STABILITY ANALYSIS OF A RENEWAL EQUATION FOR CELL
POPULATION DYNAMICS WITH QUIESCENCE

TOMAS ALARCON *, PHILIPP GETTO?, AND YUKIHIKO NAKATA!

Abstract. We propose a model to analyze the dynamics of interacting proliferating and quiescent
cell populations. The model includes age dependence of cell division, transitions between the two
sub-populations and regulation of the recruitment of quiescent cells. We formulate the model as a pair
of renewal equations and apply a rather recent general result to prove that (in-)stability of equilibria
can be analyzed by locating roots of characteristic equations. We are led to a parameter plane
analysis of a characteristic equation, which has not been analyzed in this way so far. We conclude
how quiescence of cells as well as two sub-models for cell-division may influence the possibility of
destabilization via oscillations.
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1. Introduction. Cells in many types of tissue in the human body are in a
quiescent state, i.e., they are under cell cycle arrest [11]. For blood cells the ability to
enter and exit the quiescent state seems essential for preventing the supply of mature
blood cells from becoming too large or too small [30]. In treatment of cancer a major
obstacle is acquired resistance by cancer cells to chemotherapy [12]. It is an accepted
hypothesis that cancer stem cells are the factory of cancer cells in solid tumors as
well as in hematological disorder such as leukemia [32, 40]. The cancer stem cell
hypothesis states that quiescent cells are far less sensitive to drugs and thus drive the
increase of resistance [12, 9]. Based on the analysis of a mathematical model it is
indeed suggested in [3] that the quiescent population provides a buffer for a hostile
environment for the whole population, i.e., mediates the survival of the population.

Individual cells base appropriate responses, such as proliferation and cell death,
largely on their processing of both, internal signals and signals from their environment
[4]. A modeling technique used to describe these response-generating mechanisms is
that of physiologically structured population modeling which incorporates the dynam-
ics of the internal state of the cell. In general one also needs to take the environmental
conditions into account as well as the way the population of cells does impact these
conditions. This feedback cycle makes models nonlinear.

There is an abundance of interesting linear and nonlinear structured models that
incorporate transitions between proliferating and quiescent cell populations and are
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formulated as partial differential equations, e.g. [5, 7, 8, 19, 21, 24, 33]. Many of
these postulate regulation of one or both transition rates by the population. It is a
common feature that a positive equilibrium is possible if and only if there is a strong
enough regulation of the transition processes.

In the tumor model in [24] the behavior of both proliferating and cancer cells is
dependent on cell size. The authors elaborate conditions for asynchronous exponential
growth of the population (meaning roughly that population size grows exponentially
while the cell-size distribution stabilizes) and for the stability of a trivial equilibrium,
which means extinction of the tumor. In [33] the behavior of cells in both stages
depends on a variable called “age”. The authors develop a numerical scheme and
use this to compute the time development of the population density. In [5] a very
general model that incorporates dependence of the cell’s behavior on age and cyclin
content is developed. The paper contains a mathematical analysis of an unregulated
variant of the model. Moreover it is shown that there exists a positive equilibrium
for a regulated variant and convergence to this equilibrium is numerically simulated.
In [7, 8] cyclin content structured versions of the model in [5] are considered. In
[7] well-posedness is established and the existence of equilibria is studied. In [8] the
authors show numerically that, apart from convergence to an equilibrium, oscillations
are also possible. In [21] a general model for cell population dynamics, that includes
cell size structure, spatial structure as well as density dependent transitions to and
from quiescence is developed. The authors establish well-posedness for a porous media
type single compartment model derived from the general model via a limiting process
and simulate spatial dynamics.

In [19] the authors analyze the model developed in [33]. They use a (formally
derived) characteristic equation to compute stability boundaries for a nontrivial equi-
librium in a parameter plane. Stability of a nontrivial equilibrium means roughly
that a population can be expected to persist. From an interpretation of the stability
boundaries the authors conclude that both, increasing the growth rate of the stem
cell population and decreasing the rate of differentiation, can be responsible for a
destabilization of the equilibrium.

On the other hand there are many models [1, 6, 20, 22, 23, 29], in particular the
work of Mackey and collaborators, that show the importance of modeling to explain
the interplay of quiescence and clinically observed oscillations at the population level.
Many of these use delay differential equations [18, 36] as the basic modeling tool.
In [1, 20, 23] cell population models that include explicitly feedback, division and
quiescence are analyzed and oscillations are detected and related to quiescence. Some
of these models are very general, e.g. [20] incorporate interactions with a stem cell
population and consider, additionally to age, maturity of cells.

One of our aims here is to show how (in)stability of a positive equilibrium can
be analytically proven for models with explicitly incorporated cell cycle. We an-
alyze possibilities for the emergence of oscillations at the population level and try
to identify at the cell level some biological mechanisms that trigger the oscillations.
These aims are facilitated by our formulation of the dynamics with renewal equations
or Volterra functional equations. Linear Volterra equations have been used e.g. in
[37] to analyze an epidemiological problem. The results in [14] provide our basis for
proving linearized stability results and the Hopf bifurcation theorem for nonlinear
Volterra functional equations. There are few linearized-stability results for structured
proliferation-quiescence models and we hope to advertise renewal equations as a useful
tool for related problems.
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We start with a model where the cell cycle is incorporated via age-dependence as
a continuous process. We consider transitions between quiescent and proliferating cell
populations, with age dependence in division and mortality processes. As a result,
one difference with the models in [1, 20, 23] is that we include the two mechanisms
of dividing and going quiescent in a more probabilistic way. We incorporate a control
of the recruitment from quiescence by the population with contributions weighted
according to whether or not cells are quiescent. We keep the number of parameters
low by fixing a point, age zero of the proliferation phase, in the cell cycle state space
at which cells start after a transition. The flow of cells through this point can then
be described as a population level “birth” rate. For the resulting model we elaborate
sharp conditions for the stability of a positive equilibrium and its destabilization
by way of growing oscillations. We explicitly verify conditions for some linearized
stability theorems and find relations between (in)stability of the equilibrium and the
different ways of modeling the division process. Moreover we relate (in)stability to
the regulation mode of the recruitment process.

A key point is the analysis of characteristic equations. Such equations can be
visualized by defining stability boundaries in planes of parameters. The characteristic
equation that we find here has to our knowledge not been analyzed in a parameter
plane before and also here we hope that our work can be useful for related problems
in the future.

The remainder of the paper is organized as follows. In Section 2 we introduce
assumptions and ingredients of the model and formulate the population dynamics as
a renewal equation. In Section 3 we prove that for the renewal equation the principle
of linearized stability holds for any equilibrium. In Section 4 we elaborate conditions
for the behavior of an individual cell that lead to (in)stability of the zero equilibrium
and conditions under which there exists a unique positive equilibrium. We also give
a dissipativity result. In Section 5 we specify modeling ingredients in more detail and
use these specifications to analyze the stability of the positive equilibrium. We also
exploit the fact that we can allow for age dependence of the per capita division rate.
In particular we introduce two parameterizations: one that describes cell division at a
constant rate and one in which division is concentrated in a point of the age axis such
that there is a fixed delay between two divisions in the absence of a quiescent phase.
We show how different ways of modeling the control of recruitment influence stability
and destabilization. In Section 6 we discuss the biological motivation of the model,
comparisons with the literature, interpretations and mathematical results. Finally we
refer to the appendix for proofs of our results.

2. Model formulation.

2.1. Biological ingredients. For the model we assume that cell division is
a moment at which the cell dies and gives birth to two daughters. Immediately
after birth, each daughter either goes into quiescence, with probability 1 — «, or
commits itself to proliferation, with probability «, see also Figure 2.1, Table A.1 and
Assumption 3.1. So in a sense we neglect the duration of the G1-phase, which is when
cells usually go quiescent. By the age of a cell we mean the time elapsed since the
cell was born, irrespective of whether or not it went quiescent. Quiescent cells can be
recruited, which means that they become proliferating cells. By the proliferation age
of a proliferating cell we mean the time it lived as proliferating cell. We define ((a) as
the individual division rate of a cell at proliferation age a. Next, we denote by F(a)
the probability for a cell to survive in the proliferation age interval [0, a), given that
it does not divide and by F (a) the probability for a cell to survive in quiescence in
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Fic. 2.1. Cycle of cells that enter proliferation directly or experience quiescence and recruitment
before. Dashed lines refer to instantaneous events, straight lines to processes that take time.

the age interval [0,a), given that it does not get recruited. The probability per unit
of time that a quiescent cell is recruited we call the individual recruitment rate G.
We assume that, at time ¢, G depends on the weighted total population, i.e.,

(2.1) G =G(N(1), N(t):=(1-qP(t)+qQ(),

where P(t) and Q(t) are the respective numbers of proliferating and quiescent cells
and g and 1 — q are relative weights.

2.2. Individual dynamics and population bookkeeping. We denote by
Fsla) := F(a)e Jo #@)de the (unconditioned) survival probability for a cell in pro-
liferation. We use the notation x4(0) := z(t + ), 6 < 0, as usual in the theory of
functional differential equations, see e.g [26]. By b(t) we denote the population birth
rate. Moreover, we introduce I(t) := G(N(t)). We formulate the population dynamics
by the system of renewal equations

(2.2) b@p:éwb@—@Rugmm%

(2.3) uomlmw@ammm@ with

(2.4)
R(¢)(a):= 20B(a) F(a) + 2(1 — @) " Fla— Op(—0)e i W(=0)do 3(0) F(0)do,

(2.5)  S@)(a):=(1-a)[(l—q) /0 " Fla— 0)p(—0)e Jo e =)o 745(0)do
+qﬁ(a)e_ I5 w(_”)d"] + a(l —q)Fs(a).

