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Abstract. In the last years the interest in multi-hop communications
has gained momentum within the research community due to the cha-
llenging characteristics of the intra-vehicular radio environment and the
stringent robustness imposed on critical sensors within the vehicle. As
opposed to point-to-point network topologies, multi-hop networking a-
llows for an enhanced communication reliability at the cost of an addi-
tional processing overhead. In this context this manuscript poses a novel
bi-objective optimization problem aimed at jointly minimizing 1) the
average Bit Error Rate (BER) of sensing nodes under a majority fusion
rule at the central data collection unit; and 2) the mean delay experi-
enced by packets forwarded by such nodes due to multi-hop networking,
frequency channel switching time multiplexing at intermediate nodes.
The formulated paradigm is shown to be computationally tractable via
a combination of evolutionary meta-heuristic algorithms and Dandelion
codes, the latter capable of representing tree-like structures like those
modeling the multi-hop routing approach. Simulations are carried out
for realistic values of intra-vehicular radio channels and co-channel in-
terference due to nearby IEEE 802.11 signals. The obtained results are
promising and pave the way towards assessing the practical performance
of the proposed scheme in real setups.

Keywords: Intra-vehicular networks; Routing; Spectrum Allocation; Dan-
delion Encoding; Evolutionary Meta-heuristics

1 Introduction

The last decade has witnessed a number of technological advances in short-
range wireless networking as a consequence of impending research efforts towards
improving their efficiency in terms of energy consumption, resource usage and



self-organization capabilities. Evidences abound, ranging from newly developed
protocols and stacks to the practical assessment of their performance in different
communication environments. Consequently, a plethora of application scenarios
have been shown to potentially benefit from the inherent advantages of wireless
networks (i.e. ease of deployment, less infrastructure needed, increased mobility
and lower costs [1]).

The automotive sector is one of the application scenarios where wireless tech-
nologies have been extensively studied as a lightweight alternative to sense dif-
ferent constituent parts of the vehicle [2–5]. Surprisingly it has not been until
recently [6, 7] when multi-hop wireless networking has been hypothesized as an
effective communication option to cope with the stringent fading statistics of the
intra-vehicular channel, whose lack of frequency selectivity impedes the adoption
of adaptive spectrum shaping techniques [8, 9]. Such challenging radio conditions
get even more involved with the presence of outer, non-controllable interfering
sources whose transmitted signals collide with that forwarded by the deployed
vehicular sensors to the central on-board unit. For instance, many contributions
have analyzed the behavior and resilience of IEEE 802.15.4 (Zigbee) sensors un-
der interfering IEEE 802.11 signals in both general (i.e. application agnostic)
setups [10, 11] and specific vehicular environments [12, 13].

Indeed, multi-hop networking has attracted most of the recent literature on
intra-car wireless communications. To the knowledge of the authors studies so
far have gravitated on proving the feasibility of multi-hop networks by applying
well-established protocols to controlled intra-vehicular communication setups.
The most notable example is the work in [14], where the so-called Collection
Tree Protocol was utilized in its näıve form to verify the predicted gains of
multi-hop intra-vehicular wireless networking. Although resource allocation has
been recently studied for the intra-vehicular environment [15], spectrum coor-
dination, topology and power control has not been yet jointly tackled for this
specific communication scenario, even though the underlying radio particulari-
ties – i.e. strong fading characteristics, eventual spectrum interferers – and the
spectrum flexibility of avant-garde short-range wireless sensors [16] call for fur-
ther investigation on this topic.

