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Abstract. In this paper, we investigate the controllability of an underwater vehicle immersed
in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as
control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a
finite-dimensional system similar to Kirchhoff laws in which the control input appears through
both linear terms (with time derivative) and bilinear terms. Applying Coron’s return method,
we establish some local controllability results for the position and velocities of the underwater
vehicle. Examples with six, four, or only three controls inputs are given for a vehicule with an
ellipsoidal shape.

1. Introduction

The control of boats or submarines has attracted the attention of the mathematical community
from a long time (see e.g. [2, 3, 4, 9, 10, 16, 17, 18, 19].) In most of the papers devoted to that
issue, the fluid is assumed to be inviscid, incompressible and irrotational, and the rigid body
(the vehicle) is supposed to have an elliptic shape. On the other hand, to simplify the model,
the control is often assumed to appear in a linear way in a finite-dimensional system describing
the dynamics of the rigid body, the so-called Kirchhoff laws.

A large vessel (e.g. a cargo ship) presents often one tunnel thruster built into the bow to
make docking easier. Some accurate model of a boat without rudder controlled by two propellers,
the one displayed in a transversal bowthruster at the bow of the ship, the other one placed at
the stern of the boat, was derived and investigated in [12]. A local controllability result for
the position and velocity (six coordinates) of a boat surrounded by an inviscid (not necessarily
irrotational) fluid was derived in [12] with only two controls inputs.

The aim of this paper is to provide some accurate model of a neutrally buoyant underwater
vehicle immersed in an infinite volume of ideal fluid, without rudder, and actuated by a few
number of propellers located into some tunnels inside the rigid body, and to give a rigorous
analysis of the control properties of such a system. We aim to control both the position, the
attitude, and the (linear and angular) velocities of the vehicle by taking as control input the
flow of the fluid through a part of the boundary of the rigid body. The inviscid incompressible
fluid is assumed here to have an irrotational (hence potential) flow, for the sake of simplicity.
The case of a fluid with vorticity will be considered elsewhere.

Our fluid-structure interaction problem can be described as follow. The underwater vehicle,
represented by a rigid body occupying a connected compact set S(t) ⊂ R3, is surrounded by
an homogeneous incompressible perfect fluid filling the open set Ω(t) := R3 \ S(t) (as e.g. for
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a submarine immersed in an ocean). We assume that Ω(t) is C∞ smooth and connected. Let
S = S(0) and

Ω = Ω(0) = R3 \ S(0)

denote the initial configuration (t = 0). Then, the dynamics of the fluid-structure system are
governed by the following system of PDE’s

∂u

∂t
+ (u · ∇)u+∇p = 0, t ∈ (0, T ), x ∈ Ω(t), (1.1)

div u = 0, t ∈ (0, T ), x ∈ Ω(t), (1.2)

u · ν = (h′ + ω × (x− h)) · ν + w(t, x), t ∈ (0, T ), x ∈ ∂Ω(t), (1.3)

lim
|x|→+∞

u(t, x) = 0, t ∈ (0, T ), (1.4)

m0h
′′ =

∫
∂Ω(t)

pν dσ, t ∈ (0, T ), (1.5)

d

dt
(QJ0Q

∗ω) =

∫
∂Ω(t)

(x− h)× pν dσ, t ∈ (0, T ), (1.6)

Q′ = S(ω)Q, t ∈ (0, T ), (1.7)

u(0, x) = u0(x), x ∈ Ω, (1.8)

(h(0), Q(0), h′(0), ω(0)) = (h0, Q0, h1, ω0) ∈ R3 × SO(3)× R3 × R3. (1.9)

In the above equations, u (resp. p) is the velocity field (resp. the pressure) of the fluid, h
denotes the position of the center of mass of the solid, ω denotes the angular velocity and Q the
3 dimensional rotation matrix giving the orientation of the solid. The positive constant m0 and
the matrix J0, which denote respectively the mass and the inertia matrix of the rigid body, are
defined as

m0 =

∫
S

ρ(x)dx, J0 =

∫
S

ρ(x)(|x|2Id− xx∗)dx,

where ρ(·) represents the density of the rigid body. Finally, ν is the outward unit vector to
∂Ω(t), x × y is the cross product between the vectors x and y, and S(y) is the skew-adjoint
matrix such that S(y)x = y × x, i.e.

S(y) =

 0 −y3 y2

y3 0 −y1

−y2 y1 0

 .

The neutral buoyancy condition reads∫
S

ρ(x)dx =

∫
S

1dx. (1.10)

f ′ (or ḟ) stands for the derivative of f respect to t, A∗ means the transpose of the matrix A,
and Id denotes the identity matrix. Finally, the term w(t, x), which stands for the flow through
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the boundary of the rigid body, is taken as control input. Its support will be strictly included
in ∂Ω(t), and actually only a finite dimensional control input will be considered here (see below
(1.17) for the precise form of the control term w(t, x)).

When no control is applied (i.e. w(t, x) = 0), then the existence and uniqueness of strong
solutions to (1.1)-(1.9) was obtained first in [20] for a ball embedded in R2, and next in [21]
for a rigid body S of arbitrary form (still in R2). The case of a ball in R3 was investigated in
[22], and the case of a rigid body of arbitrary form in R3 was studied in [25]. The detection of
the rigid body S(t) from partial measurements of the fluid velocity has been tackled in [5] when

Ω(t) = Ω0 \ S(t) (Ω0 ⊂ R2 being a bounded cavity) and in [6] when Ω(t) = R2 \ S(t).
Here, we are interested in the control properties of (1.1)-(1.9). The controllability of Euler

equations has been established in 2D (resp. in 3D) in [7] (resp. in [11]). Note, however, that
there is no hope here to control the motion of both the fluid and the rigid body. Indeed, Ω(t) is
an exterior domain, and the vorticity is transported by the flow with a finite speed propagation,
so that it is not affected (at any given time) far from the rigid body. Therefore, we will deal
with the control of the motion of the rigid body only. As the state of the rigid body is described
by a vector in R12, it is natural to consider a finite-dimensional control input.

Note also that since the fluid is flowing through a part of the boundary of the rigid body,
additional boundary conditions are needed to ensure the uniqueness of the solution of (1.1)-(1.9)
(see [13], [14]). In dimension three, one can specify the tangent components of the vorticity
ζ(t, x) := curl v(t, x) on the inflow section; that is, one can set

ζ(t, x) · τi = ζ0(t, x) · τi for w(t, x) < 0, i = 1, 2, (1.11)

where ζ0(t, x) is a given function and τi, i = 1, 2, are linearly independent vectors tangent to
∂Ω(t). As we are concerned here with irrotational flows, we choose ζ0 ≡ 0.

In order to write the equations of the fluid in a fixed frame, we perform a change of coordinates.
We set

x = Q(t)y + h(t), (1.12)

v(t, y) = Q∗(t)u(t, Q(t)y + h(t)), (1.13)

q(t, y) = p(t, Q(t)y + h(t)), (1.14)

l(t) = Q∗(t)h′(t), (1.15)

r(t) = Q∗(t)ω(t). (1.16)

Then x (resp. y) represents the vector of coordinates of a point in a fixed frame (respectively
in a frame linked to the rigid body). We may without loss of generality assume that

h(0) = 0, Q(0) = Id.

Note that, at any given time t, y ranges over the fixed domain Ω when x ranges over Ω(t).
Finally, we assume that the control takes the form

w(t, x) = w(t, Q(t)y + h(t)) =
m∑
j=1

wj(t)χj(y), (1.17)
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where m ∈ N∗ stands for the number of independent inputs, and wj(t) ∈ R is the control input
associated with the function χj ∈ C∞(∂Ω). To ensure the conservation of the mass of the fluid,
we impose the relation ∫

∂Ω

χj(y)dσ = 0 for 1 ≤ j ≤ m. (1.18)

Then the functions (v, q, l, r) satisfy the following system

∂v

∂t
+ ((v − l − r × y) · ∇)v + r × v +∇q = 0, t ∈ (0, T ), y ∈ Ω, (1.19)

div v = 0, t ∈ (0, T ), y ∈ Ω, (1.20)

v · ν = (l + r × y) · ν +
∑

1≤j≤m
wj(t)χj(y), t ∈ (0, T ), y ∈ ∂Ω, (1.21)

lim
|y|→+∞

v(t, y) = 0, t ∈ (0, T ), (1.22)

m0 l̇ =

∫
∂Ω

qν dσ −m0r × l, t ∈ (0, T ), (1.23)

J0ṙ =

∫
∂Ω

q(y × ν) dσ − r × J0r, t ∈ (0, T ), (1.24)

(l(0), r(0)) = (h1, ω0), v(0, y) = u0(y). (1.25)

The paper is organized as follows. In Section 2, we simplify system (1.1)-(1.9) by assuming that
the fluid is potential. We obtain a finite dimensional system (namely (2.65)) similar to Kirchhoff
laws, in which the control input w appears through both linear terms (with time derivative) and
bilinear terms. The investigation of the control properties of (2.65) is performed in Section 3.
After noticing that the controllability of the linearized system at the origin requires six control
inputs, we apply the return method due to Jean-Michel Coron to take advantage of the nonlinear
terms in (2.65). (We refer the reader to [8] for an exposition of that method for finite-dimensional
systems and for PDE’s.) We consider the linearization along a certain closed-loop trajectory
and obtain a local controllability result (Theorem 3.11) assuming that two rank conditions are
fulfilled, by using a variant of Silverman-Meadows test for the controllability of a time-varying
linear system. Some examples using symmetry properties of the rigid body are given in Section
4.

2. Equations of the motion in the potential case

In this section we derive the equations describing the motion of the rigid body subject to flow
boundary control when the fluid is potential.

2.1. Null vorticity. Let us denote by

ζ(t, y) = curl v(t, y) := (∇× v)(t, y)
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the vorticity of the fluid. Here, we assume that

ζ0 = curl v0 = 0 in Ω (2.1)

and that the three components of ζ are null at the inflow part of ∂Ω, namely

ζ(t, y) = 0, if y ∈ ∪1≤j≤m Supp χj and
m∑
j=1

wj(t)χj(y) ≤ 0. (2.2)

Proposition 2.1. Under the assumptions (2.1) and (2.2), one has

ζ = curl v ≡ 0 in [0, T ]× Ω, (2.3)

Proof. Let us introduce ṽ := v − l − r × y. Then it follows from (1.20) that

div(ṽ) = 0, (2.4)

and
curl(ṽ) = ζ − 2r. (2.5)

Applying the operator curl in (1.19) results in

∂ζ

∂t
+ curl((ṽ · ∇)ṽ) + curl((ṽ · ∇)(l + r × y)) + curl(r × v) = 0. (2.6)

We note that the following identities hold:

curl((v · ∇)v) = (v · ∇)curl(v)− (curl(v) · ∇)v + div(v)curl(v) (2.7)

and
(v · ∇)(r × y) = r × v, curl(r × v) = div(v)r − (r · ∇)v. (2.8)

Using (2.4)-(2.8), we see that ζ satisfies

∂ζ

∂t
+ (ṽ · ∇)ζ − (ζ · ∇)ṽ = 0. (2.9)

Let ϕ = ϕ(t, s, y) denote the flow associated with ṽ, i.e.

∂ϕ

∂t
= ṽ(t, ϕ), with ϕ|t=s = y. (2.10)

We denote by G(t, s, y) = ∂ϕ
∂y (t, s, y) the Jacobi matrix of ϕ. Differentiating in (2.10) with

respect to yj (j = 1, 2, 3), we see that G(t, s, y) satisfies the following equation:

∂G

∂t
=
∂ṽ

∂y
(t, ϕ(t, s, y)) ·G(t, s, y), where G(s, s, y) = Id (identity matrix). (2.11)

We infer from (2.4) and (2.11) that

det G(t, s, y) = 1. (2.12)

Following Yudovich [13], we introduce the time t∗(t, y) ∈ [0, t] at which the fluid element
first appears in Ω, and set y∗(t, y) = ϕ(t∗(t, y), t, y). Then either t∗ = 0, or t∗ > 0 and y∗ ∈
∪1≤j≤m supp χj ⊂ ∂Ω with

∑m
j=1wj(t

∗)χj(y
∗) ≤ 0. Set f(s, t, y) = G−1(s, t, y)ζ(s, ϕ(s, t, y)).

