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Abstract. In numerical modelling of chemical reactions one calculates
the scattering matrix for the required values of energy and angular mo-
mentum. Having done so, one still faces the non-trivial task of extract-
ing detailed information about the reaction mechanism. We discuss the
methods and numerical tools for such an analysis in terms of resonance
poles and semiclassical trajectories. Our approach avoids calculating the
scattering matrix in semiclassical approximation, and employs its numer-
ical values computed previously by an accurate scattering code.
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1 Introduction

An atom-diatom chemical reaction is a process in which an atom A collides with
a molecule BC, in such a way that after the collision the atom B goes with A,
forming a new molecule AB. Numerical modelling of such a recation involves at
least three principal steps.

As a first step, we require the forces acting on all collision partners or, equiv-
alently the potential energy as a function of their positions. This is a task for
quantum chemists who calculate the potential energy surface (PES) using the
fact that the light fast electrons adjust their motion to the movement of slow
heavy nuclei. The adiabatic theorem ensures that electrons stay in the same
quantum states, and absorb or return energy to the nuclear motion.

In the second step, we need to calculate the dynamical quantities, that is
to solve the equations of motion for the nuclei, in order to find out whether
in the end the atoms A and B do indeed stick together. These can be done in
various ways, and at different levels of accuracy. We can just solve the three-
particle Schroedinger equation (SE) numerically, obtaining a full quantum so-
lution, whose accuracy is only limited by the accuracy of the PES. There are
many computer codes which can perform this task well (see, for example, 1-3).



The third step consists in understanding the results, and some of its aspects
are the subject of this paper. We may feel that something is still missing: atoms
are heavy particles, and we are right to expect them to behave in an almost
(semi-) classical fashion. The simplest way to do so is to treat them as little balls
moving under known forces, and solve the corresponding Newton equations. This
is, in essence, the quasiclassical trajectories (QCT) method, successfully used by
many authors (see, e.g., Ref.4). But then we lose the interference effects and,
among them, some of the resonance phenomena.

A resonance mechanism usually implies a process in which the reactants tem-
porarily form a triatomic complex, or quasi-molecule, ABC', which after some
time breaks up into fragments AB and C. If that happens, both the total reac-
tion cross section and the angular distributions can be affected in various ways.
Formation of such complexes is usually possible at relatively low energies, and
can become the dominant process, for example, in the cold conditions of the
early Universe.

To recover the interference effects we may try to equip each classical trajectory
with the corresponding probability amplitude, and add the amplitudes according
to the laws of quantum mechanics. This approach was pioneered in the early 70’s
of the last century 5, and progressed considerably since then 6. It does, however,
meet with considerable technical difficulties, and it is probably fair to say that
solving the exact SE numerically using a standard code is often an easier choice.
This brings us to the main subject of this paper. Since solving the SE semiclas-
sically is difficult, we first obtain an exact numerical solution, and then extract
from it the essential semiclassical physics, the information about the scattering
mechanisms involved, and explanations for various interference patterns which
may appear. Like the first two steps described above, such analysis of numerical
data requires computer software. In the next Section we will try to be more
specific about some of the tasks to be performed by these codes.

2 The task of interpreting numerical results

A typical time independent computer code 1, 3, employed to model the dynamics
of the atoms involved, evaluates the probability amplitudes for the reactants
prepared in some quantum state v to end up as products in some final state »/.
These amplitudes are given by complex valued scattering (S—) matrix elements,

SS’(—I/(E7 J) = |Sl?é/<_ylexp[l’¢lﬂ/é/<_y]7 (1)

evaluated as functions of two conserved quantities, the energy E, and the total
angular momentum at discrete values J = 0,1,2... (we use i = 1). The super-
script « tells us what has happened: if no reaction occurs, A + BC — A 4+ BC,
a = 0 for an elastic event in which the state of the products is unchanged, i.e.,
v=v',and a =1if v # /. For a reaction, A + BC — AB + C, we put a = 2.
For an atom-diatom collision the index v = (v, j, {2) includes vibrational and
rotational quantum numbers of the diatomic, v and j, and the projection of
the diatomic’s angular momentum onto atom-diatom relative velocity, {2, also



known as helicity. Together (v,j,{2) and (v/,5’, ') completely determine the
states of the system before and after the collision, as long as we do not consider
the possibility of its breakup, A+ BC — A+ B+ C.

