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Abstract

We consider a generalized Gause prey-predator model with T -periodic continuous coefficients. In the case where the
Poincaré map P over time T is well defined, the result of the paper can be explained as follows: we locate a subset U
of R2 such that the topological degree d(I −P,U) equals to +1. The novelty of the paper is that the later is done under
only continuity and (some) monotonicity assumptions for the coefficients of the model. A suitable integral operator is
used in place of the Poincaré map to cope with possible non-uniqueness of solutions. The paper, therefore, provides a
new framework for studying the generalized Gause model with functional differential perturbations and multi-valued
ingredients.
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1. Introduction

The generalized Gause prey-predator model with time-dependent coefficients reads as

ẋ = xa(t, x) − yb(t, x),
ẏ = y(c(t, x) − d(t)), (1)

where a(t, x) is the specific growth rate of the prey in the absence of any predators, b(t, x) is the predator response
function, c(t, x) is the proportion as to how the presence of prey enhances the growth of predator, d(t) is the rate of
how the predator population declines in the absence of prey. The generalized autonomous Gause model has been
introduced by Freedman in [7, Ch. 4] and system (1) comes from accounting for periodic changes of the environment
in that autonomous model. A fundamental dynamical property of prey-predator models, known as permanence, is that
their solutions are often trapped within a positive rectanglular region R∞1 . Sufficient conditions for system (1) to be
permanent are proposed in Teng-Li-Jiang [24] and Luo [17], where the interested reader can also learn the biological
relevance of this property. One of the consequences of permanence is the existence of a periodic solution in R which
persists under functional differential perturbations of system (1), useful for incorporating delays, neutral and impulsive
terms into (1). In this paper we are interested in a weaker (as proved in Zanolin [27]) property of system (1) which
still ensures the presence of a periodic solution with the same stability properties, but requires just basic assumptions
for the coefficients. Specifically, let W be the set of all continuous functions acting from [0,T ] to the interior of a
rectangular subset R of R∞ that contains all positive T -periodic solutions of (1) and let d(I −Φ,WR) be the topological
degree (see [15]) of the integral operator

(Φ(x, y))(t) =

(
x(T )
y(T )

)
+

∫ t

0

(
x(τ)a(τ, x(τ)) − y(τ)b(τ, x(τ))
y(τ)(c(τ, x(τ)) − d(τ))

)
dτ
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1We say ”rectangular region” when refer to a set of the form {(x, y) : x1 < x < x2, y1 < y < y2}.
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with respect to WR. We prove that R is bounded and that

d(I − Φ,WR) = 1 (2)

under the following assumptions:

(A) a(t, 0) > 0 for all t ∈ [0,T ],
for every t ∈ [0,T ] there exists a unique xa(t) such that a(t, xa(t)) = 0 and a(t, x) < 0 for all x > xa(t).

(B) b(t, x) > 0 for all t ∈ [0,T ] and x > 0,
b(t, 0) ≡ 0,
for any x0 > 0 there exists B(x0) > 0 such that b(t, x) ≥ B(x0) for all x ≥ x0 and t ∈ [0,T ],
limx→0

x
b(t,x) > 0 for any t ∈ [0,T ].

(C) c(t, x) > 0, d(t) > 0 for all t ∈ [0,T ] and x > 0,
c(t, 0) ≡ 0,
c(t, x) doesn’t decrease in x ≥ 0 for each fixed t ∈ [0,T ],
given any t ∈ [0,T ] there exists a unique xc(t) such that c(t, xc(t)) = d(t).

(X) sup
t∈[0,T ]

xc(t) < inf
t∈[0,T ]

xa(t),

sup
t∈[0,T ]

xa(t) < ∞.

Assumptions (A), (B), (C) are weaker than those currently available in the literature on permanence of (1) (that would
imply (2)) and the existence of positive periodic solutions to (1) (that (2) implies). As the amount of references is huge
we review only those whose assumptions do not contradict (A), (B), (C), which can be deemed standard according to
Freedman [7, Ch. 4]. While studying a particular form of (1) the paper by Hu-Liu-Yan [12] requires that the partial
derivative b′x exists and is strictly positive everywhere and that limx→∞ b(t, x) exists and finite. Applying the result
of Teng-Li-Jiang [24] one would need to assume that the y component of all positive solutions of (1) are uniformly
bounded as t → ∞. A sufficient condition that this paper provides requires that a certain time-integral of c(t, x) − d(t)
is negative for large x, which is not the case for (1). The paper Wolkowicz-Zhao [26] considers a particular form of (1)
while still requires b(t, x) to be strictly increasing in x. A Gause model of similar to (1) (but with a particular form of
a(t, x)) is considered in Moghadas-Alexander [21] and Liu-Lou [16] where b′x(t, x) > 0 and b′′xx(t, x) < 0 for all x > 0,
t ∈ R. The paper Luo [17] considers a more general form of (1), but requires that a′x(t, x) ≤ 0 for all x ≥ 0, t ∈ R
and assumes boundedness of b(t, x) and c(t, x) when applied to (1). The fundamental assumptions in Ding-Su-Hao [3]
and Ding-Jiang [4] are comparable with ours, however these authors assume x 7→ b(t, x) sub-linear for all x ≥ 0 and
we need the later at x = 0 only. The condition (X) plays a similar role as the requirements for time-integrals of the
coefficients of (1), that literally all of the papers [12, 3, 26, 21, 16, 17, 4, 24] assume (paper [21] doesn’t impose any
conditions for time-integrals because it deals with nearly constant T -periodic solutions only). Detailed comparison of
(X) with the respective assumptions in these papers is outside of the scope of this introduction.

Somewhat stronger assumptions in the above mentioned papers are often used to get stronger results compared to
the goal (2) of this paper. We understand that the assumptions of some of these papers can be relaxed (in particular, the
proofs in Ding-Su-Hao [3] and Ding-Jiang [4] obtained for more complex versions of (1) can possibly be adjusted to
our settings). Our introduction doesn’t aim to document that we got stronger results, but rather wants to emphasize that
our new technique leads to the assumptions, which are different from those used in the relevant literature. Moreover,
our technique may appear simpler (for some readers) than those used in papers [12, 3, 26, 21, 16, 17, 4, 24].