From (2.9)-(2.12), we obtain that
∂f

∂s
(s, t, y) = 0. (2.13)
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Finally, integrating with respect to s in (2.13) yields

ζ(t, y) = G−1(t∗, t, y)ζ(t∗, y∗), (2.14)

which, combined to (2.1) and (2.2), gives (2.3). The proof of Proposition 2.1 is complete. �

Remark 2.2. The issue whether the result in Proposition 2.1 still holds with (2.2) replaced by

ζ(t, y) · τi = 0, i = 1, 2, if y ∈ ∪1≤j≤m Supp χj and
m∑
j=1

wj(t)χj(y) ≤ 0,

seems challenging. We notice that the result in [14] was proved solely when Ω was a cylinder.

2.2. Decomposition of the fluid velocity. It follows from (1.20), (1.22) and (2.3) that the
flow is potential; that is,

v = ∇Φ, (2.15)

where Φ = Φ(t, y) solves
∆Φ = 0, in (0, T )× Ω, (2.16)

∂Φ

∂ν
= (l + r × y) · ν +

∑
1≤j≤m

wj(t)χj(y) on (0, T )× Ω, (2.17)

lim
|y|→+∞

∇Φ(t, y) = 0, on (0, T ). (2.18)

Actually, Φ may be decomposed as

Φ(t, y) =
∑

1≤i≤3

{
liφi + riϕi

}
+

∑
1≤j≤m

wjψj (2.19)

where, for i = 1, 2, 3 and j = 1, ...,m,

∆φi = ∆ϕi = ∆ψj = 0 in Ω, (2.20)

∂φi
∂ν

= νi,
∂ϕi
∂ν

= (y × ν)i,
∂ψj
∂ν

= χj on ∂Ω, (2.21)

lim
|y|→+∞

∇φi(y) = 0, lim
|y|→+∞

∇ϕi(y) = 0, lim
|y|→+∞

∇ψj(y) = 0. (2.22)

As the open set Ω and the functions χj , 1 ≤ j ≤ m, supporting the control are assumed to
be smooth, we infer that the functions ∇φi (i = 1, 2, 3), the functions ∇ϕi (i = 1, 2, 3) and the
functions ∇ψj (1 ≤ j ≤ m) belong to H∞(Ω).

2.3. Equations for the linear and angular velocities. For notational convenience, in what
follows

∫
Ω f (resp.

∫
∂Ω f) stands for

∫
Ω f(y)dy (resp.

∫
∂Ω f(y)dσ(y)).

Let us introduce the matrices M,J,N ∈ R3×3, CM , CJ ∈ R3×m, LMp , L
J
p , R

M
p , R

J
p ∈ R3×3,

and the matrices WM
p ,W J

p ∈ R3×m for p ∈ {1, ...,m} defined by

Mi,j =

∫
Ω

∇φi · ∇φj =

∫
∂Ω

νiφj =

∫
∂Ω

∂φi
∂ν

φj , (2.23)

Ji,j =

∫
Ω

∇ϕi · ∇ϕj =

∫
∂Ω

(y × ν)iϕj =

∫
∂Ω

∂ϕi
∂ν

ϕj , (2.24)
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Ni,j =

∫
Ω

∇φi · ∇ϕj =

∫
∂Ω

νiϕj =

∫
∂Ω

φi(y × ν)j , (2.25)

(CM )i,j =

∫
Ω

∇φi · ∇ψj =

∫
∂Ω

νiψj =

∫
∂Ω

φiχj , (2.26)

(CJ)i,j =

∫
Ω

∇ϕi · ∇ψj =

∫
∂Ω

(y × ν)iψj =

∫
∂Ω

ϕiχj , (2.27)

(LMp )i,j =

∫
∂Ω

(∇φj)iχp, (LJp )i,j =

∫
∂Ω

(y ×∇φj)iχp, (2.28)

(RMp )i,j =

∫
∂Ω

(∇ϕj)iχp, (RJp )i,j =

∫
∂Ω

(y ×∇ϕj)iχp, (2.29)

(WM
p )i,j =

∫
∂Ω

(∇ψj)iχp, (W J
p )i,j =

∫
∂Ω

(y ×∇ψj)iχp. (2.30)

Note that M∗ = M and J∗ = J.
Let us now reformulate the equations for the motion of the rigid body. We define the matrix

J ∈ R6×6 by

J =

(
m0 Id 0

0 J0

)
+

(
M N
N∗ J

)
. (2.31)

It is easy to see that J is a (symmetric) positive definite matrix. We associate to the (linear
and angular) velocity (l, r) ∈ R3×R3 of the rigid body a momentum-like quantity, the so-called
impulse (P,Π) ∈ R3 × R3, defined by

J

(
l
r

)
=

(
P
Π

)
. (2.32)

We are now in a position to give the equations governing the dynamics of the impulse.

Proposition 2.3. The dynamics of the system are governed by the following Kirchhoff equations

dP

dt
+ CM ẇ = (P + CMw)× r −

∑
1≤p≤m

wp
{
LMp l +RMp r +WM

p w
}
,

dΠ

dt
+ CJ ẇ = (Π + CJw)× r + (P + CMw)× l −

∑
1≤p≤m

wp
{
LJp l +RJp r +W J

p w
}
,

(2.33)
where w(t) := (w1(t), ..., wm(t)) ∈ Rm denotes the control input.

Proof. We first express the pressure q in terms of l, r, v and their derivatives. Using (2.3), we
easily obtain

v · ∇v = ∇|v|
2

2
and (r × y) · ∇v − r × v = ∇((r × y) · v) (2.34)
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Thus (1.19) gives

−∇q =
∂v

∂t
+∇

( |v|2
2
− l · v − (r × y) · v

)

= ∇

 ∑
1≤i≤3

{
l̇iφi + ṙiϕi

}
+

∑
1≤j≤m

ẇjψj +
|v|2
2
− l · v − (r × y) · v


hence we can take

q = −
{ ∑

1≤i≤3

{
l̇iφi + ṙiϕi

}
+

∑
1≤j≤m

ẇjψj +
|v|2
2
− (l + (r × y)) · v

}
(2.35)

Replacing q by its value in (1.23) yields

m0 l̇ = −m0r×l−
{ ∑

1≤i≤3

(
l̇i

∫
∂Ω

φiν+ṙi

∫
∂Ω

ϕiν

)
+
∑

1≤j≤m
ẇj

∫
∂Ω

ψjν+

∫
∂Ω

( |v|2
2
− (l + (r × y)) · v

)
ν

}
.

(2.36)
Using (2.34) and (1.20)-(1.21), we obtain∫

∂Ω

|v|2
2
ν =

∫
Ω

∇|v|
2

2

=

∫
Ω

v · ∇v

= −
∫
Ω

(div v)v +

∫
∂Ω

(v · ν)v

=

∫
∂Ω

((l + r × y) · ν) v +
∑

1≤j≤m
wj(t)

∫
∂Ω

χj(y)v. (2.37)

Using Lagrange’s formula:

a× (b× c) = (a · c)b− (a · b)c, ∀a, b, c ∈ R3, (2.38)

we obtain that∫
∂Ω

((l + r × y) · ν) v − ((l + r × y) · v) ν =

∫
∂Ω

(l + r × y)× (v × ν). (2.39)

Now we claim that ∫
∂Ω

ν ×∇f = 0, ∀f ∈ C2(Ω). (2.40)

To prove the claim, we introduce a smooth cutoff function ρa such that

ρa(y) =

{
1 if |y| < a,
0 if |y| > 2a.
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Pick a radius a > 0 such that S ⊂ B(0, a), and set

f̃(y) = f(y)ρa(y). (2.41)

Then

∇f̃(y) = ∇f(y), ∀y ∈ ∂Ω,

and using the divergence theorem, we obtain∫
∂Ω

ν ×∇f =

∫
∂Ω

ν ×∇f̃ =

∫
Ω

curl(∇f̃) = 0.

Therefore, using (2.40) with f = Φ where ∇Φ = v, we obtain∫
∂Ω

l × (v × ν) = 0. (2.42)

Another application of (2.40) with f = yiΦ yields∫
∂Ω

yiv × ν =

∫
∂Ω

ν × eiΦ, (2.43)

where {e1, e2, e3} denotes the canonical basis in R3. It follows from (2.42), (2.43), and (2.38)
that∫
∂Ω

(l + r × y)× (v × ν) = r ×
∫
∂Ω

Φν

= r(t)×
( 3∑
i=1

{
li(t)

∫
∂Ω

φi(y)ν(y) + ri(t)

∫
∂Ω

ϕi(y)ν(y)
}

+
m∑
j=1

wj(t)

∫
∂Ω

ψj(y)ν(y)

)
. (2.44)

Combining (2.36) with (2.37), (2.39), and (2.44) yelds

m0 l̇ = −


3∑
i=1

l̇i

∫
∂Ω

φiν + ṙi

∫
∂Ω

ϕiν +

m∑
j=1

ẇj

∫
∂Ω

ψjν


−

m∑
j=1

wj


3∑
i=1

li

∫
∂Ω

χj∇φi + ri

∫
∂Ω

χj∇ϕi +

m∑
p=1

wp

∫
∂Ω

χj∇ψp


−r ×


3∑
i=1

li

∫
∂Ω

φiν + ri

∫
∂Ω

ϕiν +

m∑
j=1

wj

∫
∂Ω

ψjν


−m0r × l. (2.45)

Let us turn our attention to the dynamics of r. Substituting the expression of q given in
(2.35) in (1.24) yields
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J0ṙ = −r × J0r −
∑

1≤i≤3

l̇i
∫
∂Ω

φi(y × ν) + ṙi

∫
∂Ω

ϕi(y × ν)

− ∑
1≤j≤m

ẇj

∫
∂Ω

ψj(y × ν)

−
∫
∂Ω

( |v|2
2
− (l + (r × y)) · v

)
(y × ν) (2.46)

From [15, Proof of Lemma 2.7], we know that

|v(y)| = |∇Φ(y)| = O(|y|−2), |∇v(y)| = O(|y|−3) as |y| → ∞,

so that

v ∈ L2(Ω), |y| · |v| · |∇v| ∈ L1(Ω). (2.47)

Note that, by (2.34) and (1.20),

div(
|v|2
2

(êi × y)) = ∇(
|v|2
2

) · (ei × y) +
|v|2
2

div(ei × y)

= (v · ∇v) · (ei × y)

= v · ∇(y × v)i

= div
(
(y × v)iv

)
,

and hence, using (2.47) and the divergence theorem,

∫
∂Ω

|v|2
2

(y × ν)i =

∫
∂Ω

|v|2
2

(ei × y) · ν

=

∫
Ω

div
( |v|2

2
(ei × y)

)
=

∫
Ω

div
(
(y × v)iv

)
=

∫
∂Ω

(v · ν)(y × v)i

=

∫
∂Ω

(l + r × y) · ν(y × v)i +
∑

1≤j≤m
wj(t)

∫
∂Ω

χj(y × v)i. (2.48)
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Furthermore, using (2.38) we have that∫
∂Ω

(l + r × y) · ν(y × v)i − (l + (r × y)) · v(y × ν)i

=

∫
∂Ω

(l + r × y) ·
((

(ei × y) · v
)
ν −

(
(ei × y) · ν

)
v

)

=

∫
∂Ω

(l + r × y) · ((ei × y)× (ν × v)) . (2.49)

Combining the following identity

3∑
j=1

(a× ej)× (ej × b) = −(a× b), ∀a, b ∈ R3 (2.50)

with (2.43), we obtain∫
∂Ω
l · ((ei × y)× (ν × v)) =

3∑
j=1

∫
∂Ω

l · ((ei × ej)× (ν × yjv))

=

3∑
j=1

l ·
(

(ei × ej)×
∫
∂Ω

(ν × yjv)

)

=
3∑
j=1

l ·
(

(ei × ej)×
∫
∂Ω

(ej × ν)Φ

)

= −l ·
∫
∂Ω

(ei × ν) Φ =

∫
∂Ω

(l × ν)i Φ. (2.51)

For any given f ∈ C2(Ω), let

I :=

∫
∂Ω

(r × y) · ((ei × y)× (ν ×∇f)) .

f̃ still denoting the function defined in (2.41), we have that

I =
3∑
j=1

∫
∂Ω

(r × y) ·
(

(ei × y)× (ej ×∇f̃)
)
νj

=

3∑
j=1

{∫
Ω

(r × ej) ·
(

(ei × y)× (ej ×∇f̃)
)}

+

3∑
j=1

{∫
Ω

(r × y) ·
(

(ei × ej)× (ej ×∇f̃)
)}

+
3∑
j=1

{∫
Ω

(r × y) ·
(

(ei × y)× (ej × ∂j∇f̃)
)}

.
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Using again (2.50), we obtain

I = −
3∑
j=1


∫
Ω

(ei × y) ·
(

(r × ej)× (ej ×∇f̃)
)−

∫
Ω

(r × y) · (ei ×∇f̃)

+

∫
Ω

(r × y) ·
(

(ei × y)× rot(∇f̃)
)

=

∫
Ω

(ei × y) · (r ×∇f̃)−
∫
Ω

(r × y) · (ei ×∇f̃)

= −
∫
Ω

r ·
(
(ei × y)×∇f̃

)
−
∫
Ω

r ·
(
y × (ei ×∇f̃)

)
= −

∫
Ω

r ·
{

(ei × y)×∇f̃ + y × (ei ×∇f̃)
}

= −
∫
Ω

r ·
{
ei × (y ×∇f̃)

}
=

∫
Ω

(
r × (y ×∇f̃)

)
i

=

∫
∂Ω

(r × (y × ν)f)i ,

where we used Jacobi identity

a× (b× c) + b× (c× a) + c× (a× b) = 0 ∀a, b, c ∈ R3.