Squaring the amplitudes (1), one gets the probabilities, PS, (E,J) =[S%,_ |2,
for the system prepared in the state v to go to the state v/, «, as a result of
a collision. These are not, however, the probabilities directly observed in an
experiment where the atoms bombard a molecule with all possible angular mo-
menta. There the two quantities usually measured are the integral (ICS) and
the differential (DCS) cross sections. An ICS %, (E) is the total probability
that a transition v — v/, @ will take place, regardless of where the products are

scattered as a result. It is given by the expression

2T
US’%U(E) = ﬁ Z (J + 1/2)|Sg’<—U(E’ J) - 6&061/1/|2) (2)
Vo J=Jmin

where d;; is the Kronecker delta, k, is the reactant’s relative wave vector, and
Jmin = max(|$2|, [£2']).
A DCS o (E,0) gives the probability that the products would fly apart in
the direction making an angle # with the initial velocity of the reactants, so
that summing the DCS over all angles gives the ICS in Eq.(2). It is written as
%, (E,0)=|f%. (E,0)|%, where f%, (E,#0) is the corresponding probability
amplitude,

o 1 — J (e}

(B, 0) = Y (T +1/2)dpo(cos0)[SP (B, ) = aoduur]. (3)

Y J=Jmin

Here df,, is a reduced rotation matrix elements (for details see, e.g., 7 and Refs.
therein).

Inserting the computed values of the S-matrix elements (1) into the general
formulae (2) and (3) certainly gives the correct answers for the cross sections.
Yet it contributes little to the semiclassical picture in which atoms follow their
trajectories, and may all stick together for a while before falling apart again.
And without such picture, we argued, our understanding of what happens in a
reaction is incomplete. The DCS (3) and ICS (2) are often structured, and the
structures may point to a particular reaction mechanism we want to understand.
We would like to say, for example, "these peaks, or oscillations, in the ICS
happen because the reactants tend to stay together for a while, before parting
as products”. Or "these oscillations in the DCS occur because the system can
go into this angle 6 in two different ways, either directly, or by forming a quasi-
molecule first, and then letting it rotate for a while”. To be able to say this, we
require different representations for the ICS and DCS, and, ultimately, need to
know more about the S-matrix element itself.

3 Trajectories vs. poles of the S-matrix

The simplest system one can consider is the one in which there is only one classi-
cal trajectory leading to each angle . In such a system the interference effects are



minimal, and it should be well modelled by the QCT technique mentioned above.
We can arrive at the idea of trajectories in the following way. First we replace
the sum in Eq.(3) by an integral, or integrals over J. This can be done exactly,
for example by using the Poisson sum formula 8. Then we replace the d-matrices
by their asymptotic forms for large J’s, which are the J’s that contribute most,
since the system is semiclassical. Evaluating resulting integrals by the stationary
phase (SP) method establishes one-to-one correspondence between an angle
and the angular momentum J(#) which scatters into it. We can consider a more
complex case, where there are two or more values of J leading to the same angle
#. Summing the contributions from all such J’s and squaring the module might
explain why the DCS has an oscillatory pattern. We will not elaborate on the
subject. Note, however, that an analysis of this type requires the knowledge of
the S-matrix element for all values of J, while a typical computer code only
produces its values for the integer 'physical’ values J =0,1,2,....

Another language, often used to describe resonances, involves the poles of the
S-matrix element. There are two types of poles. Of one type are the discrete com-
plex values of energy E,(J), n = 1,2, .., for which S%, , becomes infinite for
a given value of J, S%, (E,,J) = oo. These complex energy (CE) poles have
their counterparts, discrete complex values of the angular momentum (Regge
poles) 10, J,(E), n = 1,2, .., for which S¢,,_,, becomes infinite for a given value
of E,S% ., (E,J,) = oco. Like the CE poles, Regge poles may lie on the real axis
only if they correspond to the bound states supported by the potential. The two
kinds of poles are closely related: one can think of a function F(FE, J) such that
solving the equation