We stress that assumptions (A), (B), (C) do not assume any differentiability or Lipschitz continuity for the coef-
ficients of (1). This is important if we were to implement the group defense phenomenon (see Freedman-Wolkowicz
[8]) or to incorporate complicate variants of the Rosenzweig law of the growth of the prey population in the absence
of predators (see Bravo-Fernandez-Gamez-Granados-Tineo [1]). In particular, in contrast with the above-mentioned
papers, we neither need c′x(t, x) > 0, nor c′x(t, x) ≥ 0 for any of x > 0, as the above-mentioned papers assume. Relaxed
regularity is also a necessary step towards considering switch-like interactions between the species, that would lead to
Filippov-type differential inclusions versus ordinary differential equations in (1) (see Gouze-Sari [10]). Along similar
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lines, our approach may provide useful information in studying stochastic versions of model (1) where the known
conditions (see Lv-Wang [25] and references therein) for stochastic permanence do not hold.

As for the monotonicity assumption in (C), it is not vital for the proofs. However, it is important for the proof of
Lemma 2.1 that c(t, x) > d(t) for large values of x > 0. In particular, our result cannot be immediately extended to
Gause models with non-monotonic functional responses from Hu [12], Ding-Jiang [2], or Fan-Wang [6].

Let us now briefly look through the idea and the layout of the paper. The most initial consideration is that
(2) holds, if we were successful to locate a region R ⊂ R2 such that the vector field of (1) is pointed towards the
interior of R on the boundary of R for any time. Rectangular regions R are most convenient to verify this property.
Fig. 1left suggests little chances to locate such a rectangular region for the vector field of (1), however in section 2
we propose an ε-perturbation (3) of (1) that raises bifurcation of a rectangular Rε with the required properties from
infinity (see lemma 2.1). The rest of section 2 (lemma 2.3) is devoted to showing that the T -periodic solutions of
the perturbed system (3) lie in a smaller rectangle R that doesn’t depend on ε. This property is used in section 3
to prove the coincidence of d(I − Φε,WRε ) and d(I − Φ0,WR) in theorem 3.1, which is the main result of the paper
in the case where the uniqueness of solutions of (1) holds. For Guase models (1) with negative divergence (see
(14) for the definition) our result implies the existence of an asymptotically stable T -periodic solution in R, that we
prove in section 4 (theorem 4.1). Theorem 4.1 is then applied in section 5 to derive conditions for the existence
of an asymptotically stable T -periodic solution to the Lotka-Volterra model with Holling type-II predator response
function. A short introduction precedes the statement of the main result (theorem 5.1) there. The requirement for the
uniqueness of solutions of (1) is removed in section 6 (theorem 6.1) by providing a relevant version (lemma 6.1) of the
Krasnoselskii’s T -irreversibility lemma. Theorem 6.1 is the main result of this paper, it proves (2) under assumptions
(A), (B), (C) and (X) only. A formulation of theorem 6.1 in terms of the Mawhin’s coincidence degree (typical for the
literature on prey-predator models) appears as theorem 6.2. An acknowledgments section concludes the paper.
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Figure 1: Schematic picture of isoclines and the respective directions of the vector field of the Gause model (1) (left figure) and its perturbation (3)
(right figure). The set where Fε(t, x, y) < 0 (dotted white and dotted dark fillings) is separated from the set where Fε(t, x, y) > 0 (diagonal white
and diagonal dark fillings) by a curved strip (not black one) where Fε(t, x, y) = 0 for some t ∈ [0,T ]. Similarly, the set where Gε(t, x, y) < 0 (dark
dotted and dark diagonal fillings) is separated from the set where Gε(t, x, y) > 0 (white dotted and white diagonal filling) by a black strip where
Gε(t, x, y) = 0 for some t ∈ [0,T ]. The figure also illustrates the crucial difference between the original and the perturbed models: the right figure
admits a rectangular region Rε that is strictly invariant under the flow of (3) with ε > 0.

2. A perturbation that unfolds a rectangular trapping region

As outlined in the introduction, the presence of a set R such that the vector field of (1) is pointed to the interior of
R on the boundary ∂R of R would be sufficient to prove the property (2). The reason for this paper is that we cannot
locate such a set for the original system (1) (see Fig. 1left for the phase portrait), but can do that for the following
perturbation

ẋ = xa(t, x) − yb(t, x) + ε =: Fε(t, x, y),
ẏ = y(c(t, x) − d(t)yε) =: Gε(t, x, y), (3)
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that we discovered. Specifically, we can prove that rectangular strictly invariant regions Rε ⊂ R2 bifurcate in system
(3) from infinity as ε crosses zero (see Fig. 2). The whole text of the paper is basically a proof of the convergence
of T -periodic solutions of (3) that strict invariance of Rε implies (Brouwer theorem, see [14, theorem 3.1]) to a T -
periodic solution of (1). The focus on the topological degree doesn’t make proofs longer, but opens a potential room
for further applications and generalizations, thus our topological settings.

A simple intuition as for why the perturbation in (3) helps us so much can be gained from studying x- and y
isoclines of (3), i.e. the curves of the phase plane where the vector fields (x, y) 7→ Fε(t, x, y) and (x, y) 7→ Gε(t, x, y)
take zero values. For ε > 0 these isoclines are found as

Fε(t, x, fε(t, x)) = 0, where fε(t, x) =
xa(t, x)
b(t, x)

+
ε

b(t, x)
, x > 0,

Gε(t, x, gε(t, x)) = 0, where gε(t, ε) =

(
c(t, x)
d(t)

)1/ε

, x > 0

and we have
Fε(t, x, y) < 0

(
Fε(t, x, y) > 0

)
, if y > fε(t, x)

(
0 < y < fε(t, x)

)
, (4)

Gε(t, x, y) < 0
(
Gε(t, x, y) > 0

)
, if y > gε(t, x)

(
0 < y < gε(t, x)

)
. (5)

Fig. 1right explains how the strictly invariant rectangular region Rε of (3) needs to be built. Next lemma is the proof
of this pictorial observation.