This manuscript elaborates on the above noted lack of research by propo-
sing a centralized bio-inspired scheme for optimally 1) routing the information
captured by the compounding nodes of an intra-vehicular wireless network; 2)
allocating the power utilized by each of such nodes; and 3) selecting the spec-
trum channel between each pair of sensors. This work builds upon the number
of multi-channel short-range wireless transceivers made commercially available
in recent times, such as the GP712 single radio multi-protocol chipset developed
by GreenPeak Technologies [17]. By exploiting the a priori knowledge of the
propagation statistics between sensors (which can be obtained by aside channel
estimation techniques), the proposed scheme resorts to a combination of evolu-
tionary meta-heuristics and a tree encoding approach to balance two conflicting
objectives: the overall delay of the captured information due to propagation,
multiplexing and channel access, and the bit error rate averaged over all sensors



when their information is sent over multiple paths and fused at the on-board
central unit (OBU). Experiments over realistically modeled intra-vehicular com-
munication scenarios are discussed towards evincing the satisfactory performance
of the proposed resource allocation algorithm.

The remainder of the manuscript is structured as follows: Section 2 poses
the optimization problem to be tackled. Section 3 delves into the design of the
proposed resource allocation algorithm. Experimental results are analyzed in
Section 4 and finally, Section 5 concludes the paper.

2 System Model and Problem Formulation

As often made in the literature an intra-vehicular network can be conceptualized
as a directed graph defined by the ordered pair G .

= (V, E), where V denotes the
set of vertices or nodes compounding the network and E represents the set of
edges or links, each connecting a given pair of nodes. Let N

.
= |E| and M

.
= |V|,

with |·| standing for set cardinality. Point-to-point communication over each link
e ∈ E is established over a certain frequency channel f(e) ∈ F .

= {f1, . . . , fF },
where F is the number of available radio channels (e.g. F = 15 for Zigbee
[18]). On the other hand, each node v ∈ V transmits at a certain power p(v) ∈
R[0, Pmax], where it is assumed that the radio transceiver is capable of adjusting
its utilized power at any intermediate value within that given range.

The link between node vi and vj (with j ∈ {1, . . . , i − 1, i + 1, . . . , N}) un-
dergoes degradation due to the fading statistics between different constituent
parts of the network. In this context, measurements reported and analyzed in
[8] showed that the whole intra-vehicular wireless medium features frequency-
flat signal fading, with different Line-Of-Sight (LOS) and Non-Line-Of-Sight
(NLOS) propagation characteristics depending on the physical location of the
transmitting sensor and the receiving node. As a consequence, the degradation
suffered by the above link – hereafter denoted as ei,j – imprints a Bit Error
Rate BER(vi, vj) on the transmitted signal. This error rate can be expressed
as a closed-form expression depending on the Signal to Interference and Noise
Ratio SINR(vi, vj) over such a link, which in turn is fixed by the transmit power
p(vi) and the signals interfering on receiver vj over the utilized frequency f(ei,j).
For instance, in the IEEE 802.15.4-2006 standard utilized by Zigbee [18, Section
E.4.1.8] BER(vi, vj) can be approximated by

BER(vi, vj)
.
= BER(ei,j) ≈

1

30

16∑
n=2

(−1)n
(

16

n

)
e

20(1−n)SINR(vi,vj)

n , (1)

where effects from fading and interfering sources are usually included as summing
contributions in SINR(vi, vj), i.e.

SINR(vi, vj) =
p(vi) · L(vi, vj)

M∑
i′=1

i′ 6=i,j

p(vi′)L(vi′ , vj)I [f(ei′,j) = f(ei,j)] + (N0/2)∆f(ei,j)

,



with L(vi, vj) comprising fading/scattering channel losses from node vi to node
vj ; ∆f represents the bandwidth of channel f ∈ F ; I[·] is an auxiliary function
taking value 1 if its argument is true (and 0 otherwise); and N0 is the noise
power spectral density measured in watts per hertz. Loss factors also depend
logarithmically on the distance between nodes vi and vj via a loss exponent γi,j .