In the following we explain how this system is constructed. First, 208(a)Fg(a) is
the expected rate of giving birth of a mother at age a, given that she has not been
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quiescent. Next, e~ Jg I(t=o)do i the probability to not get recruited in the time
interval [t — a,t — 0]. Hence, F(a — 0)I(t — 0)e~Jo 1(t=0)d7 for 0 < § < a is the
expected rate of recruitment at age a — 6 and time ¢t — 6 of a cell that has gone
quiescent at time t — a, see Figure 2.1. Then

(2.6) 2 /O ’ Fla—0)I(t —0)e 5 1= 300) Fz(0)do

is the expected rate of giving birth of a mother at age a and time t, given that she
has gone quiescent at time ¢ — a and was recruited at some time ¢ — 6 in [t — a,t).
From the definition of R it follows that

(2.7)
R(I)(a) = 2a3(a) Fs(a) +2(1 — a) / Fla—0)I(t— @) Jo 1= 5(9) F45(6)d6.
0
So we can interpret R(I;)(a) as the expected rate of giving birth by a mother cell at
age a and time ¢. Since already a simple survival probability of the form F(a) = e+,
1 > 0, is nonzero for no matter how large a, we have to integrate up to infinity. Now

(2.2) follows as a consistency relation from the interpretation of b. Next, aFs(a) is
the probability for a newborn to become proliferating and survive to age a and

(2.8) (1-a) /O ’ Fla—0)I(t —0)e o 1¢=2)do r5(9)dg

is the probability for a newborn to become quiescent, get recruited and survive to age
a at time t. Hence,

(2.9)
P = [ bt — a)oFs(a) + (1 a) / " Fla—0)1(t — 0)e=J3 0= £, (9)d6)da,
0 0

(2.10) Qt)=(1-a) b(t — a)]}(a)ef g 1t=o)do g,

By definition of S, one has

(2.11)  S(I;)(a) = (1 — Q)[(1 — q) / ' Fla—0)I(t —0)e 1o 1t=d7 £5(0)dh
0
+qF (a)e” I 1=)97) 4 a(1 — g) Fy(a).

If we compute N via (2.1), (2.9) and (2.10) and use (2.11) we get

(2.12) N(t) = /O " bt — @)S(1) (a)da.

Now, (2.3) follows as I(t) = G(N(t)). Moreover, S(I;)(a) in (2.11) can now be
interpreted as the weighted probability for a newborn to survive to age a at time
t, where “weighted” refers to whether at age a the cell is quiescent or proliferating.
In summary we can interpret (2.2-2.3) as an equation for the reproduction of the
population coupled to a law for the feedback via recruitment.
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3. The principle of linearized stability. It is shown in [14, 15] that for equa-
tions of the type z(t) = F(x;) the principle of linearized stability holds if F' is con-
tinuously Fréchet differentiable, for short C!. In the remainder of the section, we
guarantee continuous Fréchet differentiability and conclude the principle of linearized
stability.

3.1. Continuous differentiability. We here work with weighted L'-spaces.
One reason for the weight is that a constant function, say b > 0, such as a steady
state solution, is not integrable on (—o0,0], but the weighted function a — e ?%b,
p > 0, is. We therefore define for some p > 0 to be specified

lllsp = / ¢ P0(0)|d6,

whenever the integral converges. Note that if survival probabilities reach zero in finite
time, one may simplify the setting by choosing p = 0. Then, for m € IN

L™ :={p: R_ — R™ measurable, ||¢||1,, < oo}

becomes a Banach space with norm | - ||1,,. Its dual space can be represented as

L™ = {k: Ry — R™, [[klw,, < oo},

where
[klloo,p 1= sup ess e, {e”°[k(s)| < oo},

via the pairing
(p, k) := /0 o(—=7m)k(r)dr, ¢ € Lll;m, ke Ly

For (p,k) € L))" x Le>™ we introduce an m-vector via

<<)07 k> = (<<)0) ki>)i=1...m-

AssuMPTION 3.1. The survival probabilities are nonincreasing, nonnegative,
F(0)=F(0)=1and

3k, K > 0 such that F(a) < Ke "%, F(a) < Ke™ ",

The division rate § is bounded and nonnegative. Moreover «, ¢ € [0,1] and G : Ry —
R is continuous.

For x given in this way we can specify p:

ASSUMPTION 3.2. 0 < 4p < K.

For the following result we use only 0 < 2p < &, but in the differentiability proof
the full property will be used. Next, we define the positive cones

Lyt ={pe L™ ¢(f) >0 for almost all § € (—00,0] }

0o, m
L,

LEmMMA 3.3. R, S : L/1):1+ — Lz?jrl are well-defined operators.

and similarly
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Proof. We show the statement for S, the statement for R can be shown similarly.
First, a(1 — ¢)Fg € L by Assumptions 3.1 and 3.2. Next, similarly, for ¢ € Lfl,i_
we have

e’ |qF (a)e~ Jo ¥(=0)do| < fre=(n—p)a < f¢

Hence, a — qf(a)e_ Jo' ¥(=2)do ig an element of L;‘ff. Finally for some K1, Ky >0
eﬂa/ Fla —0)p(—0)e Js *(=do Fi0)dp < Kle*“*fa)a/ (-~
0 0

< Kye (200 / ePH(—0)d0 < Ky~ 20 gy < Kol
0

Thus
SUP €88,¢(0,00)€”" | / Fla—0)p(—0)e” feaw(_g)d”fg(e)dﬁ\ < 0.
0
Hence, the statement follows O

Now we can define

(3.1) F: L7 —RY; Fo,9) = (0, R(9), G{e, S(W)))),
set © = (b, I) and rewrite (2.2-2.3) as

w(t) = F(xi), >0, 2(t) = (po(t), Yo(t), t € (—00,0]

for given functions g, ¥y € L,l)i_ Note, that as F' is nonnegative, if there exists a
solution for nonnegative initial conditions, it is necessarily nonnegative. Our next
aim is to show that F' is continuously Fréchet differentiable. As the domain of F' is
the positive cone we use the concept of relative Fréchet differentiability, where the
point at which is differentiated and the perturbation are required to be elements of
the domain (see e.g. Definition 2.1 in [35]), which here is the positive cone. The next
result we prove in the appendix.
PROPOSITION 3.4. The operators R and S are C* with

(32) DR(B)i(a) =2(1 - a) / Fla—0)F5(6)(0)e 15 7=

e / na

(83) DS@)(a) = (1-a){(1-q) / Fla— 0)F5(0)eJi P01

[(— /¢ o)doldd — gF (a)e™ Jo P ">d"/ (—o0)do}.

Differentiability of F' is now a straightforward combination of the previous result and
the chain rule.

THEOREM 3.5. Suppose that for an element (@,v) € L ’+ the map G is C! i
a neighborhood of (@, S()), then F is C' in a neighborhood of (, ) with derwatwe
DF(3,9) (¢, )" = (D1 F(@,¢)p, D2aF(,9)¢), where
(3.4) DiF(2,9)p = (¢, (R(¥), &' (2, S@)))S(¥)),

with R and S defined in (2.4 - 2.5) and DR and DS as computed in (3.2 - 3.3).
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3.2. Linearized stability and characteristic equation. To establish the
principle of linearized stability we first specify derivatives for steady states. Let
(p,7) be a steady state, i.e., a constant solution of (3.1). Suppose moreover that
G is invertible at 1) then it holds that (3, S(¥)) = G~1(v) and if the function G is
easy to invert, the right hand side may be easier to deal with than the left hand side.
In particular the expressions given in (3.4 - 3.5) can then be simplified to

(3.6) DiF(@,9)p = (o, (R($), G'(GT(¥))S(¥))),

(3.7) Dy F (3, 9)% = (@, (DR(®), G'(G™H () DS(¥))¥).

Now we formulate a linearized stability result that is a corollary of Theorem 3.15 in

[15]. B
THEOREM 3.6. Suppose that there exists an equilibrium solution (@,v) of (3.1)

and that G is invertible at v and C' in a neighborhood of G=1(3)), then the stability

of (,1)) is determined by the location of the roots of the characteristic equation

(38) det (M(A) - Zd) = 0, with M()\) = (mij)lgidgg,

(3.9)

myy =2 /00 e {aB(a)Fsla) + (1 — )y /fl e~ (@09 F(q — 0)3(0)Fz(0)db}da,
0 0
(3.10)  my2 :=2p(1 — «)

- 11— ef)\(afe)
/ / Fla—0)e @0 (1 — q/;)\> F5(0)3(0)e* dbda,

(3.11) may = G(GHW){(1 - ¢)]a /000 e Fs(a)da
—a)y ooe_)‘“ - a—g)e a0 a
H1=a)i [ e [ Fam 0)e T Fy 0)a0a
+q(1 — a)/ e_(/\JFE)‘IJ:'(CL)akL}7
0
(3.12) mao = G (G (W)B(1 — a){(1 — ¢ / / Fs(0
e M F(a— G)efm 9) (1 - ¢1_6>\(a9) dfda

A
—)\a
—q/ Fla ——da}.

In particular, if all roots have negative real parts, then (i, El is locally exponentially
stable. If there exists a root with positive real part, then (§,1) is unstable.

4. Linearized stability of the trivial equilibrium and existence of a pos-
itive equilibrium. To simplify the discussion of existence and stability of equilibria,
the following notation is useful. A crucial role will play the compound parameter

ro 1= 2/0Oo B(a)Fs(a)da
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that gives the expected lifetime production of daughter cells of a cell, given that it
has not been quiescent. Note that ry < 2 by what we have assumed. Moreover we
define

(4.1) Ro(I) :=rola+ (1 —a)I /000 F(a)e "%da)

as the expected lifetime reproduction number of a cell in constant environmental
conditions as specified by I. The notion of reproduction number is widespread in the
literature on analysis of population dynamical models [31, 16]. Next, we can derive
equilibrium conditions as

(4.2) b=b /O R(I)(a)da,
(4.3) =G /0 S(I)(a)da).