Letting f = Φ in the above expression yields∫
∂Ω

(r × y) · ((ei × y)× (ν × v)) =

∫
∂Ω

(r × (y × ν)Φ)i . (2.52)

Gathering together (2.46), (2.48), (2.49), (2.51)), and (2.52) yields

J0ṙ =

3∑
i=1

(
l̇i

∫
∂Ω

(ν × y)φi + ṙi

∫
∂Ω

(ν × y)ϕi

)
+

m∑
j=1

ẇj

∫
∂Ω

(ν × y)ψj

+

m∑
j=1

wj


3∑
i=1

(
li

∫
∂Ω

(∇φi × y)χj + ri

∫
∂Ω

(∇ϕi × y)χj

)
+

m∑
p=1

wp

∫
∂Ω

(∇ψp × y)χj


− l ×


3∑
i=1

(
li

∫
∂Ω

φiν + ri

∫
∂Ω

ϕiν
)

+

m∑
p=1

wp

∫
∂Ω

ψpν


− r ×


3∑
i=1

(
li

∫
∂Ω

(y × ν)φi + ri

∫
∂Ω

(y × ν)ϕi

)
+

m∑
p=1

wp

∫
∂Ω

(y × ν)ψp


− r × J0r. (2.53)
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Combining (2.45) and (2.53) with the definitions of the matrices in (2.23)-(2.30), we obtain

m0 l̇ = −Ml̇ −Nṙ − CM ẇ −
∑

1≤p≤m
wp
{
LMp l +RMp r +WM

p w
}

−r × (Ml +Nr + CMw)−m0r × l, (2.54)

J0ṙ = −N∗ l̇ − Jṙ − CJ ẇ −
∑

1≤p≤m
wp
{
LJp l +RJp r +W J

p w
}

−l × (Ml +Nr + CMw)

−r × (N∗l + Jr + CJw)− r × J0r. (2.55)

This completes the proof of Proposition 2.3. �

2.4. Equations for the position and attitude. Now, we look at the dynamics of the position
and attitude of the rigid body. We shall use unit quaternions. (We refer the reader to the
Appendix for the notations and definitions used in what follows.) From (1.7) and (1.16), we
obtain

Q′ = S(Qr)Q = QS(r), (2.56)

with Q(0) = Id.
Assuming that Q(t) is associated with a unit quaternion q(t), i.e. Q(t) = R(q(t)), then the

dynamics of q are given by

q̇ =
1

2
q ∗ r (2.57)

(see e.g. [24]). Expanding q as q = q0 + ~q = q0 + q1i+ q2j + q3k, this yields

q̇0 + ~̇q =
1

2
(−~q · r + q0r + ~q × r) (2.58)

and 
q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0
r1

r2

r3

 · (2.59)

From (1.15), we see that the dynamics of h are given by

ḣ(t) = Q(t) l(t). (2.60)

Again, if Q(t) = R(q(t)), then (2.60) may be written as

ḣ = q ∗ l ∗ q∗. (2.61)

Expanding q as q = q0 + ~q = q0 + q1i+ q2j + q3k, we obtain

ḣ = (q0 + ~q) ∗ l ∗ (q0 − ~q) = q2
0l + 2q0~q × l + (l · ~q )~q − ~q × l × ~q.

and ḣ1

ḣ2

ḣ3

 =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 l1
l2
l3

 · (2.62)
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For q ∈ S3
+, q may be parameterized by ~q, and it is thus sufficient to consider the dynamics

of ~q which read

~̇q =
1

2
(
√

1− ||~q ||2 r + ~q × r). (2.63)

The dynamics of h are then given by

ḣ = (1− ||~q ||2)l + 2
√

1− ||~q ||2 ~q × l + (l · ~q)~q − ~q × l × ~q. (2.64)

(Alternatively, one can substitute
√

1− (q2
1 + q2

2 + q2
3) to q0 in both (2.59) and (2.62).)

2.5. Control system for the underwater vehicule. Using (2.57), (2.61), and Proposition
2.3, we arrive to 

h′ = q ∗ l ∗ q∗,

q′ =
1

2
q ∗ r,(

l
r

)′
= J−1(Cw′ + F (l, r, w)),

(2.65)

where (h, q, l, r, w) ∈ R3 × S3 × R3 × R3 × Rm,

F (l, r, w) = −

 S(r) 0

S(l) S(r)

(J( l
r

)
− Cw

)
−

m∑
p=1

wp

 LMp l +RMp r +WM
p w

LJp l +RJp r +W J
p w

 ,

(2.66)
and

C = −
(
CM

CJ

)
. (2.67)

For q ∈ S3
+ (i.e. Q ∈ O), one can replace the two first equations in (2.65) by (2.64) and (2.63),

respectively. This results in the system

h′ = (1− ||~q ||2)l + 2
√

1− ||~q ||2 ~q × l + (l · ~q )~q − ~q × l × ~q,

~q ′ = 1
2(
√

1− ||~q ||2 r + ~q × r),(
l
r

)′
= J−1(Cw′ + F (l, r, w)).

(2.68)

3. Control properties of the underwater vehicle

3.1. Linearization at the equilibrium. When investigating the local controllability of a non-
linear system around an equilibrium point, it is natural to look first at its linearization at the
equilibrium point.

To linearize the system (2.65) at the equilibrium point (h, q, l, r, w) = (0, 1, 0, 0, 0), we use the
parameterization of S3

+ by ~q, and consider instead the system (2.68).
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The linearization of (2.68) around (h, ~q, l, r, w) = (0, 0, 0, 0, 0) reads
h′ = l,

2~q ′ = r,(
l
r

)′
= J−1Cw′.

(3.1)

Proposition 3.1. The linearized system (3.1) with control w′ ∈ Rm is controllable if, and only
if, rank(C) = 6.

Proof. The proof follows at once from Kalman rank condition, since (h, 2~q, l, r) ∈ R12 and

rank

((
0

J−1C

)
,

(
0 Id
0 0

) (
0

J−1C

))
= 2 rank(C).

�

Remark 3.2. It is easy to see that the controllability of the linearized system (3.1) implies the
(local) controllability of the full system (2.68). The main drawback of Proposition 3.1 is that the
controllability of the linearized system (3.1) requires at least 6 control inputs (m ≥ 6).

3.2. Simplications of the model resulting from symmetries. Now we are concerned with
the local controllability of (2.68) with less than 6 controls inputs. To derive tractable geometric
conditions, we consider rigid bodies with symmetries. Let us introduce the operators Si(y) =
y − 2yiei for i = 1, 2, 3, i.e.

S1(y) = (−y1, y2, y3),
S2(y) = (y1,−y2, y3),
S3(y) = (y1, y2,−y3).

(3.2)

Definition 3.3. Let i ∈ {1, 2, 3}. We say that Ω is symmetric with respect to the plane {yi = 0}
if Si(Ω) = Ω. Let f : Ω ⊂ R3 → R. If f(Si(y)) = εiff(y) for any y ∈ Ω and some number

εif ∈ {−1, 1}, then f is said to be even (resp. odd) with respect to Si if εif = 1 (resp. εif = −1 ).

The following proposition gather several useful properties of the symmetries Si, whose proofs
are left to the reader. δip denotes the Kronecker symbol, i.e. δip = 1 if i = p, δip = 0 otherwise.

Proposition 3.4. Let i ∈ {1, 2, 3}. Then

(1) SiSi(a) = a, ∀a ∈ R3;
(2) Si(a) · Si(b) = a · b, ∀a, b ∈ R3;
(3) Si(a)× Si(b) = −Si(a× b), ∀a, b ∈ R3;
(4) If Si(Ω) = Ω, then ν(Si(y)) = Si(ν(y)), ∀y ∈ ∂Ω;
(5) If f(Si(y)) = εf(y) with ε ∈ {±1}, then f(Si(y))ν(Si(y)) = εSi(f(y)ν(y)), ∀y ∈ ∂Ω;
(6) If Si(Ω) = Ω, then Si(y)× ν(Si(y)) = −Si(y × ν(y)), ∀y ∈ ∂Ω;
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(7) Assume that Si(Ω) = Ω, and assume given a function g : ∂Ω→ R with g(Si(y)) = εg(y)
for all y ∈ ∂Ω, where ε ∈ {±1}. Then the solution f to the system

∆f = 0, in Ω,

∂f

∂ν
= g, on ∂Ω,

∇f(y)→ 0, as |y| → ∞,
which is defined up to an additive constant C, fulfills for a convenient choice of C

f(Si(y)) = εf(y), ∀y ∈ Ω,

∇f(Si(y)) = εSi(∇f(y)), ∀y ∈ Ω.

(8) Let f and g be any functions that are even or odd with respect to Sp for some p ∈ {1, 2, 3},
and let h(y) = f(y)∂νg(y). Then

h(Sp(y)) = εpfε
p
gh(y), (3.3)

i.e. εpf∂νg = εpfε
p
g.

(9) Let f and g be as in (8), and let hi(y) = ∂if(y)∂νg(y), where i ∈ {1, 2, 3}. Then

hi(Sp(y)) = (−1)δipεpfε
p
ghi(y), (3.4)

i.e. εp∂if∂νg = (−1)δipεpfε
p
g.

(10) Let f and g be as in (8), and let hi(y) = (y ×∇f(y))i∂νg(y), where i ∈ {1, 2, 3}. Then

hi(Sp(y)) = −(−1)δipεpfε
p
ghi(y), (3.5)

i.e. εp(y×∇f)i∂νg
= −(−1)δipεpfε

p
g.

Applying Proposition 3.4 to the solutions φi, ϕi, i = 1, 2, 3, of (2.20)-(2.22), we obtain at once
the following result.

Corollary 3.5. Assume that Ω is symmetric with respect to the plane {yp = 0} (i.e. Sp(Ω) = Ω)
for some p ∈ {1, 2, 3}. Then for any j ∈ {1, 2, 3}

φj(Sp(y)) =

{
φj(y) if j 6= p,
−φj(y) if j = p,

(3.6)

= (−1)δpjφj(y), (3.7)

i.e. εpφj = (−1)δpj , and

ϕj(Sp(y)) =

{
−ϕj(y) if j 6= p,
ϕj(y) if j = p,

(3.8)

= −(−1)δpjϕj(y), (3.9)

i.e. εpϕj = −(−1)δpj .

The following result shows how to exploit the symmetries of the rigid body and of the control
inputs to simplify the matrices in (2.23)-(2.30)
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Proposition 3.6. Assume that Ω is symmetric with respect to the plane {yp = 0} for some
p ∈ {1, 2, 3}. Then

(1) Mij = 0 if εpφiε
p
φj

= −1, i.e.

δip + δjp ≡ 1 (mod 2) ; (3.10)

(2) Jij = 0 if εpϕiε
p
ϕj = −1, i.e.

δip + δjp ≡ 1 (mod 2); (3.11)

(3) Nij = 0 if εpφiε
p
ϕj = −1, i.e.

δip + δjp ≡ 0 (mod 2); (3.12)

(4) (CM )ij = 0 if εpφiε
p
χj = −1, i.e.

(−1)δip = −εpχj ; (3.13)

(5) (CJ)ij = 0 if εpϕiε
p
χj = −1, i.e.