Lemma 2.1. Let a, b, c, d be continuous functions satisfying (A), (B), (C) and (X). Fix an arbitrary ∆ > 0. Then there
exists ε0 > 0 such that given any ε ∈ (0, ε0] and M > 0 there exist

x
¯ε
∈ (0, ε), y

¯ε
∈ (0, ε), ȳε > M

such that the vector field (x, y) 7→
(

Fε(t, x, y)
Gε(t, x, y)

)
points strictly inward the set

Rε =

{
(x, y) ∈ R2 : x

¯ε
< x < sup

t∈[0,T ]
xa(t) + ∆, y

¯ε
< y < ȳε

}
on its boundary ∂Rε at any t ∈ [0,T ].

Proof. Put x̄ = supt∈[0,T ] xa(t) + ∆ and choose such an ε0 > 0 that Fε(t, x, y) < 0 for all t ∈ [0,T ], y > 0. Fix ε ∈ (0, ε0]
and M > 0. We define ȳε, x

¯ε
, y

¯ε
one by one as any constants that satisfy the respective condition:

ȳε : ȳε > M and yε > maxt∈[0,T ] gε(t, x̄),
x
¯ε

: x
¯ε
∈ (0, ε) and mint∈[0,T ] fε(t, x¯ε

) > ȳε
(such a choice is possibe because fε(t, x) ≥ ε

b(t,x) ≥ l2 εx and b(t, 0) = 0),
y
¯ε

: y
¯ε
∈ (0, ε) and y

¯ε
< mint∈[0,T ] gε(t, x¯ε

).

From (4)-(5) we conclude that

Fε(t, x¯ε
, y) > 0, for any y ∈ [y

¯ε
, ȳε],

Fε(t, x̄, y) < 0, for any y ∈ [y
¯ε
, ȳε], (provided that ε0 > 0 is small enough)

Gε(t, x, y
¯ε

) > 0, for any x ∈ [x
¯ε
, x̄],

Gε(t, x, ȳε) < 0, for any x ∈ [x
¯ε
, x̄]

by construction, which is the statement of the lemma.

The isoclines for system (3) with ε = 0 are given in Fig. 1left and the interested reader can check that the trick of
lemma 2.1 cannot be applied for the unperturbed Gause model. As we will prove in theorem 6.1, lemma 2.1 implies

4



that d(I − Φε,WRε ) = 1, which disadvantage is that Rε blows up as ε converges to 0, so that we cannot yet pass to the
limit as ε → 0. However, next lemma allows to see that we don’t miss any T -periodic solutions, if transform sets Rε

to a smaller rectangular region R that doesn’t depend on ε. This will allow us making the above mentioned passage to
the limit.

Lemma 2.2. Let a, b, c, d be continuous functions satisfying (A), (B), (C) and (X). Fix ∆ > 0. Then there exist ε0 > 0
and M > 0 such that given any ε ∈ [0, ε0] system (3) does not have T -periodic solutions (x, y) with initial conditions
(x(0), y(0)) in

⋃
µ∈(0,ε0]

∂R0
µ, where ∂R0

µ is the boundary of the set

R0
µ =

{
(x, y) : µ < x < sup

t∈[0,T ]
xa(t) + ∆, µ < y < M

ε0

µ

}
.

The following lemma is a part of the proof of lemma 2.2, but it may also be of independent interest as an estimate
for the location of T -periodic solutions in the original model (1).

Lemma 2.3. Let a, b, c and d be continuous functions satisfying (A), (B) and (C). Assume that

sup
t∈[0,T ]

xa(t) < ∞

and consider ∆ > 0. Then there exist ε0 > 0, L ∈ (0,∆] and M > 0 such that given any ε ∈ [0, ε0] one has

1) 0 < x(t) < sups∈[0,T ] xa(s) + ∆ and 0 < y(t), for all t ∈ [0,T ],

2) x([0,T ]) ∩
(
0, supt∈[0,T ] xc(t) + L

)
, ∅,

3) x([0,T ]) ∩ [L,∞) , ∅,

4) y(t) < M, for all t ∈ [0,T ],

for any solution (x, y) of (3) that has a point in (0,∞) × (0,∞) and verifies (x(0), y(0)) = (x(T ), y(T )).

The solutions (x, y) of (3) that satisfies (x(0), y(0)) = (x(T ), y(T )) will be loosely called T -periodic solutions. Next
brief result on the uniqueness of a specific Cauchy problem associated to the equations of (1) is required for the proof
of (2.3).

Lemma 2.4. Assume that φ ∈ C0(R × R,R). Then the Cauchy problem

ẋ = xφ(t, x),
x(t0) = 0

has a unique solution for any t0 ∈ R. This solution is given by x(t) ≡ 0.

Proof. Let x∗ be any solution of the Cauchy problem under consideration. Then x∗ is a solution to the Cauchy problem

ẋ = xφ(t, x∗(t)),
x(t0) = 0,

which is given by the formula x(t) = x(t0) exp
(∫ t

t0
φ(τ, x∗(τ))dτ

)
≡ 0. Thus the assertion.

Proof of lemma 2.3. 1) The estimate 0 < x(t) holds for ε > 0 because Fε(t, 0, y) > 0 for any ε > 0 and y ≥ 0.
To justify this estimate for ε = 0 one has to notice that due to lemma 2.4 the equation ẋ = F0(t, x, y(t)) cannot have
non-trivial T -periodic solutions that touch x = 0. If the estimate for y doesn’t hold for some ε ∈ (0, ε0] then we have
the existence of τ ∈ R and δ > 0 such that

y(τ) = 0, 0 < y(t) < min
s∈[0,T ]

gε(s, x(t)), t ∈ [τ − δ, τ).
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But according to (5) this implies that t 7→ y(t) increases on [τ − δ, τ] and cannot reach 0 at t = τ. We have y(t) > 0 in
the case where ε = 0 too. Similar to the arguments for x(t) the later statement follows from lemma 2.4, i.e. from the
fact that ẏ = G0(t, x(t), y) cannot have non-trivial T -periodic solutions that touch y = 0. The upper estimate for x now
follows from the fact that F0(t, x, y) < 0 for all x > supt∈[0,T ] xa(t) and y ≥ 0.