F(E,J)=0 (4)

for E as a function of J one gets the positions of the CE poles E(J), while
solving it for J yields those of the Regge poles J(F) 9,11,12. The fact that both
E(J) and J(E) are typically single valued on a multi-sheet Riemann surface,
explains why there are many CE poles for a given value of J, and also many
Regge poles for a given E. Of the two kinds of poles, Regge poles are better
suited for our purposes. Replacing, as discussed above, the sums in Eqs.(2) and
(3) with integrals over J, we are able to deform the contour of integration, and
separate the pole contributions to both the DCS and ICS, while keeping E fixed.
The CE poles would be best employed, if we were studying time delay of a wave
packet, where we would need to integrate over the energy, and not the angular
momentum. This is, however, a different topic.

Relation between poles and trajectories is a subject of an ongoing debate 13,
and is worth a brief discussion. It is reasonably to assume (we are not aware
of a rigorous proof) that the knowledge of all poles and branch cuts of the S-
matrix in the complex J-plane, together with the knowledge of its behaviour
as |J| = oo would amount to knowing all dynamical properties of the system.
Then the simple system mentioned at the beginning of this Section can equally
be described in terms of trajectories, or in terms of poles. The pole description
would, however, be awkward. To see how a large number of Regge poles, located



far from the real J-axis, conspire to produce the effects of a single classical tra-
jectory, we would need to accurately know their positions and residues. In this
case it is much easier to speak about trajectories.

There is, however, a counter example. Consider the simple potential model stud-
ied in Refs.12,14,15 where most of the trajectories bounce off the outer edge of
the potential. There is also a sharp resonance, so that the particles with J ~ J;
can penetrate the barrier by tunnelling and become trapped in the interior for
a significant length of time. Here full description in terms of trajectories is not
possible, and the trapped motion needs to be described in terms of poles.
Between these two extremes, there are numerous cases which can be described in
both languages. Such are some of the rainbows 14,16, glories 17,16 and closely
related threshold phenomena 14,18. The choice of the description is in these
cases voluntary.

It seems desirable to avoid discussions where one party labels a phenomenon
a resonance, since it can be described in terms of poles, while the other party
denies that, since there is a signature of the phenomenon in the classical trajec-
tories simulations. With this in mind, we introduced the term 'resonance-related’
in the title, and will use it wherever a similar ambiguity might arise.

Analysis in terms of poles requires the knowledge of analytical properties of the
S-matrix element off the real J-aixs. In the next Section we describe a code de-

signed to perform analytical continuation of S¢,,_, (J) into the complex J-plane.

4 Padé reconstruction of a scattering matrix element.
The PADE_II code

So we have used one of the standard codes to evaluate numerically N + 1 — Jpin
values of the S-matrix element for a transition v — v/, «,

S,HV(E)J:i)a i = Jmin, ..., IN. (5)

The number of angular momenta has been chosen large enough, so that in the
partial wave sums (PWS) we can replace the infinite upper limit with N. Both
energy F and angular momentum J enter the Schroedinger equation in such a
way, that S,  (F,J) is an analytical function of E and J. It can be defined for
all J’s, real or complex, and not just for the integer 'physical’ values J = 0,1, 2....
We would like to know this function on the real J-axis and in its vicinity. This
would allow us to do the stationary phase analysis for trajectories, or to isolate
contributions from a resonance poles, or to do both.

The S-matrix element is expected to have Regge poles, and also Regge zeroes
19, i.e., the values of J for which the transition v — v/ is impossible. Thus,
it is reasonable to approximate S%,  (E,J) by a ratio of two polynomials, by

constructing a Padé approximant

1M - 2)

S§Pade (B J) = Kyexpli(aJ? + bJ + ¢)] x
B TS - R

; (6)



