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Abstract

We apply Lieb–Robinson bounds for multi–commutators we recently
derived [BP3] to study the (possibly non–linear) response of interacting
fermions at thermal equilibrium to perturbations of the external electromag-
netic field. This analysis leads to an extension of the results for quasi–free
fermions of [BPK1, BPK2] to fermion systems on the lattice with short–
range interactions. More precisely, we investigate entropy production and
charge transport properties of non–autonomous C∗–dynamical systems as-
sociated with interacting lattice fermions within bounded static potentials
and in presence of an electric field that is time– and space–dependent. We
verify the 1st law of thermodynamics for the heat production of the system
under consideration. In linear response theory, the latter is related with Ohm
and Joule’s laws. These laws are proven here to hold at the microscopic
scale, uniformly with respect to the size of the (microscopic) region where
the electric field is applied. An important outcome is the extension of the
notion of conductivity measures to interacting fermions.
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1 Introduction
The present paper belongs to a succession of works on Ohm and Joule’s laws start-
ing with [BPK1, BPK2, BPK3, BPK4]. These papers give a complete and math-
ematically rigorous derivation (at least in the AC–regime) of the phenomenon of
linear conductivity from microscopic quantum dynamics and first principles of
thermodynamics, only. Their results lead, in particular, to a physical picture of
the microscopic origin of Ohm and Joule’s laws based on a notion of “quantum
viscosity” for currents, highlighting the role of so–called diamagnetic and para-
magnetic currents. However, a drawback of our previous studies [BPK1, BPK2,
BPK3, BPK4] is their restriction to non–interacting fermions in disordered media.
Indeed, it is believed in theoretical physics that electric resistance of conductors
should also result from interactions between charge carriers, and not only from
the presence of inhomogenities (impurities).

Therefore, we aim to extend the results of [BPK1, BPK2, BPK3, BPK4] to
fermion systems with interactions, i.e., to rigorously derive, at least in the AC–
regime, Ohm and Joule’s laws for interacting systems. See also [BP2] for a his-
torical perspective of this subject. The present paper is a first step in this direc-
tion, extending all results of [BPK1, BPK2] to fermion systems on the lattice with
short–range interactions and bounded static potentials:

• We investigate the heat production for some non–autonomous C∗–dyna-
mical systems on the CAR C∗–algebra of cubic infinite lattices of any di-
mension with respect to (w.r.t.) completely passive states. Such states im-
plement the 2nd law of thermodynamics and are identified here with the
(thermal) equilibrium states of the system. The (non–autonomous) dynam-
ics is generated by a short–range and locally gauge invariant interaction
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between particles, a bounded static potential, and next neighbor hoppings
in presence of an electromagnetic field that is time– and space–dependent.
In particular, we verify the 1st law of thermodynamics for the system under
consideration.

• We next derive Ohm and Joule’s laws at the microscopic scale, an unex-
pected [F] property experimentally verified in 2012 at the atomic scale [W].
More precisely, we show that, at weak external electric fields, uniformly
w.r.t. the size of the region where the electric field is applied, the current
density response is linear and the heat production density is quadratic in
the strength of the applied field. We introduce the notion of conductiv-
ity measures for interacting fermions, similar to [KLM, KM1, KM2] and
[BPK2, BPK3, BPK4] in the non–interacting case.

Note that in [BPK2, Section 3.5] so–called microscopic conductivity distributions
are defined from conductivity measures. Exactly the same construction could be
done here and we refrain from doing it again. The same remark can be done for
the derivation of Joule’s law in its original formulation, see [BPK2, Section 4.5]
for more details.

Like in [BPK1, BPK2], all estimates we get are uniform w.r.t. the size of the
region with non–vanishing electric fields. This is possible because we prove in
[BP3, Corollary 3.10] the tree–decay bounds on multi–commutators of [BPK1,
Corollary 4.3] for the case of interacting fermions. These bounds are a pivotal
ingredient in [BPK1, BPK2, BPK3, BPK4] and were derived in [BPK1, Sec-
tion 4] by explicit computations using the fact that the fermion system was non–
interacting. For interacting systems, we use in [BP3] Lieb–Robinson bounds for
multi–commutators together with combinatorics of maximally connected graphs
(tree expansions) to prove them. Note additionally that Lieb–Robinson bounds
for multi–commutators also enter in a decisive way in the proof of the 1st law of
thermodynamics for the case of interacting particles, see for instance Theorem 3.2
(i) and Remark 3.3.

As discussed in [BP3], this method requires short–range interactions. The
short–range property is defined via the finiteness of a convenient norm for in-
teractions: This norm ensures that the interaction is sufficiently weak at large
distances. The set of such short–range interactions form a whole Banach space
W w.r.t. this norm. The space W includes density–density interactions resulting
from the second quantization of two–body interactions defined via a real–valued
and integrable function v (r) : [0,∞) → R. Considering fermions with spins ↑ or
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↓, our setting includes for instance the celebrated Hubbard model (and any other
system with finite range interactions) or models with Yukawa–type potentials, but
the Coulomb potential is excluded because it is not summable in space.

Our main assertions are Theorems 3.2–3.4 and 3.6–3.8. This paper is orga-
nized as follows:

• Section 2 precisely formulates our setting. We define in particular a Banach
space of short–range interactions.

• Section 3 extends all results of [BPK1, BPK2] to fermion systems within
bounded static potentials and with interactions decaying fast enough in
space.

Notation 1.1
To simplify notation, we denote by D any generic positive and finite constant.
These constants do not need to be the same from one statement to another. A
norm on a generic vector space X is denoted by ∥ · ∥X and the identity map of X
by 1X .

2 C∗–Dynamical Systems for Interacting Fermions

2.1 Free Fermions within Electromagnetic Fields
The host material for conducting fermions is assumed to be a cubic crystal repre-
sented by the d–dimensional cubic lattice L := Zd (d ∈ N).

Disorder in the crystal will be modeled by a random variable with distribution
aΩ taking values in the measurable space (Ω,AΩ), i.e., (Ω,AΩ, aΩ) is a probability
space. Let b be the set of non–oriented bonds of the cubic lattice L:

b := {{x, x′} ⊂ L : |x− x′| = 1} . (1)

Then, Ω := [−1, 1]L × Db with D := {z ∈ C : |z| ≤ 1}. I.e., any element of Ω
is a pair ω = (ω1, ω2) ∈ Ω, where ω1 is a function of lattice sites with values in
[−1, 1] and ω2 is a function of bonds with values in the complex closed unit disc
D. The first component ω1 is related to the random external static potential and the
second component to random hopping amplitudes of fermions. In a subsequent
paper we will explicitly fix the probability space (Ω,AΩ, aΩ). In the present work,
however, all studies are performed for any fixed realization ω ∈ Ω and the specific
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probability space is unimportant. All results here are uniform w.r.t. the choice of
ω ∈ Ω.

For any ω = (ω1, ω2) ∈ Ω, Vω ∈ B(ℓ2(L)) is by definition the self–adjoint
multiplication operator with the function ω1 : L → [−1, 1]. It represents a
bounded static potential. To all ω ∈ Ω and strength ϑ ∈ R+

0 of hopping disor-
der, we also associate another self–adjoint operator ∆ω,ϑ ∈ B(ℓ2(L)) describing
the hoppings of a single particle in the lattice:

[∆ω,ϑ(ψ)](x) := 2dψ(x)−
d∑

j=1

(
(1 + ϑω2({x, x− ej})) ψ(x− ej)

+ψ(x+ ej)(1 + ϑω2({x, x+ ej}))
)

(2)

for any x ∈ L and ψ ∈ ℓ2(L), with {ek}dk=1 being the canonical orthonormal basis
of the Euclidian space Rd. In the case of vanishing hopping disorder ϑ = 0 (up
to a minus sign) ∆ω,ϑ is the usual d–dimensional discrete Laplacian. Since the
hopping amplitudes are complex valued (ω2 takes values in D), note additionally
that random electromagnetic potentials can be implemented in our model.

Then, for any ω ∈ Ω and parameters λ, ϑ ∈ R+
0 , the Hamiltonian describing

one quantum particle within a bounded static potential is the discrete Schrödinger
operator (∆ω,ϑ + λVω) acting on the Hilbert space ℓ2(L). The coupling constants
λ, ϑ ∈ R+

0 represent the strength of disorder of respectively the external static
potential and hopping amplitudes.

The time–dependent electromagnetic potential is defined by a compactly sup-
ported time–dependent vector potential

A ∈ C∞
0 :=

∪
l∈R+

C∞
0 (R× [−l, l]d ; (Rd)∗) ,

where (Rd)∗ is the set of one–forms1 on Rd that take values in R. I.e., for some
l ∈ R+, A ∈ C∞

0 (R × [−l, l]d ; (Rd)∗) and we use the convention A(t, x) ≡ 0
whenever x /∈ [−l, l]d. Since A ∈ C∞

0 , A(t, x) = 0 for all t ≤ t0, where t0 ∈ R
is some initial time. The smoothness of A is not essential in the proofs and is only
assumed for simplicity.