2) Introduce

U−ε = ∪t∈[0,T ] {(x, y) ∈ (0,∞) × (0,∞) : Fε(t, x, y) = 0, Gε(t, x, y) ≤ 0} ,

see Fig. 1right. One always has the existence of t− ∈ [0,T ] such that (x(t−), y(t−)) ∈ Uε. This follows from the fact
that either (ẋ(t), ẏ(t)) = 0 at some t ∈ [0,T ] or the vector (ẋ(t),ẏ(t))

‖(ẋ(t),ẏ(t))‖ fills in a complete unit circle when t varies from 0
to T . Therefore, to achieve the statement of part 2 it is sufficient to show that there exists L > 0 and ε0 > 0 such that
for any ε ∈ [0, ε0] one has

x < sup
t∈[0,T ]

xc(t) + L, for all (x, y) ∈ U−ε . (6)

Since G0(t, x, y) ≤ 0 for any x ≤ xc(t) and any y > 0, property (6) holds for ε = 0 and any L > 0 automatically. We,
therefore, focus on considering ε > 0. In this case

U−ε = ∪(t,x)∈[0,T ]×[0,∞): fε(t,x)≥gε(t,x), fε(t,x)>0 {(x, fε(t, x))} .

If supt∈[0,T ] xc(t) = ∞ the estimate (6) holds straight away and we we need to focus on the case supt∈[0,T ] xc(t) < ∞
only. Fix an arbitrary L > 0. Observe that there exists l > 0 such that

c(t, x)
d(t)

≥ 1 + l, for all x ≥ sup
t∈[0,T ]

xc(t) + L, t ∈ [0,T ] (7)

Indeed, assume that (7) doesn’t hold, i.e. for any l > 0 one can find t∗ ∈ [0,T ] and x∗ ≥ supt∈[0,T ] xc(t) + L such that

c
(
t∗, supt∈[0,T ] xc(t) + L

)
d(t∗)

≤
c(t∗, x∗)

d(t∗)
< 1 + l

(where non-decreasing of c has been used). By passing to the limit as l→ 0 one gets the existence of t∗ ∈ [0,T ] such

that c(t∗,supt∈[0,T ] xc(t)+L)
d(t∗)

≤ 1. But c(t∗,xc(t∗))
d(t∗)

= 1 by the definition of xc and one can conclude that c(t∗,supt∈[0,T ] xc(t)+L)
d(t∗)

< 1 by

the uniqueness property of xc, see (C). This contradicts non-decreasing of x 7→ c(t∗, x) on
[
xc(t∗), supt∈[0,T ] xc(t) + L

]
and completes the proof of (7).

We use (7) to show the existence of ε0 > 0 such that (6) holds for ε ∈ (0, ε0]. Indeed, arguing by contradiction we
obtain the existence of εn → 0 as n → ∞ and (xn, yn) ∈ U−εn

, n ∈ N, such that xn ≥ supt∈[0,T ] xc(t) + L. We conclude
from (7) that

c(t, xn)
d(t)

≥ 1 + l, for all t ∈ [0,T ], n ∈ N,

and, therefore,

gεn (t, xn) =

(
c(t, xn)

d(t)

)1/εn

→ ∞ as n→ ∞.

By using the definition of U−ε we now have

fεn (t, xn)→ ∞ as n→ ∞ uniformly in t ∈ [0,T ].

But since x ≤ supt∈[0,T ] xa(t) + ∆ for any (x, y) ∈ U−ε , we have

fεn (t, x) ≤
maxt∈[0,T ],x∈[0,supt∈[0,T ] xa(t)+∆] xa(t, x) + ε

B(supt∈[0,T ] xc(t) + L)
, for all x ≥ sup

t
xc(t) + L.

This contradiction completes the proof of part 2.
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3) Similar to part 2, each T -periodic solution that is addresses in the statement of the lemma must pass through
the region

U+
ε = ∪t∈[0,T ] {(x, y) ∈ (0,∞) × (0,∞) : Fε(t, x, y) = 0, Gε(t, x, y) ≥ 0} ,

see Fig. 1right. The goal of part 3 is to show that L > 0 and ε0 > 0 can be diminished in such a way that

L ≤ x, for any (x, y) ∈ U+
ε and ε ∈ [0, ε0]. (8)

Observe that there exists l > 0 such that c(t,0)
d(t) < 1 − l for all t ∈ R (one would have c(t0,0)

d(t0) ≥ 1 for some t0 ∈ [0,T ]
otherwise, that contradicts (C)). We now take a sufficiently small L > 0 (and within [0,∆] as lemma requires) to have

c(t, x)
d(t)

< 1 −
l
2
, for all x ∈ [0, L], t ∈ [0,T ].

This property, in particular, implies that G0(t, x, y) < 0 for any t ∈ [0,T ], x ∈ [0, L] and y > 0. Therefore, (8) holds for
ε = 0 and it remains to prove that (8) holds for ε ∈ (0, ε0], where ε0 > 0 is sufficiently small. Assuming the contrary,
we get the existence of εn and (xn, yn) ∈ Uεn , such that L ≤ xn for n ∈ N. Therefore,

c(t, xn)
d(t)

< 1 −
l
2
, for all t ∈ [0,T ], n ∈ N,

and

gεn (t, xn) =

(
c(t, xn)

d(t)

)1/εn

→ 0 as n→ ∞.

As in the proof of part 2, we observe, that for ε > 0 the set U+
ε takes the form

U+
ε = ∪(t,x)∈[0,T ]×[0,∞):0< fε(t,x)<gε(t,x) {(x, fε(t, x))} .

and, therefore,
fεn (t, xn)→ 0 as n→ ∞ uniformly in t ∈ [0,T ].

At the same time assumption (B) implies that L > 0 can be diminished so that

fεn (t, x) ≥ δamin, where δ > 0 is a suitable constant, amin = min
t∈[0,T ], x∈[0,L]

a(t, x).