which should have the correct values at the physical angular momenta,

S§hade(p Jy=5%, (E,J), J=0,1,..N. (7)
In equation (6) Kn(FE) is a constant, [z] stands for the integral part of =, and
Z;(E) and P;(FE) are the zeroes and the poles of the approximant, respectively.
There is also a quadratic phase specified by three constants, a(E), b(E) and
¢(E). Introduced to make the approximant more accurate, the phase has also a
physical meaning: it is related to direct processes, which one should be able to
describe in terms of trajectories. The construct in (6) is called Padé approxi-
mant of type II, to distinguish it from the approximant of type I, built from the
values of the first N derivatives at zero, rather than from N values at different
points 20.
A method for constructing such approximants is described, for example, in Sec-
tion IIT of Ref. 20. The method is implemented in the FORT AN code PADE_TT
21, whose purpose is to provide, as best one can, the values of the constants
required to build S729¢(E, .J) in Eq.(6). For a detailed description of the code
and the options availbale to the user, we refer the reader to Ref. 21. Here we
only mention some of the properties of the function S5 built in this way from
the values (5).
The fact that analytical continuation of the S-matrix element is not unique was
noted, for example, in the early applications of the complex angular momentum
(CAM) theory 22. One can, for example, multiply SZe4¢ (E, J) by exp(2imn.J),
where m is any integer, and still satisfy Eqgs.(7). Fortunately, in our semiclassi-
cal treatment this ambiguity can be resolved on physical grounds. With many
angular momenta involved, the derivative of the phase of the S matrix element,
dos,, (E,J)/dJ, also known as the deflection function (DF), gives the angle
into which products with angular momentum J are scattered. If the forces be-
tween the atoms are mostly repulsive, and a particular choice of defining the
angle is made, the DF is expected to start at around 7 for J ~ 0, and then
descend to ~ 0 for J & N. The presence of resonances may complicate the form
of the DF, but there is usually a way to check whether its overall shape complies
with what has been just said. Another possibility is adding to Sf/‘}_dﬁ a function
which vanishes at J = Jin, - - ., IN. This would change the behaviour of |S5‘f_df;|2
between, say, J = 5 and J = 6, where one expects it to be smooth. It is possible
that a Regge pole very close to the real J-axis would give a narrow peak which
fits between, say, J = 5 and J = 6. To check whether this resonance is indeed
physical, one could change the energy until the peak is centred, say, at J = 6
and becomes visible in the input data (5).
We note also that a Padé approximant, which has at its disposal roughly
N/2 poles, cannot correctly represent everywhere in the complex J-plane a
e, (E,J) with an infinite number of poles. One might hope that at least
N/2 poles nearest to the real axis would be represented adequately. That is,
unfortunately, not true. Some of the poles and zeroes of the approximant would
indeed, coincide with the true physical poles and zeroes of S,/.,. The rest will
be scattered around, trying to mimic the effect of the remaining physical poles



and zeroes for Js close to the sampling values J = Jy,in, ...N. A calculation with
a large number of partial waves N, and with few physical poles and zeroes close
to the real axis, shows that most of the poles and zeroes form a closed boundary,
within which the true poles and zeroes are reproduced accurately. Outside the
boundary, the Padé approximant fails. One inexact yet helpful analogy is with
trapping light between two concave mirrors, designed to give chosen values to the
field on the central line between them. Inside the mirror cavity the light field is a
smooth interpolation from the given values, while outside the field just vanishes,
and no interpolation is produced. If the accuracy with which numerical data (5)
was produced is poor, or the number of the partial waves is not sufficiently large,
no well defined boundary is produced 14, 17. In this case, to check whether a
pole is a physical one, or just an artefact of our Padé reconstruction, we should
check its stability, e.g., by constructing approximants from different numbers of
partial waves, or by contaminating the input data with more non-analytic noise
21.

Thus, after feeding in the data (5), and successfully running the PADE_IT code,
we have a function S5 (E, J) which correctly reproduces the chosen S-matrix
element in a subset of the complex J-plane, containing the input points J =
Jmin, Jmin + 1, ...N. With it, we can interpolate the S-matrix element between
integer J’s on the real J-axis, and evaluate S, for a complex J not too far
from it. We can find the positions J, = ReJ,, + iImJ, of some of the true poles
of the S-matrix, together with the corresponding residues, Res[S%, (E, J,] =
limyo g, (J — J,)S% . (E, J,). More specifically, we copute the residues as

127 (T — Z)

H[(N—l)/Q](Jn _ Pi).

i=1,i#j

Res[S%. (E, J,)] = Kyexpli(aJ? + bJ, + ¢)] (8)

Whatever we do, we may rely on this information only. In all applications we will
be able to evaluate resonance contributions only for the genuine physical poles
close to the real J axis, whose positions and residues are known sufficiently ac-
curately. The remaining poles will be used only to evaluate the S-matrix element
only on the real axis, or close to it. In this way it doesn’t matter if individual
positions of those spurious poles are wrong, as long as together they produce a

correct value for S, ,(E,J) where we need it.

