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Abstract. In this work we are concerned with the null controllability of coupled parabolic
systems depending on a parameter and converging to a parabolic-elliptic system. We show
the uniform null controllability of the family of coupled parabolic systems with respect to the
degenerating parameter.

1. Introduction

Let Ω ⊂ RN be a bounded connected open set whose boundary ∂Ω is regular enough (N ≥ 1).
Let T > 0 and let ω1 and ω2 be two nonempty subsets of Ω, which will be referred as control
domains. We will use the notation Q = Ω× (0, T ) and Σ = ∂Ω× (0, T ).

The main objective of this paper is to analyze the controllability of linear coupled parabolic
systems in which one of the equations is degenerating into an elliptic equation.

In order to state our problem, we introduce the following system∣∣∣∣∣∣∣∣
ut −∆u = au+ bv + fχω1 in Q,
εvt −∆v = cu+ dv + gχω2 in Q,
u = v = 0 on Σ,
u(0) = u0; v(0) = v0 in Ω,

(1.1)

where a = a(x, t), b = b(x, t), c = c(x, t) and d = d(x, t) are functions belonging to C3(Q), f
and g are internal controls and ε is a small positive parameter, intended to tend to zero. In
particular we want to study this problem when only one control is active, namely when g ≡ 0
or f ≡ 0 and analyze the dependence of the cost of the null controllability of system (1.1) with
respect to the parameter ε.

Our interest in this problem comes from the fact that in many physical situations system
(1.1) is formally approximated by the following parabolic-elliptic system∣∣∣∣∣∣∣∣

ut −∆u = au+ bv + fχω1 in Q,
−∆v = cu+ dv + gχω2 in Q,
u = v = 0 on Σ,
u(0) = u0 in Ω.

(1.2)

This is the case for instance of biological systems modeling aggregation phenomena or chemical
systems having two different concentrations, see [8] and references therein. However, even if this
approximation is consistent with the existence and uniqueness point of view, it is not clear at
all what can be done from a control theory point of view. The main reason for that arises from
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the fact that we are considering systems having different physical properties and therefore, at
least a priori, different control properties.

The analysis of existence and uniqueness of solutions to system (1.1) is done in [10]. In this
work the author proves existence and uniqueness of solution when the initial data are in L2(Ω).
The author also studied the asymptotic expansion of solutions of (1.1) in terms of ε.

It is important to mention that this question of approximating an equation by another having
different physical properties was already studied in the case of a hyperbolic equation degenerating
into a parabolic one and vice-versa. In fact, it was proved in [9] that system∣∣∣∣∣∣

εutt −∆u+ ut = fχω in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(0) = u0; ut(0) = u1 in Ω,

(1.3)

is null controllable, for each ε fixed, and the controls remains bounded when ε→ 0 if we impose
some geometric condition on Ω. Furthermore, the control sequence converges, when ε→ 0, to a
control for the heat equation ∣∣∣∣∣∣

ut −∆u = fχω in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(0) = u0 in Ω.

(1.4)

Another relevant work is [6], in which the authors consider the linear transport diffusion
equation ∣∣∣∣∣∣

yt − ε∆y +M(x, t) · ∇y = fχω in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),
y(0) = y0 in Ω,

(1.5)

and investigate the cost of the control in the vanishing viscosity limit ε→ 0+ and, in particular,
they try to determine in which situation it is possible to obtain a control which remains bounded
as ε → 0+. In that paper the authors are able to prove boundedness of controls by assuming
some conditions on the vector field M and the time T . See also [2] and [7] for the analysis of
(1.5) in the 1-d case, with M constant.

Regarding the case of parabolic systems converging to parabolic-elliptic systems, as far as we
know, the first time this problem was addressed was in [1], where the authors considered the
case of a nonlinear parabolic-elliptic system appearing in electrocardiology as a simplification of
a coupled parabolic system modeling electrical activities in the heart and, combining Carleman
estimates and weighted energy inequalities, the authors are able to prove that the control prop-
erties of the parabolic-elliptic system can be viewed as a limit process of the control properties
of a family of parabolic systems.

Let us denote by
(
u(t; ε, (u0, v0), f, g), v(t; ε, (u0, v0), f, g)

)
the solution of (1.1) at time t ∈

[0, T ] associated to (u0, v0) ∈ L2(Ω)2 and (f, g) ∈ L2(Q)2.
Our first main result in this paper is given by the following Theorem.

