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Abstract

The paper presents a control strategy for Markov jump linearsystems (MJLS) with no access to

the Markov state (or mode). The controller is assumed to be inthe linear state-feedback format and

the aim of the control problem is to design a static mode-independent gain that minimizes a bound to

the correspondingH2-cost. This approach has a practical appeal since it is oftendifficult to measure

or to estimate the actual operating mode. The proposed result is compared with a previous design, and

its usefulness is illustrated by an application that considers the velocity control of a DC motor device

subject to abrupt failures that is modeled as an MJLS.

I. I NTRODUCTION

Let us consider the discrete-time Markov jump linear system(MJLS), defined on a filtered

probability space(Ω,F ,Fk, P ), as follows:

S :











xk+1 = Aθkxk + Bθkuk + Eθkwk

yk = Cθkxk +Dθkuk, k ≥ 0, θ0 ∼ π(0), x0 ∈ Rr,
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where the sequences{xk} on Rr, {yk} on Rq, {uk} on Rs, {wk} on Rm, represent the system

state, output, control, and noise input, respectively. TheMarkov chain state is represented by

{θk} and the underlying stochastic matrix is denoted byP = [pij], in that i, j ∈ I := {1, . . . , σ},

σ > 1. The initial distribution is denoted byπ(0). For eachk ≥ 0, the state processθk takes

values in the setI, in such a way thatθk = i points out to a set of matrices(Ai, Bi, Ci, Di, Ei)

that is assumed to be given for eachi ∈ I.

Many of the real systems that can be described within the MJLSsetting face adversity when

the design of a useful control is the primary concern. Actually, it is often difficult to determine

the exact mode of the Markov chain due to physical limitations on sensors or nonexistence of

realistic measurement instruments for that task. However,most of the results in the literature

do not take this practical difficulty into account since theyassume that the controllers have full

access to the mode at each instant of time [1], [2], [3], [4], [5], [6], [7],[8], [9], [10], and [11].

Thus, from this standpoint, it is reasonable to consider thedesign of controllers that do not

require access to the Markov mode at all. This subject represents the main line of investigation

in this paper.

The discussion above stresses the need of simple control synthesis in real world implemen-

tations, and we choose the control law to be in the linear static state-feedback format with no

mode observation, i.e.,

uk = Gxk, ∀k ≥ 0, (1)

whereG is a fixed matrix of dimensionss× r to be determined.

With the aid of simple calculations, theH2-control problem can be cast as that of findingG,

the solution of the following optimization problem (Proposition 2.2):

β∗ = inf
G

σ
∑

i=1

tr

{

πi(0)E
′

i

(

σ
∑

j=1

pijPj

)

Ei

}

(2)

s.t. (Ai +BiG)′

(

σ
∑

j=1

pijPj

)

(Ai + BiG) + C ′

iCi − Pi = 0, i = 1, . . . , σ, (3)

wherePi = P ′

i ≥ 0, i = 1, . . . , σ, are matrices with dimensionsr×r. The problem of minimizing

the H2-cost as in (2) and (3) is, to the best of the authors’ knowledge, open. Our approach

provides a step towards finding the solution for this problembecause, although it does not

calculate the optimal solution, our approach is capable to generate less conservative results



when compared with the previous method in [12]. This sets themain theoretical novelty of this

paper.

There are two main contributions of this paper. First, a novel sufficient linear matrix inequal-

ity (LMI) relaxation is proposed for the computation of a mode independent state-feedback

stabilizing gain with a guaranteedH2-cost, sayβ > 0, such thatβ ≥ β∗.

The method is inspired by the two-step design procedure developed in the context of determin-

istic systems for output feedback control in [13], [14], [15], that in [16], [17] have been extended

to incorporate polynomially parameter-dependent matrices. In this paper, the method is adapted

to cope with MJLS control design as follows: first determine amode-dependent stabilizing gain;

then use this gain as an input parameter for an LMI based procedure (called second stage) that,

if feasible, provides a mode-independent stabilizing gainassociated to anH2 guaranteed cost.

As the second contribution, the theoretical design procedure proposed in the paper is validated

in practice, by controlling the angular velocity of a DC motor apparatus in real-time. During

the experiments, the DC motor was subject to failures that evolved according to a homogeneous

Markov chain.

The paper is organized as follows. Section II quotes the basic notions of mean square stability

and evaluation of theH2-norm of MJLS. Section III presents the main result based on the novel

LMI method. Finally, Section IV illustrates the result via aworkbench experiment involving a

DC motor subject to failures. The method is applied to designa mode-independent control rule

to control the shaft speed.