5 Understanding resonance patterns in state-to-state
integral cross sections. The ICS Regge package

The first example, where the knowledge of the analytical properties of the S-
matrix element can be used, concerns the integral cross section (2). An example
of an ICS is shown in Fig. 2. What is the origin of the pattern seen there? We
suspect it to be a resonance effect, yet Eq. (2) alone cannot provide a deeper
insight, since the S-matrix elements contain both resonance and non-resonance
contributions, and we do not know how to separate them. A more convenient
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Resonance pole and zero \o\ //

Fig.1. Poles (circles) and zeroes
(crosses) in the complex J-plane, as ob-
tained by Padé reconstruction of the
scattering matrix element. The poten-
tial model 12,14,15 consists of a hard
sphere of a radius 2.0454 surrounded
by semi-penetrable §-barrier of a mag-
nitude 2 = 1.023 meV - A. at r =
2.632A. The mass and the energy of
the particle are 1 a.u. and 83.5 meV,
respectively. There is one resonance
Regge pole at Ji = 6.71 4 0.32¢, which
corresponds to trapping the particle
between the hard sphere and the outer
layer. The Padé approximation uses
19 partial waves. It fails in the shaded
region outside the boundary marked by
the poles and zeroes of the approxi-
mant (dashed).
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Fig.2. a) The ICS for the model in
Fig.1 (solid). Also shown are the first
term in Eq.(9) (dashed) and the dif-
ference between the ICS and the reso-
nance contribution in (b). b) the res-
onance contribution to the ICS given
by the second term in the r.h.s of
Eq.(9), and c) the corresponding reso-
nance Regge trajectory. The arrow in-
dicates the position of the resonance
pole shown in Fig.1.



representation was found in Ref. 23, and later modified in 24 to include state-to-
state transitions in the multi-channel case. The Mulholland decomposition (we
follow the authors of 23 in calling it so) can be obtained, for example by applying
the Poisson sum formula to the sum in Eq. (2), and then deforming contours of
integrations in the first and fourth quadrants in all but the zeroth terms. In the
process we pick the contributions from all Regge poles, and are able to see which
ones are responsible for the pattern in the ICS. As energy varies, Regge poles
describe continuous curves in the complex J-plane, known as Regge trajectories.
In fact, we are looking for Regge trajectories responsible for the pattern. The
Mulholland formula, conventionally written in the variable

A=J+1/2, N=J,+1/2

has the form

2 oo
0% (B) =22 / 1S5 (B, A)PAdA + (9)
k’/ JWLin_l/Q

872 AnRes[S% . (E,\)|S% (B, \%)

Il/’ v E )
1+ exp(—2im\,) L u(E)

where a star denotes complex conjugation. The first term in (9) is what one
gets by simply replacing the sum in (2) by an integral over J. It is what one
would find if each angular momentum were scattered into its own angle, and
to find the total number of scattered particles one only needs to sum over Js.
The second term is the sum of all pole contributions, and reflects the ability of
collision partners to form intermediate quasi-molecule(s). Thus, we expect it to
be responsible for the resonance effects. The third term, I, (, contains the
remaining integrals. Their contours typically run up and down the imaginary
A-axis, where the exponentials in the Poisson sum formula decay rapidly. We ex-
pect I, (E) to be small, or at least structureless 23,24. Since Eq.(9) is exact,
this last term can be evaluated as the difference between the term in the Lh.s
and the first two terms in the r.h.s of Eq.(9)..

This is a formula which can be evaluated after performing Padé reconstruc-
tion described in the previous Section. The first term in the r.h.s of (9) can
be computed, since from (6) we know the behaviour of S$, , on the real J—
(A\-) axis. Although the sum in (9) runs over all poles in the first quadrant of
the complex J-plane, only few of them contribute. Indeed, 1 — exp(—2imA,) =
14 exp(—27ReJ,) exp(2rIm.J,) so that already for Im.J, = 1 the denominator
of order of 5 x 10% and, unless the residue is unduly large, the pole’s contribution
is negligible. Thus, it is the resonance poles close to the real axis that contribute
most, and for such poles the Padé approximant gives accurate positions and
residues. Finally, the Hermitian conjugate S (E, AY) is readily obtained by
putting J = J in Eq.(6), and taking conjugate of the result.