We use the Weyl gauge (also named temporal gauge) for the electromagnetic
field and as a consequence,

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd , (3)
1In a strict sense, one should take the dual space of the tangent spaces T (Rd)x, x ∈ Rd.
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is the electric field associated with A. We also define the integrated electric field
(or electric tension) along the oriented bond x := (x(1), x(2)) ∈ L2 at time t ∈ R
by

EA
t (x) :=

∫ 1

0

[
EA(t, αx

(2) + (1− α)x(1))
]
(x(2) − x(1))dα . (4)

This definition is important because it is the electric field inducing fermionic cur-
rents on bonds (x(1), x(2)) of nearest neighbors.

To simplify notation, we consider without loss of generality (w.l.o.g.) spinless
fermions with negative charge. The cases of particles with spin and positively
charged particles can be treated by exactly the same methods. Thus, using the
(minimal) coupling of A ∈ C∞

0 to (minus) the discrete Laplacian, the discrete
magnetic Laplacian is (up to a minus sign) the self–adjoint operator

∆
(A)
ω,ϑ ≡ ∆

(A(t,·))
ω,ϑ ∈ B(ℓ2(L)) , t ∈ R ,

defined by

⟨ex,∆(A)
ω,ϑ ey⟩ = exp

(
−i

∫ 1

0

[A(t, αy + (1− α)x)] (y − x)dα

)
⟨ex,∆ω,ϑey⟩

(5)
for all t ∈ R and x, y ∈ L. Here, ⟨·, ·⟩ is the scalar product in ℓ2(L) and {ex}x∈L is
the canonical orthonormal basis ex(y) ≡ δx,y of ℓ2(L). In (5), similar to (4), αy+
(1−α)x and y−x are seen as vectors in Rd. In presence of an electromagnetic field
associated to an arbitrary vector potential A ∈ C∞

0 , the one–particle Hamiltonian
(∆ω,ϑ + λVω) at fixed ω ∈ Ω and λ, ϑ ∈ R+

0 is replaced with (the time–dependent
one)

∆
(A)
ω,ϑ + λVω ≡ ∆

(A(t,·))
ω,ϑ + λVω , t ∈ R .

2.2 CAR C∗–Algebra of the Infinite Lattice
Let Pf (L) ⊂ 2L be the set of all finite subsets of the d–dimensional cubic lattice
L. For any Λ ∈ Pf (L), UΛ is the finite dimensional C∗–algebra generated by 1
and generators {ax,s}x∈Λ,s∈S satisfying the canonical anti–commutation relations,
S being some finite set of spins. As just explained above, the spin dependence of
ax,s ≡ ax is irrelevant in our proofs (up to trivial modifications) and, w.l.o.g., we
only consider spinless fermions, i.e., the case S = {0}.

Let
ΛL := {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd| ≤ L} ∈ Pf (L) (6)
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for all L ∈ R+ and observe that {UΛL
}L∈R+ is an increasing net of C∗–algebras.

Hence, the set
U0 :=

∪
L∈R+

UΛL
(7)

of local elements is a normed ∗–algebra with ∥A∥U0
= ∥A∥UΛL

for all A ∈ UΛL

and L ∈ R+. The CAR C∗–algebra U of the infinite system with norm ∥ · ∥U
is by definition the completion of the normed ∗–algebra U0. It is separable, by
finite dimensionality of UΛ for Λ ∈ Pf (L). We define annihilation and creation
operators of (spinless) fermions with wave functions ψ ∈ ℓ2(L) by

a(ψ) :=
∑
x∈L

ψ(x)ax ∈ U , a∗(ψ) :=
∑
x∈L

ψ(x)a∗x ∈ U . (8)

They have to be understood, respectively, as the limits

lim
L→∞

∑
x∈ΛL

ψ(x)ax and lim
L→∞

∑
x∈ΛL

ψ(x)a∗x

in the Banach space U . The existence of these limits is a consequence of the
canonical anti–commutation relations.

For any fixed θ ∈ R/(2πZ), the condition

σθ(ax) = e−iθax (9)

defines a unique automorphism σθ of the C∗–algebra U . A special role is played
by σπ. Elements B1, B2 ∈ U satisfying σπ(B1) = B1 and σπ(B2) = −B2 are
respectively called even and odd, while elements B ∈ U satisfying σθ(B) = B
for any θ ∈ [0, 2π) are called gauge invariant. The set

U+ := {B ∈ U : B = σπ(B)} ⊂ U (10)

of all even elements is a ∗–algebra. By continuity of σθ, it follows that U+ is
closed and hence a C∗–algebra.

2.3 Banach Space of Short–Range Interactions
An interaction is a family Φ = {ΦΛ}Λ∈Pf (L) of even and self–adjoint local ele-
ments ΦΛ = Φ∗

Λ ∈ U+ ∩ UΛ with Φ∅ = 0. Obviously, the set of all interactions
can be endowed with a real vector space structure:

(α1Φ + α2Ψ)Λ := α1ΦΛ + α2ΨΛ , Λ ∈ Pf (L) ,
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for any interactions Φ, Ψ, and any real numbers α1, α2. We define Banach spaces
of short–range interactions by introducing specific norms for interactions, taking
into account space decay.

To this end, as done in [BP3] by following [NOS, Eqs. (1.3)–(1.4)], we con-
sider positive–valued and non–increasing decay functions F : R+

0 → R+ satisfy-
ing the following properties:

• Uniform integrability over L.

∥F∥1,L := sup
y∈L

∑
x∈L

F (|x− y|) =
∑
x∈L

F (|x|) <∞ . (11)

• Bounded convolution constant.

D := sup
x,y∈L

∑
z∈L

F (|x− z|)F (|z − y|)
F (|x− y|)

<∞ . (12)

A typical example of such a F for L = Zd, d ∈ N, is the function

F (r) = (1 + r)−(d+ϵ) , r ∈ R+
0 , (13)

which has convolution constant D ≤ 2d+1+ϵ ∥F∥1,L for ϵ ∈ R+. See [NOS, Eq.
(1.6)] or [Si, Example 3.1]. Note that the exponential function F (r) = e−ςr, ς ∈
R+, satisfies (11) but not (12). Nevertheless, for every function F with bounded
convolution constant (12) and any strictly positive parameter ς ∈ R+, the function

F̃ (r) = e−ςrF (r) , r ∈ R+
0 ,

clearly satisfies Condition (12) with a convolution constant that is no bigger than
the one of F. In fact, as observed in [Si, Section 3.1], the multiplication of such
a function F with a non–increasing weight f : R+

0 → R+ satisfying f (r + s) ≥
f (r) f (s) (logarithmically superadditive function) produces a new positive–valued
and non–increasing decay function without increasing the convolution constant D.
In all the paper, (11)–(12) are assumed to be satisfied.

The function F encodes the short–range property of interactions. Indeed, an
interaction Φ is said to be short–range if

∥Φ∥W := sup
x,y∈L

∑
Λ∈Pf (L), Λ⊃{x,y}

∥ΦΛ∥U
F (|x− y|)

<∞ . (14)
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The map Φ 7→ ∥Φ∥W defines a norm on interactions and the space of short–range
interactions w.r.t. to the decay function F is, by definition, the real separable
Banach space W ≡ (W , ∥ · ∥W) of all interactions Φ with ∥Φ∥W < ∞. It turns
out that all Φ ∈ W define, in a natural way, infinite–volume quantum dynamics,
i.e., they define C∗–dynamical systems on U . This fact is discussed in detail in
[BP3, Section 3.1].

2.4 Unperturbed Dynamics of Interacting Fermions
To any ω ∈ Ω, hopping and potential strengths ϑ, λ ∈ R+

0 , we associate a short–
range interaction Ψ(ω,ϑ) ∈ W defined as follows: Fix ΨIP ∈ W with ΨIP

{x} = 0 for
all x ∈ L. Then,

Ψ
(ω,ϑ)
Λ := ⟨ex,∆ω,ϑey⟩a∗xay + ⟨ey,∆ω,ϑex⟩a∗yax +ΨIP

{x,y} ∈ U+ ∩ UΛ

whenever Λ = {x, y} for x, y ∈ L, and Ψ
(ω,ϑ)
Λ := ΨIP

Λ otherwise. Hence, in
presence of bounded static potentials, the internal energy observable H(ω,ϑ,λ)

L ∈
U+∩UΛ in the box ΛL of the interacting inhomogeneous fermion system is defined
by

H
(ω,ϑ,λ)
L :=

∑
Λ⊂ΛL

Ψ
(ω,ϑ)
Λ + λ

∑
x∈ΛL

ω1(x)a
∗
xax (15)

=
∑

x,y∈ΛL

⟨ex, (∆ω,ϑ + λVω)ey⟩a∗xay +
∑
Λ⊂ΛL

ΨIP
Λ ,

for ω = (ω1, ω2) ∈ Ω, ϑ, λ ∈ R+
0 and L ∈ R+. Observe that the first sum in the

right hand side (r.h.s.) of the second equality in (15) is the second quantization of
the one–particle operator ∆ω,ϑ + λVω restricted to the subspace ℓ2(ΛL) ⊂ ℓ2(L).
The second sum in that equality encodes all interaction mechanisms involving
more than one particle, in the box ΛL.