(−1)δip = εpχj ; (3.14)

(6) (LMq )ij = 0 if (−1)δipεpφjε
p
χq = −1, i.e.

(−1)δip+δjp = −εpχq ; (3.15)

(7) (RMq )ij = 0 if (−1)δipεpϕjε
p
χq = −1, i.e.

(−1)δip+δjp = εpχq ; (3.16)

(8) (WM
q )ij = 0 if (−1)δipεpϕjε

p
χq = −1, i.e.

(−1)δip = −εpχjεpχq ; (3.17)

(9) (LJq )ij = 0 if −(−1)δipεpφjε
p
χq = −1, i.e.

(−1)δip+δjp = εpχq ; (3.18)

(10) (RJq )ij = 0 if −(−1)δipεpϕjε
p
χq = −1, i.e.

(−1)δip+δjp = −εpχq ; (3.19)

(11) (W J
q )ij = 0 if

(−1)δip = εpχjε
p
χq , (3.20)

where the matrices M,J,N,CM , CJ , LMq , R
M
q ,W

M
q , LJq , R

J
q and W J

q are defined in (2.23)-(2.30).

From now on, we assume that Ω is invariant under the operators S2 and S3, i.e.

Sp(Ω) = Ω, ∀p ∈ {2, 3}, (3.21)

and that εpχ1 = 1, i.e.

χ1(Sp(y)) = χ1(y) ∀y ∈ ∂Ω,∀p ∈ {2, 3}. (3.22)
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In other words, the set S and the control χ1 are symmetric with respect to the two planes
{y2 = 0} and {y3 = 0}. As a consequence, several coefficients in the matrices in (2.23)-(2.30)
vanish.

More precisely, using (3.21)-(3.22) and Proposition 3.6, we see immediately that the matrices
in (2.33) can be written

M =

 M11 0 0
0 M22 0
0 0 M33

 , J =

 J11 0 0
0 J22 0
0 0 J33

 , (3.23)

N =

 0 0 0
0 0 N23

0 N32 0

 , (3.24)

CMe1 =

 (CM )11

0
0

 , CJe1 =

 0
0
0

 , (3.25)

LM1 =

 (LM1 )11 0 0
0 (LM1 )22 0
0 0 (LM1 )33

 , RM1 =

 0 0 0
0 0 (RM1 )23

0 (RM1 )32 0

 (3.26)

(WM
1 )e1 =

 (WM
1 )11

0
0

 , LJ1 =

 0 0 0
0 0 (LJ1 )23

0 (LJ1 )32 0

 , (3.27)

and

RJ1 =

 (RJ1 )11 0 0
0 (RJ1 )22 0
0 0 (RJ1 )33

 , (W J
1 )e1 =

 0
0
0

 . (3.28)

3.3. Toy problem. Before investigating the full system (2.68), it is very important to look at
the simplest situation for which hi = li = 0 for i = 2, 3, ~q = 0, r = 0, and wj = 0 for j = 2, ..,m.

Lemma 3.7. Assume that (3.21)-(3.22) hold, and assume given some functions h1, l1, w1 ∈
C1([0, T ]) satisfying 

h′1 = l1

l′1 = αw′1 + βl1w1 + γ(w1)2,
(3.29)

where

α :=
−(CM )11

m0 +M11
, β :=

−(LM1 )11

m0 +M11
, and γ :=

−(WM
1 )11

m0 +M11
·

Let h := (h1, 0, 0), ~q := (0, 0, 0), l := (l1, 0, 0), r := (0, 0, 0), and w := (w1, 0, ..., 0). Then
(h, ~q, l, r, w) solves (2.68).
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Proof. Let us set h = h1e1, ~q = 0, l = l1e1, r = 0 and w = (w1, 0, ..., 0), where (h1, l1, w1) fulfills
(3.29). From (3.23)-(3.25), we have that

J

(
l
r

)
= l1Je1 = l1


m0 +M11

0
0
0
0
0

 , (3.30)

and

Cw = w1Ce1 = −w1


(CM )11

0
0
0
0
0

 . (3.31)

This yields  S(r) 0

S(l) S(r)

(J( l
r

)
− Cw

)
= 0. (3.32)

Replacing in (2.66), we obtain

F (l, r, w) = −
m∑
p=1

wp

 LMp l +RMp r +WM
p w

LJp l +RJp r +W J
p w



= −w1

 LM1 l +WM
1 w

LJ1 l +W J
1 w



= −w1

(
l1


(LM1 )11

0
0
0
0
0

+ w1


(WM

1 )11

0
0
0
0
0


)
.

(3.33)

We conclude that (h, ~q, l, r, w) is a solution of (2.68). �

Remark 3.8. If γ + αβ = 0, then it follows from [12, Lemma 2.3] that for any T > 0 we may
associate with any pair (h0

1, h
T
1 ) in R2 a control input w1 ∈ C∞0 (0, T ) such that the solution

(h1(t), l1(t)) of (3.29) emanating from (h0
1, 0) at t = 0 reaches (hT1 , 0) at t = T .
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3.4. Return method. The main result in this section (see below Theorem 3.11) is derived in
following a strategy developed in [12] and inspired in part from Coron’s return method. We first
construct a (non trivial) loop-shaped trajectory of the control system (2.68), which is based on
the computations performed in Lemma 3.7. (For this simple control system, we can require that
w1(0) = 0, but we cannot in general require that w1(T ) = 0.) Next, we compute the linearized
system along the above reference trajectory. We use a controllability test from [12] to investigate
the controllability of the linearized system, in which the control appears with its time derivative.
Finally, we derive the (local) controllability of the nonlinear system by a standard linearization
argument.

3.4.1. Construction of a loop-shaped trajectory. The construction differs slightly from those in
[12]: indeed, to simplify the computations, we impose here that all the derivatives of l1 of order
larger than two vanish at t = T . For given T > 0, let ξ ∈ C∞(R; [0, 1]) be a function such that

ξ(t) =


0 if t <

T

3
,

1 if t >
2T

3
.

Pick any λ0 > 0 and let λ ∈ [−λ0, λ0] with λ 6= 0. Set

h1(t) = λξ(t)(t− T )2, l1(t) = h
′
1(t), t ∈ R. (3.34)

Note that

h1(0) = h1(T ) = l1(0) = l1(T ) = 0, (3.35)

l
′
1(T ) = 2λ 6= 0, l

(k)
1 (T ) = 0 for k ≥ 2. (3.36)

Next, define w1 as the solution to the Cauchy problem

ẇ1 = α−1(l̇1 − βl1w1 − γw2
1), (3.37)

w1(0) = 0. (3.38)

By a classical result on the continuous dependence of solutions of ODE’s with respect to a
parameter, we have that the solution w1 of (3.37)-(3.38) is defined on [0, T ] provided that λ0 is

small enough. Set h = (h1, 0, 0), ~q = (0, 0, 0), w = (w1, 0, ..., 0), l = (l1, 0, 0) and r = (0, 0, 0).

According to Lemma 3.7, (h, ~q, l, r, w) is a solution of (2.68), which satisfies

(h, ~q, l, r)(0) = 0 = (h, ~q, l, r)(T ).

3.4.2. Linearization along the reference trajectory. Writing

h = h+ ĥ,

~q = ~q + ~̂q,

l = l + l̂,
r = r + r̂,

(3.39)
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expanding in (2.68) in keeping only the first order terms in ĥ, ~̂q, l̂ and r̂, we obtain the following
linear system 

ĥ′ = l̂ + 2~̂q × l,

~̂q
′

= 1
2 r̂,(

l̂
r̂

)′
= J−1

(
A(t)

(
l̂
r̂

)
+B(t)ŵ + Cŵ′

)
,

(3.40)

where the matrices A(t) ∈ R6×6 and B(t) ∈ R6×m are defined as

A(t) =

(
∂F

∂l
(l(t), r(t), w(t))

∣∣ ∂F

∂r
(l(t), r(t), w(t))

)
, (3.41)

B(t) =
∂F

∂w
(l(t), r(t), w(t)). (3.42)

Setting

p̂ = 2~̂q, (3.43)

we can rewrite (3.40) as
ĥ′ = l̂ − l × p̂,
p̂′ = r̂,(
l̂
r̂

)′
= J−1

(
A(t)

(
l̂
r̂

)
+B(t)ŵ + Cŵ′

)
.

(3.44)

Obviously, (3.40) is controllable on [0, T ] if, and only if, (3.44) is. Letting

z =

(
ĥ
p̂

)
, k =

(
l̂
r̂

)
, f = ŵ,

we obtain the following control system(
ż

k̇

)
=

(
D(t) Id

0 J−1A(t)

)(
z
k

)
+

(
0

J−1B(t)

)
f +

(
0

J−1C

)
ḟ

=: A(t)

(
z
k

)
+ B(t)f + Cḟ . (3.45)

We find that

D =

(
0 −S(l)
0 0

)
, with S(l) =

 0 0 0

0 0 −l1
0 l1 0

 ,

B =

(
0 0

S(l) 0

)
C − w1

(
WM

1

W J
1

)
− l1

(
LM1 e1 LM2 e1 · · · LMm e1

LJ1 e1 LJ2 e1 · · · LJme1

)

− w1

(
WM

1 e1 WM
2 e1 · · · WM

m e1

W J
1 e1 W J

2 e1 · · · W J
me1

)
,
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and that

A =



−(LM1 )11w1 0 0 0 0 0
0 −(LM1 )22w1 0 0 0 A26

0 0 −(LM1 )33w1 0 A35 0
0 0 0 −(RJ1 )11w1 0 0

0 0 A53 0 N32l1 − (RJ1 )22w1 0

0 A62 0 0 0 −N23l1 − (RJ1 )33w1


with

A26 = −(m0 +M11)l1 −
(
(CM )11 + (RM1 )23

)
w1,

A35 = (m0 +M11)l1 +
(
(CM )11 − (RM1 )32

)
w1,

A53 = (M33 −M11)l1 −
(
(CM )11 + (LJ1 )23

)
w1,

A62 = (M11 −M22)l1 +
(
(CM )11 − (LJ1 )32

)
w1.

From now on, we suppose in addition to (3.21)-(3.22) that χ1 is chosen so that

α 6= 0. (3.46)

3.4.3. Linear control systems with one derivative in the control. Let us consider any linear con-
trol system of the form

ẋ = A(t)x+ B(t)u+ Cu̇ (3.47)

where x ∈ Rn is the state (n ≥ 1), u ∈ Rm is the control input (m ≥ 1), A ∈ C∞([0, T ];Rn×n),
B ∈ C∞([0, T ];Rn×m), and C ∈ Rn×m. Define a sequence of matrices Mi(t) ∈ Rn×m by

M0(t) = B(t) + A(t)C, and Mi(t) = Ṁi−1(t)−A(t)Mi−1(t), ∀i ≥ 1, ∀t ∈ [0, T ]. (3.48)

Introduce the reachable set

Ru(0)=0 = {xT ∈ Rn; ∃u ∈ H1(0, T ;Rm) with u(0) = 0 such that

xT = x(T ), where x(·) solves (3.47) and x(0) = 0}.
Then the following result holds.

Proposition 3.9. [12, Propositions 2.4 and 2.5] Let ε > 0, A ∈ Cω((−ε, T + ε);Rn×n) and
B ∈ Cω((−ε, T + ε);Rn×m), and let (Mi)i≥0 be the sequence defined in (3.48). Then for all
t0 ∈ [0, T ], we have that

Ru(0)=0 = CRm + Span{φ(T, t0)Mi(t0)u; u ∈ Rm, i ≥ 0}, (3.49)

where φ denotes the fundamental solution associated with the system ẋ = A(t)x.

Recall that the fundamental solution associated with ẋ = A(t)x is defined as the solution to

∂φ

∂t
= A(t)φ(t, s),

φ(s, s) = Id.
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For notational convenience, we introduce the matrices

Â(t) = J−1A(t), B̂(t) = J−1B(t), Ĉ = J−1C, Mi(t) =

(
Ui(t)
Vi(t)

)
, (3.50)

where Â(t) ∈ R6×6 , B̂(t), Ĉ, Ui(t), Vi(t) ∈ R6×m. Then(
U0(t)
V0(t)

)
=

(
Ĉ

B̂(t) + Â(t)Ĉ

)
, (3.51)

while (
Ui(t)
Vi(t)

)
=

(
U ′i−1(t)−D(t)Ui−1(t)− Vi−1(t)

V ′i−1(t)− Â(t)Vi−1(t)

)
. (3.52)

In certain situations, half of the terms Ui(t) and Vi(t) vanish at t = T . The following result,
whose proof is given in Appendix, will be used thereafter.