If b = 0 there is exactly one equilibrium, (b, I) = (0,G(0)), which we call the trivial
equilibrium. We give conditions for the (in)stability of this equilibrium with classical
interpretations at the individual level. We will apply the well-known identity

(4.4) / e N / f(0)g(a — 0)doda = / e 1(0)do / e *g(a)da.
0 0 0 0
LEMMA 4.1. If Ro(G(0)) < 1 holds, then the trivial equilibrium is stable, if
Ry(G(0)) > 1, then the trivial equilibrium is unstable.
Proof. If we incorporate X into the notation, the characteristic equation for the trivial
equilibrium becomes m11(A) = 1, where by (4.4)

e} e}
mit(A) = 2a + (1 — a)G(0) / e~00FG0) F(9)dp} / e~ 3(0) F5(6)d6.
0 0
Note that m;1(0) = Ro(G(0)). Suppose that Ry(G(0)) < 1 and that there is a
root A = x + iy, * > 0. Then |m11(\)| < m11(0) = Ro(G(0)) < 1, which yields a
contradiction, and stability follows. Next, suppose that Ro(G(0)) > 1, then m;1(0) >
1, my1(z) | 0, x € R as & | oo. Hence there exists some 2 > 0 such that mq;(x) =1
and instability follows. O

Next note that we can apply (4.4) to see that fooo R(I)(a)da = Ro(I). If b > 0, and
I > 0 we call the equilibrium positive. Hence, there exists a positive equilibrium if
and only if there exists some (b, I) with b > 0 and I > 0 such that

(4.5) 1= Ro(I)
and (4.3) hold. An equivalent condition is the existence of a positive root N of
(4.6) 1= Ro(G(N)).

If « = 1, then (2.2) is independent of I. Hence, the model is linear and in general only
the trivial equilibrium exists. In the following we will ignore this case by assuming
that a € [0,1). We will guarantee monotonicity of the function N — Ry(G(N)) via
ASSUMPTION 4.2. Either
(i) the function G is strictly monotonously decreasing or
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(ii) there exists some y € (0, 00), such that G is strictly monotonously decreasing

on [0,y) and constant on [y, c0).

Note that by the non-negativity property of G there exists a finite limit G(c0)
and that in case (i) G71(G(c0)) is empty and in case (i) G=1(G(c0)) = [y, 00). We
now elaborate sufficient conditions for the existence of a positive equilibrium.

THEOREM 4.3. If Ro(G(0)) < 1, then there is no positive equilibrium. If
Ro(G(0)) > 1 and Ro(G(c0)) < 1 then there exists a unique positive equilibrium.
In this case there exists a unique positive root I of (4.5), the I-component of the
positive equilibrium, G—1(I) is uniquely defined and the b- component of the positive
equilibrium has the representation

’I“QIG_l(I)

(47) " ST Fol@da+ o —ar)

Proof. First note that if 7 > 0, then

(4.8) ]/000 Fla)e 1%da =1+ /000 e 1% F(a),

where the right hand side should be understood as a Stieltjes integral. Now consider
the quantity in (4.8) as a function of I. From the left hand side it follows that this
function is zero in zero. Considering the right hand side, one sees that the derivative of
the function with respect to I is positive, since F is non-increasing and non-constant.
Hence, the function and thus Ro([) is strictly increasing in I. Then we can conclude
that N — R(G(N)) is non-increasing. Hence it is clear that if Ry(G(0)) < 1 then
there cannot be a positive equilibrium. Now suppose that Ry(G(0)) > 1 and that
Ry(G(0)) < 1. Then there exists some N > 0, such that (4.6) holds and the existence
of a positive equilibrium follows. Moreover there exists a root I := G(N) of (4.5) and
uniqueness and positivity of this root follow from the strict monotonicity of Ro(I).
To understand the uniqueness of the b-component, first assume that Assumption 4.2
(i) holds. Then there can be only one N satisfying I = G(N). Now suppose that
Assumption 4.2 (ii) holds and assume that there is some N’ # N such that G(N') = I.
Then G(N') = G(N), hence y < N’, thus G(N’) = G(c0) and hence

1> Ro(G(00)) = Ro(G(N')) = Ro(G(N)) = 1,

which is a contradiction. We can conclude that the b-component is uniquely defined
by

If we use (2.5), (4.4) and (4.5), we can deduce that the b-component has the repre-
sentation that is claimed. m]

Suppose now that Ry(G(o0)) < 1 and, when some parameter is changed, Ry(G(0))
increases from below one to above one. From what we have shown so far, we know
that at the critical value the trivial equilibrium loses its stability and the positive
equilibrium emerges. We thus have a transcritical bifurcation and according to the
principle of the exchange of stability [27] we can expect the positive equilibrium to
be stable just above the critical value. That this is indeed the case, we will see below.
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As soon as we identify two parameters we can use the equation Ro(G(0)) = 1 that
corresponds to the transcritical bifurcation to define a curve in the two parameter
plane. A picture of the curve yields biological insight: at a glance we can see how
parameters influence the persistence of a cell population. In the following we specify
the survival probability for quiescent cells as F (a) = e H* > 0, and use y as one
of the two parameters. Note first of all that for this particular F we get

Ro(I) = rola+ (1 — oz)% sign(Ro(I) — 1) = sign(L(ro — 1) — pu(1 — arp))

+1 )
Moreover, we can solve Ry(I) =1 with respect to I, which yields

1—arg
Tofl ’

(4.9) I=¢p, with € = £(a,ro) ==
Note that I > 0 if and only if

1
(4.10) Ty € (l,mln{a,Q}).

Then, the statements of Lemma 4.1 and Theorem 4.3 lead to

COROLLARY 4.4. If either 1o < 1 or both (4.10) and G(0) < &u hold, then
the trivial equilibrium is stable and no positive equilibrium exists. If (4.10) holds but
G(0) > &u then the trivial equilibrium is unstable, if additionally G(o0) < &u then
there exists a unique positive equilibrium with I given as in (4.9) and

uroG—1(I)
(L= [y~ Fsla)da +q(ro — 1)

In conclusion of the section, we prove that the system is dissipative i.e. there exists
a bounded set that attracts solutions, when either the trivial equilibrium is locally
asymptotically stable or the positive equilibrium exists.

THEOREM 4.5. Assume that there exists M such that GIN)N < M for any
N eRy. Ifqe(0,1] and arg < 1, then

To

M
limsup b(t) < — .
t—o00 q1—arg

Proof. Recall that I(t) = G((1—q)P(t)+qQ(t)). Since G is a decreasing function,
one has an estimation for ¢ > 0:
M

I()Q(t) < G (¢Q(1) Q(t) < .

It is now convenient to write
b(t) =2 /OO (ab(t —a) + I(t — a)Q(t — a)) B(a)Fp(a)da.
0

Thus,

b(t) < 2/000 ab(t — a)B(a)Fa(a)da + %TO.
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Assume that limsup,_, ., b(t) = co. Then there exists a sequence {t,}52; such that

b(t) < b(tn), t < t, and lim b(t,) = co.

n—oo
One obtains b(t,) < areb(ty,) + %7’0, which implies

M
b(tn) < =2
qg 1—arg

for each n. Thus we get a contradiction. It then holds that limsup,_,. b(t) < oo.
The same estimation shows the conclusion.
O

For the case ¢ = 0 we need to consider the behavior of two components P and @
to estimate IQ = G(P)Q. Since, in general, this does not seem straightforward and
analysis of the global behavior of solutions is not the scope in this manuscript, we here
leave this as an open problem. We remark that, by a simple comparison argument,
one can show that if arg > 1 then b(¢) tends to infinity.

5. Stability boundaries for the positive equilibrium. Our next aim is to
study the stability of the positive equilibrium. We reduce the generality by assuming
that F(a) := e "® or, in words, that also proliferating cells have age- independent
mortality rate p. The main benefit is parameter reduction. For this choice, we write
in Lemma 5.2 below, as a first step, the characteristic equation such that the type of
dependence on the complex variable is clearly visible. In this context it is useful to
introduce two functions /1 (¢) := 24-* and l»(q) := 1—2¢. Note that rol1(q)+l2(q) > 0,
since the left hand side equals (1 — q) (1 - 57“0) + q(ro — 1), which is positive as
g € [0,1] and rg < 2. In the following we shall often omit the argument q of l1 and
l5. To simplify representations we use the usual notation f fo e~ f(a)da for
the Laplace transform of an appropriate function f. In the appendlx we prove

PROPOSITION 5.1. The characteristic equation for the positive equilibrium can be
represented as

(5.1) 2B F5(A)ad + G’(G—l(Il)OCl?l_jr(lIQ)ll(ro -1 Mf«i - f)]
g GG )G (Dla(ro — 1) pro(1—a) _ N
7"011 + lg ro — 1

In the remainder of this paper, we specify G(N) := max{c(1 — N),0}, where
¢ is a positive parameter. Note that G, F and F satisfy Assumptions 3.1 and 4.2.
Moreover, G(0) = ¢ and G(c0) = 0, such that Corollary 4.4 yields the line shown
in Figure 5.1 (a). We now elaborate (5.1) for the specific recruitment function. The
proof of the next result is straightforward and we omit it. The notation is designed
to deduce stability boundaries in the p-c-plane, which we shall do below.