Following the diagram depicted in Figure 1, each compounding sensor of
the intra-vehicular network forwards their captured information to an on-board
central receiver (coined previously as OBU) through a multi-hop tree-like route.
By a slight notational abuse, each of such routes will be denoted as a subset
Ei = {ei1, ei2, . . . , eiNi} ⊆ E , which includes all such Ni

.
= |Ei| edges in the network

graph that participate in the route from node vi to the OBU. Since this work
focuses on tree topologies, it should be obvious that | ∪Mi=1 Ei| = M , i.e. the
number of total links compounding the multi-hop route is equal to the overall
number of nodes in the network. If a decode-and-forward relying approach is
assumed, the bit error rate at the OBU for the information sent by node vi will
be given, for odd Ni, by

BER~(vi) =

Ni∑
x=1

BER(eix)

Ni∏
y=1

y 6=x

(
1− BER(eiy)

)

+

Ni∑
x=1

BER(eix)

Ni∑
y=1

y 6=x

BER(eiy)

Ni∑
z=1

z 6=x,y

BER(eiz)

Ni∏
k=1

k 6=x,y,z

(
1− BER(eik)

)

+ . . .+

Ni∑
x=1

(1−BER(eix))

Ni∏
y=1

y 6=x

BER(eiy), (2)

i.e. as the probability that an odd number of links within Ei incurs in error (a
similar expression can be obtained for even Ni). The average Bit Error Rate of
the intra-vehicular sensor network when operating on the relying routes specified
by {Ei}Mi=1 will be hence expressed as

BERavg
~

.
=

1

M

M∑
i=1

BER~(vi), (3)

which can be conceived as an overall measure of the communication quality of
the sensor network deployed inside the vehicle.

The interference caused among nodes within the network and the even-
tual presence of external, non-controllable radio sources capable of creating co-
channel interference in the same spectral band (e.g. IEEE 802.11 and Zigbee)
can be mitigated by overlapping Ψ redundant multi-hop routes that transmit
the same information to the central OBU, which fuses the received flows un-
der a given fusion criteria. One of such criteria is the so-called majority voting,
which decides for the value of the k-th bit bik sent by node i over each overlaid
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Fig. 1. Diagram representing the scenario tackled in this manuscript for Ψ = 3 multi-
hop routes overlaid over M = 24 nodes. Each colored route can be modeled as a tree
graph whose error and delay performance for every compounding node depends not
only on the topology itself, but also on interfering signals from nearby nodes.

multi-hop route {Eψi }Mi=1 as

bik =


1 if

Ψ∑
ψ=1

bψk ≥ Ψ/2,

0 if
Ψ∑
ψ=1

bψk < Ψ/2.

(4)

If by a similar development to Expression (2) we denote the Bit Error Rate

for sensor i over multi-hop route {Eψi }Mi=1 as BERψ
~(vi), the overall error obtained

for sensor i at the OBU under majority voting (mv) is given, for odd Ψ , by

BERmv
~ (vi)

.
=

Ψ∑
z=dΨ/2e

 ∑
M∈Mz

∏
i∈M

BERψ
~(vi)

∏
i′∈V/M

(1− BERψ
~(vi′))

 , (5)

where Mz denotes the set of all z-length combinations drawn from the integer
set {1, . . . ,M}. By averaging over the whole set of nodes an overall measure of
the communication robustness of the whole network can be obtained as

BERavg,mv
~ =

1

M

M∑
i=1

BERmv
~ (vi), (6)

which should be minimized by properly optimizing the values of its controlling
variables {pψ(vi)}Mi=1 (power), {fψ(ei,j)}Mi,j=1 (frequency channel between nodes)
and the topology of each of the different multi-hop routes. For notational conve-
nience edges belonging to the tree graph modeling each of the overlaid multi-hop
routes connecting all nodes to the OBU will be denoted as {eψi,j}Ni,j=1.