II. N OTATION, DEFINITIONS, AND BASIC RESULTS

Ther-th dimensional Euclidean space is represented byRr and‖·‖ stands for the correspond-

ing norm;es ∈ Rr represents the standard basis pointing in the direction of the s-th coordinate.

The linear space made up by allr × s (r × r) real matrices is denoted byMr,s (Mr). Let

I := {1, . . . , σ} be an index set, and letMr,s denote the linear space formed byσ matrices

belonging toMr,s, i.e., Mr,s = {U = (U1, . . . , Uσ) : Ui ∈ Mr,s, i ∈ I}. Take, in particular,

M
r ≡ M

r,r.

We employ the orderingU > V (U ≥ V ) for elements ofMr, meaning thatUi − Vi is

positive definite (semi-definite) for alli ∈ I, and similarly for other mathematical relations. If



V ∈ Mr,s andU ∈ M
s,r, then the multiplicationV U results in(V U1, . . . , V Uσ) ∈ M

r,r. The

trace operators is denoted bytr{·}. The identity matrix is denoted byI.

The Markov chain{θk} is driven by the probability distributionπi(k) := Pr(θk = i), for all

k ≥ 0 and eachi ∈ I. Notice thatπ(0) = {π1(0), . . . , πσ(0)}.

Let ℓ2 denote the Hilbert space formed by the sequencey = {yk}, a second order, real-valued

stochastic processes that are{Fk}-adapted and satisfies

‖y‖2 :=
∞
∑

k=0

E[‖yk‖2] < ∞.

Assumption 2.1:The noise input{wk} in S belongs to the classℓ2.

A. Preliminary results for the system with no control

Next we recall the definition of mean square stability.

Definition 2.1: ([2], [18], [19]). MS-stability. We say the systemS with uk ≡ 0 is mean

square stable (MS-stable) if

E[‖xk‖2] → 0 as k → ∞, (4)

for eachx0 ∈ R
r and eachθ0 ∈ I.

Proposition 2.1: ([2, Th. 3.9], [18, Th. 2]). The following assertions are equivalent.

(i) The systemS with uk ≡ 0 is MS-stable.

(ii) For someV ∈ M
r,r, V = V ′ > 0, there holds

A′

i

(

σ
∑

j=1

pijVj

)

Ai − Vi < 0, i = 1, . . . , σ. (5)

Next we present the definition of theH2-norm for MJLS.

Definition 2.2: ([2, Ch. 4.4], [12]). TheH2-norm associated with the systemS is represented

by the value

‖S‖2 =
m
∑

s=1

σ
∑

i=1

πi(0)‖ys,i‖2,

whereys,i denotes the outputy = {yk} due to the specific inputw0 = es ∈ Rm, wk = 0, ∀k ≥ 1,

and initial conditionx0 = 0 andθ0 = i.

The next result presents an expression for the evaluation oftheH2-norm.



Proposition 2.2: ([12, Append. A]). IfS with uk ≡ 0 is MS-stable and there existsP ∈ M
r,r,

P = P ′ ≥ 0, the unique solution of the equation

A′

i

(

σ
∑

j=1

pijPj

)

Ai + C ′

iCi − Pi = 0, i = 1, . . . , σ, (6)

then‖S‖2 =∑σ

i=1

∑σ

j=1 πi(0)pijtr{E ′

iPjEi}.

Remark 2.1:If the ‖S‖2-norm is finite, then the systemS is MS-stable. Indeed, this assertion

comes from the fact that, with‖S‖2 finite, the equation (6) has a solution and implies that (5)

holds true.

B. Control structure

The LMI method introduced in the sequel requires an input data, in the sense that the method

should be initialized with a gain that depends on the Markov mode. To compute a gain that

does not depend on the mode, i.e., some gainGout ∈ Ms,r, a mode dependent gainGini ∈ M
s,r

is used in the design conditions. The single condition imposed onGini ∈ M
s,r is that it is

MS-stabilizing, a basic concept as defined next.

Definition 2.3: ([20, p. 1283]). A gainG ∈ M
s,r is called MS-stabilizing if the resulting

closed loop system inS (i.e., replacingA by A+BG) is MS-stable.

Remark 2.2:Recall that there exists a solution to the coupled Riccati equations if and only if

the corresponding gain is MS-stabilizing [20, Prop. 2]. This stabilizing property of the Riccati

gain will be used in the design control project of Section IV.