LEMMA 5.2. For G(N) = ¢(1 — N) the characteristic equation becomes

25/\‘7:3()‘)(04)‘ + a1 (p, C)T) -2+ a2(,u7C)T =0, a;:= (ail, aig), 1 =1,2,

11—« (170&7‘0)[1 (7’0 71) ll
ail = y Q12 = — o,
ro— 1 lirg + o liro + I
L (1 — Oé) To (1 — Oﬂ“o) lz L (’I“o — 1) ZQ
asy = — , Q29 \=m ————.
rog — 1 lirg + 1o lirg + Io
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Below we would like to analyze a submodel where division is concentrated in a point
in the cell cycle. Note first that we can not specify an essentially bounded 3 such
that for division probability densities one has

B(a)e™ Jo Ale)de — B§, (a),

where d; is a Dirac-measure concentrated in one and B € [0, 1] denotes the probability
that a cell that has reached one divides. We can however generalize the characteristic
equation to

(5.2) my(A) (@A +a1) = A+a2 =0,

abbreviating a; = a;(u,¢)”, i = 1,2, where my(A) = [~ e **my(da) is a Laplace-
transform generalized to (positive) measures. Then, with

(5.3) mo(w) =2 [ B Fa(e)da,
mp(w) := 61 (w)2Be

we recover the old setting, i.e., mg(\) = 26/.7?5()\) as well as include concentrated
division with mp(\) = 2Be~ A1), We remark that the case of division concentrated
at arbitrary 7 > 0 can be scaled to 7 = 1. Note first that ro = m,(0) and in case of
concentrated division

(54) To = T/T\LD(O) =2Be ",

In the following we will first analyze (5.2) for general m;, then for mp and finally
combine the two results to conclude (in)stability properties for approximated concen-
tration of division.

LEMMA 5.3.

(i) c=¢&pu & (roar + ag)(p, )" =0.

(ii) If ¢ = &p then A = 0 solves (5.2) and ay(p,c)T > 0.
Proof. (i) can be shown by filling in &, a; and as. Next, (5.2) in A = 0 is (rga; +
az)(p, ¢)T = 0, which is true by (i).

m}

In the following let z,y € R.

LEMMA 5.4.

(i) If \ =z + iy, > 0 then |mp(N)| < rg. If & > 0, then |my(N)| < ro.

(ii) If ¢ = &u and A = x + iy solves (5.2), then x > 0 can not be and x = 0 iff

A=0.

Hence, for ¢ = £u there are no roots in the right half plane and the only root on
the imaginary axis is A = 0.

LEMMA 5.5. If at ¢ = &u for fixed u the parameter c increases sufficiently little,
then the root A\ = 0 moves into the left half plane and there are no roots in the right
half plane.

Note that for absolutely continuous measures that can be expressed via (5.3) we
have now shown that at ¢ = {u there is an exchange of stability such that for ¢ > &u
locally the trivial equilibrium destabilizes and the nontrivial equilibrium stabilizes.
The next result makes sure that roots can enter the right half plane only through a
compact subset of the imaginary axis and not from infinity, see e.g. Chapter XI in
[18].

LEMMA 5.6. (A priori estimate) For any K > 0 there exists some L = L(K) > 0,
such that if \ =z + iy, > 0 solves (5.2) and ¢,u < K, then z,y < L.
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5.1. Stability boundary of the positive equilibrium. For an analysis in a
parameter plane we consider p and c as variable and ¢, o and rg as fixed. Now, in the
pu-c-parameter plane the existence boundary for the positive equilibrium is defined as
the straight line ¢ = £u and the existence region for the positive equilibrium is given as
{(ps¢) |e > & for pu > 0}, see Figure 5.1 (a). In the following we present and analyze
respective characteristic equations for the positive equilibrium for two sub-models of
concentrated and constant cell division.

5.1.1. Concentrated cell division. For concentrated cell division, we have
mp(A) = e *ry and can derive the characteristic equation for the positive equilibrium
as

(5.5) H(u,c,\) =0 with H(p,c,\) := e *ro(aX + a1 (u, ¢)T) = X+ as(u, ¢) 7.

In the following we will analyze (5.5) in the p-c-plane. We have seen already, that there
are no roots with positive real part slightly above the existence boundary. Next, we
investigate the possibility that there are purely imaginary roots for parameter values
in the interior of the existence region. For every nonnegative integer k we define a
curve via

Cr :={(w", W) vel}, Ij:=2knr,(2k+1)7),
v ro—1

(5.6) p(v) == Sinymm@)a
(5.7) (V) = Sh”w {iji”i" (1— cosv) + (ll:jﬁ)m(u)}

Oz’l“%ll — lg ll’l“() — OéTOZQ
m(v) := — cos v,
lyro + 1o lirg + 12

see Figure 5.1 for numerical examples. Before we discuss how these curves relate to
(5.5), we determine their location with respect to the existence region. First note that
v e ((2k+ 1)m, (2k 4+ 2)m) would lead to ¢*(v) < £u*(v), hence the restriction to the
intervals I.

Introducing G(ro) := 3:00124 € (0, %) one can easily prove

LEMMA 5.7. It holds that sign(li(q)ro — l2(q)) = sign(q — q(ro)). Hence, for
q € (G(ro),1] and k € Ny we can define

argli(q) — la(q)
P40 = 1 @)ro — arolala)
Ji = (g, 2k + 1)) C Ii.

e (—1,1), vy :=arccos(p(q)) + 2km € Iy,

LEMMA 5.8. For every k the following assertions hold. If q € [0,G(ro)] then the
curve Cy, lies outside the existence region. If g € (q(ro), 1] then (u*, c*)(v) lies inside
the existence region for v € J, and not inside the existence region for v € I\ Ji.

Note that for the numerical examples plotted in Figure 5.1 it holds that r € (1, é)
and ¢ € (q(ro), 1] such that there is consistency with Lemma 5.8. We will now use the
C} to describe the parameter set in the existence region at which the characteristic
equation has purely imaginary roots.

PROPOSITION 5.9. For q € [0,q(ro)] there are no roots on the imaginary axis
for parameter values inside the existence region. For q € (q(ro),1] and parameter
values (u, c) inside the existence region if there exists a k € Wy and v € Ji, such that



STABILITY ANALYSIS OF A RENEWAL EQUATION FOR CELL POPULATIONS 15
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u H

(a) Bifurcation curves in the extended parameter(b) The admissible parameter region with g de-
plane fined via rg = 2.

F1a. 5.1. Curves and numbers of roots with positive real part in the p-c- plane. Arrows indicate
the direction of increasing v. The straight line denotes the existence boundary, dotted lines show
the asymptotes. Parameter values are (a) a = 0.01, ro = 1.9 and ¢ = 0.45, (b) o =0.49, ro = 1.15
and g = 0.438.

(,¢) = (p*,c*)(v) then there is (exactly) a pair of purely imaginary roots and else
there are no purely imaginary roots.

In the following we focus on the case ¢ € (G(ro),1]. Before we determine how
the number of roots with positive real part changes upon crossing a curve Cy, we
summarize more qualitative properties of the curves which can be proved analytically,
see Figure 5.1 for visualization of some of these properties for numerical examples.
The properties can be proven with similar techniques as in Chapter X1 in [18], so that
we omit some of the proofs here. First, one can prove that the intersection of the
curves C), with the c-axis is ordered from bottom to top with increasing k£ and that
curves do not intersect one another.

LEMMA 5.10. It holds that

) . B (ro — 1) (1 — arg) (1—ar)2
E%(M7C)(V)_<_ 0(1—04)7"0 : ’_(104)07'())

and this point lies on the (extended) existence boundary. For k > 1, as v | 2km,
the curve Cy parametrized by (u*,c*)(v) converges to the existence boundary in the
third quadrant, in particular lim, |or-(p*, ¢*)(v) = (—o0, —00). For every k, as v T
(2k + )7, the curve Cy, converges to the straight line

(1 — Ol) To llT'() + l2
(ro —1)? liro —l2"”

(5.8) c=§&u+2

hence in particular lim,(op+1)x (1", ¢*)(v) = (o0, 00).

LEMMA 5.11. For every k, it holds that d,pu*(v) > 0, d,c*(v) > 0 for v € I,.

Hence, none of the curves C} can intersect itself. In the direction of increasing v
we agree on left and right of the curves Cj. We then can prove

PRrOPOSITION 5.12. For every k upon crossing the curve Cy, transversally from
right to left two roots cross transversally into the right half plane and no other roots
CTOSS.
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It follows that in the existence region there are no roots with positive real part
between the existence boundary and the curve Cjy. Moreover, upon crossing the curve
Cy from right to left, the characteristic equation gets exactly two roots with positive
real part. Furthermore, for every k, upon crossing C} from right to left, the number
of roots with positive real part increases by two. Hence, the numbers of roots with
positive real part are distributed as written in Figure 5.1. Next, we define

Qs :={(" (), c) v € Jo, c€(En(v),c"(v))},
Qu:={(pwW),c)|lvedy, ce(c(v),)}.

THEOREM 5.13. If q € (q(ro),1] then for (u,c) € Qg there are no roots in the
right half plane and for (1, ¢) € Qu there are at least two roots in the right half plane.

5.1.2. Approximated concentrated cell division. In the following we show
that if the division process is sufficiently peaked around proliferation age one then for
q € [0,q(ro)] the stability region of the positive equilibrium is given by ¢ > &u and for
q € (q(ro), 1] regions of (in)stability are given by small modifications of Qg and Q
respectively. Here, small modifications will be defined in terms of arbitrarily small
tubes around boundary curves in an arbitrarily large (compact) rectangle.

We first approximate the Dirac-measure by absolutely continuous measures. The
proof of the following result is straightforward and we omit it.