Unfortunately the minimization of the above error comes along with a delay
penalty due to 1) the switch of frequency channels at every transmitting node;
and 2) the time multiplexing of these flows in intermediate nodes receiving data
from different nodes and forwarded over redundant routes. As for the former
the incurred delay is assumed to increase linearly with the different number



of channels to be heard by every node. Specifically, if the time taken by the
radio interface to shift from one channel to another is denoted by Tsw and no
parallelization between reception and transmission tasks is assumed, the worst-
case switching delay at node vj and multi-hop route {Eψi }Mi=1 will be given by

Dψ
sw(vj) = Tsw

(∣∣∣∣{f(eψi,j)}Ni=1

i 6=j

∣∣∣∣+

∣∣∣∣{f(eψj,n)}Nn=1

n 6=j

∣∣∣∣− 2

)
, (7)

i.e. as the switching delay times the number of unique frequency channels used
for the links incoming at – and outgoing from – node vj . The second term of the
overall delay will assume all nodes operate in saturation regime, which yields a
multiplexing time linearly dependent on the number of links to be relayed and
the estimated time of the utilized communication stack for transmitting a packet.
In Zigbee this time reduces to a sum of the time-on-air of the packet at hand
and the time for CSMA-CA channel access and eventual retries. For instance,
for the XBee commercial radio module [19], 16-bit addressing, 127-byte payload
and clear channel access, this latency is

Dψ
mx(vi) = 0.001 · (0.544 + (0.032 · 127 · |{eψi,j}Nj=1

j 6=i
|)) (in seconds). (8)

The information sent by every node undergoes accumulated delays at inter-
mediate nodes due to the above two terms. As a result the overall, worst-case
delay for the information sent by node vi will be given by

Dψ
~(vi) =

∑
j∈Mψ

i→OBU

(
Dψ
mx(vj) +Dψ

sw(vj)
)
, (9)

where Mψ
i→OBU denotes the subset of nodes that participate in the path from

node vi (included) to the OBU. From this expression the overall delay metric
averaged over all nodes in the network can be computed under two different
assumptions: if all nodes await for the completion of all transmissions over a
certain multi-hop route {Eψi }Mi=1 before proceeding with the next one, the overall
delay will be fixed for all nodes and given by

Davg
~ =

Ψ∑
ψ=1

max
i∈{1,...,M}

Dψ
~(vi), (10)

which, in what regards to the allocation of resources, can be conceived as a set
of independent routes. On the contrary, if transmissions over different routes
are allowed to hold concurrently in the network, nodes will require switching
frequency channels and relay links belonging to different routes. This implies
that the overall worst-case delays in Expressions (7) and (8) are modified to

Dsw(vj) = Tsw

(∣∣∣∣{{f(eψi,j)}Ni=1

i6=j
}Ψψ=1

∣∣∣∣+

∣∣∣∣{{f(eψj,n)}Nn=1

n 6=j
}Ψψ=1

∣∣∣∣− 2

)
, (11)

Dmx(vi) = 0.001 · (0.544 + (0.032 · 127 · |{{eψi,j}Nj=1

j 6=i
}Ψψ=1|)), (12)



giving rise to an overall average delay given by

Davg
~ =

1

M

M∑
i=1

max
ψ∈{1,...,Ψ}

 ∑
j∈Mψ

i→OBU

(Dmx(vj) +Dsw(vj))

 , (13)

which depends roughly on the transmitted power, frequency and topology of the
constructed overlay routes. With these definitions in mind, the problem tackled
in this paper can be formulated as finding an optimal allocation {pψ(vi)}Mi=1

(power), {fψ(ei,j)}Mi,j=1 (frequency channel between nodes) and {eψi,j}Ni,j=1 (tree
topology) for a given number of overlaid routes Ψ such as the conflicting objec-
tives defined in Expressions (6) (overall average BER) and (10) or (13) (overall
delay) are simultaneously optimized, i.e.[
{pψ(vi)}Mi=1, {fψ(ei,j)}Mi,j=1

i 6=j
, {eψi,j}Ni,j=1

]Ψ
ψ=1

= arg min
[
BERavg,mv

~ , Davg
~
]
, (14)

subject to

pψ(vi) ∈ [0, Pmax] ∀i ∈ {1, . . . ,M}, (15)

fψ(ei,j) ∈ F = {f1, . . . , fF } ∀ei,j ∈ E , (16)

and the additional constraint that routes {eψi,j}Ni,j=1 ∀ψ ∈ {1, . . . , Ψ} can be
modeled as a tree graph spanning the whole set of nodes within the network and
rooted on the OBU.