We now diminish L > 0 again and achieve amin > 0, which is possible because of (A). This raises a contradiction with
the convergence of fεn (t, xn) and completes the proof of (8).

4) In what follows, we use part 1 to sharp the estimate for the set U+
ε that we obtained earlier. First of all, by

combining (8) with part 1 we conclude that ε0 > 0 can be diminished so that

L ≤ x < sup
t∈[0,T ]

xa(t) + ∆, for any (x, y) ∈ U+
ε and ε ∈ [0, ε0].

Secondly, letting fmax = maxt∈[0,T ],x∈[L,supt∈R xa(t)+∆] f0(t, x) we diminish ε0 > 0 further, so that

L ≤ x < sup
t∈[0,T ]

xa(t) + ∆ and 0 < y < fmax + ∆ for any (x, y) ∈ U+
ε and ε ∈ [0, ε0]. (9)

The estimate (9) along with monotonicity of c allow to use the differential inequalities techniques (see [14, §1.4]) to
prove the boundeness of y from above. Let ε ∈ [0, ε0] and let (x, y) be a T -periodic solution to (3) that has a point in
(0,∞) × (0,∞). As in the proof of part 3 we utilize the existence of t+ ∈ [0,T ] such that (x(t+), y(t+)) ∈ U+

ε . Since
y(c(t, x) − d(t)yε) < yc

(
t, supt∈[0,T ] xa(t) + ∆

)
for all t ∈ [0,T ], 0 ≤ x ≤ supt∈[0,T ] xa(t) + ∆, and y > 0 we have that

y(t) ≤ ymax(t),
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where ymax is the solution of the Cauchy problem

ẏmax = ymaxc
(
t, sup

t∈R
xa(t) + ∆

)
, (10)

ymax(t+) = fmax + ∆.

Since the general solution of the scalar differential equation ẏ = A(t)y is given by y(t) = y(τ) exp
(∫ t
τ

A(s)ds
)

there
exists M > 0 such that

ymax(t) < M t ∈ [0,T ]

for any solution ymax of (10) whose initial condition does’t exceed fmax + ∆, thus statement of part 4.
The proof of the lemma is complete.

Proof of lemma 2.2. Let M be that given by lemma 2.3. The proof is by assuming the contrary. We therefore have a
sequence {(xn, yn)}∞n=1 of T -periodic functions and sequences (εn, µn) → 0 as n → ∞ such that (xn, yn) solves (3) with
ε = εn and (xn(0), yn(0)) ∈ ∂R0

µn
for all n ∈ N. Uniform boundness of {(xn, yn)}∞n=1 given by lemma 2.3 allows us to

consider this sequence convergent. Let
(x0, y0) = lim

n→∞
(xn, yn).

The choice of the rectangles R0
µn

is such that lemma 2.3 (parts 1 and 4) ensures that (xn, yn) neither touches the right
(x = supt∈[0,T ] xa(t) +∆+µn) nor touches the top (y = M ε0

µn
) sides of R0

µn
. This implies that either x0(t) ≡ 0 or y0(t) ≡ 0.

The first case is impossible because of part 3 of lemma 2.3 and we must conclude that x0 is a T -periodic solution of
the equation

ẋ = xg(t, x). (11)

Part 3 of lemma 2.3 ensures that x0 is non-trivial. At the same time assumption (X) allows us to consider ∆ > 0 such
that supt∈[0,T ] xc(t) + ∆ < inft∈[0,T ] xa(t), so that

xg(t, x) > 0 for any t ∈ [0,T ], x ∈
(
0, sup

t∈[0,T ]
xc(t) + ∆

)
.

Therefore, none of the elements of
(
0, supt∈[0,T ] xc(t) + ∆

)
can be an initial condition of a T -periodic solution to (11),

that contradicts part 2 of lemma 2.3. The proof of the lemma is complete.

3. Evaluation of the topological degree in the case of smooth coefficients

In this section we prove our main result for the class of smooth systems (3). Such an assumption allows to consider
the Poincaré map Pε (over the period T ) of (3), which may be more familiar to some readers than the integral operator
Φε we use in section 6.2 (where the uniqueness of solutions is not required).

Remark 3.1. In order for Pε to be defined we also use the continuability of each solution of the unperturbed model
(1) originating at t = 0 in (0,∞) × (0,∞) on the whole [0,T ]. Let us briefly verify that the later is granted under the
conditions (A), (B) and (C). Consider (x0, y0) ∈ (0,∞) × (0,∞) and the solution (x, y) of (1) with the initial condition
(x, y)(0) = (x0, y0). Consider the set

R̂ =
{
(x, y) ∈ R2 : 0 < x < r1, 0 < y < r2

}
,

such that

r1 > max
{

x0, sup
t∈[0,T ]

xa(t)
}
, r2 > ymax(T ),

where ymax is the solution of

ẏmax = ymaxc (t, r1) ,
ymax(0) = y0.

8



We have that r2 > y0. According to the solutions extension theorem (see Hartman [11, Theorem 3.1]) the solution
(x, y) must leave R̂ through the boundary ∂R̂, if this solution doesn’t stay in R̂ for the whole time-interval [0,T ]. But
(x, y) cannot cross ∂R and leave R due to our choice of r1 and r2 (x doesn’t reach r1 because F0(t, r1, y) < 0 for all
t ∈ [0,T ], y > 0 (see proof of lemma 2.1) and y doesn’t reach r2 since y(t) ≤ ymax(t) due to the differential inequalities
lemma (see proof of lemma 2.3, part 3)).

We briefly recall that if the uniqueness and continuability (from t = 0 to t = T ) of solutions hold, then the Poincaré
map Pε is defined as

Pε((x0, y0)) = (x(T ), y(T )),

where (x, y) is the solution of (3) with the initial condition (x(0), y(0)) = (x0, y0). We are now in the position to prove
the analogue of (2) for the Gause model (1) with smooth coefficients.