Proposition 3.10. If Ĉ ∈ R6×m is given and Â,D (resp. B̂) denote some functions in
C∞([0, T ];R6×6) (resp. in C∞([0, T ];R6×m) fulfilling

Â(2l)(T ) = D(2l)(T ) = 0 and B̂(2l)(T ) = 0 ∀l ∈ N, (3.53)

then the sequences (Ui)i≥0 and (Vi)i≥0 defined in (3.51)-(3.52) satisfy

V
(2l)

2k (T ) = V
(2l+1)

2k+1 (T ) = 0, ∀k, l ∈ N, (3.54)

U
(2l)
2k+1(T ) = U

(2l+1)
2k (T ) = 0, ∀k, l ∈ N. (3.55)

The following result, which is one of the main results in this paper, shows that under suitable
assumptions the local controllability of (2.68) holds with less than six control inputs.

Theorem 3.11. Assume that (3.21), (3.22) and (3.46) hold. Pick any T > 0. If the rank
condition

rank (C,M0(T ),M1(T ),M2(T ), ...) = 12 (3.56)

holds, then the system (2.68) with state (h, ~q, l, r) ∈ R12 and control w ∈ Rm is locally controllable
around the origin in time T . We can also impose that the control input w ∈ H2(0, T ;Rm) satisfies
w(0) = 0. Moreover, for some η > 0, there is a C1 map from BR24(0, η) to H2(0, T ;Rm), which
associates with (h0, ~q0, l0, r0, hT , ~qT , lT , rT ) a control satisfying w(0) = 0 and steering the state
of the system from (h0, ~q0, l0, r0) at t = 0 to (hT , ~qT , lT , rT ) at t = T .

Proof. Step 1: Controllability of the linearized system.
Letting t0 = T in Proposition 3.9 yields

Rf(0)=0 = CRm +
∑
i≥0

Mi(T )Rm.

Thus, if the condition (3.56) is fulfilled, we infer that Rf(0)=0 = R12, i.e. the system (3.44) is
controllable. The same is true for (3.40).
Step 2: Local controllability of the nonlinear system.
Let us introduce the Hilbert space

H := R12 × {f ∈ H2(0, T ;Rm); f(0) = 0}
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endowed with its natural Hilbertian norm

‖(x, f)‖2H = ||x||2R12 + ‖f‖2H2(0,T ) .

We denote by BH(0, δ) the open ball in H with center 0 and radius δ, i.e.

BH(0, δ) = {(x, f) ∈ H; ‖(x, f)‖H < δ}.
Let us introduce the map

Γ : BH(0, δ) → R24

((h0, ~q0, l0, r0), f) 7→ (h0, ~q0, l0, r0, h(T ), ~q(T ), l(T ), r(T )),

where (h(t), ~q (t), l(t), r(t)) denotes the solution of

h′ = (1− ||~q ||2)l + 2
√

1− ||~q ||2 ~q × l + (l · ~q )~q − ~q × l × ~q,

~q ′ = 1
2(
√

1− ||~q ||2 r + ~q × r),(
l
r

)′
= J−1(C(w′ + f ′) + F (l, r, w + f)),

(h(0), ~q(0), l(0), r(0)) = (h0, ~q0, l0, r0).

(3.57)

Note that Γ is well defined for δ > 0 small enough (provided that λ0 has been taken sufficiently
small). Using the Sobolev embedding H2(0, T ;Rm) ⊂ C1([0, T ];Rm), we can prove as in [23,
Theorem 1] that Γ is of class C1 on BH(0, δ) and that its tangent linear map at the origin is
given by

dΓ(0)((ĥ0, ~̂q0, l̂0, r̂0), f) = (ĥ0, ~̂q0, l̂0, r̂0, ĥ(T ), ~̂q (T ), l̂(T ), r̂(T )),

where (ĥ(t), ~̂q (t), l̂(t), r̂(t)) solves the system (3.40) with the initial conditions

(ĥ(0), ~̂q(0), l̂(0), r̂(0)) = (ĥ0, ~̂q0, l̂0, r̂0).

We know from Step 2 that (3.40) is controllable, so that dΓ(0) is onto. Let V := (ker dΓ(0))⊥

denote the orthogonal complement of ker dΓ(0) in H. Then dΓ(0)|V is invertible, and therefore it
follows from the inverse function theorem that the map Γ|V : V → R24 is locally invertible at the
origin. More precisely, there exists a number δ > 0 and an open set ω ⊂ R24 containing 0, such
that the map Γ : BH(0, δ)∩V → ω is well-defined, of class C1, invertible, and with an inverse map
of class C1. Let us denote this inverse map by Γ−1, and let us write Γ−1(x0, xT ) = (x0, f(x0, xT )).
Finally, let us set w = w + f . Then, for η > 0 small enough, we have that

w ∈ C1(BR24(0, η), H2(0, T ;Rm)), (3.58)

and that for ||(h0, ~q0, l0, r0, hT , ~qT , lT , rT )||R24 < η, the solution (h(t), ~q(t), l(t), r(t)) of system
(2.68), with the initial conditions

(h(0), ~q(0), l(0), r(0)) = (h0, ~q0, l0, r0),

satisfies

(h(T ), ~q(T ), l(T ), r(T )) = (hT , ~qT , lT , rT ).

The proof of Theorem 3.11 is complete. �
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We now derive two corollaries of Theorem 3.11, that will be used in the next section. We
introduce the matrices

A =
(
AL

∣∣∣AR), (3.59)

where

AL =


−(LM1 )11 0 0

0 −(LM1 )22 0
0 0 −(LM1 )33

0 0 0
0 0 α(M33 −M11)− ((LJ1 )23 + (CM )11)
0 α(M11 −M22)− ((LJ1 )32 − (CM )11) 0

 ,

(3.60)

AR =


0 0 0
0 0 −(RM1 )23

0 −(RM1 )32 0
−(RJ1 )11 0 0

0 αN32 − (RJ1 )22 0
0 0 −αN23 − (RJ1 )33

 , (3.61)

B =

 0

−αS(e1)CM

− α
 LM1 e1 LM2 e1 · · · LMm e1

LJ1 e1 LJ2 e1 · · · LJme1

−
 WM

1

W J
1



−

 WM
1 e1 WM

2 e1 · · · WM
m e1

W J
1 e1 W J

2 e1 · · · W J
me1

 ,

(3.62)

and

D =

(
0 −αS(e1)
0 0

)
. (3.63)

The first corollary will be used later to derive a controllability result with only four control
inputs.

Corollary 3.12. If both rank conditions

rank (C,B + AJ−1C) = 6 (3.64)

and

rank (C,
1

2
JDJ−1C + B + AJ−1C) = 6 (3.65)

are fulfilled, then the condition (3.56) is satisfied for any T > 0, so that the conclusion of
Theorem 3.11 is valid for any T > 0.

Proof. We distinguish two cases.
Case 1: γ + αβ = 0.
We begin with the “simplest” case when γ + αβ = 0. Pick any T > 0 and let l1, w1 be as in
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(3.34) and (3.37)-(3.38). Let g1 := l1−αw1. It is clear that ġ1 = βw1g1, hence g1 ≡ 0. We infer
that

w
(k)
1 (T ) = α−1l

(k)
1 (T ) = 0 for k ∈ N \ {1},

w′1(T ) = α−1l
′
1(T ) = 2λ/α 6= 0.

It follows that

A(k)(T ) = 0, B(k)(T ) = 0, D(k)(T ) = 0 for k ∈ N \ {1}, (3.66)

A′(T ) = w′1(T )A, B′(T ) = w′1(T )B, D′(T ) = w′1(T )D. (3.67)

Applying Proposition 3.10, we infer that

rank
(
C,M0(T ),M1(T ),M2(T )

)
= rank

(( 0

Ĉ

)
,

(
Ĉ

B̂(T ) + Â(T )Ĉ

)
,

(
0

V1(T )

)
,

(
U2(T )

0

))
.

On the other hand, it is easily seen that

V1(T ) = V ′0(T ) = J−1B′(T ) + J−1A′(T )J−1C = w′1(T )
(
J−1B + J−1AJ−1C

)
,

U2(T ) = −D′(T )U0(T )− 2V ′0(T ) = −w′1(T )[DJ−1C + 2J−1(B + AJ−1C)].

It follows that

rank(Ĉ, V1(T )) = rank (C,B + AJ−1C) = 6,

rank(Ĉ, U2(T )) = rank (C,
1

2
JDJ−1C + B + AJ−1C) = 6,

and

rank
(
C,M0(T ),M1(T ),M2(T )

)
= 12.

Thus (3.56) is satisfied, as desired.
Case 2. γ + αβ 6= 0. We claim that for T > 0 arbitrary chosen and λ0 small enough, we have
for 0 < λ < λ0,

rank (C,M0(T ),M1(T ),M2(T )) = 12.

First, ‖l1‖W 2,∞(0,T ) = O(λ) still with l1(T ) = l̈1(T ) = 0. From (3.37)-(3.38), we infer with
Gronwall lemma (for λ0 small enough) that w1 is well defined on [0, T ] and that ‖w1‖L∞(0,T ) =
O(λ). This also yields (with (3.37)) ||w1||W 2,∞(0,T ) = O(λ). Next, integrating in (3.37) over

(0, T ) yields w1(T ) = O(λ2). Finally, derivating in (3.37) gives ẅ1(T ) = O(λ2). We conclude
that

(A(T ), B(T ), Ä(T ), B̈(T )) = O(λ2), D(T ) = 0,

while

(Ȧ(T ), Ḃ(T ), Ḋ(T )) = (2λ/α)(A,B,D) +O(λ4),
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for l̇1(T ) = αẇ1(T ) +O(λ4). It follows that

rank (C,M0(T ),M1(T ),M2(T ))

= rank

[(
0

J−1C

)
,

(
J−1C

0

)
,

(
0

J−1(B + AJ−1C)

)
,

(
J−1[JDJ−1C + 2(B + AJ−1C)]

0

)]
= 12,

for 0 < λ < λ0 with λ0 small enough, as desired. �

The second one is based on the explicit computations of Mi(T ) for i ≤ 8. It will be used later
to derive a controllability result with only three controls inputs.

Corollary 3.13. Let E := B + AJ−1C. If the conditions

rank (C,E,AJ−1E, (AJ−1)2E, (AJ−1)3E) = 6, (3.68)

and

rank (C,
1

2
JDJ−1C + E, (JDJ−1 + 2AJ−1)E,

(8JDJ−1 + 11AJ−1)AJ−1E, (17JDJ−1 + 64AJ−1)(AJ−1)2E) = 6, (3.69)

are fulfilled, then the condition (3.56) is satisfied, so that the conclusion of Theorem 3.11 is
valid.

Proof. The proof is almost the same as those of Corollary 3.12, the only difference being that
we need now to compute Mi(T ) for i ≤ 8. In view of Proposition 3.10, it is sufficient in Case 1
(γ + αβ = 0) to compute Vi(T ) for i ∈ {1, 3, 5, 7} and Ui(T ) for i ∈ {2, 4, 6, 8}. The results are
displayed in two propositions, whose proofs are given in Appendix.

Proposition 3.14. Assume that the pair (h1, l1) is as in (3.34), that w1 is as in (3.37)-(3.38),
and that γ + αβ = 0. Then we have

V1(T ) = V ′0(T ), (3.70)

V3(T ) = −3Â′(T )V ′0(T ), (3.71)

V5(T ) = 15Â′(T )2V ′0(T ), (3.72)

V7(T ) = −105Â′(T )3V ′0(T ). (3.73)

Proposition 3.15. Assume that the pair (h1, l1) is as in (3.34), that w1 is as in (3.37)-(3.38),
and that that γ + αβ = 0. Then we have

U2(T ) = −D′(T )U0(T )− 2V ′0(T ), (3.74)

U4(T ) = 4
(
D′(T ) + 2Â′(T )

)
V ′0(T ), (3.75)

U6(T ) = −3(8D′(T ) + 11Â′(T ))Â′(T )V ′0(T ), (3.76)

U8(T ) = 6
(
17D′(T ) + 64Â′(T )

)
Â′(T )2V ′0(T ). (3.77)
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�

4. Examples

This section is devoted to examples of vehicles with “quite simple” shapes, for which the
coefficients in the matrices in (2.23)-(2.30) can be computed explicitly. We begin with the case
of a vehicle with one axis of revolution, for which the controllability fails for any choice of the
flow controls.