Theorem 1.1. Let (u0, v0) ∈ L2(Ω)2 and a, b, c and d be C3(Q) functions. Then

(1) If c 6= 0 in ω, for some ω ⊂⊂ ω1 and ||d||L∞(Q) < µ1 (µ1 being the first eigenvalue of the
Laplacian), then system (1.1) is uniformly null controllable, with respect to ε, with control



CONTROLLABILITY OF FAST DIFFUSION COUPLED PARABOLIC SYSTEMS 3

only in the first equation. More precisely, for each ε > 0 there exists f = f(ε) ∈ L2(Q)
such that (

u(T ; ε, (u0, v0), f(ε), 0), v(T ; ε, (u0, v0), f(ε), 0)
)
= (0, 0). (1.6)

Moreover, we have the following estimate on the control

||f(ε)χω1 ||L2(Q) ≤ C(||u0||L2(Ω) + ε||v0||L2(Ω)), (1.7)

where C is a constant that does not depend on ε, u0 and v0.
(2) If b 6= 0 in ω, for some ω ⊂⊂ ω2 and d < µ1, then system (1.1) is uniformly null

controllable, with respect to ε, with control acting only in the second equation. More
precisely, for each ε > 0 there exists g = g(ε) ∈ L2(Q) such that(

u(T ; ε, (u0, v0), 0, g(ε)), v(T ; ε, (u0, v0), 0, g(ε))
)
= (0, 0). (1.8)

Moreover, we have the following estimate on the control

||g(ε)χω2 ||L2(Q) ≤ C(||u0||L2(Ω) + ε||v0||L2(Ω)), (1.9)

where C does not depend on ε, u0 and v0.

In order to prove Theorem 1.1 we are led to consider the adjoint system of (1.1),∣∣∣∣∣∣∣∣
−ϕt −∆ϕ = aϕ+ cξ in Q,
−εξt −∆ξ = bϕ+ dξ in Q,
ϕ = ξ = 0 on Σ,
ϕ(T ) = ϕT ; ξ(T ) = ξT in Ω,

(1.10)

with (ϕT , ξT ) ∈ L2(Ω)2.
It is well known that case 1 of Theorem 1.1 is equivalent to prove the existence of an universal

constant C, which does not depend on ε, such that the observability inequality

||ϕ(0)||2L2(Ω) + ε||ξ(0)||2L2(Ω) ≤ C
∫∫

Qω1

|ϕ|2dxdt, (1.11)

holds for all solutions (ϕ, ξ) of (1.10). Analogously, one can prove that case 2 of Theorem 1.1 is
equivalent to show that

||ϕ(0)||2L2(Ω) + ε||ξ(0)||2L2(Ω) ≤ C
∫∫

Qω2

|ξ|2dxdt, (1.12)

for all solutions (ϕ, ξ) of (1.10).
The study of the controllability of systems of parabolic equations has obtained a lot of atten-

tion in the recent years. For instance, in [4] the authors analyze the controllability of a reaction
diffusion system of a system of two parabolic equations coupled by zero-order terms, obtaining
the null controllability for the linear system and the local null controllability of the semilin-
ear system. In [5] the controllability of a quite general system of two coupled linear parabolic
equations is studied and, combining Carleman inequalities and some energy inequalities, null
controllability is proved.

Following [4] or [5] one can prove that for each ε > 0 system (1.1) is null controllable in L2(Ω).
A carefully analysis on booth proofs shows that uniform null controllability with respect to ε
can be obtained only in the case of a control on the second equation of (1.1), i.e., following [4] or
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[5] it is possible to prove that the cost of the null controllability is bounded, with respect to ε,
when the control is acting on the second equation of (1.1). The same is not true if one is trying
to control (1.1) by means of a control in the first equation. Indeed, in that case the cost of the
null controllability is of order ε−1.

Thus, in this paper we obtain a uniform estimate on the cost of controllability of (1.1) in the
case of a control acting only on the first equation, Theorem 1.1, case 1. Our proof can also be
applied in order to obtain the boundedness of the cost of the null controllability of (1.1) when
the control is acting on the second equation, see Theorem 2.3.

2. Carleman estimates and an extended adjoint system

In this section we deduce Carleman type estimates that will be used to prove observability
inequalities (1.11) and (1.12). To this end we first define several weight functions which will be
useful in the sequel.

The basic weight will be a function ψ ∈ C2(Ω) verifying

ψ(x) > 0, in Ω, ψ ≡ 0 on ∂Ω, |∇ψ(x)| > 0, ∀x ∈ Ω\ω0,

where ω0 ⊂⊂ ω1 (ω0 ⊂⊂ ω2 in the case 2) is a nonempty open set. The existence of such a
function ψ is proved in [3]. Then, for some positive real numbers s and λ we introduce:

φ(x, t) =
eλψ(x)

t(T − t)
; α(x, t) =

eλψ(x) − e2λ||ψ||∞

t(T − t)
φ̂(t) = min

x∈Ω
φ(x, t); φ∗(t) = max

x∈Ω
φ(x, t); α∗(t) = min

x∈Ω
α(x, t). (2.1)

The following Carleman inequality will be very important to our purposes:

Lemma 2.1. Let β ∈ R, σ ∈ R+ and ω0 ⊂⊂ ω. There exists a constant λ0 = λ0(Ω, ω) ≥ 1
such that for every λ ≥ λ0 there exists s0 = s0(Ω, ω, λ) and C = C(Ω, ω, λ) such that, for every
s ≥ s0(T + T 2), the following inequality holds:

sβ−1

∫∫
Q
e2sαφβ−1(σ2|qt|2 + |

N∑
i,j=1

∂2q

∂xi∂xj
|2)dxdt

+ sβ+1

∫∫
Q
e2sαφβ+1|∇q|2dxdt+ sβ+3

∫∫
Q
e2sαφβ+3|q|2dxdt

≤ C
(
sβ
∫∫

Q
e2sαφβ|σ∂tq + ∆q|2dxdt+ sβ+3

∫∫
ω×(0,T )

e2sαφβ+3|q|2dxdt
)
,

for all q ∈ C2(Q), with q = 0 on Σ.

Proof. See [1] or [3]. �

Now we state the second main result of this paper, a Carleman type estimate for the adjoint
system (1.10) given by the following Theorem:
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Theorem 2.2. There exists λ0 = λ0(Ω, ω1) ≥ 1 such that for every λ ≥ λ0, there exists
s0 = s0(Ω, ω1, λ0) > 0 such that, for every s > s0(T + T 2), the solution (ϕ, ξ) of system (1.10)
satisfies

s4

∫∫
Q
e2sαφ4|ϕ|2dxdt+

∫∫
Q
e2sαϕ4|ξ|2dxdt ≤ Cs14

∫∫
ω1×(0,T )

(e2sα∗ + e4sα∗−2sα)(φ∗)14|ϕ|2dxdt,

(2.2)

with C depending on Ω, ω1 and λ.

For the purpose of proving Theorem 2.2, we extend our adjoint system to a system of 4
equations. We set the notation:

Lγ,θ = γ∂t −∆− θ, with γ ∈ R and θ ∈ L∞(Q).

With this notation, we define the following function

w = L−ε,dϕ

and, if ϕT and ξT are smooth and (ϕ, ξ) is the solution of (1.10) associated to this initial data,
a simple calculation gives

−wt −∆w − aw = ϕ(cb+ L−ε,0a− L−1,0d) + ξL−ε,0c− 2∇ξ∇c+ 2∇ϕ(∇d−∇a).

Therefore, we can add two more equations to our adjoint system, going from a system of 2
equations to a system of 4 equations, namely∣∣∣∣∣∣∣∣∣∣∣∣

L−1,aw = ϕ(cb+ L−ε,0a− L−1,0d) + ξL−ε,0c− 2∇ξ∇c+ 2∇ϕ(∇d−∇a) in Q,
L−ε,dϕ = w in Q,
L−1,aϕ = cξ in Q,
L−ε,dξ = bϕ in Q,
ϕ = ξ = w = 0 on Σ,
ϕ(T ) = ϕT ; ξ(T ) = ξT ; w(T ) = −εϕT −∆ϕT − dϕT in Ω.

(2.3)

The plan of the proof of Theorem 2.2 contains five parts:
First part : We see equations of (2.3) as heat equations and apply the Carleman estimate for

the heat equation given in Lemma 2.1. This yields a global estimate for ϕ, w and ξ in terms of
local terms of ϕ, w and ξ.

Second part : Using the second equation in (2.3) we eliminate the local integral of w appearing
in the Carleman estimate obtained in Step 1.

Third part : We estimate a local integral of ξ in terms of a local integral of ϕ, a local integral
of ϕt and some small order terms.

Fourth part : Using the extend adjoint system, we show that we can estimate ϕt locally in
terms of a local integral of ϕ and some small order terms.

Fifth part : We gather the estimates of previous steps and absorb the small order terms,
obtaining our desired Carleman estimate.

Along the proof we will use the notation:
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Iβ(s, σ; ρ) = sβ+3

∫∫
Q
e2sαφβ+3|ρ|2dxdt+ sβ+1

∫∫
Q
e2sαφβ+1|∇ρ|2dxdt

+ sβ−1

∫∫
Q
e2sαφβ−1(σ2|ρt|2 + |

N∑
i,j=1

∂2ρ

∂xi∂xj
|2)dxdt, (2.4)

where s, β and σ are real numbers and ρ = ρ(x, t).
Proof of Theorem 2.2. For an easier comprehension, we divide the proof in several steps:
Step 1. First Carleman inequalities.
Let ω′ be a nonempty set such that ω0 ⊂⊂ ω′ ⊂⊂ ω. We apply Lemma 2.1 to (2.3)1, with

β = 2, and to (2.3)3 and (2.3)4, with β = 1. Then

I2(s, 1;w) ≤ C
(
s5

∫∫
ω′×(0,T )

e2sαφ5|w|2dxdt+ s2

∫∫
Q
φ2e2sα(|ϕ|2 + |∇ϕ|2 + |ξ|2 + |∇ξ|2)dxdt

)
,

(2.5)