III. M AIN RESULT

This section is devoted to present and prove the main result based on an LMI strategy. An

advantage of our LMI method is that it generates less conservative results than the existing ones

(see Table II for a pragmatic comparison). Next we present the main result of this paper.

Theorem 3.1:Let K = {K1, . . . , Kσ} ∈ M
s,r be a given MS-stabilizing gain. If there exist a

set of matricesP ∈ M
r,r, P = P ′ > 0, W ∈ M

m,m, F ∈ M
r,r, H ∈ M

q,q, matricesR ∈ Ms,s,

L ∈ Ms,r, and a scalarβ such that the following LMIs hold:



β >
σ
∑

i=1

πi(0)tr(Wi), (7)

Wi − E ′

i

(

σ
∑

j=1

pijPj

)

Ei > 0, i = 1, . . . , σ; (8)

















−Pi (A′

i +K ′

iB
′

i)Fi (C ′

i +K ′

iD
′

i)Hi L′ −K ′

iR
′

⋆
(

∑σ

j=1 pijPj

)

− Fi − F ′

i 0 F ′

iBi

⋆ ⋆ I −Hi −H ′

i H ′

iDi

⋆ ⋆ ⋆ −R−R′

















< 0, i = 1, . . . , σ; (9)

thenG = R−1L is a mode-independent MS-stabilizing gain and
√
β is an upper bound (guar-

anteed cost) for theH2-norm of the systemS.

Proof: By multiplying (9) on the left byT and on the right byT ′, with

T =











I 0 0 S ′

0 I 0 0

0 0 I 0











, S = R−1L−K,

we obtain










−Pi A′

cli
Fi C ′

cli
Hi

⋆
(

∑σ

j=1 pijPj

)

− Fi − F ′

i 0

⋆ ⋆ I −Hi −H ′

i











< 0, (10)

with Acli ≡ Ai + BiR
−1L and Ccli ≡ Ci + DiR

−1L. Now, multiply (10) on the left by
[

I A′

cli
C ′

cli

]

and on the right by its transpose, and as a result, we get that

A′

cli

(

σ
∑

j=1

pijPj

)

Acli − Pi + C ′

cli
Ccli < 0, ∀i ∈ I. (11)

The inequalities in (7), (8), and (11) assure that the gain matrix G = R−1L is MS-stabilizing

(Remark 2.1) and that
√
β is a guaranteed cost for theH2-norm of the systemS.

Remark 3.1:Notice that Theorem 3.1 is a two-steps procedure, i.e., it requires as input data

a previous calculated MS-stabilizable gain (with full modeobservation), and in the second step

the set of LMIs in (7)–(9), if feasible, generates a corresponding MS-stabilizing gain (with no

mode observation). This is the main novelty of our design method. As illustrated in the next

section, the numerical evaluation confirms that the result can be less conservative than the one



Fig. 1. Laboratory testbed used in the practical experiments of Section IV.

available in the literature [12]. To the best of the authors’knowledge, the result in [12] for the

design of mode-independent controllers presents the less conservative result described so far in

the literature in the context of the present work.

IV. PRACTICAL APPLICATION: CONTROL OF VELOCITY IN A DC MOTOR DEVICE

This section describes a practical experiment of controlling the angular velocity of a DC motor

device subject to abrupt failures. These failures change the equipment behavior from the normal

mode of operation to the failure modes, and vice versa, in which a computer is responsible

to make these triggers to occur. To control the velocity of the DC motor in this scenario, we

implement the control strategy suggested by Theorem 3.1 andthe control design method from

[12] for sake of comparison. As we will see in the sequence, the control strategy from Theorem

3.1 produces a better response for the DC motor device under abrupt failures.

The laboratory testbed used in this section is composed of the DC motor Module 2208,

Datapool Eletronica Ltda, Brazil (Fig. 1), linked with a National Instruments USB-6008 data

card and a computer running an instance of Matlab. This laboratory setup was used previously

by some of the authors in a time-varying feedback experiment, see [21].

We design a controller based on Theorem 3.1, considering theregulator problem, and then

implement it in the DC motor testbed with a nonzero constant plus a sinusoid reference. The

idea of the experiment is to adjust the DC motor to track this sinusoid reference with null steady-

state error. To accomplish this goal, we implemented the proportional-integrative (PI) scheme



as described in [22, Sec. 1.8.2, p. 56] to cope with the steady-state error and it is included in

the synthesis by augmenting the system state. Let us set the system statexk as follows: take

xk ≡ [vk ik x3,k]
′, wherevk and ik represent the angular velocity of the rotor and the electrical

current consumed by the motor, and the third element denotesthe integrator term from the PI

scheme.