Latter on, in Section 3.2, we will further assume that the interparticle interac-
tion ΨIP is locally gauge invariant:

• Local gauge invariance of ΨIP. For all x ∈ L,∑
Λ∈Pf (L)

[
ΨIP

Λ , a
∗
xax

]
= 0 . (16)
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The above condition is not really essential in our analysis, but is technically con-
venient in the discussion on transport properties, because the definitions of cur-
rents do not depend on the interparticle interactions, encoded in ΨIP, when (16) is
satisfied. See Section 3.2 for more details.

The finite volume dynamics thus corresponds to the continuous group {τ (L)t }t∈R
of ∗–automorphisms defined by

τ
(ω,ϑ,λ,L)
t (B) = eitH

(ω,ϑ,λ)
L Be−itH

(ω,ϑ,λ)
L , B ∈ U , (17)

for any t ∈ R, ω = (ω1, ω2) ∈ Ω, ϑ, λ ∈ R+
0 and L ∈ R+.

The strong limit L → ∞ of τ (ω,ϑ,λ,L)t is well–defined and allows us to make
sense of the infinite volume dynamics of the interacting fermion system. It is a
direct application of [BP3, Theorem 3.6], which yields the following assertions:

Theorem 2.1 (Infinite volume dynamics and its generator)
Assume (11)–(12). Let ω ∈ Ω and ϑ0, ϑ, λ ∈ R+

0 .
(i) Infinite volume dynamics. The continuous groups {τ (ω,ϑ,λ,L)t }t∈R, L ∈ R+,
converge strongly to aC0–group {τ (ω,ϑ,λ)t }t∈R of ∗–automorphisms with generator
δ(ω,ϑ,λ), as L→ ∞.
(ii) Infinitesimal generator. δ(ω,ϑ,λ) is a conservative closed symmetric derivation
which is equal on its core U0 to

δ(ω,ϑ,λ)(B) = i
∑
x,y∈L

⟨ex, (∆ω,ϑ+λVω)ey⟩ [a∗xay, B]+i
∑

Λ∈Pf (L)

[
ΨIP

Λ , B
]
, B ∈ U0 .

Both infinite sums in the above equation converge absolutely.
(iii) Lieb–Robinson bounds. For any ϑ ∈ [0, ϑ0], t ∈ R, B1 ∈ U+ ∩ UΛ(1) and
B2 ∈ UΛ(2) with disjoint sets Λ(1),Λ(2) ∈ Pf (L),∥∥∥[τ (ω,ϑ,λ)t (B1) , B2

]∥∥∥
U

≤ 2D−1 ∥B1∥U ∥B2∥U
(
e2D|t|Dϑ0 − 1

)
×

∑
x∈Λ(1)

∑
y∈Λ(2)

F (|x− y|) ,

where
Dϑ0 := sup

{∥∥Ψ(ω,ϑ)
∥∥
W : ω ∈ Ω, ϑ ∈ [0, ϑ0]

}
<∞ .

If ΨIP, ϑ = 0 in Ψ(ω,ϑ) then τ (ω,ϑ,λ) becomes a family of Bogoliubov auto-
morphisms of U , as described in [BPK1, BPK2, BPK3, BPK4] for homogeneous
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hopping terms. Meanwhile, density–density interactions resulting from the sec-
ond quantization of two–body interactions, like for instance∑

x,y

v (|x− y|) a∗yaya∗xax , (18)

where v (r) : R+
0 → R+ is a real–valued function such that

sup
r∈R+

0

{
v (r)

F (r)

}
<∞ ,

can be handled in our setting. Hence, (considering fermions with spins ↑ or ↓)
our setting includes the celebrated Hubbard model. The Coulomb potential is
excluded from our analysis because it is not summable, see Condition (11). The
function

v (r) = D
e−mr

1 + r
, r ∈ R+

0 , D,m ∈ R+ , (19)

which is similar to the Yukawa potential for some mass m ∈ R+, is allowed by
taking, for instance, the function F (r) = De−ςr(1 + r)−(d+1) with ς ∈ (0,m).

The potential (19) is the physical example we have in mind. Indeed, it is
believed in theoretical physics that the Coulomb potential is screened by the pos-
itively charged ions which form the lattice L. In [GV, Section 1.3.2] the authors
assert that one should first consider models with Yukawa potentials (19) (or even
finite range) to perform the thermodynamic limit and next the limit m ↓ 0 to re-
cover the physical model. This procedure is only justified a posteriori and we do
not consider here the highly non–trivial mathematical problem of Coulomb inter-
actions within a mixture of electrons and ions. Note additionally that, as we are
using the lattice L := Zd to represent space, (19) does not have a singularity at
r = 0, in contrast with the Coulomb and Yukawa potentials in the continuous
space Rd.

2.5 Dynamics Driven by Time–Dependent Electromagnetic Fields
When the electromagnetic field is switched on, i.e., for t ≥ t0, the total energy
observable in a box ΛL that includes the region where the electromagnetic field
does not vanish equals

H
(ω,ϑ,λ)
L +W

(ω,ϑ,A)
t ,
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where, for any ω ∈ Ω, ϑ ∈ R+
0 , A ∈ C∞

0 and t ∈ R,

W
(ω,ϑ,A)
t :=

∑
x,y∈L

⟨ex, (∆(A)
ω,ϑ −∆ω,ϑ)ey⟩a∗xay ∈ U+ ∩ U0 (20)

is the electromagnetic potential energy observable. The finite volume dynamics
becomes non–autonomous in presence of electromagnetic fields.

Indeed, for any time t ∈ R, consider the conservative closed symmetric deriva-
tion

δ
(ω,ϑ,λ,A)
t := δ(ω,ϑ,λ) + i

[
W

(ω,ϑ,A)
t , ·

]
,

where we recall that δ(ω,ϑ,λ) is the generator of the one–parameter group τ (ω,ϑ,λ) :=
{τ (ω,ϑ,λ)t }t∈R of ∗–automorphisms, see Theorem 2.1. Define also the family

{Ut,s}s,t∈R ⊂ Dom(δ(ω,ϑ,λ)) (21)

of unitary elements by the absolutely summable series, for any s, t ∈ R,

Ut,s := 1U+
∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dskτ
(ω,ϑ,λ)
s1−t

(
W (ω,ϑ,A)

s1

)
· · · τ (ω,ϑ,λ)sk−t

(
W (ω,ϑ,A)

sk

)
(22)

with 1U being the identity acting on U . As explained in [BPK1, Eqs. (5.18)-
(5.20)], this series absolutely converges in the Banach spaces U and

(Dom(δ(ω,ϑ,λ)), ∥ · ∥δ(ω,ϑ,λ)) ,

∥ · ∥δ(ω,ϑ,λ) being the graph norm of the closed operator δ(ω,ϑ,λ) with domain
Dom(δ(ω,ϑ,λ)).

Now, since A ∈ C∞
0 , the map t 7→ W

(ω,ϑ,A)
t from R to U0 is smooth and

[BP3, Corollary 4.2] ensures the existence of the infinite volume non–autonomous
dynamics:

Theorem 2.2 (Non–autonomous dynamics)
Assume (11)–(12). Let ω ∈ Ω, ϑ, λ ∈ R+

0 and A ∈ C∞
0 . Then, there is a

strongly continuous two–parameter family {τ (ω,ϑ,λ,A)
t,s }s,t∈R of ∗–automorphisms

on U satisfying the following properties:
(i) Reverse “cocycle” property.

∀s, r, t ∈ R : τ
(ω,ϑ,λ,A)
t,s = τ (ω,ϑ,λ,A)

r,s τ
(ω,ϑ,λ,A)
t,r .
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(ii) Non–autonomous evolution equation. {τ t,s}s,t∈R is the unique strongly con-
tinuous two–parameter family of bounded operators on U satisfying, in the strong
sense on the dense domain U0 ⊂ U ,

∀s, t ∈ R : ∂tτ
(ω,ϑ,λ,A)
t,s = τ

(ω,ϑ,λ,A)
t,s ◦ δ(ω,ϑ,λ,A)

t , τ (ω,ϑ,λ,A)
s,s = 1U .