Due to the complexity of the problem and the conflicting nature of both
objectives, this work proposes to resort to multi-objective evolutionary meta-
heuristic algorithms aimed at estimating the Pareto front differently trading one
objective for the other. This approach requires efficient solution encoding strate-
gies capable of jointly representing the tree topology of the multi-hop routes,
the power and the frequency channel utilized by the nodes for each route as will
be explained in detail in the following section.

3 Proposed Resource Allocation Algorithm

The ultimate purpose of the resource allocation algorithm proposed in this paper
is to estimate the set of values for the optimization problem posed in Expressions
(14) to (16) optimally trading bit error rate performance for average delay from
the nodes to the central OBU. To this end a bio-inspired, population-based,
multi-objective meta-heuristic approach simultaneously comprising power, fre-
quency and topology optimization will be next described, including the solution
encoding, its constituent operators and overall operation strategy.

3.1 Solution Encoding

All variables are represented by a vector X(k), with k ∈ {1, . . . ,K} denoting the
index of the solution within the population. This vector will contain the power



(one value per node and route, MΨ in total), frequency channel (one value
per link and route, and since in every tree the number of links coincides with
the number of sensors, MΨ in total) and an integer representation of the tree
topology of every route. As for the latter our approach will resort to the family of
Dandelion-like codes, a subclass of the general category known as Cayley codes.
A Cayley code is essentially a bijection between the set of all labeled unrooted
trees on M nodes and M − 2 tuples of node labels, i.e. each tree corresponds to
a unique Cayley code and vice versa. Therefore, the overall solution vector will
be given by Ψ · (3 ·M − 2) integer values.

While the variable encoding for the transmit power and frequency per link
is straightforward, the rationale for selecting Dandelion codes for representing
the multi-hop routes lies on their full coverage, zero-bias and perfect closure,
all desirable properties for ensuring efficient encoding/decoding and a bounded
locality when perturbed via evolutionary operators. In fact, Dandelion codes
have been shown to possess better locality and heritability characteristics than
any other Cayley codes when undergoing different evolutionary operators [20,
21]. This superior performance of Dandelion codes has unleashed a flurry of
research gravitating on their application in different scenarios and sectors, such
as Telecommunications [22] and Energy [23].

3.2 Meta-heuristic Solver

With the previous solution encoding approach in mind, a meta-heuristic al-
gorithm is required to evolve the solution population towards regions of pro-
gressively increased Pareto optimality. This will be accomplished by the con-
stituent operators of the so-called Harmony Search (HS) meta-heuristic algo-
rithm, first presented in [24] and since then proven to perform statistically better
than other meta-heuristic schemes in a wide variety of applications [25]. This al-
gorithm inspires from the collaborative behavior of musicians when improvising
aesthetically good harmonies; in fact the compounding operators of HS can be
regarded as computationally modeled behavioral patterns commonly observed
in music composition. At this point the authors would like to point out that
despite the controversy around this algorithm in regards to its similarity to a
special case of (µ + 1) Evolutionary Strategies [26, 27], in this paper we will
use the HS notation in impartial conformity with the majority of the related
literature.