4.1. Solid of revolution. Let f ∈ C1([a, b];R) be a nonnegative function such that f(a) =
f(b) = 0, and let

S =
{(
y1, sf(y1) cos θ, sf(y1) sin θ

)
; y1 ∈ [a, b], s ∈ [0, 1], θ ∈ [0, 2π]

}
.

In other words, S is a solid of revolution (see Figure 1).
Assume that the density ρ depends on y1 only, i.e. ρ = ρ(y1). Clearly J0 = diag(J1, J2, J2).

On the other hand,

∂Ω =
{(
y1, f(y1) cos θ, f(y1) sin θ

)
; y1 ∈ [a, b], θ ∈ [0, 2π]

}
,

and the normal vector ν to ∂Ω is given by

ν(y1, θ) =
1√

1 + (f ′(y1))2

(
f ′(y1),− cos θ,− sin θ

)∗
,

so that

(y × ν)(y1, θ) =
(y1 + f(y1)f ′(y1))√

1 + (f ′(y1))2

(
0, sin θ,− cos θ

)∗
.

It follows that (y × ν) · e1 = 0. Replacing in (1.24), we obtain

J1ṙ1 = (J0ṙ) · e1 = −(r × J0r) · e1 = J2r2r3 − J2r2r3 = 0,

which indicates that the angular velocity r1 is not controllable.

Figure 1. A solid of revolution.
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4.2. Ellipsoidal vehicle. We assume here that the vehicle fills the ellipsoid

S =
{
y ∈ R3; (y1/c1)2 + (y2/c2)2 + (y3/c3)2 ≤ 1} (4.1)

where c1 > c2 > c3 > 0 denote some numbers. Our first aim is to compute explicitly the
functions φi and ϕi for i = 1, 2, 3, which solve (2.20)-(2.22) for

Ω =
{
y ∈ R3; (y1/c1)2 + (y2/c2)2 + (y3/c3)2 > 1}.

4.2.1. Computations of the functions φi and ϕi. We follow closely [16, pp.148-155]. We introduce
a special system of orthogonal curvilinear coordinates, denoted by (λ, µ, ν), which are defined
as the roots of the equation

y2
1

c2
1 + θ

+
y2

2

c2
2 + θ

+
y2

3

c2
3 + θ

− 1 = 0 (4.2)

viewed as a cubic in θ. It is clear that (4.2) has three real roots: λ ∈ (−c2
3,+∞), µ ∈ (−c2

2,−c2
3),

and ν ∈ (−c2
1,−c2

2).
It follows immediately from the above definition of λ, µ, ν, that

y2
1

c2
1 + θ

+
y2

2

c2
2 + θ

+
y2

3

c2
3 + θ

− 1 =
(λ− θ)(µ− θ)(ν − θ)

(c2
1 + θ)(c2

2 + θ)(c2
3 + θ)

.

This yields

y2
1 =

(c2
1 + λ)(c2

1 + µ)(c2
1 + ν)

(c2
2 − c2

1)(c2
3 − c2

1)
, ∂λy1 =

1

2

y1

(c2
1 + λ)

,

y2
2 =

(c2
2 + λ)(c2

2 + µ)(c2
2 + ν)

(c2
1 − c2

2)(c2
3 − c2

2)
, ∂λy2 =

1

2

y2

(c2
2 + λ)

,

y2
3 =

(c2
3 + λ)(c2

3 + µ)(c2
3 + ν)

(c2
1 − c2

3)(c2
2 − c2

3)
, ∂λy3 =

1

2

y3

(c2
3 + λ)

.

(4.3)

We introduce the scale factors

hλ =
1

2

√
(λ− µ)(λ− ν)

(λ+ c2
1)(λ+ c2

2)(λ+ c2
3)
,

hµ =
1

2

√
(µ− ν)(µ− λ)

(µ+ c2
1)(µ+ c2

2)(µ+ c2
3)
,

hν =
1

2

√
(ν − λ)(ν − µ)

(ν + c2
1)(ν + c2

2)(ν + c2
3)
,

(4.4)

and the function

f(λ) =
√

(λ+ c2
1)(λ+ c2

2)(λ+ c2
3).
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If ξ is any smooth function of λ, then its Laplacian is given by

∆ξ =
4

(λ− µ)(λ− ν)
f(λ)∂λ(f(λ)∂λξ). (4.5)

according to [16, (7) p. 150]. We search φi in the form φi(y1, y2, y3) = yiξi(y1, y2, y3). Then

0 = ∆φi = yi∆ξi + 2∂iξi. (4.6)

Assuming furthermore that ξi depends only on λ, we obtain that

2∂iξi
yi

=
2∂λyi
yi

∂λξi
h2
λ

=
1

c2
i + λ

∂λξi
h2
λ

=
4f2(λ)

c2
i + λ

∂λξi
(λ− µ)(λ− ν)

. (4.7)

Combining (4.6) with (4.5) and (4.7), we arrive to

0 = ∂λ(f(λ)∂λξi) +
1

c2
i + λ

f(λ)∂λξi,

which is readily integrated as

ξi = −Ĉi
+∞∫
λ

ds

(c2
i + s)f(s)

+ Ĉ.

We choose the constant Ĉ = 0 for (2.22) to be fulfilled. As ∂Ω is represented by the equation
λ = 0, then (2.21) reads

∂νφi = νi ⇔ ξi
∂λyi
yi

+ ∂λξi =
∂λyi
yi

.

We infer that Ĉi = c1c2c3/(2− αi), where

αi = c1c2c3

+∞∫
0

ds

(c2
i + s)f(s)

.

It is easy seen that
2c2c3

3c2
1

≤ αi ≤
2c1c2

3c2
3

.

It follows that if c1, c2, c3 are sufficiently close, then αi is different from 2, so that Ĉi is well
defined. We conclude that

φi(y) = − αi
2− αi

yi, ∀y ∈ ∂Ω. (4.8)

Let us now proceed to the computation of ϕi. We search ϕi in the form ϕi(y) = y1y2y3
yi

ξi(y),

where ξi depends only on λ. We obtain

∆ξi + 2

3∑
j=1,j 6=i

∂yjξi

yj
= 0⇔ ∂λ(f(λ)∂λξi) +

( 3∑
j=1,j 6=i

1

(c2
j + λ)

)
f(λ)∂λξi = 0,

and hence

ξi = −C̃i
+∞∫
λ

c2
i + s

f3(s)
ds.
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From (2.21)-(2.22), we infer that

C̃1 =
c1c2c3(c2

2 − c2
3)

2− β1
, β1 = c1c2c3(c2

2 + c2
3)

+∞∫
0

ds

(c2
2 + s)(c2

3 + s)f(s)
,

C̃2 =
c1c2c3(c2

3 − c2
1)

2− β2
, β2 = c1c2c3(c2

3 + c2
1)

+∞∫
0

ds

(c2
3 + s)(c2

1 + s)f(s)
,

C̃3 =
c1c2c3(c2

1 − c2
2)

2− β3
, β3 = c1c2c3(c2

1 + c2
2)

+∞∫
0

ds

(c2
1 + s)(c2

2 + s)f(s)
.

Note that at the limit case c1 = c2 = c3, we obtain β1 = β2 = β3 = 4/5. Therefore, if c1, c2

and c3 are near but different, then βi is different from 2, and therefore C̃i is well defined. We
conclude that

ϕi = −

C̃i +∞∫
0

c2
i + s

f3(s)
ds

 y1y2y3

yi
, ∀y ∈ ∂Ω. (4.9)

4.2.2. Controllability of the ellipsoid with six controls. Assume still that S is given by (4.1). Note
that S is symmetric with respect to the plane {yp = 0} for p = 1, 2, 3. Assume given six functions
χj , j = 1, . . . , 6, each being symmetric with respect to the plane {yp = 0} for p = 1, 2, 3, with

εpχ1
=

 −1 p = 1
1 p = 2
1 p = 3

, εpχ2 =

 1 p = 1
−1 p = 2
1 p = 3

, εpχ3
=

 1 p = 1
1 p = 2
−1 p = 3

,

εpχ4
=

 1 p = 1
−1 p = 2
−1 p = 3

, εpχ5 =

 −1 p = 1
1 p = 2
−1 p = 3

, εpχ6
=

 −1 p = 1
−1 p = 2
1 p = 3

. (4.10)

To obtain this kind of controls in practice, we can proceed as follows:

• We build six tunnels in the rigid body, as drawn in Figure 2.
• We divide the six tunnels in three groups of two parallel tunnels; that is, we put together

the tunnels located in the same plane (see Figure 3).
• Let w̃1 and w̃2 denote the effective flow controls in the two tunnels located in the plane
{y3 = 0}. They may appear together in (1.21) as w̃1(t)χ(y1, y2, y3)+ w̃2(t)χ(y1,−y2, y3),
where χ ∈ C∞(∂Ω) is some function with

Supp χ ⊂ {y2 > 0}, ε1
χ = −1, and ε3

χ = 1.

We introduce the (new) support functions

χ1(y1, y2, y3) = χ(y1, y2, y3) + χ(y1,−y2, y3),

χ6(y1, y2, y3) = χ(y1, y2, y3)− χ(y1,−y2, y3)
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y1
y2

y3

Figure 2. Ellipsoid with six controls.

y1
y2

y3

y1
y2

y3

y1
y2

y3

y1
y2

y3

Figure 3. Independent controls in each plane.

and the (new) control inputs

w1 =
w̃1 + w̃2

2
,

w6 =
w̃1 − w̃2

2
.

(See Figure 4.) Then (4.10) is satisfied for χ1 and χ6, and

w̃1(t)χ(y1, y2, y3) + w̃2(t)χ(y1,−y2, y3) = w1(t)χ1(y1, y2, y3) + w6(t)χ6(y1, y2, y3).

The same can be done in the other planes {y1 = 0} and {y2 = 0}.
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w̃1

w̃2

w1 =
w̃1 + w̃2

2

w6 =
w̃1 − w̃2

2

Figure 4. Definition of the new controls in the plane {y3 = 0}.

We notice that C is a diagonal matrix:

C = −diag(C1, C2, C3, C4, C5, C6),

with

Ci =

∫
∂Ω

φiχi, i = 1, 2, 3, and Ci+3 =

∫
∂Ω

ϕiχi+3, i = 1, 2, 3.

From (4.8)-(4.9), there are some constants C̄i 6= 0, i = 1, ..., 6, which depend only on c1, c2 and
c3, such that

Ci = C̄i

∫
∂Ω∩(0,+∞)3

yiχi(y), Ci+3 = C̄i+3

∫
∂Ω∩(0,+∞)3

(
y1y2y3

yi

)
χi+3(y), i = 1, 2, 3. (4.11)

By (4.11), we have that Ci 6= 0 for i = 1, ..., 6, and hence rank(C) = 6 if, in addition to (4.10),
it holds

χi 6≡ 0, i = 1, ..., 6, (4.12)

χi ≥ 0 on ∂Ω ∩ (0,+∞)3, i = 1, ..., 6. (4.13)

By Proposition 3.1 and Theorem 3.11, it follows that both the linearized system (3.1) and the
nonlinear system (2.68) are (locally) controllable.

Remark 4.1. Since ε1
χ1

= (−1)δ11 = −1, we have that (LM1 )11 = (WM
1 )11 = 0, and hence

β = γ = 0. Thus γ + αβ = 0. Proceeding as in [12, Theorem 2.2], one can prove that,
under certain rank conditions, two arbitrary states of the form (h, ~q, 0, 0) can be connected by
trajectories of the ellipsoid in (sufficiently) large time.
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In the following sections, we shall be concerned with the controllability of the ellipsoid with
less controls (namely, 4 controls and 3 controls). If, in the pair (χ1, χ6), only χ6 is available,
then χ6 can be generated as above by two propellers controlled in the same way (Figure 5 left),
or by only one propeller by choosing an appropriate scheme for the tunnels (Figure 5 middle).
In what follows, to indicate that the flows in the two tunnels are linked, we draw a transversal
line in bold between the two tunnels (Figure 5 right).

Figure 5. Two ways to generate χ6.