LEMMA 5.14. Let B € [0,1], € > 0. Define

1 Be-tla—(-o)]
€1 B[l — e tle—(-a)]]’
Then a — B.(a) is bounded on [0,00) and

Be(a)e™ o de(eder = PRGEEEY (a)e~la=(1-2),

/85 (CL) = X[1—¢,00] (a’)

Next, we define m.(w) :=2 [ f.(a)e” Jo' Be(e)da F(q)da. We then get

R 236_(>‘+“)(1_8) 7‘06_/\(1_5)+5M
me(A) =

A+pe+1  A+pe+1’

We can extend the function € — m.(\) to a neighborhood of ¢ = 0. The resulting
function is C* and

mo(A\) = roe > = mp(\), mo(0) = ro = mp(0).
Then the characteristic equation becomes
roe MATOFE (X 4+ ay) — N2 + Ae(ag — p) — 1] 4+ ag(ep + 1) = 0.
For A = z + iy the realification is
et =) (ax + ay) cos(y(1 — €)) + aysin(y(1 — €))]
—(@® —y?)e +ale(az — p) — 1] +az(ep+1) =0,
roet 1= ay cos(y(1 — €)) — (ax + ar) sin(y(1 — €))] + yle(az — p) — 1] = 0.
This we can write as g(e,z,y, it,¢) = 0 with g : U x R* — R? a C'-map defined by
the left hand side and U some open neighborhood of zero.
LEMMA 5.15. Suppose that g(0, k,v, 7, ¢) = 0, for some k > 0 and some v > 0.

Then there exist neighborhoods Uy"" of zero, Uy"” of (k,v) and Us"" of (@,¢) and a
Cl-function U x Uy — U3, (e,2,y) — (uf, %) (x,y) such that
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(Z) g(e,z, Y, (p’sv CE)(x’ y)) =0, V(e,x,y) € UFV X U;J/:
(ii) g(e,z,y,p,¢) =0, (e,2,y) € U x U3 = (u,¢) = (u°, ¢*)(x,y), in partic-
ular (40, )(x,v) = (7,2).

If we take out of a region in which for € = 0 the number of roots in the right half
plane equals 2k, k > 0, a small open J-tube around the boundary curves and restrict
it to a rectangle we obtain a compact set, in which for € = 0 the number of roots in
the right half plane still equals 2k. The set is given by

Qf°
{(w*(v), ) p*(v),c < K,v € Jo, ¢ € [§u*(v) +9,¢"(v) — 4]}, k=0,

= {(p,0) e < K, Fy € Ty, v € Tt sth. (1) = p*(v2) = p,
c € [e*(v1) + 6, ¢*(v2) — 0]}, k>1.

One of our main conclusions is now, that we can for these sets slightly increase € and
obtain stability results:

THEOREM 5.16. For all K > 0, § > 0 there exists some € > 0, such that for all
division rates (e, € € (0,2], the following holds. If either q € [0,q(ro)], ¢ > &p and
u,c < K orq € (q(ro),1] and (u,c) € Qé(’é then the positive equilibrium is stable.
If ¢ € (@(ro),1] and (p,¢) € ng, k > 1 the positive equilibrium is unstable and the
number of roots in the right half plane equals 2k.

5.1.3. Constant cell division. In our second submodel we describe division via

a constant rate 3 = % Then, from the characteristic equation (5.2) one can derive

the characteristic equation for constant cell division in a straightforward manner as

(5.9) 0= A+ pi(u, )\ + pa(p, c), with

(5:10) prlpc) = 2500

2(7‘0 — 1)

pp—— p(c—E&p).

B a?(uv C)Tv p2(:u’7 C) =
Next, since I1(q)ro + l2(q) > 0 and —lz(q) > 0 for ¢ € (3,1]

2(1—arg)  (1—a)n (ro—1)la(q) \

(5.11) c=nu, 17:§+{

defines a straight line in the u-c-parameter plane with a slope greater than the one of
the existence boundary. In the appendix we prove

THEOREM 5.17. The positive equilibrium is stable for q € [0, %] For q € (%, 1]
it is stable if ¢ < nu and unstable if ¢ > nu.

6. Discussion. In this manuscript we have developed a cell population model in
which the cell cycle is incorporated via age dependence in the division and mortality
processes (Figure 2.1). After division we have included two possibilities, transition
to quiescence or commitment to proliferation. Our quiescent cells are recruited at
a rate that is controlled by the population, with a weight ¢ < 1/2 on the quiescent
sub-population. To our knowledge this is the first analysis of a model that combines
all of these features.

In [1, 6] all cells alive divide whereas in our model cells may not divide. In [24]
the cell size is partitioned upon division among the two daughter cells, whereas in our
model the state at birth of the daughter cells is at age zero, so at the boundary of the
state space.
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As discussed in the introduction, the role of the quiescent phase is relevant in
many tissues, healthy (e.g. blood cells) or tumor (cancer stem cell hypothesis). In
[1, 6] the decision on quiescence is taken immediately after division and only then. In
[33, 5] going quiescent is modeled independently of the division process but depends on
the internal state of the cell and the state remains unchanged upon going quiescent.
[1, 23] model the cell decay rate and division rate as independent of what we call
proliferation age. Moreover, in [1, 6, 20, 23] after division cells necessarily enter the
quiescent phase. Also in these models the population controls the length of the cell
cycle via the recruitment rate. In [1] additionally the duration of the proliferative
phase is controlled by the quiescent population.

An interpretation of the control mechanism is that cells compete for oxygen. It
seems established in modeling and experiments that for cancer cells a lack of oxygen
favors quiescence, see e.g. [2] and references therein. We thus assume that the re-
cruitment rate is an increasing function of the oxygen concentration. Suppose that
the oxygen dynamics are governed by the ODE

d

S E@) = A= (cpP(t) + Q1)) E(?),

where E' is the concentration of oxygen, A is its inflow rate and cp and cq are con-
sumption rates by proliferating and quiescent cells, respectively. Using a quasi steady
state approximation we obtain that

~ )\ where = CiQ
B~ e e (00 PO+ a@0) "1 ot eg

is the relative oxygen consumption rate of quiescent cells. In [24] the authors argue
that a quiescent cell does not likely enter the proliferating state as a tumor grows and
model the recruitment rate non-increasing with (total unweighted) population size.
In [33, 34] the recruitment rate is given as a decreasing function of the number of pro-
liferating cells. In [29] the corresponding basis are molecules that deactivate receptors
on the surface of cells and thereby inhibit mitosis, also mentioning that the precise
signaling pathway is not understood. It is concluded that the recruitment rate de-
creases with the concentration of molecules. Apparently these molecules are produced
by the quiescent cells, as their concentration is assumed to be directly proportional
to the concentration of quiescent cells. Hence the recruitment rate decreases with
the concentration of quiescent cells. Similar approaches are followed in [1, 6, 20, 23].
With the use of the weights we have captured all of the above mentioned approaches.
One may additionally consider dependency of the consumption rates on the phase in
the cell cycle [5] or age, which here for simplicity we did not do.

Our necessary condition for the existence of a population equilibrium (Ry(G(0)) >
1) means that the population undergoes net growth due to an excess of resources when
oxygen consumption is low. Similarly it is necessary that the population undergoes
decay due to a lack of resources when oxygen consumption is very big (Ro(G(00)) <
1). To study parameter dependencies we have defined a plane spanned by two free
parameters, cell mortality g and maximum (i.e. in the limit of zero consumption)
recruitment rate ¢ (Figure 5.1). In this plane we have computed an existence boundary
( Ro(G(0)) = 1) to one side of which the population equilibrium can exist and to the
other of which it can not. The boundary curve then consists of those points where
proliferation under a maximum recruitment, that corresponds to a zero population,
balances total cell death.
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Our next task was an analysis of the stability of equilibria, i.e., whether or not in
the neighborhood of an equilibrium for large times the population converges towards
the equilibrium. Then if the zero equilibrium is stable, the cell population will go
extinct, which can be interpreted e.g. as recovery from a tumor. Stability of the
positive equilibrium can be related to establishment of the cell population, healthy or
tumor, whereas oscillations correspond to disorders of healthy cells or reoccurrence of
a tumor.

We have computed a stability boundary that by definition in our model partitions
the parameter plane into a region in which the population equilibrium is stable and
a region in which it is unstable but there is a stable limit cycle (Hopf-bifurcation).
The emergence of oscillations under variation of the free parameters can at first ap-
proach be interpreted as follows. A net increase in the population proliferation rate
is triggered as a result of the increased recruitment rate. The corresponding increase
in population depletes resources and yields a reduction in the recruitment rate, which
in turn triggers a net decay of the population, whereby an increase of the recruitment
rate ensues. The result of this process is sustained oscillatory behavior. For this
oscillatory behavior to be stable, the death rate g must be small enough, otherwise
depletion of the population by apoptosis wipes out the oscillations. A visualization
of this phenomenon is obtained by taking a path in the parameter plane (Figure
5.1) from the stability region into the instability region. We have seen however that
(in)stability also depends on the fixed parameters (Theorems 5.16 and 5.17): As we
have discussed there are several ways in which in the literature the division process
is modeled. We have here compared two extreme cases, concentrated division, i.e., a
point in the cell cycle outside of which division is impossible, and - the analogy of the
ODE model- where division occurs at a constant, i.e. cycle-stage-independent, rate.
Additionally the way in which the quiescent phase was modeled proved to be crucial.
We have seen that here the speed at which quiescent cells enter the proliferating com-
partment, the weight that the quiescent population has in triggering the recruitment
of quiescent cells and the mortality of quiescent cells are relevant.