I1(s, 1;ϕ) ≤ C
(
s4

∫∫
ω′×(0,T )

e2sαφ4|ϕ|2dxdt+ s

∫∫
Q
e2sαφ|ξ|2dxdt

)
(2.6)

and

I1(s, ε; ξ) ≤ C
(
s4

∫∫
ω′×(0,T )

e2sαφ4|ξ|2dxdt+ s

∫∫
Q
e2sαφ|ϕ|2dxdt

)
. (2.7)

Adding (2.5), (2.6), (2.7) and absorbing the lower order terms, we get

I2(s, 1;w) + I1(s, ε; ξ) + I1(s, 1;ϕ)

≤ C
(
s4

∫∫
ω′×(0,T )

e2sαφ4|ϕ|2dxdt+ s4

∫∫
ω′×(0,T )

e2sαφ4|ξ|2dxdt+ s5

∫∫
ω′×(0,T )

e2sαφ5|w|2dxdt
)
.

(2.8)

Step 2. Estimate of the local integral of w.
In this step we estimate the local integral of w in the right-hand side of (2.8) in terms of

a local integral of ϕ and a small order term involving w. In order to do that, we introduce a
cut-off function θ with

θ ∈ C∞0 (ω′′),with 0 ≤ θ ≤ 1 and θ ≡ 1 on ω′,

where ω′ ⊂⊂ ω′′ ⊂⊂ ω.
We use (2.3)2 to write

s5

∫∫
ω′′×(0,T )

e2sαφ5|w|2θdxdt = s5

∫∫
ω′′×(0,T )

e2sαφ5θw(−εϕt −∆ϕ− dϕ)dxdt

:= M1 +M2 +M3 (2.9)

and we estimate each term in the expression above.
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For the first term, we integrate by parts to see that

M1 = 5εs5

∫∫
ω′′×(0,T )

φ4φte
2sαθwϕdxdt+ 2εs6

∫∫
ω′′×(0,T )

αtφ
5e2sαθwϕdxdt

+ εs5

∫∫
ω′′×(0,T )

φ5e2sαθwtϕdxdt (2.10)

and use Young’s inequality to obtain

M1 ≤ ε2
(
s5

∫∫
ω′′×(0,T )

φ5e2sα|w|2dxdt+ s

∫∫
ω′′×(0,T )

φe2sα|wt|2dxdt
)

+ Cs9

∫∫
ω′′×(0,T )

φ9e2sα|ϕ|2dxdt. (2.11)

Here we have used that |αt| ≤ Cφ2.
Next, since

M2 = 5s5

∫∫
ω′′×(0,T )

φ4e2sαwθ(∇φ · ∇ϕ)dxdt+ 2s6

∫∫
ω′′×(0,T )

φ5e2sαwθ(∇α · ∇ϕ)dxdt

+ s5

∫∫
ω′′×(0,T )

φ5e2sαw(∇θ · ∇ϕ)dxdt+ s5

∫∫
ω′′×(0,T )

φ5e2sαθ(∇w · ∇ϕ)dxdt,

it is not difficult to see that

M2 +M3 ≤ δ(s5

∫∫
ω′′×(0,T )

e2sαφ5|w|2dxdt+ s3

∫∫
ω′′×(0,T )

e2sαφ3|∇w|2dxdt)

+ C(s7

∫∫
ω′′×(0,T )

e2sαφ7|∇ϕ|2dxdt+ s5

∫∫
ω′′×(0,T )

φ5e2sα|ϕ|2dxdt), (2.12)

for all δ > 0.
Hence

s5

∫∫
ω′×(0,T )

e2sαφ5|w|2dxdt ≤ C(s9

∫∫
ω′′×(0,T )

φ9e2sα|ϕ|2dxdt+ s7

∫∫
ω′′×(0,T )

e2sαφ7|∇ϕ|2dxdt)

+ (δ + ε2)I2(s, 1, w). (2.13)

Now we eliminate the local integral of ∇ϕ. For this, we consider a set ω′′′ with ω′′ ⊂⊂ ω′′′ ⊂⊂
ω and a cut-off function θ1 ∈ C∞0 (ω′′′) satisfying

0 ≤ θ1 ≤ 1, θ1 ≡ 1 on ω′′.