Following the above simile solutions are referred to as harmonies in the con-
text of HS. Likewise, the population of potential solutions as harmony memory
or HM. This memory undergoes a set of intelligent operators repeatedly until a
stop criterion is satisfied. HS applies these operators on a per-note basis with sta-
tistical independence between nodes, which ultimately permits to balance more
effectively the intensification and diversification of the underlying search pro-
cedure. When particularized to the problem tackled in this paper, the nominal
search process of the HS algorithm breaks down into four steps, schematically
depicted in Figure 2 and described as follows:



1. Initialization of the HM: since no a priori information will be assumed, the
HM is populated with harmonies whose individual elements are drawn uni-
formly at random from their corresponding alphabets. Without loss of gene-
rality other initialization criteria can be used such as e.g. a distance-based
minimum spanning tree for the notes representing the topology of the routes.

2. Improvisation: after initializing the set of stored solutions, a new harmony
memory {X̂(k)}Kk=1 is improvised. For each note in {X(k)}Kk=1 the following
operators are subsequently applied:

– The Harmony Memory Considering Rate (HMCR) is driven by the proba-
bilistic parameter ϑ ∈ [0, 1], and establishes the probability that the new
improvised value for a given note is drawn uniformly from the values
taken by the same note in the K − 1 remaining harmonies. Otherwise
(with probability 1-ϑ) the value of the note is kept unaltered.

– The Pitch Adjustment Rate, controlled by the parameter ϕ ∈ [0, 1],
sets the probability that the value for a given note is replaced with any
of its neighborhood in the corresponding alphabet. Here the notion of
neighborhood depends roughly on how the value of the fitness functions
behaves over the alphabet with respect to its value for the note value
of reference. In this work the alphabet for all variables will be sorted in
natural ordering; while this criterion can be intuitively aligned with the
expected impact of the transmit power on the objective functions, this
intuition may not hold for those variables representing the frequency
assignment and the topology of the multi-hop routes. Hence, in such
variables this operator reduces to a uniform randomization of the value,
similar to the näıve mutation operator in Genetic Algorithms.

3. Evaluation and update of the Harmony Memory: once the fitness values for
every candidate harmony in the newly produced memory have been com-
puted, this bi-objective solver selects the prevailing set of K harmonies under
a criterion based on rank and crowding distance: each improvised harmony
X̂(k) is labeled with a numerical score depending on its Pareto dominance
level with respect to the rest of individuals (both the other new harmonies
and those remaining from the previous iteration). Once all individuals have
been ranked in these terms, their crowding distance is computed and uti-
lized as a secondary score to evaluate individuals within the same Pareto
dominance level. Finally, those K harmonies first ranked in terms of Pareto
optimality (primary criterion) and crowding distance (secondary criterion)
are kept for subsequent iterations.

4. Termination: a stopping criterion based on a maximum number of iterations
is imposed to declare the HM as the best Pareto solution attained by the
proposed scheme. If the criterion has not been met steps 2 to 4 are repeated.

As for the implementation of the above meta-heuristic algorithm, it is im-
portant to note that a high number of variables are optimized via a single fitness
function. For instance, when dealing with Ψ = 3 routes and M = 50 nodes a
total of Ψ · (3 ·M − 2) = 444 variables are optimized by the above solver. In
order to handle efficiently the possible counteractions between the variables over
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Fig. 2. Flow diagram of the proposed meta-heuristic resource allocation algorithm.
HM sorting is performed based on Pareto rank and crowding distance criteria. It is
important to note that the application of the HS operators is iterated over the resources
to be allocated – topology, channel or power – during a number of iterations each.

the considered objective functions, the application of the constituent harmony
search operators is iterated over each variable set – topology, spectrum channel
and transmit power – during a certain number of iterations Ie, If and Ip, re-
spectively. This block-wise iterative procedure is then globally repeated for IT
iterations, accounting up to a total of IT · (Ie + If + Ip) fitness evaluations.

4 Experiments and Results

In order to assess the performance of the proposed resource allocation algorithm
under different operational radio conditions, several scenarios have been designed
and simulated by considering an intra-vehicular mesh of M = 75 wireless sensors
uniformly deployed at random inside the car. The central OBU has been assumed
to be located in the front part of the vehicle. The maximum transmit power of
every compounding node is Pmax = 0 dBm, whereas noise power spectral density
is fixed to N0 = −134 dBm/Hz. Communications take place over an spectrum
band divided in |F| channels of equal bandwidth (5 MHz each).