For a comparison of the two division submodels, we have found it instructive to
distinguish between a quiescent population that is more (¢ € (g(ro),1/2]) and one
that is less (¢ € [0,G(ro)]) committed to participate in the control of recruitment. If
the quiescent population is participating more, then, if division is modeled as constant
and undelayed, the feedback mechanism leads to a stable equilibrium, see Theorem
5.17. If the division event occurs with a delay, then the feedback mechanism may
lead to oscillations, see Figure 5.1. Hence, in this case, division delay may lead to
oscillations or a model with constant division rate seems not suitable to reproduce
oscillations and is thus too simplistic.

In our concentrated division model we find a period at the population level exceed-
ing the length of the proliferation phase. (Indeed, by the Hopf-bifurcation theorem,
close to the crossing of the stability boundary Cjy there is an oscillating solution with
period in the range (2, 00), as for the curve parameter then v € (0,7) and the period
equals 27 /v, whereas our division delay is normalized to one.) Oscillations of the
number of cells with a period that is longer than the cell cycle have been observed
in periodic hematological disorders, see [22] and the references therein. This phe-
nomenon was also detected in the models of [6, 17], where an increase in proliferating
stem cell mortality can prolong the period of oscillation of the number of cells. As
discussed, the scenario described by the model in [6] has several differences compared
to the one we have investigated here.
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In a follow up project we would like to incorporate more feedback mechanisms
into the model, such as a control in the probability to go quiescent. Moreover, one
could investigate an alternative division probability with a maximum, by using a
rate of the form S(a) = ae "%, k > 0, instead of a measure. Finally, it may be
interesting to reinterpret our model as a rudimentary stem cell model, where the
proliferating population corresponds to a self-renewing stem cell population and the
“decision point” is related to the pluripotency of stem cells, and to extend or modify
the model in this direction.

To our knowledge our work is, after [13], the second proof, that the linearized
stability and Hopf-bifurcation results in [14, 15] can be applied to population models
and the first elaborated application of infinite delays and to cell population models.
We also hope to show that the efforts to create the setting of a population model
formulated as renewal equations are compensated by a relatively standard way to
verify differentiability conditions.

It then remains the nontrivial task to analyze the type of quasi-polynomials that
result as characteristic equations. We have seen how the use of Dirac-measures helps
to make models parameter-scarce. As many theories do not allow for the use of
Dirac-measures (see below for an exception) we have elaborated a method to show
that the analysis of characteristic equations is stable when passing from admissible
model-ingredients to the limit of Dirac-measures.

In the limit of the Dirac-measure the characteristic equation has the form

(6.1) e A (aiA +az) =A+as

and we have tried to thoroughly analyze this equation. To our knowledge, for this
equation there does not exist a complete analysis in any parameter plane in the
literature, for related analysis see [10, 28, 38]. We hope that the parameter plane
method or even its application to the concrete equation could be of more general use.

We remark that our model can be interpreted as an age-structured population
model. Such models are traditionally formulated as transport equations [41]. A
corresponding partial differential equation for our model is for ¢t > 0

(6.2) Oip(t,0) + 9ep(t,0) = —(u + B(0))p(t,0), 0 >0,

Oq(t,0) + 9pq(t,0) = —(u+ 1(t))q(t,0), 6 > 0,
(6.3) 2(1,0) = 20 /0 B(0)p(t, 0)d0 + I(2) /O o(t, 0)do),
(6.4) g(t,0) = 2(1 — a) /0 B(O)p(t, 0)do,

oo

I(t) = G((1 - g) / " (. 0)d0 + ¢ / a(t.6)d6),
p(o, 9) = pO(e)v Q(Oa 0) = QO(G)'

Here p and ¢ are the respective population densities of proliferating and quiescent
populations with initial densities pg and qg. We get a corresponding system for con-
centrated division (ignoring the p-population with age greater than one) if we set
B =01in (6.2) and replace (6.3-6.4) by

(6.5) p(t,0) = arop(t — 1,0) + I(¢) /000 q(t,0)de,
(6.6) q(t,0) = (1 — a)rop(t — 1,0).
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In [39] the authors have established semiflows for Cauchy-problems induced by semi-
linear perturbations of Hille-Yosida operators and applied the theory to an age-
structured population model, where per capita birth rates are described by cumulative
birth measures. The corresponding model (32) in [39] has a boundary condition of
the form

(6.7) u(t,0) = f(u(t,-)).
Due to the dlfforcncc bctwoen modeling giving birth (Bd;(w) = [ B(a)da) and divi-
sion (Béy(w) = [, B(a = Jo' Ble)dadg) as concentrated we can not erte (6.576.6) in

the form (6.7). It Would be interesting to investigate if the theory in [39] can still be
applied to our model.
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Proof of Proposition 3.4 We show that S is C*, the result for R is similar. We
first show that A : L})i_ — L;?_f

) = / " Fla— 0)p(—0)e I ¥ Fy 0)d
0

is C* with derivative given for ¥, ¢ € L S L oas

)i= [ Fla= )70 I l(-0) - T(-0) [ vi-0)

Showing continuous differentiability for the remaining terms of S can be done with
the same techniques and it then follows by the sum- and product rules that S is C*.
We first show that the candidate is well-defined:

e DA(T)(a)| < Ketr)e / (-0~ / b(—0)doldo
< Ke™ wﬂl/ |4 (— \d91+/ P(—0)d)

< Ke~ =200, (1 + / B(—0)d6)

< Kiem 73091l (1 + [[9]l1,) < Koll1,p

for appropriately defined K1 > 0 and Ky = Ka(||1[l1,,) > 0. Hence || DA)1)] 00, <
Ks||4]]1,, and thus the candidate is a well-defined bounded linear operator on Lp,1

Next, for ¥, 1) € L;:i one has

Aq = e |[A(¥) — A(Y) — DAW) (Y — ¥)](a)]

< —(R—p)aK/a‘w(_Q)e_fea V(=)o _ G g)e= Ji v(=
0
e Ji B ) — (— / (=) — P(—0)do]|d8
— o (rm p)aK/ lh(— —o)do _ o= [y 9 (=o)doy
e Ji By / (- —o)doldb

IN

Ke—(k—p)a / C (=) [(e~ S8 P _ o= J3 T(-a)da
0
~o)io / W(=0) — ¥(—0)dol|do

+K€—(n—p)a/ e -/ (- o')dcflw ‘/ ‘w )|d0’d0
0
= AL + A2
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for obviously defined Al,A2. By the mean value theorem and the fact that e is
Lipschitz on (—o0, 0] we get that

o= Ji (=oVde _ o= [ (=)o _ o= [ (=0)do / T(—0) — d(—0)do|

<le~ Jo w(=0)do+gl— [ d(—o)do+ [ p(—o)do] _ — [0 )d"|/a [Y(—0) — Y(—0)|do
[%

< Ks( / [9(— —0)|do)? < Kae
for some K5 > 0 and some & € [0, 1]. Hence,
AL < Kae 30 [ o) iaolw -T2,
0

(A1) < Kse™ 7909 |||l — 913,

for some K3 > 0. Next,

AQ K (k—p)a ’ —0 d0 do
a < e /0 |1/)( ) | / W) )|

By (A.1-A.2) one has that sup €ss,e(0,00)Aa is 0(||t) — ¥|1,,). This shows differen-
tiability of A. It remains to show that the derivative is continuous. That means that
for ¥, ¢ € L;:i and y € L};l the essential supremum of

a = eP*|[DA()x — DA(P)x](a)]

should be o(||) —|)1,,- The proof involves no other technicalities than the ones used
to show differentiability and we omit it.
O

Proof of Proposition 5.1 We apply (4.4) to the terms of the characteristic equation
and write G’ instead of G'(G~1(I)) so that we get

my =2 {a +(1- a)I/OOO 69(’\”).7:"(0)d9} /OOO e B(0)Fs(0)db,
mia = 2b(1 — @) /Ooo F(0)e 10 (1 - 11_5%) do /Ooo e B(0)F5(60)dd,

mo; = G’ {(1 —q) {a +(1- 04)1/0oo e_(”\+1)9.7-'(9)d9} /000 e Fs(a)da
+q(1 — ) /OC e“*”“ﬁ(a)da] )
—Xa

0
1—e
=G - a){- q/ Fla 7Iafda

ti—q) [ F@)e N [T F (0)e=2do}
q b\ . 38 e .
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Next, we use

. 1

Fo) = 5, (1= BF5(), to get
_ 20F(Nalp+A) + 1] (A -a)(ptN) =
= LA+ T ’ ml?’(u+1)(u+A+1)ﬂfﬂ(’\)’

G{(L — @)la(p + N + 1)1 = BF(N) + (1 — ) (u + \)}

e (u+X(n+A+1) 7
_ G'b(1 — «) -
M2 = L DA T O AN~

It follows that

v — movam — g — — PO =)  20BF (N[l X) +1]
11M22 12Ma21 22_(,u+1)(/l+/\+[) pHAN+T
2IPNCZ LD (11— 1 - FFN) +a)

G'b(1 — a)

T A DA+ [28F5(Mh + L2],

(A + 1) (1 = 203F5(\) + I(1 — 28F5()))

1—m11:

AT+ p ’
(A + T+ p)(ma1maz — marmiz — maa + 1 —myq)
G'b(1l—a), — — —
— - EE O BFAN +12) + (A 1)1 = 205F5(0) + 101~ 25F500)
e G'b(1 — a) G'b(1 — )
Hence, the characteristic equation can be written as
— G'bv(1 — a) G'b(1 — ) _

Now, note that fooo Fpla)da = % (1 — %7‘0). Then the equation gets the representation

that is claimed if we use that b = M, pA I =tod=a) yng qp4 1 = 0= g

rolitl2 ro—1 To—1
Proof of Lemma 5.4 (i) is trivial. Suppose now that A solves (5.2). Then
A= as|* = [ (A) *|ad + as |*.
By Lemma 5.3 (i) then
(z +roar)” +y* = [N Pl(az + a1)? + a?y?].
Then, if z > 0 by (i) and since roa; > 0

(x + r0a1)2 +9% < (aroz + a1r0)2 + (ayr0)2 < (x+ a1r0)2 + 92,
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which is a contradiction. If x = 0, then
(roa1)® +y* < (roa1)® + (ayro)?,

which is y? < (argy)?. Hence, if y # 0 we get 1 < (arg)? < 1, which is also a
contradiction.

m]
Proof of Lemma 5.5 For A = z + iy we define r(x,y) := Re mp(N), i(z,y) :
Im my(X). Then r(0) = ro, i(0) = 0, 0,7(0) = 9,i(0) = —r and 9,7 (0) = 0,:(0) =
Then the realification of (5.2) is G(p, ¢, z,y) = 0, where

0.
Gl(,uv C,Z',y) = (Oél’ + a1)r($,y) - ayz(g:,y) — T+ ag,

Ga(p, ¢, z,y) = ayr(z,y) + (ax + aq)i(z, y) —y.