4.2.3. Controllability of the ellipsoid with four controls. We consider the same controllers χ1, χ4, χ5

and χ6 as above, still satisfying (4.10), (4.12), (4.13). (See Figure 6.) If the density ρ is scaled
by a factor λ, i.e. ρ(x) is replaced by ρλ(x) = λρ(x) where λ > 0, then the mass and the inertia
matrix are scaled in the same way; that is, m0 and J0 are replaced by

mλ
0 = λm0, Jλ0 = λJ0.

Control χ1

y1
y2

y3

Control χ4

y1
y2

y3

Control χ5

y1
y2

y3

Control χ6

y1
y2

y3

Figure 6. Ellipsoid with four controls.
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Thus, if λ → ∞, then mλ
0 → ∞, [Jλ0 ]−1 → 0, and [Jλ]−1 → 0. (Note that large values of λ

are not compatible with the neutral buoyancy, but they prove to be useful to identify geometric
configurations leading to controllability results with less than six control inputs.)

Note that the matrices M,J,N,CM , CJ , LMp , R
M
p ,W

M
p , LJp , R

J
p ,W

J
p keep constant when λ→

∞. In particular,

lim
λ→∞

AJ−1C = 0, lim
1

2
JDJ−1C = 0.

Let B∞ = lim
λ→∞

B. Then B∞ and C are given by

B∞ = −


0 0 0 0
0 0 0 B6

0 0 B5 0
0 0 0 0
0 0 0 0
0 0 0 0

 , C = −


C1 0 0 0
0 0 0 0
0 0 0 0
0 C4 0 0
0 0 C5 0
0 0 0 C6

 ,

with

B5 =

∫
∂Ω

(∇ψ1 · ∇ψ5) ν3, B6 =

∫
∂Ω

(∇ψ1 · ∇ψ6) ν2.

Thus, if B5 6= 0 and B6 6= 0, we see that (3.64) and (3.65) are fulfilled, so that the local
controllability of (2.68) is ensured by Corollary 3.12 for λ large enough. We note then that the
matrix in R6×6 obtained by gathering together the four columns of C and the last two columns
of B∞ is invertible. Let R1(λ) ∈ R6×6 (resp. R2(λ) ∈ R6×6) denote the matrix obtained by
gathering together the four columns of C with the last two columns of B + AJ−1C (resp. with
the last two columns of 1

2JDJ−1C + B + AJ−1C). Then for λ� 1, we have

det R1(λ) 6= 0 and det R2(λ) 6= 0.

Since the coefficients of R1(λ), R2(λ) are rational functions of λ, we infer that the equation

det R1(λ) · det R2(λ) = 0

is an algebraic equation in λ. Therefore, it has at most a finite set of roots in (0,+∞), that we
denote by Λcritical. We conclude that for any λ ∈ (0,+∞) \ Λcritical, the local controllability of
(2.68) still holds. In particular, we can consider values of λ arbitrary close to the value λ = 1
imposed by (1.10). The issue whether 1 ∈ Λcritical seems hard to address without computing
numerically all the coefficients in our system.

4.2.4. Controllability of the ellipsoid with three controls. Assume that χ1, χ4, χ5 and χ6 are as
above (satisfying (4.10), (4.12), (4.13)), and consider now the controls supported by χ1, χ4 and
χ̃5 = χ5 + χ6 (see Figure 7).
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Control χ1

y1
y2

y3

Control χ4

y1
y2

y3

Control χ̃5

y1
y2

y3

Figure 7. Ellipsoid with three controls.

Doing the same scaling for the density, and letting λ→∞, we see that the matrices B∞ and
C read

B∞ = −


0 0 0
0 0 B6

0 0 B5

0 0 0
0 0 0
0 0 0

 , C = −


C1 0 0
0 0 0
0 0 0
0 C4 0
0 0 C5

0 0 C6

 ,

where the coefficients B5, B6, C1, C4, C5, C6 are as above. For simplicity, we assume that the
principal axes of inertia of the vehicule coincide with the axes of the ellipsoid. Then the matrix
J0 is diagonal (see [4]) with entries J1, J2, J3. Notice that the first and fourth coordinates are
well controlled (using χ1 and χ4), and that the other coordinates are decoupled from them, at
least asymptotically (i.e. when λ → ∞). Let A∞ = limλ→∞A (i.e. A∞ is obtained by letting
α = 0 in A). Let K ∈ R4×4 denote the matrix obtained from A∞ by removing the first and
fourth lines (resp. columns), and let b ∈ R4 (resp. c ∈ R4) denote the vector obtained from the
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last column of B∞ (resp. C) by removing the first and fourth coordinates, namely

K =


−(LM1 )22 0 0 −(RM1 )23

0 −(LM1 )33 −(RM1 )32 0
0 −((LJ1 )23 + (CM )11) −(RJ1 )22 0

−((LJ1 )32 − (CM )11) 0 0 −(RJ1 )33

 ,

b =


B6

B5

0
0

 , c =


0
0
C5

C6

 .

Let finally

F =


0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0

 and G =


m−1

0 0 0 0
0 m−1

0 0 0
0 0 J−1

2 0
0 0 0 J−1

3

 .

Then, keeping only the leading terms as λ→∞, we see that (3.68) holds if

rank (c, b,KGb, (KG)2b, (KG)3b) = 4 (4.14)

while (3.69) holds if

rank

(
c, b, [(CM )11F + 2K]Gb, [8(CM )11F + 11K]GKGb,

[17(CM )11F + 64K]G(KG)2b

)
= 4. (4.15)

Note that (4.14) is satisfied whenever

rank(b,KGb, (KG)2b, (KG)3b) = 4, (4.16)

which is nothing but the Kalman rank condition for the system ẋ = KGx + bu. However, it
is clear that we should take advantage of the presence c in (4.14). As previously, this gives a
controllability result for λ� 1, but such a result is also valid for all the positive λ’s except those
in a finite set defined by an algebraic equation.

5. Appendix

5.1. Quaternions and rotations. Quaternions are a convenient tool for representing rotations
of objects in three dimensions. For that reason, they are widely used in robotic, navigation,
flight dynamics, etc. (See e.g. [1, 24]). We limit ourselves to introducing the few definitions and
properties needed to deal with the dynamics of h and Q. (We refer the reader to [1] for more
details.)

The set of quaternions, denoted by H, is a noncommutative field containing C and which is a
R-algebra of dimension 4. Any quaternion q ∈ H may be written as

q = q0 + q1i+ q2j + q3k,
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where (q0, q1, q2, q3) ∈ R4 and i, j, k ∈ H are some quaternions whose products will be given later.
We say that q0 (resp. q1i+ q2j+ q3k) is the real part (resp. the imaginary part) of q. Identifying
the imaginary part q1i + q2j + q3k with the vector ~q = (q1, q2, q3) ∈ R3, we can represent the
quaternion q as q = [q0, ~q ], where q0 ∈ R (resp. ~q ∈ R3) is the scalar part (resp. the vector part)
of q. The addition, scalar multiplication and quaternion multiplication are defined respectively
by

[p0, ~p ] + [q0, ~q ] = [p0 + q0, ~p+ ~q ],

t[q0, ~q ] = [tq0, t~q ],

[p0, ~p ] ∗ [q0, ~q ] = [p0q0 − ~p · ~q, p0~q + q0~p+ ~p× ~q ],

where “·” is the dot product and “×” is the cross product. We stress that the quaternion
multiplication ∗ is not commutative. Actually, we have that

i ∗ j = k, j ∗ i = −k,
j ∗ k = i, k ∗ j = −i,
k ∗ i = j, i ∗ k = −j,
i2 = j2 = k2 = −1.

Any pure scalar q0 and any pure vector ~q may be viewed as quaternions

q0 = [q0,~0 ], ~q = [0, ~q ],

and hence any quaternion q = [q0, ~q ] can be written as the sum of a scalar and a vector, namely

q = q0 + ~q.

The cross product of vectors extends to quaternions by setting

p× q =
1

2
(p ∗ q − q ∗ p) = [0, ~p× ~q ].

The conjugate of a quaternion q = [q0, ~q ] is q∗ = [q0,−~q ]. The norm of q is

||q|| = (|q0|2 + ||~q ||2)
1
2 .

From
q ∗ q∗ = q∗ ∗ q = ||q||2,

we infer that

q−1 =
q∗

||q||2 ·

A unit quaternion is a quaternion of norm 1. The set of unit quaternions may be identified with
S3. It is a group for ∗.

Any unit quaternion q = [q0, ~q ] can be written in the form

q = cos
α

2
+ sin

α

2
~u, (5.1)

where α ∈ R and ~u ∈ R3 with ||~u|| = 1. Note that the writing is not unique: if the pair (α, ~u ) is
convenient, the same is true for the pairs (−α,−~u ) and (α+ 4kπ, ~u ) (k ∈ Z), as well. However,
if we impose that α ∈ [0, 2π], then α is unique, and ~u is unique for |q0| < 1. (However, any
~u ∈ S3 is convenient for |q0| = 1.)
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For any unit quaternion q, let the matrix R(q) ∈ R3×3 be defined by

R(q)~v = q ∗ ~v ∗ q∗ ∀~v ∈ R3. (5.2)

Then R(q) is found to be

R(q) =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 .

For q given by (5.1), then R(q) is the rotation around the axis R~u of angle α.
Note that R(q1 ∗ q2) = R(q1)R(q2) (i.e. R is a group homomorphism), hence

R(1) = Id, R(q∗) = R(q)−1.

We notice that the map q → R(q) from the unit quaternions set S3 to SO(3) is onto, but not
one-to-one, for R(−q) = R(q). It becomes one-to-one when restricted to the open set

S3
+ := {q = [q0, ~q ] ∈ H; ||q|| = 1 and q0 > 0}.

Furthermore, the map R is a smooth invertible map from S3
+ onto an open neighbourhood O of

Id in SO(3). On the other hand, the map

~q → q = [q0, ~q ] = [
√

1− ||~q ||2, ~q ]

is a smooth invertible map from the unit ball B1(0) = {~q ∈ R3; ||~q || < 1} onto S3
+. Thus the

rotations in O can be parameterized by ~q ∈ B1(0).

5.2. Proof of Proposition 3.10. Let us prove by induction on k ∈ N that

V
(2l)

2k (T ) = 0 ∀l ∈ N. (5.3)

The property is clearly true for k = 0, since

V
(2l)

0 (T ) = B̂(2l)(T ) + Â(2l)(T )Ĉ = 0,

by (3.53). Assume that (5.3) is established for some k ∈ N. Then by (3.52) applied twice, we
have

V2k+2 = V ′′2k − 2ÂV ′2k − Â′V2k + Â2V2k,

hence
V

(2l)
2k+2(T ) = V

(2l+2)
2k − 2(ÂV ′2k)

(2l)(T )− (Â′V2k)
(2l)(T ) + (Â2V2k)

(2l)(T ). (5.4)

The first term in the r.h.s. of (5.4) is null by (5.3). The second one is also null, for by Leibniz’
rule

(ÂV ′2k)
(2l)(T ) =

2l∑
p=0

Cp2lÂ
(p)(T )V

(2l−p+1)
2k (T )

and Â(p)(T ) = 0 if p is even, while V
(2l−p+1)

2k (T ) = 0 if p is odd. One proves in a similar way
that the third and fourth terms in the r.h.s. of (5.4) are null, noticing that for p odd we have

(Â2)(p)(T ) = 2(ÂÂ′)(p−1)(T ) = 0. (5.5)

From (5.3), we infer that

V
(2l+1)

2k+1 (T ) = V
(2l+2)

2k (T )− (ÂV2k)
(2l+1)(T ) = 0.
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Let us proceed to the proof of (3.55). Again, we first prove by induction on k ∈ N that

U
(2l)
2k+1(T ) = 0 ∀l ∈ N. (5.6)

It follows from (3.51), (3.52) and (3.54) that

U
(2l)
1 (T ) = U

(2l+1)
0 (T )− (DU0)(2l)(T )− V (2l)

0 (T ) = 0 ∀k ∈ N.

Assume that (5.6) is true for some k ∈ N. Then, by (3.52) applied twice,

U
(2l)
2k+3(T ) = U

(2l+2)
2k+1 (T )− (DU2k+1)(2l+1)(T )− V (2l+1)

2k+1 (T )− (DU2k+2)(2l)(T )− V (2l)
2k+2(T ). (5.7)

Using (3.53), (3.54) and (5.6), we see that all the terms in the r.h.s. of (5.7), except possibly

(DU2k+2)(2l)(T ), are null. Finally,

(DU2k+2)(2l)(T ) = (DU ′2k+1)(2l)(T )− (D2U2k+1)(2l)(T )− (DV2k+1)(2l)(T ).