Integration by parts gives

s7

∫∫
ω′′′×(0,T )

e2sαθ1φ
7|∇ϕ|2dxdt = − s7

∫∫
ω′′′×(0,T )

e2sαθ1φ
7∆ϕϕdxdt

− 1

2
s7

∫∫
ω′′′×(0,T )

∆(θ1e
2sαφ7)|ϕ|2dxdt. (2.14)

Using the fact that

|∆(θ1e
2sαφ7)| ≤ Cs2φ9e2sα in ω′′′ × (0, T ),
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together with Young’s inequality, we see that

s7

∫∫
ω′′′×(0,T )

e2sαφ7|∇ϕ|2dxdt ≤ δ

∫∫
ω′′′×(0,T )

e2sα|∆ϕ|2dxdt

+ Cs14

∫∫
ω′′′×(0,T )

e2sαφ14|ϕ|2dxdt, (2.15)

for all δ > 0.
Therefore

s5

∫∫
ω′×(0,T )

e2sαφ5|w|2 ≤ (δ + ε)I2(s, 1;w) + δI1(s, 1;ϕ) + Cs14

∫∫
ω′′′×(0,T )

e2sαφ14|ϕ|2dxdt,

(2.16)

for all δ > 0.
Combining (2.8) and (2.16) we get

I2(s, 1;w) + I1(s, ε; ξ) + I1(s, 1;ϕ)

≤ C
(
s14

∫∫
ω′′′×(0,T )

e2sαφ14|ϕ|2dxdt+ s4

∫∫
ω′×(0,T )

e2sαφ4|ξ|2dxdt
)
. (2.17)

Step 3. Estimate of the local integral of ξ.
In this step we estimate the local integral of ξ in the right-hand side of (2.17) in terms of a

local integral of ϕ, a local integral of ϕt and some small order terms.
Using equation (2.3)3 we see that

s4

∫∫
ω′′×(0,T )

e2sα∗θ(φ∗)4|ξ|2dxdt = s4

∫∫
ω′′×(0,T )

e2sα∗ θ

c
(φ∗)4ξ(−ϕt −∆ϕ− aϕ)dxdt

:= M4 +M5 +M6, (2.18)

where θ is the cut-off function introduced in Step 2.
As in previous step, we estimate each term in the expression above. We have

M4 ≤
s4

2

∫∫
ω′′×(0,T )

e2sα∗θ(φ∗)4|ξ|2dxdt+
s4

2

∫∫
ω′′×(0,T )

e2sα∗ θ

c2
(φ∗)4|ϕt|2dxdt. (2.19)

Integration by parts gives

M5 =− s4

∫∫
ω′′×(0,T )

e2sα∗(φ∗)4(∆(
θ

c
)ξ + 2∇(

θ

c
)∇ξ + (

θ

c
)∆ξ)ϕdxdt.

Using this last equality, we can show that

M5 +M6 ≤ δ
(
s4

∫∫
ω′′×(0,T )

e2sαφ4|ξ|2dxdt+ s2

∫∫
ω′′×(0,T )

e2sαφ2|∇ξ|2dxdt

+

∫∫
ω′′×(0,T )

e2sα|∆ξ|2dxdt
)
+Cs8

∫∫
ω′′×(0,T )

e4sα∗−2sα(φ∗)8|ϕ|2dxdt. (2.20)
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Hence

s4

∫∫
ω′×(0,T )

e2sα∗θ(φ∗)4|ξ|2

≤ C
(
s4

∫∫
ω′′×(0,T )

e2sα∗(φ∗)4|ϕt|2dxdt+ s8

∫∫
ω′′×(0,T )

e4sα∗−2sα(φ∗)8|ϕ|2dxdt
)
+δI1(s, ε; ξ).

(2.21)

From (2.21), our objective is now reduced to estimate a local integral of ϕt in terms of a local
integral of ϕ and small order terms. This will be done in the next steps.

Step 4. Estimate of the local integral of ϕt.
In this step we deal with the first term appearing in the right-hand side of (2.21).
First, we integrate by parts to get

s4

∫∫
ω′′×(0,T )

e2sα∗(φ∗)4|ϕt|2dxdt =− s4

∫∫
ω′′×(0,T )

e2sα∗(φ∗)4ϕttϕdxdt

+
s4

2

∫∫
ω′′×(0,T )

(e2sα∗(φ∗)4)tt|ϕ|2dxdt. (2.22)

Since

s4

∫∫
ω′′×(0,T )

e2sα∗(φ∗)4ϕttϕdxdt ≤
s−6

2

∫∫
ω′′×(0,T )

e2sα̂φ̂−5|ϕtt|2dxdt

+
s14

2

∫∫
ω′′×(0,T )

e4sα∗−2sα̂(φ∗)8φ̂5|ϕ|2dxdt, (2.23)

we just have to estimate the local integral of ϕtt in the right-hand side of (2.23). In order to do
that, we use (2.3)2 to see that

− ε(esα̂φ̂−5/2ϕtt)t −∆(esα̂φ̂−5/2ϕtt)

= esα̂φ̂−5/2wtt − ε(esα̂φ̂−5/2)tϕtt + esα̂φ̂−5/2(dttϕ+ 2dtϕt + dϕtt) (2.24)

with esα̂φ̂−5/2ϕtt = 0 in ∂Ω and esα̂φ̂−5/2ϕtt(T ) = esα̂φ̂−5/2ϕtt(0) = 0.