A suite of codes ICS Regge 25 was recently produced for the purpose of iden-
tifying the relevant resonance contributions [the second term in Eq.(9)]. Again,
here we only describe the main features of the code, and refer the reader to
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25 for details. The ICS_Regge employs a slightly modified (see 25) version of
the PADE_II. For an input, one needs the numerical values of the S-matrix
element,S%, ,(E;, J;), evaluated on a grid of energies E;, for a number of angu-
lar momentum J; sufficient to converge the sum (2) at each energy.

In the first step, a Padé reconstruction described in the previous Section, is
performed for each energy F;, and the Regge trajectories are identified.

In the second step, a particular trajectory is chosen and followed, with the res-
onance contribution evaluated at each energy. The result is subtracted from the
exact ICS given by the PWS (2).

The second step can be repeated several times if there are several resonance
trajectories which affect the ICS. After all resonances contributions have been
removed, we are left with the ’direct’ part of the cross section, often similar to
the integral in Eq.(9).

An illustration is given in Fig. 2a, which shows the ICS for the model system used
in Fig.1. What we learn is the following: there is an oscillatory structure seen
in the ICS in the specified energy range. We want to know what has caused it.
The Padé approximation is used to analytically continue the S-matrix element
into the complex J plane in the energy range of interest. In the region where the
PD approximant is to be trusted, there is a Regge trajectory shown in Fig. 2c.
As energy increases, the trajectory tends to approach the real axis, rather than
to move away from it. This links the trajectory to a metastable, rather than a
bound state of the potential 15. Next we evaluate the contribution the trajec-
tory makes to the full ICS. The contribution oscillates as is shown in Fig.2b, and
when we subtract it from the ICS, the result is smooth and structureless. So the
oscillations in Fig.2a are, indeed, caused by a single isolated resonance. This is
a blueprint of how the code ICS_Regge can be used to analyse numerical data
obtained for realistic reactive systems. For these much more complex systems
one can encounter several, rather than just one, Regge trajectories. These tra-
jectories can influence an ICS is in ways different from the one shown in Fig.2
15, 23, yet the method of the analysis remains the same.

One thing we haven’t learnt yet is the physical origin of the resonance. To find
out about that, we need to return to our model, and see that there is a possibility
for a particle to penetrate the barrier, provided the angular momentum is such
that its energy is close to the real part of the energy of a metastable state in
the effective potential 15. We can then identify the state in which the particle is
trapped. Similarly, for a reactive system, the use ICS_Regge alone would not tell
whether a resonance is caused by trapping the reactants in one of the Van der
Waals wells, or help attribute particular quantum numbers to the state of the
intermediate triatomic. This is, however,a sort of information usually available
to someone who did the dynamical calculations to obtain the S-matrix elements
numerically. In the end, we know the physical origin of a resonance, or reso-
nances, and are able to quantify its or their effect on an ICS. This completes our
analysis of the ICS, and leaves with the subject of angular distributions, also
sensitive to the presence of resonances.
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6 Resonance effects in state-to-state angular
distributions. Future work

Angular distributions, also known as differential cross sections (DCS), contain
other detailed information of the reaction mechanism, and are more difficult to
interpret. Although there has been much work on the analysis of DCSs in terms
of trajectories and resonance poles 12, 13, 16, 14, 18, 19, 27, 26, no computer
codes have yet been produced for public use. This Section is, therefore, more a
statement of intent than a description of existing software.

To begin, there is a significant difference between transitions with zero and non-
zero helicities 7. For {2 = (2 = 0 the rotation matrix in Eq.(3) reduces to a
Legendre polynomial of order J

diy(cos0) = Pj(cosf). (10)

This simplifies the analysis, and we assume this to be the case throughout this
Section.