Theorem 3.1. Let a, b, c, d be C1-functions that satisfy (A), (B), (C) and (X). Then given any ∆ > 0 there exist ε0 > 0
and M > 0 such that

d(I − P0,R) = 1,

where

R =

{
(x, y) ∈ R2 : ε0 < x < sup

t∈[0,T ]
xa(t) + ∆, ε0 < y < M

}
.

Proof. Let ε0 > 0 and {Rε}ε∈(0,ε0] be those given by lemma 2.1. Let M > 0. The conclusion of lemma 2.1 implies that,
for ε ∈ (0, ε0],

1) each solution (x, y) of (3) that starts at t = 0 at ∂Rε doesn’t pass through (x(0), y(0)) during (0,T ] (the property
termed T-irreversibility in [14]).

2) d
((

Fε

Gε

)
,Rε

)
= 1.

Therefore, by Krasnoselskii’s T -irreversibility lemma (see [14, lemma 6.1]) one gets

d(I − Pε,Rε) = 1, for any ε ∈ (0, ε0]. (12)

Let us now diminish ε0 > 0 and specify M > 0 so that the conclusion of lemma 2.2 holds, thus ensuaring that

Pεx , x for any x ∈ Rε\R and any ε ∈ (0, ε0]. (13)

This allows to apply the additivity (excision) property of the topological degree to conclude that

d(I − Pε,R) = d(I − Pε,Rε) = 1, for any ε ∈ (0, ε0].

while using that d(I − Pε,Rε\R) = 0, which comes from (13). Lemma 2.2 implies that d(I − P0,R) is defined and so
d(I − P0,R) = d(I − Pε,R) for ε > 0 sufficiently small, that completes the proof.

4. The Gause model with negative divergence

In this section we show that property (2) of the topological degree implies the existence of an asymptotically stable
T -periodic solution to (1) provided that the divergence of (1) is strictly negative in (0,∞) × (0,∞) and the right-hand
terms are analytic in (0,∞) × (0,∞). The analyticity of a time-dependent function (t, ξ) 7→ φ(t, ξ) here means the
following: for each ξ∗ ∈ (0,∞) there exists r > 0 such that

φ(t, ξ) =
∑
α∈N

φα(t)(ξ − ξ∗)α, t ∈ R, ‖ξ − ξ∗‖ < r,

where the coefficients φα are continuous and T -periodic in t and the convergence of the series is uniform in t.
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Theorem 4.1. Let a, b, c, d be real-analytic T -periodic in time functions and the assumptions (A), (B), (C), (X) hold.
If the negative divergence condition

a(t, x) + xa′x(t, x) − yb′x(t, x) + c(t, x) − d(t) < 0, for any t ∈ R, x > 0, y > 0 (14)

holds, then (1) has at most a finite number of strictly positive T -periodic solutions. Moreover, each ∆ > 0 defines
ε0 ∈ (0,∆] and M > 0 such that system (1) has at least one asymptotically stable T -periodic solution in

R =

{
(x, y) ∈ R2 : ε0 < x < sup

t∈[0,T ]
xa(t) + ∆, ε0 < y < M

}
.

Proof. The finitness of the number of 2T -periodic solutions follows from the Nakajima-Seifert theorem [22] upon
the following observation. The result [22, Theorem, p. 431] formally assumes that the system under consideration is
dissipative, that is not granted in our case. However, the only fact that is used in the proof in [22] out of dissipativity is
that the set of 2T -periodic solutions is bounded2. Moreover this set should not necessary be the set of all 2T -periodic
solutions, but some bounded set of 2T -periodic solutions of interest isolated from other 2T -periodic solutions, which
we do have in (0,∞) × (0,∞) according to lemma 2.3. We hereby apply lemma 2.3 with 2T instead of T which is
allowed because of T -periodicity of the coefficient of (1) that we assume.

The rest of the proof follows the ideas of [23, 19, 18]. Let {vi}
n
i=1 be the set of all fixed points of the Poincaré map

P0 in R and denote by ind(v,P0) the Poincaré index of v, i.e. the value of d(I − P0,V) where V is taken to be a small
neighborhood of v that don’t have other fixed points of P0. By the additivity of the topological degree

n∑
i=1

ind(vi,P0) = d(I − P0,R) = 1.

Therefore, P0 has a fixed point v∗ ∈ R with
ind(v∗,P0) = 1.

Now we use the theorem on the degree of iterations of maps (see [15, Theorem 31.1]) that implies

ind(v∗,P0P0) = ind(v∗,P0) = 1 (15)

provided that P0P0 doesn’t have fixed points in a sufficiently small neighborhood of v∗ other than v∗ itself. The latter
is guaranteed by the isolateness of strictly positive 2T -periodic solutions of (1) that we observed earlier in the proof3.

Denote by ρ1, ρ2 the eigenvalues of (P0)′(v∗). Then (ρ1)2, (ρ2)2 are the eigenvalues of P′(v∗)P′(v∗). By using
Lioville formula [11, Theorem 1.2] and negative dissipation assumption (14) one obtains

(ρ1)2(ρ2)2 = det‖(P0)′(v∗)(P0)′(v∗)‖ = exp
∫ 2T

0

(
F′x(τ, x∗(τ), y∗(τ)) + G′y(τ, x∗(τ), y∗(τ))

)
dτ ∈ (0, 1),

where (x∗, y∗) is the solution of (1) with the initial condition (x∗(0), y∗(0)) = v∗. According to the topological degree
linearization theorem [15, Theorem 5.9], we have

1 = ind(v∗,P0P0) = (−1)β,

where β is the number of real negative eigenvalues of I − (P0P0)′(v∗). Let λ1, λ2 be the eigenvalues of I − (P0P0)′(v∗).
Then either λ1, λ2 > 0 (so that β = 0) or λ1, λ2 < 0 (so that β = 2). Since λi = 1− (ρi)2, i = 1, 2, and (ρ1)2(ρ2)2 ∈ (0, 1)
as shown earlier, the case λ1, λ2 < 0 is impossible and we must have λ1, λ2 > 0. This implies

(ρi)2 = 1 − λi < 1, for any i = 1, 2,

that completes the proof.