(iii) Interaction picture. For any s, t ∈ R,

τ
(ω,ϑ,λ,A)
t,s (B) = τ

(ω,ϑ,λ)
t−s

(
U∗
t,sBUt,s

)
, B ∈ U .

Proof: (i)–(ii) is a direct application of [BP3, Corollary 4.2]. We omit the
details. Moreover, for any A ∈ C∞

0 , the coefficients

wx,y (η, t) := ⟨ex, ϑ(∆(ηA)
ω −∆ω)ey⟩ , x, y ∈ L ,

of the electromagnetic potential energy observable W (ω,ϑ,ηA)
t are complex–valued

functions of (η, t) ∈ R2 that satisfy

wx,y (η, t) = wy,x (η, t) and wx,x+z(0, t) = 0 (23)

for all x, y, z ∈ L and (η, t) ∈ R2. By the mean value theorem, {wx,y}x,y∈L are
also uniformly bounded and Lipschitz continuous (as functions of times): There
is a constant D ∈ R+ such that, for all ϑ0 ∈ R+, ω ∈ Ω, ϑ ∈ [0, ϑ0], η ∈ R, and
s, t ∈ R,

sup
x,y∈L

|wx,y(η, t)−wx,y(η, s)| ≤ Dη |t− s| , sup
x,y∈L

sup
η,t∈R

|wx,y(η, t)| ≤ D .

(24)
From (22) and [BP3, Eq. (145), Theorem 4.7 (ii)], we arrive at Assertion (iii).

Again, for ΨIP, ϑ = 0, {τ (ω,ϑ,λ,A)
t,s }t≥s is the two–parameter family of Bogoli-

ubov automorphisms of U described in [BPK1, BPK2, BPK3, BPK4] for homo-
geneous hopping terms.

2.6 Time–Dependent State of the System
Thermal equilibrium states are defined here to be completely passive states. This
definition [PW, Definitions 1.1, 1.3] is based on the 2nd law of thermodynamics.
In [BP4], the complete passivity of states will be discussed with much more de-
tails. By [PW, Theorem 1.4], such states are (τ (ω,ϑ,λ), β)–KMS states for some
inverse temperature, or time scale (cf. [BP4]), β ∈ [0,∞].
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The case β = 0 corresponds to the τ (ω,ϑ,λ)–invariant traces, also called chaotic
states, whereas the limiting case β = ∞ refers to ground states. For simplicity,
we exclude both extreme cases and only consider fermion systems at finite inverse
temperature β ∈ R+. Note also that, in some situations, the parameter β may not
be arbitrarily chosen, as illustrated in [BR2, Example 5.3.27.]. In fact, it is not
even a priori clear that thermal equilibrium states, in the above sense, exist for
arbitrary interacting fermion systems. As already mentioned above, the dynamics
τ (ω,ϑ,λ) is such that, for all β ∈ R+, there is at least one (τ (ω,ϑ,λ), β)–KMS state.

Indeed, by Theorem 2.1 (i), the continuous group {τ (ω,ϑ,λ,L)t }t∈R of ∗–auto-
morphisms of U defined by (17) converges strongly to the C0–group τ (ω,ϑ,λ) :=

{τ (ω,ϑ,λ)t }t∈R. Moreover, it is well–known that, at finite volume and any inverse
temperature β ∈ R+, the corresponding Gibbs state is the unique KMS state as-
sociated with {τ (ω,ϑ,λ,L)t }t∈R. Hence, by [BR2, Proposition 5.3.25.], there is a
(τ (ω,ϑ,λ), β)–KMS state ϱ(β,ω,ϑ,λ) for every β ∈ R+. Depending on the interac-
tion ΨIP in Ψ(ω,ϑ), the sequence of Gibbs states can have a priori several weak∗–
accumulation points and all these limit states are (τ (ω,ϑ,λ), β)–KMS. As a conse-
quence, the so–called KMS condition (and thus the completely passivity of states)
does not uniquely define the thermal equilibrium state of the system in infinite
volume.

It is easy to check that the set Q(β,ω,ϑ,λ) ⊂ U∗ of (τ (ω,ϑ,λ), β)–KMS states is a
non–empty, sequentially weak∗–compact and convex set. For any β ∈ R+, ω ∈ Ω
and ϑ, λ ∈ R+

0 , ϱ(β,ω,ϑ,λ) is, by definition, an arbitrary element of Q(β,ω,ϑ,λ) fixed
once and for all. It represents a thermal equilibrium state of the system before the
electromagnetic field is switched on.

Since A(t, x) = 0 for all t ≤ t0, similar to [BPK1, BPK2, BPK3, BPK4], the
time evolution of the state of the system thus equals

ρ
(β,ω,ϑ,λ,A)
t :=

{
ϱ(β,ω,ϑ,λ) , t ≤ t0 ,

ϱ(β,ω,ϑ,λ) ◦ τ (ω,ϑ,λ,A)
t,t0 , t ≥ t0 ,

(25)

for any β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 and A ∈ C∞

0 . By stationarity of KMS
states, the definition does not depend on the particular choice of initial time t0
with A(t, x) = 0 for all t ≤ t0. This time–dependent state is generally not quasi–
free unless ΨIP = 0 in Ψ(ω,ϑ).
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3 Heat Production and Current Linear Response
In this section we extend all results of [BPK1, BPK2] to fermion systems with
short–range interactions. This is possible because of Lieb–Robinson bounds for
multi–commutators, which yield [BP3, Theorems 4.8–4.9]. By using these results,
we can follow the arguments of [BPK1, BPK2] to prove, exactly in the same way,
all their assertions in the interacting case. Therefore, we refrain from giving all
the detailed proofs and we shorten our discussions by referring to [BPK1, BPK2]
for details.

3.1 Heat Production
Similar to [BPK1] we analyze the effect of electromagnetic fields in terms of
heat production within the fermion system. This study is related to Joule’s law,
which describes the rate at which resistance converts electric energy into heat. Its
mathematical formulation requires Araki’s notion of relative entropy [A1, A2].
See [BPK1, Section A.1] for a concise account on the relative entropy in C∗–
algebras.

In the case of the C∗–algebra U , the quantum relative entropy takes a simple
form by using the net of finite dimensional C∗–algebras {UΛ}Λ∈Pf (L) generating
U . Let Λ ∈ Pf (L) and denote by tr the normalized trace on UΛ, also named
the tracial state of UΛ. For any state ρΛ ∈ U∗

Λ, there is a unique adjusted density
matrix dρΛ ∈ U , that is, dρΛ ≥ 0, tr(dρΛ) = 1 and ρΛ(A) = tr(dρΛA) for all
A ∈ UΛ. See, for instance, [AM, Lemma 3.1 (i)]. We define by supp(ρΛ) the
smallest projection P ∈ UΛ such that ρΛ(P) = 1. Then, the relative entropy of a
state ρ1,Λ ∈ U∗

Λ w.r.t. ρ2,Λ ∈ U∗
Λ is defined by

SUΛ

(
ρ1,Λ|ρ2,Λ

)
:=

{
ρ1,Λ

(
ln dρ1,Λ − ln dρ2,Λ

)
, if supp

(
ρ2,Λ

)
≥ supp

(
ρ1,Λ

)
,

+∞ , otherwise ,

under the convention x ln x|x=0 := 0. We then define the relative entropy of any
state ρ1 ∈ U∗ w.r.t. ρ2 ∈ U∗ by

S (ρ1|ρ2) := lim
L→∞

SUΛL

(
ρ1,ΛL

|ρ2,ΛL

)
= sup

L∈R+

SUΛL

(
ρ1,ΛL

|ρ2,ΛL

)
∈ [0,∞]

with ρ1,ΛL
and ρ2,ΛL

being the restrictions to UΛL
of the states ρ1 and ρ2, re-

spectively. As discussed in [BPK1], this limit exists and equals Araki’s relative
entropy. In particular, it is a non–negative (possibly infinite) quantity. With this,
the heat production is defined as follows:
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Definition 3.1 (Heat production)
For any β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+

0 and A ∈ C∞
0 , Q(ω,A) ≡ Q(β,ω,ϑ,λ,A) is

defined as a map from R to R by

Q(ω,A) (t) := β−1S(ρ
(β,ω,ϑ,λ,A)
t |ϱ(β,ω,ϑ,λ)) ∈ [0,∞] .