Consider again the simple case where a beam of particles of energy F is scattered
by a central potential. Classically, there are many trajectories with different im-
pact parameters or, which is the same, with different angular momentum J. The
scattering angle 6 is between the initial and final velocities of the particle (see
Fig.3). For our purpose, it is more convenient to look at the winding angle ¢,
by which the position vector of the particle rotates in the course of the collision.
There may be a trajectory with 0 < ¢ < m, so the particle is just repelled by
the potential. We will call such a trajectory ’first nearside (NS)’. Then there
may also be a trajectory, with a different J, which does one full rotation around
the origin, and exits with the same scattering angle, so that its winding angle
is larger by 27 (see Fig.3). We will label it 'second nearside’. Finally, a trajec-

2ND 1ST
\

FARSIDE

NEARSIDE

2ND
1ST

Fig. 3. A schematic diagram showing the first two nearside and farside trajectories.

tory undergoing n — 1 full rotations well be called 'n-th nearside’. (Note that in
Fig.3 the angular momentum points towards the reader, so that the trajectories
which enter as shown can only wind in the anti-clockwise sense, and n is always
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positive.) There may be trajectories turning the corner, and exiting on the other
side of the potential (see Fig.3). Their winding angles will be 7 < ¢ < 27, plus
multiples of 27. If such trajectory makes n — 1 full rotations, we will call it 'n-th
farside (FS)’. Finally, due to axial symmetry, a NS trajectory with a winding
angle ¢ = m— 60+ 2mn, n = 0,1,2..., and a FS one with ¢ = 7w 4 6 4 27m,
m = 0,1, 2... correspond to the same scattering angle 6.

Thus, there are, in principle, infinitely many ways in which a particle can arrive
at a detector set at an angle # to the direction of the beam. Classically, one
simply counts the number of trajectories ending up between 6 and 6 + df. Quan-
tally, each trajectory carries a probability amplitude, and these amplitudes are
summed to obtain the scattering amplitude in Eq.(3). The types of trajectories,
which can actually occur, depends on the potential. Let us assume that only the
first NS and FS trajectories are present. Then there are just two pathways lead-
ing to a given 6, and the system becomes a sort of two-arm interferometer, with
an interference pattern revealed in the DCS o(6). This sets the rule of the game:
we want to decompose a structured f(6) into a sum of possibly structureless
amplitudes, which also have some physical meaning. In our example these would
be the contributions from the trajectories in Fig.3 which wind to the left and to
the right. We may conclude that those which wind to the left pass through the
attractive part of the potential, while the others are repelled by it.

There may be more trajectories, and we may not be interested in how many
times they wind around the origin, just in whether they end up in the NS or
the FS zone. Then we would combine the contributions from all NS and FS tra-
jectories into fV5(0) and fF5(0), respectively, write f(0) = fVN°(0) + fF5(0),
and see whether the interference between fys and frg is responsible for some
interesting structure seen in o(0). As already mentioned, we would know nothing
about the number of rotations a trajectory makes around the origin.

The picture involving classical trajectories was used for illustration only, and
is by no means the only possible one. There are other, quantum, mechanisms
making the particle circle around the origin. In the model used in Figs.1 and
2, a particle can tunnel through the outer barrier and find itself trapped. In
order to conserve its angular momentum, such particle will have to spin around
the hard core until it finally escapes. In a similar way, if three atoms form an
intermediate triatomic, the triatomic must rotate before breaking into products,
thereby carrying the atoms into angular regions not accessible to a direct scat-
tering mechanism.

In a number of papers (see 28 and Refs. therein), Connor and co-workers have
shown that, regardless of the physical mechanism, fV9(0) and fF°(6) can be
evaluated simply by decomposing Legendre polynomials in (3) into two travel-
ling wave components, Py(cosf) = P} (cos) + P (cosf), where P¥(cos) ~
exp(£iJ0) provided 6 is not too close to 0 or w. One then writes

o (B,0) = % S (J+1/2)[Pf (cosb) + Py (cost)] x (1)
YV J=Jmin

1SS (B, J) = 6acbu] = fN2(B,0) + f3E5(B,0).