Next, multiplying both sides of (2.24) by esα̂φ̂−5/2ϕtt, integrating over Q and using Young’s
inequality, we get∫∫

Q
|∇(esα̂φ̂−5/2ϕtt)|2dxdt ≤ C

(∫∫
Q
|esα̂φ̂−5/2wtt|2dxdt+ ε2

∫
Q
|(esα̂φ̂−5/2)tϕtt|2dxdt

+

∫∫
Q
|esα̂φ̂−5/2ϕt|2dxdt+

∫∫
Q
|esα̂φ̂−5/2ϕ|2dxdt

)
+

∫∫
Q

(||d||∞ + δ)|esα̂φ̂−5/2ϕtt|2dxdt. (2.25)

Choosing now δ small enough such that ||d||∞ + δ < µ1, we have
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s−6

∫∫
Q
|∇(esα̂φ̂−5/2ϕtt)|2dxdt ≤ Cs−6

(∫∫
Q
|esα̂φ̂−5/2wtt|2dxdt+

∫∫
Q
|esα̂φ̂−5/2ϕt|2dxdt

+

∫∫
Q
|esα̂φ̂−5/2ϕ|2dxdt+ ε2

∫∫
Q
|(esα̂φ̂−5/2)tϕtt|2dxdt

)
.

(2.26)

Step 4.1. Estimation of the term in ϕtt.
Here, we estimate the last term in the right-hand side of (2.26). Using (2.3)2 and (2.3)3 we

can show that

−εϕtt = −ε2ϕtt − εwt − εdtϕ− εdϕt + εatϕ+ εaϕt + εctξ + εcξt, (2.27)

from where we see that

ε2|(esα̂φ̂−5/2)tϕtt|2 ≤ ε4|(esα̂φ̂−5/2)t|2|ϕtt|2 + ε2|(esα̂φ̂−5/2)t|2|wt|2 + Cε2
(
|(esα̂φ̂−5/2)t|2|ϕ|2

+ |(esα̂φ̂−5/2)t|2|ϕt|2 + |(esα̂φ̂−5/2)t|2|ξ|2 + |(esα̂φ̂−5/2)t|2|ξt|2
)
. (2.28)

Since

|(esα̂φ̂−5/2)t| ≤ Cs2φ̂−1/2esα̂,

inequality (2.28) implies

ε2s−6

∫∫
Q
|(esα̂φ̂−5/2)tϕtt|2dxdt ≤ Cε2s−2

∫∫
Q
e2sα̂φ̂−1(|ξ|2 + |ξt|2 + |ϕt|2 + |ϕ|2 + |wt|2)dxdt.

(2.29)

Step 4.2. Estimation of the term in wtt.
Here, we estiamte the first term in the right-hand side of (2.26). From (2.3)1 we have

−wtt −∆wt − atw − awt = (cb)tϕ+ cbϕt − εcttξ − εctξt − εattϕ− εatϕt − ξt∆c− ξ∆ct
− 2∇ξt∇c− 2∇ξ∇ct + ϕt∆(d− a) + ϕ∆(d− a)t + 2∇ϕt∇(d− a)

+ 2∇ϕ∇(d− a)t + dttϕ+ dtϕt.

(2.30)

We multiply both sides of (2.30) by e2sα̂φ̂−5wtt and integrate over Q, we obtain this way
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∫∫
Q
e2sα̂φ̂−5|wtt|2dxdt =

∫∫
Q
e2sα̂φ̂−5∆wtwttdxdt+

∫∫
Q
ate

2sα̂φ̂−5wwttdxdt+

∫∫
Q
ae2sα̂φ̂−5wtwttdxdt

+

∫∫
Q
e2sα̂φ̂−5wttϕ

(
(cb)t − εatt + ∆(d− a)t + dtt

)
dxdt

+

∫∫
Q
e2sα̂φ̂−5wttϕt

(
cb− εat + ∆(d− a) + dt

)
dxdt

+ 2

∫∫
Q
e2sα̂φ̂−5wtt∇ϕ∇(d− a)tdxdt+ 2

∫
Q
e2sα̂φ̂−5wtt∇ϕt∇(d− a)dxdt

+

∫∫
Q
e2sα̂φ̂−5wttξ

(
−εctt −∆ct

)
dxdt+

∫
Q
e2sα̂φ̂−5wttξt

(
−εct −∆c

)
dxdt

+ 2

∫∫
Q
e2sα̂φ̂−5wtt∇ξ∇ctdxdt+ 2

∫
Q
e2sα̂φ̂−5wtt∇ξt∇cdxdt. (2.31)