The failures occur on the power delivered to the shaft, whichare triggered by a computer.

They are based on three distinct operation modes, i.e., the normal (θk = 1), low (θk = 2), and

medium (θk = 3) power modes. In fact, the DC motor Module 2208 has a round potentiometer,

coupled with an electronic driver, that allows us to the change abruptly the power delivered to

the shaft, but respecting certain limits for the power shaft. We arranged the circuitry to bypass

the potentiometer and commanded its functionality by a computer, so that the jumps were chosen

so as to correspond to the three levels: (i)0% of rotary (normal mode); (ii)+20% of rotary for

improving the power (low mode); (iii) and−40% of rotary for decreasing the power (medium

mode).

These elements allow us to represent the DC motor device withabrupt failures as the Markov

jump linear system:

xk+1 = Aθkxk + Bθkuk + Eθkwk + Γθkrk,

yk = Cθkxk +Dθkuk, x0 ∈ R3, (12)

Ai =











a
(i)
11 a

(i)
12 0

a
(i)
21 a

(i)
22 0

a
(i)
31 0 a

(i)
33











, Bi =











b
(i)
1

b
(i)
2

0











,Γi =











0

0

γ(i)











, Ei ≡ 0.1I, i = 1, 2, 3.

where the parameters are given in Table I ([21, Sec. 4]). To design the mode-independent

controller, let us define

Ci ≡











1 0 0 0 0

0 1.5 0 0 0

0 0 2.5 0 0











′

, Di ≡
[

0 0 0 0 0.5
]

′

.

The sequences{uk} on R and {wk} on R2 obey the definitions of the previous sections,

whereas{rk} on R represents a reference tracking input. The Markov chain hasthe initial



distributionπ0 = [1 0 0]′ and the transition probability matrixP is defined as

P =











0.95 0.05 0

0.36 0.6 0.04

0.1 0.1 0.8











.

The controller applied to the DC motor device is in the staticstate-feedback format

uk = Gxk, ∀k ≥ 0, (13)

where the value of the gainG ∈ M1,3 is determined according to Theorem 3.1 (taking (12)

with rk ≡ 0). Indeed, we use the Riccati gains as the first step, as described in Remark 2.2. In

the second step, we solve the LMIs in Theorem 3.1 with the Riccati gains to obtain theH2-cost

and the corresponding admissible gainG, which stabilizes the system and attains theH2-cost in

Table II. Note that theH2-cost we obtain represents a good improvement when comparedwith

the one obtained with the method in [12], see Table II.

In practice, the failures tend to deviate the velocity of theDC motor device from its nominal

path. To illustrate how the designed controller deals with these fluctuations, we set the apparatus

to run with the sinusoid reference signal

rk = 1 + 0.2 sin(k/70), ∀k ≥ 0.

TABLE I

THE DISCRETE-TIME MJLS THAT MODELS THE DC MOTOR DEVICE.

Parameters i = 1 i = 2 i = 3

a
(i)
11 −0.4799 −1.6026 0.6346

a
(i)
12 5.1546 9.1632 0.9178

a
(i)
21 −3.8162 −0.5918 −0.5056

a
(i)
22 14.4723 3.0317 2.4811

a
(i)
31 0.1399 0.0740 0.3865

a
(i)
33 −0.9255 −0.4338 0.0982

b
(i)
1 5.8705 10.2851 0.7874

b
(i)
2 15.5010 2.2282 1.5302

γ(i) 0.1176 −0.1328 0.1632



400 800 1200 1600
0  

 

0 400 800 1200 1600

vk
rk

1

1

2

3

1.6

0.4

k

k

vk

θk

Fig. 2. Upper: The curve in blue represents the velocity (rad/s) of the DCmotor measured in practice and the black one

represents the reference. Lower: The states of the Markov chain evaluated in the experiment.

Although the failures produce a significant deviation of thesystem from its desired path in the

moment of their occurrence, we observed in practice that thecontrol rule (13) tends to restore

the equilibrium of the system (Fig. 2).

The experiment using this sinusoid signal was repeated for 700 distinct realizations of the

Markov chain, running the controllers proposed by Theorem 3.1 and by the method in [12]. The

corresponding path density in Fig. 3 suggests that the velocity vk and electrical currentik have

finite values for mean and standard deviation for allk ≥ 0 for both methods. This fact indicates

that the two controllers for the DC motor device are uniformly second moment stable [23].