2Indeed, the top line at page 438 of [22] says: ”Since system (2) is dissipative, 0(F) is bounded”. And 0(F) in [22] is the set of fixed points of
the Poincaré map over the period.

3Here is the place where the validity of lemma 2.3 for 2T -periodic solutions (as opposed to just T -periodic) is used.
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5. The Lotka-Volterra model with Holling type-II predator response function

Theorem 4.1 suggests conditions for the existence of asymptotically stable T -periodic solutions in Lotka-Volterra
models with Holling type-II predator response function:

ẋ = x(a1(t) − a2(t)x) − y
b1(t)x

b2(t) + x
, (16)

ẏ = y
(

c1(t)x
c2(t) + x

− d(t)
)
. (17)

The global asymptotic stability of a periodic solution in a model of form (16)-(17) with ratio-dependent Holling type-
II predator response, i.e. with b2(t) and c2(t) multiplied by y, is established in Fan-Wang-Zou [5]. However, the
ratio-dependence in the above mentioned result seems to be vital (if one goes through the lines of the proof in [5]).
We are not aware of any paper that leads to the existence of a stable periodic solution in the ratio-independent system
under consideration. The particular form of the coefficients a(t, x), b(t, x) and c(t, x) of (1) that is implemented in
(16)-(17) implies that

• a′x, b′x, b′′xx, c′x exist and a′x(t, x) ≤ 0, b′x(t, x) > 0, b′′xx(t, x) < 0, c′x(t, x) > 0 for all t ∈ R, x > 0,

• limt→∞ b(t, x) and limt→∞ c(t, x) exist and finite,

i.e. the settings of the results [12, 24, 26, 21, 16, 17] mentioned in the introduction hold (it can be noticed that the result
of [12] makes [24] applicable). However, none of these results mention anything about asymptotic stability with the
exception of Moghadas-Alexander [21] which deals with nearly constant periodic solutions only. We refer the reader
to the paper [9] by Garulli-Mocenni-Vicino-Tesi for numerical results (received with LOCBIF and WINPP software)
about stable periodic solutions to (16)-(17) with a1(t) = M + N sin (2πt/12 + 1) and constant other coefficients. To
summarize, the following corollary of theorem 4.1 might be a useful addition within the literature on periodic solutions
of (16)-(17).

Theorem 5.1. Assume that a1, a2, b1, b2, c1, c2, d are continuous, T -periodic and strictly positive functions. If

1) a1(t) < d(t) < c1(t) < 2a2(t)c2(t), for any t ∈ [0,T ],

2) max
t∈[0,T ]

d(t)c2(t)
c1(t) − d(t)

< min
t∈[0,T ]

a1(t)
a2(t)

,

then system (16)-(17) has at least one asymptotically stable strictly positive T -periodic solution.

Proof. The negative divergence condition (14) takes the form

a1(t) − 2a2(t)x −
b1(t)b2(t)y
(b2(t) + x)2 +

c1(t)x
c2(t) + x

− d(t) < 0, t ∈ [0,T ],

that uses the first and the last inequalities in 1) in order to hold. Furthermore, we have

xa(t) =
a1(t)
a2(t)

, xc(t) =
d(t)c2(t)

c1(t) − d(t)
,

that leads to the middle inequality in 1) (that ensures that xc is strictly positive) and to 2) (that ensures that (X) holds).
Strict positivity of each of the coefficients in (16)-(17) is required to have the positivity assumptions in (A), (B) and
(C) fulfilled.

6. Evaluation of the topological degree in the general case

This section is devoted to the proof of the main result of this paper in the most general settings, the formula (2). In
combination with the continuity of the topological degree, formula (2) allows to incorporate delays (see Krasnosel’ski
[14, Appendix II, §3], Krasnosel’ski-Zabreyko [15, §41.5]) and other functionals (see [15]) into Gause model (1),
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with potential bearings towards complementing the results in [12, 3, 16, 4] (see introduction). Formula (2) also allows
incorporating time-periodic impulses that can be viewed as perturbations of the integral operator Φ. In this way
formula (2) may, for instance, extend the results of Ding-Su-Hao [3].

Though formula (2) can be received as a consequence of theorem 3.1 over the duality principle between Poincaré
map P0 and integral operator Φ (see [14, Appendix II.2]), we suggest a proof that doesn’t employ uniqueness of
solutions. The reasons for that are twofold. Firstly, allowing nonuniqueness creates a wider room to account for the
phenomenon of group defence. An autonomous Gause model with group defense has been analysed by Freedman in
[8], where nonuniqueness took place along the x-axis only. A modification of this phenomenon may shift nonsmooth-
ness to the (0,∞) × (0,∞) region. Secondly, our level of generality enables a simple extension of the main result to
Gause models with multi-valued terms, e.g. to account for switch-like interactions between species (see Gouze-Sari
[10]). The functions xa and xc will naturally be multi-valued in such a case, that can be accommodated by all the
proofs.

As the main tool of the proof in theorem 3.1 is the T -irreversibility lemma by Krasnoselski, we need its version
that doesn’t employ uniqueness of solutions. Such a lemma is proposed in the next subsection of the paper.

6.1. T -irreversibility lemma for periodic differential equations with continuous right-hand terms
Consider a differential equation

u̇ = ψ(t, u), (18)

where ψ ∈ C0(R × Rn,Rn), and introduce the integral operator

(Ψu)(t) = u(T ) +

∫ t

0
ψ(τ, u(τ))dτ,

associated to the T -periodic problem. Our result will assume the following stronger version of the Krasnoselskii’s
T -irreversibility condition.

Definition 6.1. We call a point ξ ∈ Rn a point of strong T-irreversibility of the solutions of (18), if given any t0 ∈ [0,T ]
and any solution u of (18) with the initial condition u(t0) = ξ, the trajectory t 7→ u(t) doesn’t have self-interactions on
any interval t0 ∈ [s1, s2] ⊂ [0,T ] where this trajectory is defined.