In [BPK1, Theorem 3.2], that is, for ΨIP, ϑ = 0 in the definition of Ψ(ω,ϑ), we
prove the 1st law of thermodynamics for the system under consideration, implying
that the heat production generated by electromagnetic fields is exactly the increase
of the internal energy resulting from the modification of the (infinite volume) state
of the system. Such a result is generalized for the setting considered here. Indeed,
the arguments of [BPK1, Sections 5.3–5.4] – which proves [BPK1, Theorem 3.2]
– still work, provided interparticle interactions have some sufficiently fast poly-
nomial decay. More precisely, this means the following condition on the positive
and non–increasing function F : R+

0 → R+:

• Polynomial decay. There is a constant ς > 2d and, for all m ∈ N0, an
absolutely summable sequence {un,m}n∈N ∈ ℓ1(N) such that, for all n ∈ N
with n > m,

|Λn\Λn−1|
∑
z∈Λm

max
y∈Λn\Λn−1

F (|z − y|) ≤ un,m

(1 + n)ς
. (26)

Further, there are constants υ,D ∈ R+ such that,∑
m,n∈N

m−υun,m <∞ and sup
x∈L

∑
Λ∈D(x,m)

∥∥ΨIP
Λ

∥∥
U ≤ D (m+ 1)−υ ,

(27)
for any m ∈ N0, where D (x, 0) := {{x}} and, for all m ∈ N,

D (x,m) := {Λ ∈ Pf (L) : x ∈ Λ, Λ ⊆ Λm + x, Λ * Λm−1 + x} ⊂ 2L .

Examples of functions F : R+
0 → R+ satisfying (11)–(12) and (26)–(27) are

obviously given by (13) for sufficiently large parameters ϵ ∈ R+. Observe that
Conditions (26)–(27) are assumed in [BP3, Theorem 4.8].

To present now the result, in particular the derivation of the 1st law of ther-
modynamics, similar to [BPK1, Section 3.2] we need to define the total, internal,
and electromagnetic potential energies: For any β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+

0 ,

16



A ∈ C∞
0 and t ∈ R, the total energy increment due to the interaction of the

charged fermions with the electromagnetic field equals

lim
L→∞

{
ρ
(β,ω,ϑ,λ,A)
t (H

(ω,ϑ,λ)
L +W

(ω,ϑ,A)
t )− ϱ(β,ω,ϑ,λ)(H

(ω,ϑ,λ)
L )

}
= S(ω,A) (t) +P(ω,A) (t) , (28)

where H(ω,ϑ,λ)
L and W (ω,ϑ,A)

t are respectively the internal energy observable (15)
and the electromagnetic potential energy observable (20). Here, S(ω,A) ≡ S(β,ω,ϑ,λ,A)

is the internal energy increment defined by

S(ω,A) (t) := lim
L→∞

{
ρ
(β,ω,ϑ,λ,A)
t (H

(ω,ϑ,λ)
L )− ϱ(β,ω,ϑ,λ)(H

(ω,ϑ,λ)
L )

}
, (29)

while the electromagnetic potential energy (increment) P(ω,A) ≡ P(β,ω,ϑ,λ,A) is

P(ω,A) (t) := ρ
(β,ω,ϑ,λ,A)
t (W

(ω,ϑ,A)
t ) = ρ

(β,ω,ϑ,λ,A)
t (W

(ω,ϑ,A)
t )−ϱ(β,ω,ϑ,λ)(W (ω,ϑ,A)

t0 )
(30)

for any β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 , A ∈ C∞

0 and t ∈ R.
Then, by using Lieb–Robinson bounds for multi–commutators [BP3, Theo-

rems 3.8–3.9] of order three in a decisive way, we extend [BPK1, Theorems 3.2,
5.8] to fermion systems with short–range interactions:

Theorem 3.2 (Heat, electromagnetic work and 1st law of thermodynamics)
Assume (11)–(12) and (26)–(27). Let β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+

0 and A ∈ C∞
0 .

(i) 1st law of thermodynamics: For any B ∈ U0 and t ∈ R,

δ(ω,ϑ,λ) ◦ τ (ω,ϑ,λ)t (B) = lim
L→∞

i[H
(ω,ϑ,λ)
L , τ

(ω,ϑ,λ)
t (B)] ∈ U

and, for any t ≥ t0,
Q(ω,A) (t) = S(ω,A) (t) ∈ R+

0 .

(ii) Total energy increment and electromagnetic work: For any t ≥ t0,

S(ω,A) (t) +P(ω,A) (t) =

∫ t

t0

ρ(β,ω,ϑ,λ,A)
s

(
∂sW

(ω,ϑ,A)
s

)
ds .

In particular, the maps Q(ω,A) and S(ω,A) respectively defined by Definition 3.1
and (29) take always positive and finite values for all times.

17



Proof: To simplify, we fix β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 , A ∈ C∞

0 and use the
notation δ ≡ δ(ω,ϑ,λ), τ t ≡ τ

(ω,ϑ,λ)
t , τ (L)t ≡ τ

(ω,ϑ,λ,L)
t , and

δ(L) (B) := i[H
(ω,ϑ,λ)
L , B] , B ∈ U . (31)

See (17) and Theorem 2.1.
(i) By using the stationarity of the KMS state ϱ(β,ω,ϑ,λ) w.r.t. the unperturbed
dynamics as well as Theorem 2.2 (iii), we infer from (25) that, for any t ≥ t0,

ρ
(β,ω,ϑ,λ,A)
t (B) = ϱ(β,ω,ϑ,λ)

(
U∗
t,t0
BUt,t0

)
, B ∈ U . (32)

Recall that {Ut,t0}t≥t0 ⊂ Dom(δ), see (21)–(22). Assume that

δ (Ut,t0) = lim
L→∞

δ(L) (Ut,t0) ∈ U . (33)

Then, using this together with (32) and the continuity of states, one gets

S(ω,A) (t) = −iϱ(β,ω,ϑ,λ)
(
U∗
t,t0
δ (Ut,t0)

)
∈ R , (34)

similar to [BPK1, Theorem 5.5]. Since, by definition, ϱ(β,ω,ϑ,λ) is (completely)
passive, [PW, Theorem 2.1] implies from (34) that S(ω,A) (t) ≥ 0, while [JP,
Theorem 1.1] yields S(ω,A) = Q(ω,A). In other words, we obtain the 1st law of
thermodynamics in the same way one gets [BPK1, Theorems 5.3, 5.5, Corollaries
5.6–5.7], provided (33) holds true.

Equation (33) is not trivial at all in the general case. Indeed, as one can see
from (22), Ut,t0 ∈ Dom(δ) is generally not in U0 and, by Theorem 2.1 (ii), we
only know so far that

δ (B) = lim
L→∞

δ(L) (B) ∈ U , B ∈ U0 , (35)

U0 being a core for δ. By using (26)–(27), Equation (35) can however be extended
to all elements of τ t(U0) for any t ∈ R, as explained below.

Indeed, using in the autonomous case very similar arguments to [BP3, Eqs.
(120)–(128)] we can apply Lieb–Robinson bounds for multi–commutators of or-
der three, i.e., [BP3, Theorems 3.8–3.9], together with the proof of [BP3, Lemma
3.2] (in particular [BP3, Eqs. (23)–(27)]) to deduce that {δ ◦ τ (L)t (B)}L∈R+ is a
Cauchy net within the complete space U for any B ∈ U0. These arguments are
rather long to write down and there is no reason to reproduce them here again in
detail. Note only that they can be applied because of conditions (26)–(27), which
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in particular imply υ > ς + 1 and ς > 2d. These inequalities are used to get the
estimate [BP3, Eq. (127)] in the non–autonomous case.

By Theorem 2.1 (i), {τ (L)t }L∈R+ converges strongly to τ t for every t ∈ R,
while Theorem 2.1 (ii) says that δ is a closed operator. Therefore, for any B ∈ U0

and t ∈ R, τ t (B) ∈ Dom(δ) and the family {δ ◦ τ (L)t (B)}L∈R+ converges to
δ ◦ τ t (B), i.e., by (35),

δ ◦ τ t (B) = lim
L2→∞

lim
L1→∞

δ(L1) ◦ τ (L2)
t (B) . (36)

Now, we combine Theorem 2.1 and the Lieb–Robinson bounds [BP3, The-
orem 3.1] for the finite volume dynamics with (11)–(12), (35) and Lebesgue’s
dominated convergence theorem to compute from (36) that

δ ◦ τ t (B) = i
∑
x,y∈L

⟨ex, (∆ω,ϑ + λVω)ey⟩ [a∗xay, τ t (B)] + i
∑

Λ∈Pf (L)

[
ΨIP

Λ , τ t (B)
]

for anyB ∈ U0 and t ∈ R. For more details, compare for instance with [BP3, Eqs.
(38)–(40)]. By using Lieb–Robinson bounds for the infinite–volume dynamics
(Theorem 2.1 (iii)) together with (15) and (31), we arrive at

δ ◦ τ t (B) = lim
L→∞

δ(L) ◦ τ t (B) ∈ U , B ∈ U0 , t ∈ R , (37)

which is an extension of (35) to all elements of τ t(U0) for any t ∈ R.
Now, to prove (33) from (22) we use (37) together with the fact that δ is a

symmetric derivation. Indeed, (22) together with the equation

δ(B1B2) = δ(B1)B2 +B1δ(B2) , B1, B2 ∈ Dom(δ) ,

yields

δ(Ut,t0) =
∑
k∈N

ik+1

∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

k∑
j=1

τ s1−t

(
W (ω,ϑ,A)

s1

)
(38)

· · · δ
(
τ sj−t

(
W (ω,ϑ,A)

sj

))
· · · τ sk−t

(
W (ω,ϑ,A)

sk

)
for any t ≥ t0. Observe that a few simple estimates on

δ
(
τ sj−t

(
W (ω,ϑ,A)

sj

))
= τ sj−t

(
δ(W (ω,ϑ,A)

sj
)
)
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are also needed to obtain (38). We omit the details. Combined with (11)–(12),
(37), Theorem 2.1 (iii) and Lebesgue’s dominated convergence theorem, Equation
(38) implies (33). Note that A ∈ C∞

0 and W (ω,ϑ,A)
t ∈ U0 for any t ≥ t0, by (20).