Using Leibniz’ rule for each term, noticing that in each pair (p, q) with p+ q = 2l, p and q are

simultaneously even or odd, and using (3.53), (3.54), (5.5) (with Â replaced by D), and (5.6),

we conclude that (DU2k+2)(2l)(T ) = 0, so that U
(2l)
2k+3(T ) = 0.

Finally, U
(2l+1)
2k (T ) = 0 is obvious for k = 0, while for k ≥ 1

U
(2l+1)
2k (T ) = U

(2l+2)
2k−1 (T )− (DU2k−1)(2l+1)(T )− V (2l+1)

2k−1 (T ) = 0

by (3.53), (3.54) and (5.6) (with 2k + 1 replaced by 2k − 1). The proof of Proposition 3.10 is
complete.

5.3. Proof of Proposition 3.14. From (3.50), (3.51) and (3.66), we obtain successively

V1(T ) = V ′0(T ) = B̂′(T ) + Â′(T )Ĉ = w1
′(T )

(
J−1B + J−1AJ−1C

)
V3(T ) = V ′2(T )

= (V ′1 − ÂV1)′(T )

= (V ′0 − ÂV0)′′(T )− (ÂV1)′(T )

= V ′′′0 (T )− 2Â′(T )V ′0(T )− Â′(T )V1(T )

= −3Â′(T )V ′0(T ).

Successive applications of (3.51) yield

V5(T ) = V
(5)

0 (T )−
3∑
i=0

(ÂVi)
(4−i)(T ), (5.8)

V7(T ) = V
(7)

0 (T )−
5∑
i=0

(ÂVi)
(6−i)(T ). (5.9)

Since V
(k)

0 (T ) = 0 for k ≥ 2, it remains to estimate the terms (ÂVi)
(4−i)(T ) and (ÂVi)

(6−i)(T ).
Notice first that by (3.66) and Leibniz’ rule

(ÂVi)
(k)(T ) = kÂ′(T )V

(k−1)
i (T ).
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Thus, from (3.66) and (3.71), we have that

(ÂV0)(4)(T ) = 0, (5.10)

(ÂV1)(3)(T ) = 3Â′(T )V ′′1 (T ) = 3Â′(T )
(
V

(3)
0 (T )− (ÂV0)′′(T )

)
= −6Â′(T )2V ′0(T ), (5.11)

(ÂV2)′′(T ) = 2Â′(T )V ′2(T ) = 2Â′(T )V3(T ) = −6Â′(T )2V ′0(T ), (5.12)

(ÂV3)′(T ) = Â′(T )V3(T ) = −3Â′(T )2V ′0(T ). (5.13)

This yields (3.72). On the other hand,

(ÂV0)(6)(T ) = 0, (5.14)

(ÂV1)(5)(T ) = 5Â′(T )V
(4)

1 (T ) = 5Â′(T )
(
V

(5)
0 − (ÂV0)(4)

)
(T ) = 0, (5.15)

(ÂV2)(4)(T ) = 4Â′(T )V
(3)

2 (T ). (5.16)

Since
V2 = V ′1 − ÂV1 = V ′′0 − (ÂV0)′ − ÂV1,

we obtain with (3.66) and (5.11) that

V
(3)

2 (T ) = V
(5)

0 (T )− (ÂV0)(4)(T )− (ÂV1)(3)(T ) = 6Â′(T )2V ′0(T ),

hence
(ÂV2)(4)(T ) = 24Â′(T )3V ′0(T ). (5.17)

On the other hand,

(ÂV3)(3)(T ) = 3Â′(T )V ′′3 (T )

= 3Â′(T )
(
V ′4(T ) + (ÂV3)′(T )

)
= 3Â′(T )

(
V5(T ) + Â′(T )V3(T )

)
= 36Â′(T )3V ′0(T ) (5.18)

where we used (3.51) and (3.71)-(3.72). Finally,

(ÂV4)′′(T ) = 2Â′(T )V ′4(T ) = 2Â′(T )V5(T ) = 30Â′(T )3V ′0(T ) (5.19)

and
(ÂV5)′(T ) = Â′(T )V5(T ) = 15Â′(T )V ′0(T ). (5.20)

Gathering together (5.9) and (5.14)-(5.20), we obtain (3.73). The proof of Proposition 3.14 is
complete.

5.4. Proof of Proposition 3.15. From (3.51)-(3.52), we have that

U0 ≡ Ĉ, Ui = U ′i−1 −DUi−1 − Vi−1, ∀i ≥ 1. (5.21)

Thus

U2(T ) = (U ′1 −DU1 − V1)(T )

= (0− (DU0)′ − V ′0)(T )− V1(T )

= −D′(T )U0 − 2V ′0(T )

where we used successively (5.21), (3.55) and (3.70).
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Successive applications of (5.21) yield

U4(T ) = −
3∑
i=0

[(DUi)
(3−i) + V

(3−i)
i ](T ). (5.22)

Using (3.66), we obtain that

3∑
i=0

(DUi)
(3−i)(T ) =

2∑
i=0

(3− i)D′(T )U
(2−i)
i (T )

= 2D′(T )
(
U2(T ) + V1(T )

)
+D′(T )V ′0(T )

= −3D′(T )
(
D′(T )U0 + 2V ′0(T )

)
+ 2D′(T )V ′0(T )

= −4D′(T )V ′0(T ) (5.23)

where we used (3.70), (3.74) and the fact that D′(T )2 = 0.
On the other hand,

3∑
i=0

V
(3−i)
i (T ) = (V ′0 − ÂV0)′′(T ) + V ′2(T ) + V3(T )

= −2Â′(T )V ′0(T ) + 2V3(T )

= −8Â′(T )V ′0(T ) (5.24)

by (3.71). Combining (5.22)-(5.24), we obtain (3.75).
Let us now compute U6(T ). Successive applications of (5.21) yield

U6(T ) = −
5∑
i=0

[(DUi)
(5−i) + V

(5−i)
i ](T ). (5.25)

We have that
5∑
i=0

(DUi)
(5−i)(T ) =

4∑
i=0

(5− i)D′(T )U
(4−i)
i (T ).

Let us estimate the terms U
(4−i)
i (T ) for i = 0, ..., 4. Obviously, U

(4)
0 (T ) = 0 by (5.21), while by

(3.66)

U
(3)
1 (T ) = −(DU0)(3)(T )− V (3)

0 (T ) = 0. (5.26)

Next we use (5.21) to obtain successively

U ′3(T ) = U4(T ) + V3(T ), (5.27)

U ′′2 (T ) = U ′3(T ) + (DU2)′(T ) + V ′2(T )

= U4(T ) + V3(T ) +D′(T )U2(T ) + V3(T ).
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It follows that

4∑
i=0

(DUi)
(5−i)(T )

= 3D′(T )
(
U4(T ) + 2V3(T ) +D′(T )U2(T )

)
+ 2D′(T )

(
U4(T ) + V3(T )

)
+D′(T )U4(T )

= D′(T )
(
6U4(T ) + 8V3(T )

)
= 24D′(T )(D′(T ) + 2Â′(T ))V ′0(T )− 24D′(T )Â′(T )V ′0(T )

= 24D′(T )Â′(T )V ′0(T ). (5.28)

On the other hand, using (5.15)-(5.18) and (3.71)-(3.72), we have that

4∑
i=0

V
(5−i)
i (T ) = V

(4)
1 (T ) + V

(3)
2 (T ) + V

(2)
3 (T ) + V ′4(T )

= 6Â′(T )2V ′0(T ) + 2V5(T ) + Â′(T )V3(T )

= 33Â′(T )2V ′0(T ). (5.29)

(3.76) follows from (5.25)-(5.29).
Finally, we compute U8(T ). We see that

U8(T ) = −
7∑
i=0

[(DUi)
(7−i) + V

(7−i)
i ](T ). (5.30)

Then

7∑
i=0

(DUi)
(7−i)(T ) =

6∑
i=0

(7− i)D′(T )U
(6−i)
i (T )

= 6D′(T )U
(5)
1 (T ) + 5D′(T )U

(4)
2 (T ) + 4D′(T )U

(3)
3 (T )

+3D′(T )U ′′4 (T ) + 2D′(T )U ′5(T ) +D′(T )U6(T ).

Using (3.66), (5.21) and (5.26), we readily see that

U
(5)
1 (T ) = U

(4)
2 (T ) = 0.

Next, successive applications of (5.21) give

U ′5(T ) = U6(T ) + V5(T ),

U ′′4 (T ) = U ′5(T ) + (DU4)′(T ) + V ′4(T )

= U6(T ) +D′(T )U4(T ) + 2V5(T ).

U
(3)
3 (T ) = U ′′4 (T ) + (DU3)′′(T ) + V ′′3 (T )

=
(
U6(T ) +D′(T )U4(T ) + 2V5(T )

)
+ 2D′(T )

(
U4(T ) + V3(T )

)
+V5(T ) + Â′(T )V3(T ).
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Thus

7∑
i=0

(DUi)
(7−i)(T ) = 4D′(T )

(
U6(T ) + 3D′(T )U4(T ) + 2V5(T ) + 2D′(T )V3(T ) + Â′(T )V3(T )

)
+3D′(T )

(
U6(T ) +D′(T )U4(T ) + 2V5(T )

)
+2D′(T )

(
U6(T ) + V5(T )

)
+D′(T )U6(T )

= D′(T )[10U6(T ) + 16V5(T ) + 4Â′(T )V3(T )]

= D′(T )[−240D′(T )Â′(T )V ′0(T )− 330 Â′(T )V ′0(T )

+240 Â′(T )2V ′0(T )− 12Â′(T )2V ′0(T )]

= −102D′(T )Â′(T )2V ′0(T ). (5.31)

It remains to compute
∑7

i=0 V
(7−i)
i (T ). It is easy to see that

V
(7)

0 (T ) = V
(6)

1 (T ) = V
(5)

2 (T ) = 0.

Successive applications of (3.51) give

V ′6(T ) = V7(T ),

V ′′5 (T ) = V ′6(T ) + (ÂV5)′(T ) = V7(T ) + Â′(T )V5(T ),

V
(3)

4 (T ) = V ′′5 (T ) + (ÂV4)′′(T )

= V7(T ) + 3Â′(T )V5(T ),

V
(4)

3 (T ) = V
(3)

4 (T ) + (ÂV3)(3)(T )

= V7(T ) + 3Â′(T )V5(T ) + 3Â′(T )V ′′3 (T )

= V7(T ) + 6Â′(T )V5(T ) + 3Â′(T )2V3(T ),

where we used (5.18). Thus

7∑
i=0

V
(7−i)
i (T ) = 5V7(T ) + 10Â′(T )V5(T ) + 3Â′(T )2V3(T )

= −384 Â′(T )3V ′0(T ). (5.32)

Then (3.77) follows from (5.30)-(5.32). The proof of Proposition 3.15 is achieved.
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[13] V. I. Judovič. A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through

a given region. Mat. Sb. (N.S.), 64 (106):562–588, 1964.
[14] A. V. Kazhikhov. Note on the formulation of the problem of flow through a bounded region using equations

of perfect fluid. Prikl. Matem. Mekhan., 44(5):947–950, 1980.
[15] K. Kikuchi. The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in

R3. J. Math. Soc. Japan, 38(4):575–598, 1986.
[16] H. Lamb. Hydrodynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge, sixth

edition, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch].
[17] N. E. Leonard. Stability of a bottom-heavy underwater vehicle. Automatica J. IFAC, 33(3):331–346, 1997.
[18] N. E. Leonard and J. E. Marsden. Stability and drift of underwater vehicle dynamics: mechanical systems

with rigid motion symmetry. Phys. D, 105(1-3):130–162, 1997.
[19] S. P. Novikov and I. Shmel′tser. Periodic solutions of Kirchhoff equations for the free motion of a rigid

body in a fluid and the extended Lyusternik-Shnirel′man-Morse theory. I. Funktsional. Anal. i Prilozhen.,
15(3):54–66, 1981.

[20] J. H. Ortega, L. Rosier, and T. Takahashi. Classical solutions for the equations modelling the motion of a
ball in a bidimensional incompressible perfect fluid. M2AN Math. Model. Numer. Anal., 39(1):79–108, 2005.

[21] J. H. Ortega, L. Rosier, and T. Takahashi. On the motion of a rigid body immersed in a bidimensional
incompressible perfect fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(1):139–165, 2007.
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