Lemma 6.1. Consider ψ ∈ C0(R×Rn,Rn) and let U ⊂ Rn be an open bounded set. Assume that ψ(0, ·) doesn’t vanish
on ∂U. Assume that all points of ∂U are points of strong T -irreversibility of the solutions of (18). Then d(I −Ψ,WU)
is defined and

d(I − Ψ,WU) = d(−ψ(0, ·),U). (19)

Proof. Observe that the integral operator

(Ψλu)(t) = u(T ) + λ

∫ t

0
ψ(λτ, u(τ))dτ

doesn’t have fixed points on ∂W for any λ ∈ (0, 1]. Indeed, if Ψλu = u then v(t) = u(t/λ) is a solution of (18) with
v(0) = v(λT ) and v([0, λT ])∩∂U , ∅, that contradicts the strong T -irreversibility assumption. We claim that for λ > 0
sufficiently small Ψλ is homotopic to

(Ψλu)(t) = u(T ) + λ

∫ T

0
ψ(0, u(τ))dτ

on WU . To show this we prove that the deformation

(Ψλ,αu)(t) = u(T ) + λ

∫ αt+(1−α)T

0
ψ(λατ, u(τ))dτ, α ∈ [0, 1]

doesn’t have fixed points on ∂W for all λ > 0 sufficiently small. We prove by contradiction, i.e. we assume the
existence of λk → 0, αk → α0, uk → u0, uk ∈ ∂WU , as k → ∞, such that

uk(t) = uk(T ) + λk

∫ αk t+(1−αk)T

0
ψ(λkαkτ, uk(τ))dτ. (20)
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Since u̇k → 0 as k → ∞ we conclude that u0(t) = u∗, where u∗ ∈ ∂U. By plugging t = T in (20), dividing by λk and
passing to the limit as k → ∞ we obtain ∫ T

0
ψ(0, u∗)dτ = Tψ(0, u∗) = 0

which contradicts nonsingularity of ψ(0, ·) on ∂U. Therefore

d(I − Ψ1,WU) = d(I − Ψλ,WU)

for λ > 0 sufficiently small. Since ΨC([0,T ],Rn) ⊂ C([0,T ],Rn) ∩ Rn, the theorem XXX implies that

d(I − Ψλ,WU) = d(I − Ψλ,WU ∩ Rn) = dRn (I − ψλ,U),

where ψλ(ξ) = ξ + λ
∫ T

0 ψ(0, ξ)dτ = ξ + λTψ(0, ξ), ξ ∈ Rn. Since the linear deformation between I − ψλ and I − ψ1/T
is nonsingular on ∂U, we finally conclude

d(I − Ψ1,WU) = d(I − ψλ,U) = d(I − ψ1/T ,U) = d(−ψ(0, ·),U).

Remark 6.1. Our definition of strong T -irreversibility takes the form of the T -irreversibility by Krasnoselskii (see
proof of theorem 3.1 for the Krasnoselski’s definition), if t0 is set as 0. That could be possible to prove lemma 6.1
under the later T -irreversibility assumption. However, that won’t be the set WU in (19) in such a case, but the integral
funnel of (18) emanating from U over time T . We note that is the set WU which is considered in Zanolin [27].

6.2. The main result

We are finally ready to prove formula (2).

Theorem 6.1. Let a, b, c, d be continuous functions that satisfy (A), (B), (C) and (X). Then given ∆ > 0 there exist
ε0 > 0 and M > 0 such that

d(I − Φ,WR) = 1,

where

WR =

{
(x, y) ∈ C0([0,T ],R2) : ε0 < x(t) < sup

t∈[0,T ]
xa(t) + ∆, ε0 < y(t) < M, t ∈ [0,T ]

}
. (21)

The proof just follows the lines of the proof of theorem 3.1 with the following natural amendments:

1) The integral operator

Φε

(
x
y

)
(t) = x(T ) +

∫ t

0

(
Fε(τ, x(τ), y(τ))
Gε(τ, x(τ), y(τ))

)
dτ

will replace the Poincaré map Pε and the set

WRε =
{
(x, y) ∈ C0([0,T ],R2) : (x(t), y(t)) ∈ Rε, t ∈ [0,T ]

}
will replace Rε.

2) Lemma 6.1 has to be used instead of the T -irreversibility lemma by Krasnoselskii (one needs to observe that
lemma 2.1 implies not only T -irreversibility of solutions, but also the strong T -irreversibility), to have d(I −
Φε,WRε ) = 1 in analogy with (12).

Because a considerable part of the literature on the competitive biological model has been achieved over the so-
called coincidence degree (see Mawhin [20, p. 19]), we express our main result in terms of this degree too. We wish
this makes our work useful for a wider audience.
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6.3. A corollary for the coincidence degree

Let Z = {(x, y) ∈ C([0,T ],R2) : x(0) = x(T ), y(0) = y(T )} and let L : domL ⊂ Z → L1([0,T ],Rn) be the
linear operator defined by (L(x, y))(·) = (ẋ(·), ẏ(·)) with domL = {(x, y) ∈ Z : x and y are absolutely continuous}. The
operator L is a Fredholm operator of index zero, see e.g. Mawhin [20]. Let N : Z → L1([0,T ],R2) be the Nemitcky
operator defined by the right-hand sides of Gause model (1) as follows

(N(x, y))(t) =

(
F0(t, x(t), y(t))
G0(t, x(t), y(t))

)
.

Thus the existence of T -periodic solutions for system (2) is equivalent to the solvability of the equation

L(x, y) = N(x, y), (x, y) ∈ domL. (22)

The next theorem is a version of formula (2) in terms of the coincidence degree DL(L − N,W ∩ Z) of L and N (see
[20, p. 19] for a detailed definition).

Theorem 6.2. Let a, b, c, d be continuous functions that satisfy (A), (B), (C) and (A). Then given ∆ > 0 there exist
ε0,M > 0 such that

DL(L − N,W∆,ε0,M ∩ Z) = 1,

where W∆,ε0,M is given by (21).

The proof follows from the duality principle (see Mawhin [20, Chap. 3]) between the coincidence degree and the
one we used in (2) (Leray-Schauder degree). We refer the reader to [13, Corollary 2.6] for details.
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