vi<—v v'v
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The NF-decomposition (11) is extremely simple since it requires only the values
of the S-matrix element at the physical values of J, J =, 1, 2..., and no additional
computational effort. Let us see what one can learn from it, using the simple
model employed in Figs.1 and 2. The model is slightly modified: the contributions
from higher angular momenta are now suppressed by multiplying the S-matrix
element with a Gaussian, S(E, J) — exp(—J?/3?)S(E, J), where 3 is a suitably
chosen constant. This helps us mimic a sort of a reaction, which is less likely to
occur for large angular momenta, and also discard diffraction on the outer sphere,
presently of no interest to us 14. The DCS shown in Fig.4a is highly structured,
and we want to know the reason why it is so. The fN9(0) and f%(6) in Eq.(11)
are shown in Fig.4b. They are much less structured, so we find that most of the
oscillations seen in Fig.3a come from the interference between the nearside and
the farside components of the scattering amplitude, defined in Eq.(11).

We may want to know still more. There is still some structure left in the two
components in Fig. 4b, and it is not quite clear yet what makes the system
‘turn the corner’; in order to produce the FS contribution in Fig.4a. More can
be learned provided we know not just the discrete values of S, but its behaviour
on the whole of the positive real J-axis. It was shown in 27 that it is sufficient
to know just two functions,

SeuBo) = [ eplid)S5 (BN 2N (12)
0
Go (B ) = / exp(iXp)SE ., (B, AAAA,
0

in order to reconstruct the behaviour of the scattering amplitude f%. ,(E,0)
in the whole angular range 0 < 6 < m. The details can be found in Ref 27.
Here we only note that by supplying more information, we also learn more:
with the help of F,  (E, ) we 'unfold’ the scattering amplitude not just into
two NS and FS components, but into contributions coming from all NS and FS
regions. An example of such detailed NF decomposition is given in Fig.5. There
the unfolded amplitude F' shows a long decaying tail stretching into the 2-nd FS
region, so that the structure left in the FS components in Fig. 4b comes from
the interference between the 1-st and the 2-nd farside contributions. It is easy to
verify that for ¢ >> 7, F%, (E,p) ~ Res[S% . (E,J1)] exp(iJi1p), where J;
is the position of the resonance Regge pole shown in Fig.1. Thus, the structure
seen in Fig. 4a, results from capture into a resonance Regge state, in which the
particle can perform up to two full rotations before finally escaping.

We can now outline the main tasks a code for analysing angular distributions
(possibly called in future DCS_Regge) would need to perform:

a) analytically continue the S-matrix element into the complex J plane using
the PADE_IT code and evaluate the functions F and G in Eq.(12) and all NS and
FS contributions,

b) extract the resonance pole contributions from both F' and G, e.g., by the
method described in 14, 26, 27 and express what is left in term of classical
trajectories,
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¢) using various contributions, reconstruct the DCS at various angles and for

various energies,

d) explain, in physical terms, the shape of a DCS studied.
This will be the subject of our future work.

50 T T T T
: " T s 2\ ; 20 1stNS  1stFS 2ndNS 2nd FS 3rd NS -
40 |, a) If7°(0)+f o) // 0l |
| >
30 N
c Lo —<
Ke] 20
5 2 o(6) 1 -10 | 1
g 10t 20| 28 a)
%0 100 |8 | ‘ ‘ j
— T U)_a T T T T
ks a5
> b) 50 [ °7 |
£ 20
O 0 __...<
-50 | i
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Fig.4. a) The DCS for the model in
Fig.1 with 8 = 7 (solid) and the sum of
the nearside and farside components in

¢ (deg)

Fig. 5. The real parts and the moduli
of the unfolded amplitude F' (a) and G
(b) given by Eq.(12) for the model in

Fig.1. The region ¢ < 0 is inaccessible
to classical trajectories.

Eq.(11) (dashed); b) the nearside and
farside components in Eq.(11)

7 The summary

We argued that extracting full information about what happens in a chemical re-
action is a task in its own right, which needs to be performed after the scattering
matrix has been computed numerically. We have described the purpose of the
computer codes, existing 21, 25 and yet to be produced, which would perform
the analysis for the integral and differential cross sections. We use the language
of resonance poles and/or classical trajectories where appropriate. Some of the
theory required for the analysis already exists, while some aspects, such as an-
gular scattering for non-zero helicities, would need further work. Our ultimate
goal is to complement existing state-of-the-art reaction scattering codes 1-2 with
additional numerical tools available to researchers working in the field.
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