The proof of Assertion (i) is thus completed.
(ii) We omit the details since it is an extension of [BR2, Lemma 5.4.27.] to un-
bounded symmetric derivations δ(ω,ϑ,λ) already done in the proof of [BPK1, The-
orem 5.8].

Remark 3.3 (1st law of thermodynamics)
If Conditions (11)–(12) and (26)–(27) are satisfied then the 1st law of thermo-
dynamics, corresponding to Theorem 3.2 (i) in our specific case, holds true for
any interaction Ψ ∈ W and static potential V at thermal equilibrium. By static
potential, we mean here a collection V := {V{x}}x∈L of even and self–adjoint
elements such that V{x} = V∗

{x} ∈ U+ ∩ U{x} for all x ∈ L. See [BP3] for the
general setting. This observation is a nontrivial consequence of Lieb–Robinson
bounds for multi–commutators of order three, see [BP3, Theorems 3.8–3.9].

[BPK1, Theorem 3.4] describes the behavior of the heat production at weak
electromagnetic fields of free lattice fermions in thermal equilibrium. In the fol-
lowing we extend this result to fermion systems with short–range interactions: For
any l ∈ R+ and A ∈ C∞

0 , we consider the space–rescaled vector potential

Al(t, x) := A(t, l−1x) , t ∈ R, x ∈ Rd . (39)

Since Ohm’s law is a linear response to electric fields, we also rescale the strength
of the electromagnetic potential Al by a real parameter η ∈ R and study the
behavior of the heat production in the limit η → 0.

Conditions (23)–(24) and [BP3, Eq. (155)], that is, for all parameters η, η0 ∈
R,

sup
x,y∈L

sup
t∈R

|wx,y(η, t)−wx,y(η0, t)| ≤ D |η − η0| , (40)

are satisfied by the perturbationW (ω,ϑ,A)
t . By Theorem 3.2 (i), we can apply either

[BP3, Theorem 4.8] or [BP3, Theorem 4.9], depending on the space decay of
interparticle interaction ΨIP, to obtain the behavior of the heat production Q(ω,ηAl)

w.r.t. η, l ∈ R+. The interaction Φ appearing in [BP3, Theorem 4.8] and [BP3,
Theorem 4.9] is in this case the sum of the interaction ΨIP with an element from
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W taking into account the hoppings of particles and external static potential which
are encoded via

ω = (ω1, ω2) ∈ Ω := [−1, 1]L × Db ,

where we recall that D := {z ∈ C : |z| ≤ 1}. Note that the map

η 7→ W (ω,ϑ,ηAl)
s ∈ U

is real analytic and the conditions of [BP3, Theorem 4.9] are satisfied if the func-
tion F defining the norm of the space W of interactions decays sufficiently fast at
large arguments. Theorem 3.2 (i) combined with [BP3, Theorem 4.9] implies that
η 7→ Q(ω,ηAl) is a Gevrey function on R in this specific case.

With the arguments using [BP3, Theorems 4.8–4.9] discussed above, [BPK1,
Theorem 3.4] can straightforwardly be extended to fermion systems with short–
range interactions. Note, moreover, that [BP3, Theorems 4.8–4.9] also make
possible the study of non–quadratic (resp. non–linear) corrections to Joule’s law
(resp. Ohm’s law). The minimal requirement to study the linear response to elec-
tric fields is some sufficiently fast polynomial decay of interparticle interactions,
that is, Conditions (26)–(27).

3.2 Charge Transport Coefficients
Fix ω ∈ Ω, ϑ, λ ∈ R+

0 . The paramagnetic current observables is defined by

I(ω,ϑ)x := −2 Im
(
⟨ex(1) ,∆ω,ϑex(2)⟩a∗x(1)ax(2)

)
, x := (x(1), x(2)) ∈ L2 . (41)

Indeed, I(ω,ϑ)x ∈ U0 is seen as a current observable because, by Theorem 2.1 (ii),
it satisfies the discrete continuity equation

∂t

(
τ
(ω,ϑ,λ)
t (a∗xax)

)
= τ

(ω,ϑ,λ)
t

−
∑

y∈L,|x−y|=1

I
(ω,ϑ)
(x,y) + i

∑
Λ∈Pf (L)

[
ΨIP

Λ , a
∗
xax

]
(42)

for any x ∈ L and t ∈ R. For short–range interactions satisfying (16) (i.e.,
ΨIP is invariant under local gauge transformations), I(ω,ϑ)x is thus the observable
related, in absence of external electromagnetic potentials, to the flow of particles
from the lattice site x(1) to the lattice site x(2) or the current from x(2) to x(1).
[Positively charged particles can of course be treated in the same way.] From now
on, Condition (16) is assumed in all assertions.
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We also define

P (ω,ϑ)
x := −2Re

(
⟨ex(1) ,∆ω,ϑex(2)⟩a∗x(1)ax(2)

)
, x := (x(1), x(2)) ∈ L2 . (43)

For real–valued ω2(x
(1), x(2)), this self–adjoint element of U0 is proportional to

the second–quantization of the adjacency matrix of the oriented graph containing
exactly the oriented bonds (x(2), x(1)) and (x(1), x(2)).

Now, for any β ∈ R+, ω ∈ Ω and ϑ, λ ∈ R+
0 , we introduce two important

functions associated with the above defined observables I(ω,ϑ)x and P (ω,ϑ)
x :

(p) The paramagnetic transport coefficient σ(ω)
p ≡ σ

(β,ω,ϑ,λ)
p is defined, for any

x,y ∈ L2 and t ∈ R, by

σ(ω)
p (x,y, t) :=

∫ t

0

ϱ(β,ω,ϑ,λ)
(
i[I(ω,ϑ)y , τ (ω,ϑ,λ)s (I(ω,ϑ)x )]

)
ds . (44)

(d) The diamagnetic transport coefficient σ(ω)
d ≡ σ

(β,ω,ϑ,λ)
d is defined by

σ
(ω)
d (x) := ϱ(β,ω,ϑ,λ)

(
P (ω,ϑ)
x

)
, x ∈ L2 . (45)

As explained in [BPK2, Section 3.3], σ(ω)
p can be associated with a “quantum

current viscosity”, while σ(ω)
d is related to the ballistic motion of charged particles

within electric fields.
For large samples (i.e., large l ∈ R+), we then define the space–averaged

paramagnetic transport coefficient

t 7→ Ξ
(ω)
p,l (t) ≡ Ξ

(β,ω,ϑ,λ)
p,l (t) ∈ B(Rd)

w.r.t. the canonical orthonormal basis {ek}dk=1 of the Euclidian space Rd by{
Ξ
(ω)
p,l (t)

}
k,q

:=
1

|Λl|
∑

x,y∈Λl

σ(ω)
p (x+ eq, x, y + ek, y, t) (46)

for any l, β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and t ∈ R. The space–

averaged diamagnetic transport coefficient

Ξ
(ω)
d,l ≡ Ξ

(β,ω,ϑ,λ)
d,l ∈ B(Rd)
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corresponds to the diagonal matrix defined by{
Ξ
(ω)
d,l

}
k,q

:=
δk,q
|Λl|

∑
x∈Λl

σ
(ω)
d (x+ ek, x) ∈ [−2ϑ, 2ϑ] . (47)

Both coefficients are typically the paramagnetic and diamagnetic (in–phase) con-
ductivities one experimentally measures in all space directions.