After a long, but straightforward calculation, we can show that

s−6

∫∫
Q
e2sα̂φ̂−5|wtt|2dxdt ≤ Cs−6

(∫∫
Q
e2sα̂φ̂−5∆wtwttdxdt+

∫∫
Q
e2sα̂φ̂−5(|w|2 + |wt|2)dxdt

+

∫∫
Q
e2sα̂φ̂−5(|∇ϕ|2 + |∇ϕt|2 + |∇ξ|2 + |∇ξt|2)dxdt

)
. (2.32)

The rest of the proof of this step is devoted to estimate the integrals
∫
Q e

2sα̂φ̂−5∆wtwttdxdt,∫
Q e

2sα̂φ̂−5|∇ϕt|2dxdt and
∫
Q e

2sα̂φ̂−5|∇ξt|2dxdt appearing in the right-hand side of (2.32) . This

will be done in the next two substeps.
Step 4.2.1. Estimation of the term in ϕt.
We use (2.3)2 to see that −∆ϕt = wt + εϕtt + dtϕ+ dϕt and (2.27) to show that

s−6

∫∫
Q
e2sα̂φ̂−5|∆ϕt|2dxdt ≤ Cs−6

∫∫
Q
e2sα̂φ̂−5(|ξ|2 + |ξt|2 + |ϕt|2 + |ϕ|2 + |wt|2)dxdt. (2.33)

The estimate then follows from the fact that −∆ gives a norm in H2
0 (Ω)

Step 4.2.2. Estimation of the term in ∆wtwtt.
We have

s−6

∫∫
Q
e2sα̂φ̂−5∆wtwttdxdt =

s−6

2

∫∫
Q

(e2sα̂φ̂−5)t|∇wt|2dxdt ≤ Cs−4

∫∫
Q
e2sα̂φ̂−3|∇wt|2dxdt,

(2.34)

since

|(e2sα̂φ̂−5)t| ≤ Cs2e2sα̂φ̂−3.

Next, we use (2.3)1 to see that
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−wtt −∆wt − atw − awt = (cb− εat + ∆(d− a) + dt)ϕt − (εctt + ∆ct)ξ − (εct + ∆c)ξt

+ ((cb)t + ∆(d− a)t − εatt + dtt)ϕ− 2∇ξt∇c− 2∇ξ∇ct
+ 2∇ϕt∇(d− a) + 2∇ϕ∇(d− a)t (2.35)

Multipyling both sides of (2.35) by s−4e2sα̂φ̂−3wt, integrating by parts and using Young’s
inequality, we get

s−4

∫∫
Q
e2sα̂φ̂−3|∇wt|2dxdt ≤ Cs−1

(∫∫
Q
e2sα̂(|∇ϕ|2 + |∇ξ|2 + |∇ξt|2)dxdt

+

∫∫
Q
e2sα̂(|w|2 + |wt|2)dxdt

)
, (2.36)

since

|(e2sα̂φ̂−3)t| ≤ Cs2e2sα̂φ̂−1

and

s−1ϕ−1 ≤ C. (2.37)

Step 4.2.3. Estimation of the term in ∇ξt.
We use (2.3)3 to see that −εξtt−∆ξt = btϕ+ bϕt+dtξ+dξt. Multiplying both sides by e2sα̂ξt

and integrating over Q, we obtain∫∫
Q
e2sα̂|∇ξt|2 ≤ (||d||∞ + δ)

∫∫
Q
e2sα̂|ξt|2dxdt

+ C

(∫∫
Q
e2sα̂|ξ|2dxdt+

∫∫
Q
e2sα̂(|ϕ|2 + |ϕt|2)dxdt

)
, (2.38)

which gives, for δ > 0 small enough,∫∫
Q
e2sα̂|∇ξt|2 ≤ C

∫∫
Q
e2sα̂(|ξ|2 + |ϕ|2 + |ϕt|2)dxdt. (2.39)

Step 5. Last arrangements and conclusion.
From (2.22), (2.23), (2.26), (2.29), (2.32), (2.33), (2.36) and (2.39), we get

s4

∫∫
ω′′×(0,T )

e2sα∗(φ∗)4|ϕt|2dxdt ≤ Cs4

∫∫
ω′′×(0,T )

(e2sα∗(φ∗)4)tt|ϕ|2dxdt

+ Cs−1

∫
Q
e2sα̂(|∇ϕ|2 + |wt|2 + |w|2)dxdt+ δI1(s, ε; ξ).