From the analysis of the complex equation, we know that (u,&pu, 0,0) solves the real-
ification. For this point we compute

9,G1 = 0,G2 = arg — 1 —roar (u, )" <0, 9,G1 = 9,Ga =0,
such that det 0,,,G # 0. Then by the implicit function theorem there exists some J >

0 and C*-functions ¢i(Ep—19,épu+06) — R, j = 1,2 such that G(u, ¢, p1(c), p2(c)) =0
and ¢'(§p) = —[0,,yG]10.G. Now

_ 1
a(xyy)G = —,/det G(M)Gl = (6(z,y)G) 1= _4(18’6 6( )GL
I7y

8CG1 = 1roai12 + G22 = —(1"0 — 1) < 0.

Hence ¢} (&n) < 0 and the statement follows.

Proof of Lemma 5.6 First note that (5.2) is equivalent to
)\(1 — 047/7\117()\)) =as + alT/be()\).

Hence, |A\|[(1 — a|mp(N)]) < |az| + |a1]|ms(X)]. As 2 > 0, we have that 1 — a|m(\)] >
1 —arg >0 and m(\) < rg. Thus

|az| + |ai|ro

A<
A= 1—arg

This implies the statement.
O

For the proofs of Propositions 5.9 and 5.12 below we define a function G = (G, G2)
with G, : R* — R for j € {1,2} via

(A.3) Gi(p,c k,v):=Re H(p, e,k +iv), Ga(p, e k,v):=Im H(p, e, k+iv).

With a straightforward calculation one obtains
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LEMMA A.1.

(A.4)
Gi(p, ¢, k,v) = e "ro {a(kcosv + vsinv) + a1 (p, e)T cos v} — k4 az(p, o),

(A.5) Ga(p, ¢, k,v) = e "ro {a(vcosv — ksinv) — ay(pu, c)" sinv} —v.
G satisfies the Cauchy-Riemann equations, i.e.

(A.6) 0,G1 = 0,G2, 0,G1 = —8,Go.

Proof of Lemma 5.8 We consider dependency of the sign of m(v) on q.
LEMMA A.2. For every k the following statements hold. If ¢ € [0,q(ro)] then
m(v) <0 forv € Iy. If g € (q(ro), 1] then

<0 forvelp\ (JyU{w}),
(A7) m){=0 Jorv=u,
>0 forve Jg.

Proof. To consider g-dependency of m we rewrite m(v) as m(q,v). For ¢ € [0,1] and
any k one has

. o . - li(g)ro — la(q)
(A.8) li mlgv)=aro—1<0,  Jdm mlgv)=(oro+1) li(q)ro + l2(q)’
1o (li(g) — al2(q))
o,m(q,v) =
@) = = Qe T ala)

With ¢ := 4213131) € (0,1) for v € I, with straightforward calculations one gets

sinv, forwv € Iy.

(A.9) sign 9, m(q,v) = sign(q —¢1) and 0 < ¢1 < G(ro) < 1.

For ¢ € [0,q(ro)) it holds that lim,2x41)= m(q,v) < 0 by (A.8) and Lemma 5.7.
Hence, for both intervals [0, ¢1] and (g1,q(r¢)) we have negativity on the boundary
values of I, and monotonicity in between. Hence m(q,v) < 0 for all (¢,v) € [0,q(rg)) x
Ii.. By (A.9) we have that %m(q(ro), v) > 0 for v € Ij,. Thus for ¢ = G(ro) and v € I,
by Lemma 5.7 it holds that m(q,v) < lim,;(2k41)= m(q,v) = 0. Therefore, we obtain
the first statement. For ¢ € (g(ro), 1] we have that lim, 1 (2x41)= m(q,v) > 0 by (A.8)
and Lemma 5.7. By (A.9), for ¢ € (q(r9), 1], m(q, v) is monotonously increasing with
respect to v € Ij. From the definition of vy, it follows that, for fixed ¢ € (g(ro), 1],
v = v, is the unique solution of m(q,v) = 0. Hence, we have shown (A.7). o

LEMMA A.3. For every k the following statements hold. If ¢ € [0,q(ro)] then
w*(v) <0 forv el If g € (g(ro),1] then ¢*(v) >0 for v e Jy U{vk} and

<0 forvelp\ (J,U{w}),
(A.10) ww)<=0 forv=uy,
>0 forve Jg.
Proof. As =*— > 0for v € I, it follows that sign p*(v) = sign m(v) for v € Ij.

sin v

By Lemma A.2 the first statement and (A.10) in the second statement hold. Since
1 —cosv >0 for v € Iy, if m(v) > 0 then ¢*(v) > 0 by (5.7). ]
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Now, by Lemma A.3, for every k, the curve Cj does not reach the interior of the
existence region if ¢ € [0,q(rg)]. Next, we assume that ¢ € (g(rg), 1] holds. By
Lemma A.3 the curve (p*,c¢*) (v) is located in the third or fourth (closed) quadrant
for v € I, \ Ji and in the first (open) quadrant for v € Ji. Using (5.6) and (5.7) one
can see that ¢*(v) > Eu*(v) for v € Ij, holds. Thus the curve lies above the existence
boundary. Hence Lemma 5.8 is proven. O

Next, note that if v solves G(u, ¢, k,v) = 0, then so does —v
Proof of Proposition 5.9 We suppose that there exists a point (u,c) inside the
existence region where the characteristic equation has a purely imaginary root A = iv,
v € R. Without loss of generality v > 0. Then G(u, ¢,0,v) = 0. One has that

(A.11) 0 = roay (i, )" cosv + argrsinv + ag(p, c) 7,

(A.12) 0 = argvcosv — roai (p,¢)’ sinv — v.

We claim that v # k7 for any nonnegative integer k. Suppose that v = 0. Then, by
(A.11) it holds that

(A.13) roay (1, ¢)’ + as (u,e)" =0.
Since roay (i, ¢)" 4 as ()" = —(ro —1) (¢ — &) < 0, we get a contradiction to
(A.13). Thus v # 0. Next suppose v = kr for some k € IN. Then kr ((—1)*ary — 1) =
0 by (A.12), a contradiction. Thus v # kw. Hence there exists k € Ny such that
v € (kr, (k+ 1)m). Now, note that (A.11) and (A.12) are equivalent to

(A.14) A(’Z): ’/ (O”OC‘OSZ_g), A::<a1).
rosiny \ rocosv — arg as

Next note that det A = — (1 — a) # 0. One then can check that

(A.15) (“): v A‘1< argcosv — 1 ):(u:(z/) )

c sin v —ro (arg — cosv) c*(v)
As (u, c) lies in the existence region, we can exclude that v € ((2k + 1), (2k 4 2))
and thus v € I. If ¢ € [0,G(ro)], since we assumed that (u,c) is a point in the
existence region, by Lemma 5.8 we get a contradiction. Hence, the characteristic
equation does not have purely imaginary roots for any (u,c) inside the existence

region. If ¢ € (g(ro), 1], Lemma 5.8 implies v € J C I,. Then one can use the above
transformations to easily deduce both implications stated for ¢ € (G(ro), 1]. mi

Proof of Lemma 5.11 First, note that - (1 — cosv) is increasing on I. To show
that p* and c* are increasing, it is sufficient to show that Z*—m(v) is increasing. One

can see that

ll(Q)TO — argly (q)

v ~ li(q)ro — arolz(q) ;
@m(y) = 1(@)70 + 12(q) n(q,v) with (@) + 1a(q) >0,
n(q,v) == —— (plq) = cosv) for (q,v) € Dy := ((ro), 1] x L.

by Lemma 5.7. Let (¢, v) € Dy. With h(q,v) := p(q) (sinv — v cosv)—cosvsinv+v it
holds that d,n(q,v) = M Thus sign (d, =£-m(v)) = sign d,n(q, v) = sign h(q, v).

sin? Vsinv
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In the following we prove that h(g,v) > 0. For ¢q € (q(ro), 1] we get that

A16) lim h(q,v) = (1 — p(q))2km, k € Ny, thus lllgcl h(q,v) >0, ke IN,

v]2km

(A.16)

@A17)  lim - hig,v) = (1+p(q)) (2k+ )7 >0 for k € TN,
(A.

