fig. 2).

The experiment using this sinusoid signal was repeated @0r distinct realizations of the
Markov chain, running the controllers proposed by Theoreina®d by the method in [12]. The
corresponding path density in Fig. 3 suggests that the #glog and electrical current, have
finite values for mean and standard deviation forkatt 0 for both methods. This fact indicates
that the two controllers for the DC motor device are unifgreécond moment stable [23].

In addition, Fig. 3 shows that the controller from Theorerh Broduces an outcome with

TABLE I
MODE-INDEPENDENT 2 COSTS PROVIDED BY THE METHODS FROM HEOREM 3.1AND [12, P. 347,G; = G].

Method H-cost Gain
[12, p. 347] 3.8119 G =[0.1889 — 0.8817 — 3.4384 x 10 7]

Theorem 3.1 0.7963 G =[0.2192 — 0.9492 — 2.3497 x 1079
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0.5379

(23

0.2069

1.3055 0.4351 0.8703 1.3055 1.7407

Uk Vg

(@) Response due to the mode-independent controller of(b) Response due to the mode-independent controller of
Theorem 3.1. [12, p. 347,G; = G].

Fig. 3. Phase portraits representing the electrical curreii®) and velocityv,, (rad/s) measured from the DC motor device,
corresponding to 700 distinct realizations. The shading of the colorsgents the statistical dispersion of the variables produced
by the power failures. Their statistical means follow an spiral path, aadhr@an ellipsoidal limit cycle (colored in red). A
comparison between the two responses indicates that the result ofefih@d generates an improved, less dispersive phase

portrait.

less statistical dispersion when compared with the one fii2h In fact, the better behaviour
attained by the controller obtained from Theorem 3.1 isteeldo the?{, bounds, as shown in
Table Il. In practice, the controller of Theorem 3.1 indueefast transient to the system, with
less oscillations around the tracking signal, when fagusecur.

The experiments described in this section emphasize thecabitity of the derived approach

to design controllers for stochastic systems subject tbtiea failures.

V. CONCLUDING REMARKS

This note presented an LMI formulation to design mode-imahej@nt controllers for Markov
jump linear systems. For the corresponding control probéssociated with thé{,-cost, our
LMI approach improves a previous result from the literatii2, mode-independent case] since
it is able to produce lowek,-costs, as illustrated by the application of Section IV. @pproach
proves to be useful in the control of real-time processesea$ied by the experiments shown

in the paper.
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