(2.40)

Putting (2.40) in (2.21), we obtain
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s4

∫∫
ω′×(0,T )

e2sα∗θ(φ∗)4|ξ|2 ≤ Cs8

∫∫
ω′′×(0,T )

(e2sα∗ + e4sα∗−2sα)(φ∗)8|ϕ|2dxdt

+ Cs−1

∫∫
Q
e2sα̂(|∇ϕ|2 + |wt|2 + |w|2)dxdt+ δI1(s, ε; ξ), (2.41)

since

|(e2sα∗(φ∗)4)tt| ≤ Cs4e2sα∗(φ∗)8 (2.42)

Finally, choosing s large enough and δ small enough, we put (2.41) in (2.17) and absorb the
small order terms, we obtain this way

I2(s, 1;w) + I1(s, ε; ξ) + I1(s, 1;ϕ) ≤ Cs14

∫∫
ω1×(0,T )

(e2sα∗ + e4sα∗−2sα)(φ∗)14|ϕ|2dxdt. (2.43)

This finishes the proof of Theorem 1.1. �
Observing that the system formed by the first two equations (2.3) has the same structure as

the system formed by the third and fourth equation in (2.3) we can argue as in steps 1 and 2
above in order to prove the following result, which is the third main result of this paper,

Theorem 2.3. Let ψ, φ, α the functions defined above. Then, there exists λ0 = λ0(Ω, ω2) ≥ 1
and s0 = s0(Ω, ω2, λ0) > 0 such that, for each λ ≥ λ0 and s > s0(T + T 2) the solution (ϕ, ξ) of
system (1.10) satisfies

s3

∫∫
Q
e2sαφ3|ξ|2dxdt+ s

∫∫
Q
e2sαφ|∇ξ|2dxdt+ s−1

∫∫
Q
e2sαφ−1(ε2|ξt|2 + |∆ξ|2)dxdt

+s3

∫∫
Q
e2sαξ3|ϕ|2dxdt+ s

∫∫
Q
e2sαφ|∇ϕ|2dxdt+ s−1

∫∫
Q
e2sαφ−1(|ϕt|2 + |∆ϕ|2)dxdt

≤ Cs7

∫∫
ω2×(0,T )

e2sαφ7|ξ|2dxdt, (2.44)

with C depending on Ω, ω2, ψ and λ0.

Remark 2.4. In the right hand side of (2.44) we have less power in sφ than in the right hand
side of (2.2). This occurs because in the third and fourth equation of (2.3)3 we do not have
second order terms in the right hand side.

3. Proof of Theorem 1.1

Now we prove Theorem 1.1. As we said before, it is equivalent to prove an observability
inequality for the adjoint system, inequality (1.11) in case 1 or inequality (1.12) in case 2.

As the proof of (1.11) and (1.12) are similar, we just prove the first one. To do this, we first
change the orientation in the adjoint system (1.10), i.e., instead of going from T to 0 the system
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will evolve from 0 to T . Changing t by T − t, we obtain the system∣∣∣∣∣∣∣∣
ϕt −∆ϕ = aϕ+ cξ in Q,
εξt −∆ξ = bϕ+ dξ in Q,
ϕ = ξ = 0 on Σ,
ϕ(0) = ϕT ; ξ(0) = ξT in Ω.

(3.1)

Our desired observability inequality becomes

||ϕ(T )||2 + ε||ξ(T )||2 ≤ C
∫∫

ω1×(0,T )
|ϕ|2dxdt, (3.2)

where C is a constant which does not depend on ε.
In fact, multiplying (3.1)1 by ϕ and (3.1)2 by ξ and integrating on Ω we obtain,

1

2

d

dt
||ϕ(t)||2 +

ε

2

d

dt
||ξ(t)||2 + ||∇ϕ(t)||2 + ||∇ξ(t)||2

= ||a1/2ϕ(t)||2 + ||d1/2ξ(t)||2 + ((b+ c)ϕ(t), ξ(t). (3.3)

Using the assumption on d and Poincaré’s inequality we get

1

2

d

dt
||ϕ(t)||2 +

ε

2

d

dt
||ξ(t)||2 ≤ C||ϕ(t)||2. (3.4)

Then, by Gronwall’s inequality we obtain

1

2
||ϕ(T )||2 +

ε

2
||ξ(T )||2 ≤ C(||ϕ(t)||2 + ||ξ(t)||2), (3.5)

where C does not depend on ε.
Integrating from T/4 to 3T/4 we get

1

2
||ϕ(T )||2 +

ε

2
||ξ(T )||2 ≤ C

∫ 3T/4

T/4

∫
Ω

(|ϕ(t)|2 + |ξ(t)|2)dxdt. (3.6)

Using the Carleman inequality given by Theorem 2.2, we obtain the desired observability
inequality

1

2
||ϕ(T )||2 +

ε

2
||ξ(T )||2 ≤ C

∫∫
ω1×(0,T )

|ϕ|2dxdt. (3.7)

where C does not depend on ε.
Inequality (3.7) proves case 1 in Theorem 1.1. Using Theorem 2.3 we prove case 2 in Theorem

1.1 . In this way, prove of Theorem 1.1 is stablished. �
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- Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions

E-mail address: guerrero@ann.jussieu.fr
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