(

18) O,h(q,v) =sinv (p(q)v + 2sinv) and
A.19) sign p(q) = sign(q — q2(r0)), ¢2(ro) :=

Then 9,h(q,v) > 0 for (q,v) € [g2(r0), 1] X I}, by (A.18). Since we have (A.16) we get
h(q,v) > 0 for (¢,v) € [g2(ro0), 1] x Ir. We now fix ¢ € (g(r0),g2(r0)). By (A.18)

(A.20) sign 0,h(q,v) = sign hy(v), where hy(v) := p(q)y + 2sin v, moreover
(A.21) hI{Cl hi1(v) = p(@)km and for k € N lim hy(v) <

v—km
We get hi(v) = p(q) + 2cosv. For a fixed ¢, hi(v) decreases with respect to
v € I. Using (A.19), one can compute that lim, ok hi(v) = p(g) + 2 > 0 and
lim, 1 (2k41)= Py (¥) = p(g) —2 < 0. Thus there is exactly one root of hj(r) = 0 in
every interval I. We define jj := arccos (—% p(q)) + 2k7. Consequently we have

(A.22) sign h} (v) = sign(jy — v)

Thus h; has exactly one local extremum, a maximum at v = ji. First, we consider
the case k = 0. By (A.21) and (A.22) there is exactly one solution sg of hy(v) = 0 for
v € Iy. Now sign hy(v) = sign(sg — v). Then, by (A.20) h is strictly monotonically
increasing with respect to v € (0,s¢) and strictly monotonically decreasing with
respect to v € (sg,m). Hence h(g,v) > min{lim, o h(g,v),lim,1, h(g,v)} = 0 by
(A.16) and (A.17). Now for k € IN, one has either hy(jx) < 0 or hy(jx) > 0. If
hi1(jx) <0, then hy(v) < 0 and by (A.20) also d,h(q,v) < 0. It follows that h(q,v) >
lim, ¢ (2 +1)x P(q, V) > 0 by (A.17). Next we assume that h;(jr) > 0 holds. By (A.20),
(A.21) and (A.22) there exist sy, s}, Sk < S}, Sk € (2km, ji) and

-1 for v € (2km,sk) U (s), 2k + 1) 7),
sign O, h(q,v) =sign hy(v) =<0 for v € {sk, s}, }, hence
-1 for v e (sg,s}),

A23)  h(g,v) > min< h(g, lim  h(q,v) 5.
(A23)  aw) > win {h(a.s), | dm ha)

Since we have (A.17), we prove that h(g,sj) > 0. Next sin sy = —1p(q)si, by (A.20).

Then h(q, sk) = si(—3p%(q) + 1 — 3p(q) cossi). One has cosji, = —3p(q) > 0 by
(A.19). As s € (2km, ji) also cos s > 0, hence we obtain that h(q, sg) > 0. We have
shown that h(q,v) > 0 for (q,v) € (q(ro), q2(r0)) X Ig. m]

Proof of Proposition 5.12 Let v € Ji, k € INg. By Proposition 5.9 for (u*, c*)(v)
there are exactly two imaginary roots. We define a matrix

L * * _ @11 COSV + ag1 Q12 COSV + @22 .
M) = 0(,e)G(1* (v),c*(v),0,v) = < ay siny gy siny ) , with

(A.24) det M(v) =sinvdet A= —(1—a)rgsinv <0
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(see the proof of Proposition 5.9 for det A). Then the normal vector that points left
of Cy at (p*,c*)(v) is

~NM " (v)w(v), where N := ( (1) 701 ) and w(v) := 0,G(p* (v), c*(v),0,v).

We consider a path that crosses Cj at (u*, ¢*)(v) transversally from right to left. The
path has a tangent vector

(A.25) g € R? withg  (-NM'(v)w(v)) > 0.

We define W(v) := 9(,.,,)G(u*(v),c*(v),0,v). Using (A.6) we compute that

det W(v) = (1 +roar (p*(v), ()" — ar0>2 + (are)® v + 2arou sinv
-2 (r0a1 (1), w)" — aro) (1 —cosv).

Since it holds that Go(u*(v),c*(v),0,v) = 0, we have that ai(u*(v),c*(v))T =
o (argcosv —1) < 0. Thus det W(r) > 0. Hence there exists a neighborhood
of (u*, c*)(v) and two functions ¢; and ¢o that for (u, c) in the neighborhood are par-
tially differentiable and satisfy G(u, ¢, ¢1(u, ¢), pa(p, ¢)) = 0 with ¢1 (u*(v),c*(v)) =0
and ¢2(u*(v),c*(v)) = v. Note that G(u, ¢, ¢1(p,¢), —pa(p,¢)) = 0 for (p,¢) in the
neighborhood. Next, we consider a path v(s), s € R in the parameter plane such that
as s increases v crosses the curve Cy, at the point (u*, ¢*)(v) transversally from right
to left with v(0) = (u*, ¢*)(v). For s such that y(s) is in the domain of ¢;, we define
7(s) := ¢1 (v(s)). Since 7/(0) = g we obtain that 1'(0) = g- 0,01 (1" (v), c*(v)). By
the implicit function theorem it holds that

*(v),c*(v)) = L (706G 06 w(v
a0 =~ (oG G ) W)
~ (det M(v))NM~(v)
= At W) w(v) and thus
7 (0) = mg- (NM~ Y (v)w(v)) >0

by (A.24) and (A.25). Hence two roots cross with positive speed when we cross Cj,
from right to left transversally. O

Proof of Lemma 5.15

det 0(y,c)gle=0 = det (

(A.26) = rpe” "sinvdet A.

roe” fajpcosv 4+ a1 roge Fajscosv + ass
—rge "aqpsinv —roe "aigsinv

We have seen that det A # 0. So if det 9, ¢)gle=0 = 0 then v = k7 for some k € IN.
But then for the second component of g

0 = g2(0, K, km, i, €) = kn(e "roa(—1)F — 1).

This is a contradiction since £ > 0 and roae < 1. As g is C' the statement follows
from the implicit function theorem. O
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Proof of Theorem 5.16 We apply Lemma 5.15. For the stability assertion we show
the case q € (g(ro), 1], the first case can be shown similarly. Let (p;,¢;) € Qé("s. We
first show

30;,e; > 0, s.th. Ve € [O,Ei] and (,[L, C) S (,ui, Ci) + B(Si (0)

the number of roots with x > 0 is zero. Suppose, this wasn’t true. Then by the
K,§ L . .

compactness of ;" and the a priori estimate there exist converging sequences for

n — 00

€n — 0, (/J/nacn) - (Miaci)y kn 2 0,0, 20, K= lim K, > 0, v:= limv, > 0,
such that by the continuity of g
0= g(sn, Iﬁ:n,ljn7’[tn76n) - g(O7H7Va ,LLi,Ci) 7é Oa

which is a contradiction. Now by the compactness of Qg )0

In €N, (1irc;) € Q330 65,6 > 0, i = L, sith. Q4" € | J (i i) + Bs, (0) and
=1

Ve € [0,2], €:= _rr%in e, V(p,c) € U(/%ci) + By, (0)

i=1l...n .
i=1

the number of roots with k > 0 is zero. Hence for (u,c) € Qé(’é and ¢ € (0,2] we can
conclude stability.

Let now (u;,¢;) € Q;;"S. Then we can choose d;,e; > 0 such that for € € [0, ],
(1,¢) € (pi,ci) + Bs,(0) the number of roots in the right half plane equals 2k. As
ka"s is compact

In € N, (u;,¢;) € ka’é,éi,si >0, i=1..n, sth. Qé(k’é C U(ui,ci) + Bs,(0) and
i=1

n

Ve € [0,2], €:= _rr%in e, V(p,c) € U(/%Cz') + By, (0)

=1...n
i=1
the number of roots with x > 0 is 2k. The statement follows. O

Proof of Theorem 5.17 We can compute that

{2(1—ar0) . (1—a)r0} =Dl

A2 =
( 7) P ('u’ C) 2—ro ro— 1 lirg + 1o

(c—&p).

Now, sign l2(q) = sign(1/2 — q). Thus p;(u,c¢) > 0 for ¢ € [0,1/2]. For q € (1/2,1]
one has py(p,nu) = 0 and 9ep1(p,¢) < 0. Thus sign pi(p,c) = sign(nu —c). As
p2(t, ¢) > 0 the conclusion of the theorem follows by the Routh-Hurwitz criterion. O
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TABLE A.1

sections and equations in which they are introduced or specified.

Symbol
a
i, Qg5

W R
N2

—~

a)

DU

a0

*(v)

k

F(p,¥)
FN)
F(a)
F(a)
Fpa(a)
G(N)
H(p,c,\)
I(t)

Iy,

Ji
li(g),i=1,2
mij

m(v)

= Q

Vg

P(t)
pi(p,c), i=1,2
q

q(ro)
Qg, Qu
Q(t)
R(3)

ro
Ro(1)
p(q)
S(¥)

'3

Short description

age, proliferation age

characteristic equation in p-c-space
probability of going quiescent after birth
population birth rate at time ¢

division probability, concentrated division
individual division rate

division rate, constant division

maximum recruitment rate

c-component of bifurcation curve
bifurcation curve

proportionality factor, constant division
operator defining renewal equation

Laplace transform

survival in proliferation if no division
survival in quiescence if no recruitment
(unconditioned) survival in proliferation
individual recruitment rate

characteristic equation, concentrated division
individual recruitment rate at time ¢
domain of bifurcation curve

domain of curve in existence region
representation of bifurcation curves

entries of characteristic matrix

term in bifurcation curves

characteristic matrix

mortality rate

p-component of bifurcation curves

weighted total population at time ¢
parameter for bifurcation curves

v-value defining Jj

total proliferating population at time t
characteristic equation, constant division
relative weight of quiescent population
g-value defining bifurcation curves

regions of (in)-stability

total quiescent population at time ¢
operator in b-component of renewal equation
expected daughter production in proliferation
expected reproduction number

auxiliary function to define vy

operator in [-component of renewal equation
proportionality factor in existence boundary
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