The main properties of the paramagnetic transport coefficient Ξ(ω)
p,l are given

in the next theorem. To state it, we introduce some notation: B+(Rd) ⊂ B(Rd)
stands for the set of positive linear operators on Rd (i.e., symmetric operators
w.r.t. to the canonical scalar product of Rd with non–negative eigenvalues). For
any B(Rd)–valued measure µ on R, ∥µ∥op denotes the positive measure on R
defined, for any Borel set X , by

∥µ∥op (X ) := sup

{∑
i∈I

∥µ (Xi) ∥op : {Xi}i∈I is a finite Borel partition of X

}
.

We additionally say that µ is symmetric if µ(X ) = µ(−X ) for any Borel set
X ⊂ R. With these definitions we have the following assertion:

Theorem 3.4 (Microscopic paramagnetic conductivity measures)
Assume (11)–(12). For any l, β ∈ R+, ω ∈ Ω and ϑ, λ ∈ R+

0 , there exists a
(generally non–zero) symmetric B+(Rd)–valued measure µ(ω)

p,l ≡ µ
(β,ω,ϑ,λ)
p,l on R

such that ∫
R
(1 + |ν|) ∥µ(ω)

p,l ∥op(dν) <∞ (48)

and
Ξ
(ω)
p,l (t) =

∫
R
(cos (tν)− 1)µ

(ω)
p,l (dν) , t ∈ R .

Proof: The assertion is proven by using the Duhamel two–point function exactly
as in [BPK2, Section 5.1.2]. The only difference with systems of non–interacting
fermions concerns [BPK2, Lemma 5.10] which cannot be a priori extended to
the interacting case. It follows that (48) may not be uniformly bounded w.r.t.
l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 .

Corollary 3.5 (Properties of the microscopic paramagnetic conductivity)
Assume (11)–(12). For l, β ∈ R+, ω ∈ Ω and ϑ, λ ∈ R+

0 , Ξ(ω)
p,l has the following

23



properties:
(i) Time–reversal symmetry: Ξ(ω)

p,l (0) = 0 and

Ξ
(ω)
p,l (−t) = Ξ

(ω)
p,l (t) , t ∈ R .

(ii) Negativity of Ξ(ω)
p,l :

Ξ
(ω)
p,l (t) ≤ 0 , t ∈ R .

(iii) Cesàro mean of Ξ(ω)
p,l :

lim
t→∞

1

t

∫ t

0

Ξ
(ω)
p,l (s) ds = −µ(ω)

p,l (R\ {0}) ≤ 0 .

Proof: (i)–(iii) are direct consequences of Theorem 3.4 and Lebesgue’s domi-
nated convergence theorem.

Recall that (48) is a priori not uniformly bounded w.r.t. the parameters l, β ∈
R+, ω ∈ Ω, λ ∈ R+

0 as in [BPK2, Theorem 3.1]. In particular, the family

{Ξ(β,ω,λ)
p,l }l,β∈R+,ω∈Ω,λ∈R+

0

of maps from R to B(Rd) may not be equicontinuous. Compare with [BPK2,
Corollary 3.2 (iv)]. We deduce this property for times on compacta from Lieb–
Robinson bounds:

Theorem 3.6 (Uniform boundedness and equicontinuity properties)
Assume (11)–(12). Let ϑ0,T ∈ R+. Then, for any l, β ∈ R+, ω ∈ Ω, ϑ ∈ [0, ϑ0],
λ ∈ R+

0 and t1, t2 ∈ [−T,T],∥∥∥Ξ(ω)
p,l (t1)− Ξ

(ω)
p,l (t2)

∥∥∥
max

≤ 32ϑ2
0

(
D−1 ∥F∥1,L e

4D|T|Dϑ0 + 1
)
|t2 − t1| ,

where ∥ · ∥max is the max norm of matrices.

Proof: It is a direct application of Theorem 2.1 (iii).

As in [BPK2, Section 5.1.2] the B+(Rd)–valued measures µ(ω)
p,l can be repre-

sented in terms of the spectral measure of an explicit self–adjoint operator w.r.t.
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explicitly given vectors. The constant µ(ω)
p,l (R\ {0}) is the so–called static admit-

tance of linear response theory. Observe, moreover, that one can construct µ(ω)
p,l

from the space–averaged quantum current viscosity

V
(ω)
l (t) :=

(
Ξ
(ω)
d,l

)−1

∂tΞ
(ω)
p,l (t) ∈ B(Rd) (49)

for any l, β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 and t ∈ R. Indeed, µ(ω)

p,l is the boundary
value of the (imaginary part of the) Laplace–Fourier transform of Ξ(ω)

d,l V
(ω)
l . For

more details, see [BPK2, Sections 3.3, 5.1.2].

3.3 Microscopic Ohm’s Law
The diamagnetic current observable IAx = (IAx )

∗ is defined, for any ω ∈ Ω, ϑ ∈
R+

0 , A ∈ C∞
0 , t ≥ t0 and x := (x(1), x(2)) ∈ L2, by

I(A)
x ≡ I(ω,ϑ,A)

x := −2 Im
((

ei
∫ 1
0 [A(t,αx(2)+(1−α)x(1))](x(2)−x(1))dα − 1

)
×⟨ex(1) ,∆ω,ϑex(2)⟩a∗x(1)ax(2)

)
. (50)

It corresponds to a correction to the current I(ω,ϑ)x defined above engendered by
the presence of an external electromagnetic potential. See [BPK2, Section 3.1]
for more details.

Like in [BPK2, Section 3], w.l.o.g. we only consider space–homogeneous
(though time–dependent) electric fields in the box Λl defined by (6) for l ∈ R+.
More precisely, let w⃗ := (w1, . . . , wd) ∈ Rd be any (normalized w.r.t. the usual
Euclidian norm) vector, A ∈ C∞

0 (R;R) and set Et := −∂tAt for all t ∈ R. Then,
Ā ∈ C∞

0 is defined to be the electromagnetic potential such that the electric
field equals Etw⃗ at time t ∈ R for all x ∈ [−1, 1]d and (0, 0, . . . , 0) for t ∈ R
and x /∈ [−1, 1]d. This choice yields rescaled electromagnetic potentials ηĀl as
defined by (39) for l ∈ R+ and η ∈ R.

For any l, β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 , η ∈ R, w⃗ ∈ Rd, A ∈ C∞

0 (R;R) and
t ≥ t0, the total current density is the sum of three currents defined from (41) and
(50):

(th) The (thermal) current density

J(ω,l)th ≡ J(β,ω,ϑ,λ,l)th ∈ Rd
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at thermal equilibrium inside the box Λl is defined, for any k ∈ {1, . . . , d},
by {

J(ω,l)th (t)
}

k
:= |Λl|−1

∑
x∈Λl

ϱ(β,ω,ϑ,λ)
(
I
(ω,ϑ)
(x+ek,x)

)
. (51)

(p) The paramagnetic current density is the map

t 7→ J(ω,ηĀl)
p (t) ≡ J(β,ω,ϑ,λ,ηĀl)

p (t) ∈ Rd

defined by the space average of the current increment vector inside the box
Λl at times t ≥ t0, that is for any k ∈ {1, . . . , d},{

J(ω,ηĀl)
p (t)

}
k
:= |Λl|−1

∑
x∈Λl

ρ
(β,ω,ϑ,λ,ηĀl)
t

(
I
(ω,ϑ)
(x+ek,x)

)
−

{
J(ω,l)th (t)

}
k
.

(52)

(d) The diamagnetic (or ballistic) current density

t 7→ J(ω,ηĀl)
d (t) ≡ J(β,ω,ϑ,λ,ηĀl)

d (t) ∈ Rd

is defined analogously, for any t ≥ t0 and k ∈ {1, . . . , d}, by{
J(ω,ηĀl)
d (t)

}
k
:= |Λl|−1

∑
x∈Λl

ρ
(β,ω,ϑ,λ,ηĀl)
t

(
I
(ω,ϑ,ηĀl)
(x+ek,x)

)
. (53)

For more details on the physical interpretations of these currents, we refer to
[BPK2, Section 3.4]. We will prove in [BP4] that if ω ∈ Ω is the realization
of some ergodic random potential and hopping amplitude then, almost surely, the
thermal current density vanishes in the limit l → ∞.