In addition, Fig. 3 shows that the controller from Theorem 3.1 produces an outcome with

TABLE II

MODE-INDEPENDENTH2 COSTS PROVIDED BY THE METHODS FROMTHEOREM 3.1 AND [12, P. 347,Gi = G].

Method H2-cost Gain

[12, p. 347] 3.8119 G = [0.1889 − 0.8817 − 3.4384× 10−3]

Theorem 3.1 0.7963 G = [0.2192 − 0.9492 − 2.3497× 10−3]
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1.74071.30550.87030.4351

vk

ik

(a) Response due to the mode-independent controller of

Theorem 3.1.

0.2069

0.5379

0.8689

1.74071.30550.87030.4351

vk

ik

(b) Response due to the mode-independent controller of

[12, p. 347,Gi = G].

Fig. 3. Phase portraits representing the electrical currentik (A) and velocityvk (rad/s) measured from the DC motor device,

corresponding to 700 distinct realizations. The shading of the colors represents the statistical dispersion of the variables produced

by the power failures. Their statistical means follow an spiral path, and reach an ellipsoidal limit cycle (colored in red). A

comparison between the two responses indicates that the result of Theorem 3.1 generates an improved, less dispersive phase

portrait.

less statistical dispersion when compared with the one from[12]. In fact, the better behaviour

attained by the controller obtained from Theorem 3.1 is related to theH2 bounds, as shown in

Table II. In practice, the controller of Theorem 3.1 inducesa fast transient to the system, with

less oscillations around the tracking signal, when failures occur.

The experiments described in this section emphasize the applicability of the derived approach

to design controllers for stochastic systems subject to real-time failures.

V. CONCLUDING REMARKS

This note presented an LMI formulation to design mode-independent controllers for Markov

jump linear systems. For the corresponding control problemassociated with theH2-cost, our

LMI approach improves a previous result from the literature[12, mode-independent case] since

it is able to produce lowerH2-costs, as illustrated by the application of Section IV. Ourapproach

proves to be useful in the control of real-time processes, asverified by the experiments shown

in the paper.



REFERENCES

[1] V. Dragan, T. Morozan, and A. Stoica, “H2 optimal control for linear stochastic systems,”Automatica, vol. 40, no. 7, pp.

31 103–1113, 2004.

[2] O. L. V. Costa, M. D. Fragoso, and R. P. Marques,Discrete-Time Markovian Jump Linear Systems. New York: Springer-

Verlag, 2005.

[3] E. F. Costa, A. N. Vargas, and J. B. R. do Val, “Quadratic costs and second moments of jump linear systems with general

Markov chain,”Math. Control Signals Systems, vol. 23, no. 1, pp. 141–157, 2011.

[4] A. N. Vargas, W. Furloni, and J. B. R. do Val, “Second moment constraints and the control problem of Markov jump

linear systems,”Numer. Linear Algebra Appl., vol. 20, no. 2, pp. 357–368, 2013.

[5] R. C. L. F. Oliveira, A. N. Vargas, J. B. R. do Val, and P. L. D. Peres, “Robust stability, H2 analysis and stabilisation of

discrete-time Markov jump linear systems with uncertain probability matrix,”Internat. J. Control, vol. 82, no. 3, pp. 470

– 481, 2009.

[6] J. B. R. D. Val and E. F. Costa, “Stabilizability and positiveness of solutions of the jump linear quadratic problem and the

coupled algebraic Riccati equation,”IEEE Trans. Automat. Control, vol. 50, no. 5, pp. 691–695, 2005.

[7] O. L. V. Costa and W. L. de Paulo, “Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative

noise systems,”Automatica, vol. 43, pp. 587–597, 2007.

[8] L. Wu, P. Shi, H. Gao, and C. Wang, “H∞ filtering for 2D Markovian jump systems,”Automatica, vol. 44, no. 7, pp.

1849–1858, 2008.

[9] L. Wu, X. Yao, and W. X. Zheng, “GeneralizedH2 fault detection for Markovian jumping two-dimensional systems,”

Automatica, vol. 48, no. 8, pp. 1741–1750, 2012.

[10] L. Wu, X. Su, and P. Shi, “Sliding mode control with bounded L2 gainperformance of Markovian jump singular time-delay

systems,”Automatica, vol. 48, no. 8, pp. 1929–1933, 2012.

[11] L. Wu, P. Shi, and H. Gao, “State estimation and sliding-mode controlof Markovian jump singular systems,”IEEE Trans.

Automat. Control, vol. 55, no. 5, pp. 1213–1219, 2010.
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