Radio links established inside the vehicle are modeled as Rayleigh or Ri-
cian fading channel depending on whether source and destination nodes are
located (Line Of Sight, LOS) or not (NLOS) inside the same vehicle compart-
ment (i.e. trunk, cabin, in engine, under engine). The path loss exponent driving
the exponential dependence of the transmit power on distance is set to γi,j = 3
∀i, j ∈ M ×M . An additional log-normal shadowing component with standard
deviation equal to 8 dB is included in the large-scale fading model. Values for
the ratio between the direct component and the variance of the multi-hop signal
are set so as to reflect 1) the radio propagation complexity of each section of the
car due to e.g. metallic parts; and 2) the boundaries between the aforementioned
vehicle compartments. Figure 3.a and 3.b exemplify this channel modeling by
depicting the average channel gain for a source sensor located in the trunk and
inside the engine, respectively. The values adopted for the above radio param-
eters are suitable for modeling intra-vehicular wireless networks according to
recent literature [8, 28].

(a) (b)

Fig. 3. Heatmap representing the average channel gain (in dB) inside the vehicle for
a sensor node transmitting (a) from the trunk; (b) from the outer part of the engine.
Deployed nodes are depicted as red circles. The channels utilized in the simulation
experiments incorporate log-normal shadowing. Color scales vary between figures.

Switching between two frequency channels is assumed to take Tsw = 2 · 10-4

seconds. The parameters controlling the resource allocation algorithm are fixed
to K = 100, ϑ = 0.7, ϕ = 0.1, Ie = If = Ip = 10 and IT = 10, values
that have been optimized via an off-line grid search (results not included in
the manuscript for the sake of space). The algorithm has been simulated over
two different scenarios so as to shed light on the single-shot performance of the
proposed algorithm, which are discussed in what follows.

Scenario A: Full Spectrum Availability

In this case a total of |F| = 16 channels (as in physical stacks such as IEEE
802.15.4) are available. It is expected that the resource allocation algorithm has
enough channel diversity to achieve the lowest interference level within the set of
simulated scenarios. When combined with a suitable, interference-aware transmit
power assignment over nodes, the Pareto front optimally balancing error rate



and delay should connect maximal points characterized by 1) an underlying
star network topology (minimum delay, maximum error rate); and 2) a tree-like
network layout with short-range links (maximum delay, minimum error rate).
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Fig. 4. Approximate Pareto fronts produced by the proposed resource allocation algo-
rithm for different values of Ψ and the delay model in Expressions (10) (a) and (13)
(b). Figures (c) and (d) depict the network topology of a multi-hop route selected at
random in the case with Ψ = 3 for the extreme points of the corresponding fronts.

The obtained results verify our prior intuitions on the behavior of the algo-
rithm under the two assumptions taken for the modeling of the overall delay.
When nodes await for the completion of all transmissions within a multi-hop
route {Eψi }Mi=1, the results in Figure 4.a evince that the Pareto front approxi-
mation produced by the algorithm approaches several performance asymptotes
estimated based on:



– The majority fusion of Ψ flows characterized by individual, interference-free
error rates for each node.

– The minimum delay per node attainable by star network topologies with no
need for channel switching, i.e. minDavg

~ = Ψ ·Dψ
mx(vi).