Similar to [BPK2, Section 3.5], we use the transport coefficients Ξ(ω)
p,l (46) and

Ξ
(ω)
d,l (47) to define two linear response currents

J
(ω,A)
p,l ≡ J

(β,ω,ϑ,λ,w⃗,A)
p,l and J

(ω,A)
d,l ≡ J

(β,ω,ϑ,λ,w⃗,A)
d,l

with values in Rd respectively by

J
(ω,A)
p,l (t) :=

∫ t

t0

(
Ξ
(ω)
p,l (t− s) w⃗

)
Esds , t ≥ t0 ,

J
(ω,A)
d,l (t) :=

(
Ξ
(ω)
d,l w⃗

)∫ t

t0

Esds , t ≥ t0 ,
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for any l, β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 , w⃗ ∈ Rd and A ∈ C∞

0 (R;R). They
are the linear responses of the paramagnetic and diamagnetic current densities,
respectively:

Theorem 3.7 (Microscopic Ohm’s law)
Assume (11)–(12), (16) and (26)–(27). For any ϑ0 ∈ R+

0 , A ∈ C∞
0 (R;R) and

η ∈ R,

J(ω,ηĀl)
p (t) = ηJ

(ω,A)
p,l (t)+O

(
η2
)

and J(ω,ηĀl)
d (t) = ηJ

(ω,A)
d,l (t)+O

(
η2
)
,

uniformly for l, β ∈ R+, ω ∈ Ω, ϑ ∈ [0, ϑ0], λ ∈ R+
0 , w⃗ ∈ Rd (normalized) and

t ≥ t0.

Proof: The assertion directly follows from [BP3, Theorem 4.8], because of
Conditions (23)–(24) and (40). We omit the details and refer to [BPK2, Lemmata
5.14–5.15] where similar arguments are used. See also discussions of Section 3.1.

The fact that the asymptotics obtained are uniform w.r.t. l, β ∈ R+, ω ∈ Ω,
ϑ ∈ [0, ϑ0], λ ∈ R+

0 and t ≥ t0 is a crucial technical step to get macroscopic
Ohm’s law when l → ∞.

Now, all the discussions of [BPK2, Section 3.5] can be reproduced for the
interacting fermion system. We refrain from doing this again. We only mention
that Ξ(ω)

p,l and Ξ
(ω)
d,l are the in–phase paramagnetic and diamagnetic (microscopic)

conductivity of the fermion system. Indeed, one can deduce from Theorem 3.7
Ohm’s law for linear response currents as well as Green–Kubo relations.

Recall that, in this paper, we assume for simplicity that interparticle interac-
tions ΨIP are invariant under local gauge transformations, i.e., they satisfy (16).
This condition is obviously satisfied by all density–density interaction like (18).
Interparticle interactions related to “hoppings” of particles are not of this type: For
example, in microscopic models for superconductors one usually has BCS–type
interaction formally like ∑

x,y

γ (x− y) a∗x,↑a
∗
x,↓ay,↓ay,↑ (54)

involving fermions of spins ↑ or ↓. However, it still possible to handle such models
in the setting we describe here, by simply redefining the current observables in
such a way that a continuity relation like (42) is fulfilled. See for instance [BP1,
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Eq. (2.11)] for a concrete example of this procedure. The physical interpretation
of such a new current is very natural in that case of superconductors: The currents
I
(ω,ϑ)
x as defined above in (41) are related to the flow of single electrons. The

correction to it due to terms like (54) in the interaction can be understood as being
the contribution of the flow of (Cooper–) paired electrons to the total current. We
postpone such a more general study. Note finally that, as in the case of the kinetic
term, terms like (54) should also be coupled to electromagnetic fields, similar to
Equation (5), since they participate to the total current.

3.4 Microscopic Joule’s Law
The total energy (28) given by the electromagnetic field to the fermion system is
divided in Section 3.1 into two components S(ω,A) (29) and P(ω,A) (30) that have
interesting properties in terms of heat production and potential energy. See for
instance Theorem 3.2 and discussions in [BPK1, Section 3.2].

Like in [BPK2, Section 4.3] the total delivered energy can also be naturally
divided in two other components with other interesting features, in terms of cur-
rents this time. Indeed, for any β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+

0 and A ∈ C∞
0 , we

define two further energy increments:

(p) The paramagnetic energy increment J(ω,A)
p ≡ I

(β,ω,ϑ,λ,A)
p is the map from R

to R defined by

I(ω,A)
p (t) := lim

L→∞

{
ρ
(β,ω,ϑ,λ,A)
t (H

(ω,ϑ,λ)
L +W

(ω,ϑ,A)
t )

−ϱ(β,ω,ϑ,λ)(H(ω,ϑ,λ)
L +W

(ω,ϑ,A)
t )

}
.

(d) The diamagnetic energy (increment) I(ω,A)
d ≡ I

(β,ω,ϑ,λ,A)
d is the map from

R to R defined by

I
(ω,A)
d (t) := ϱ(β,ω,ϑ,λ)(W

(ω,ϑ,A)
t ) = ϱ(β,ω,ϑ,λ)(W

(ω,ϑ,A)
t )−ϱ(β,ω,ϑ,λ)(W (ω,ϑ,A)

t0 ) .

Note that I(ω,A)
p exists at all times because the total delivered energy equals

lim
L→∞

{
ρ
(β,ω,ϑ,λ,A)
t (H

(ω,ϑ,λ)
L +W

(ω,ϑ,A)
t )− ϱ(β,ω,ϑ,λ)(H

(ω,ϑ,λ)
L )

}
= I(ω,A)

p (t) + I
(ω,A)
d (t)
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for any β ∈ R+, ω ∈ Ω, ϑ, λ ∈ R+
0 , A ∈ C∞

0 and times t ≥ t0. See (28) and
Theorem 3.2 (ii).

The term J
(ω,A)
p is the part of electromagnetic work implying a change of the

internal state of the system. By contrast, the second one I
(ω,A)
d is the electro-

magnetic potential energy of the fermion system in the thermal equilibrium state.
These two energy increments are directly related to paramagnetic and diamag-
netic currents, respectively. For more details, see discussions in [BPK2, Sections
4.3–4.4].

To present this, it is convenient to define the subset

K :=
{
x = (x(1), x(2)) ∈ L2 : |x(1) − x(2)| = 1

}
of oriented bonds (cf. (1)). Then, by Theorem 3.7, for each l, β ∈ R+, ω ∈ Ω,
ϑ, λ ∈ R+

0 and any electromagnetic potential A ∈ C∞
0 , the electric field in its

integrated form EηAl
t (cf. (3)–(4) and (39)) implies paramagnetic and diamagnetic

currents with linear coefficients being respectively equal to

J
(ω,A)
p,l (t,x) :=

1

2

∫ t

t0

∑
y∈K

σ(ω)
p (x,y,t− s)EAl

s (y)ds , (55)

J
(ω,A)
d,l (t,x) :=

∫ t

t0

σ
(ω)
d (x)EAl

s (x)ds , (56)

at any bond x ∈ K and time t ≥ t0. Recall that σ(ω)
p and σ(ω)

d are the microscopic
charge transport coefficients defined by (44)–(45). Like [BPK2, Theorem 4.1],
the following holds:

Theorem 3.8 (Microscopic Joule’s law)
Assume (11)–(12), (16) and (26)–(27). Let l, β ∈ R+, ω ∈ Ω, ϑ0, λ ∈ R+

0 ,
ϑ ∈ [0, ϑ0], η ∈ R, A ∈ C∞

0 and t ≥ t0.
(p) Paramagnetic energy increment:

I(ω,ηAl)
p (t) =

η2

2

∫ t

t0

∑
x∈K

J
(ω,A)
p,l (s,x)EAl

s (x)ds+O(η3ld) .

(d) Diamagnetic energy:

I
(ω,ηAl)
d (t) =

η

2

∑
x∈K

ϱ(β,ω,ϑ,λ)(I(ω,ϑ)x )

(∫ t

t0

EAl
s (x)ds

)
+
η2

4

∑
x∈K

J
(ω,A)
d,l (t,x)

∫ t

t0

EAl
s (x)ds+O(η3ld) .
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(Q) Heat production – Internal energy increment:

S(ω,ηAl) (t) = −η
2

2

∑
x∈K

J
(ω,A)
p,l (t,x)

(∫ t

t0

EAl
s (x)ds

)
+I(ω,ηAl)

p (t) +O(η3ld) .

(P) Electromagnetic potential energy:

P(ω,ηAl) (t) =
η2

2

∑
x∈K

J
(ω,A)
p,l (t,x)

(∫ t

t0

EAl
s (x)ds

)
+I

(ω,ηAl)
d (t) +O(η3ld) .

The correction terms of order O(η3ld) in assertions (p), (d), (Q) and (P) are uni-
formly bounded in β ∈ R+, ω ∈ Ω, ϑ ∈ [0, ϑ0], λ ∈ R+

0 and t ≥ t0.

Proof: Up to trivial modification taking into account the support of A, the
assertions are basically direct consequences of Theorem 3.2 and [BP3, Theorem
4.8], because of Conditions (23)–(24) and (40). For more details, we also refer to
the proof of [BPK2, Theorem 4.1].

The uniformity of the above estimates w.r.t. the size l ∈ R+ of the region where
the external electromagnetic field is applied is a pivotal technical step to get in a
companion paper [BP4] Joule’s law when l → ∞, i.e., a macroscopic version of
the above result.
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