The good agreement of the estimated resource allocation algorithm with its
expected behavior is also buttressed by the plots in Figure 4.c, which depicts the
topology of a randomly chosen route produced by the algorithm at both extremes
of the approximated Pareto front for Ψ = 3. On the contrary, when modeling
the delay under the assumption that transmissions belonging to different routes
are concurrently routed at intermediate nodes, the objectives to be optimized
undergo the effects of interference, frequency switching and multiplexing. The
corresponding approximated Pareto fronts degrade accordingly, as Figure 4.b
clearly shows. In regards to Figure 4.d, topologies associated to the extreme
Pareto points in the Ψ = 3 case of Figure 4.b do not resemble any longer a tree-
like or star network, the reason being that the allocation of resources becomes
more involved due to the interactions between different multi-hop routes.

Scenario B: Restricted Spectrum Availability

In this second scenario the vehicle at hand is assumed to suffer from the inter-
fering effects of an external IEEE 802.11 access point transmitting at 20 dBm
7 meters away from the trunk. The access point is assumed to occupy different
percentages ∆ of the set of |F| spectrum channels available for intra-vehicular
networking. We will restrict this second analysis to the results obtained for the
simplistic delay model.

Results in Figure 5.a and 5.b reveal that the proposed algorithm reacts satis-
factorily against the in-band interference imposed by the external access point.
When focusing on low-delay allocation policies, the assigned resources do not
vary significantly due to the localized effect of the interference at the receiving
end which, in the case of star-like topologies, is mainly located at the OBU.
By contrast, when focusing on resilient topologies, the network is built by short-
length links which, for the sake of minimizing inter-node interference, demand as
many frequency channels as possible to provide enough spectral diversity among
transmissions concurring at the same node.

As the interference from the external access point becomes dominant over the
transmission band (i.e. as ∆ increases) nodes located inside the trunk undergo
a increasingly severe spectrum scarcity, thus their achievable error and delay
figures degrade accordingly. In Figure 5.b it is important to observe that as the
number of interference-free spectrum channel reduces, nodes inside the trunk are
connected via physically longer radio links, which can be justified by the fact
that the algorithm finds it better (in the strict sense of Pareto optimality) to
minimize the number of intermediate hence relaying nodes. This is accomplished
by making the network layout less deep and more central.
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Fig. 5. (a) Approximate Pareto front and (b) network topology associated to the points
with minimum overall bit error rate for the simplistic delay model in presence of a
external IEEE 802.11 interferer over ∆ % of the utilized spectrum band.

5 Conclusions and Future Research Lines

This manuscript has elaborated on the simultaneous management of spectrum,
topology and power in an intra-vehicular wireless network. The stringent radio
propagation and interference characteristics of this radio environment and their
impact on the optimal allocation of the aforementioned resources are mathe-
matically formulated as a constrained bi-objective optimization problem jointly
considering two conflicting criteria: bit error rate after majority data fusion and
overall average latency undergone by the compounding nodes of the network. In-
tuitively, error rate performance is strongly affected by co-channel interference
and fading statistics, which impose short-range communications and spectrum
coordination between nearby nodes. On the other hand, latency is mainly due to
switching among different spectrum channels and the service (queuing) time at
intermediate nodes, which in contrast call for star-like networks with long-range
links and scarce spectrum diversity.

The formulated problem aims at finding the set of Pareto-optimal resource
allocation strategies that best trade one objective for the other. In order to cope
with the inherent complexity of the problem evolutionary meta-heuristics have
been utilized. The proposed approach resorts to the so-called Dandelion solution
encoding scheme, which permits representing tree-like routes with maximum lo-
cality and heritability under evolutionary operators. In order to enhance the
convergence speed of the overall solver, three separate yet interrelated search
procedures are scheduled in practice, each operating on a single resource for a
given number of iterations. The performance of the allocation method is assessed
and discussed through experiments over a number of simulation scenarios, from



which it is concluded that the proposed meta-heuristic scheme is capable to opti-
mally allocate resources under distinct spectrum availability levels and external
interfering signals.

Future research will be conducted towards including energy efficiency (i.e.
minimization of the power consumption) as an objective in the formulated opti-
mization problem. In addition, more realistic latency models will be considered
by discarding any assumption on the transmission regime of the nodes. Finally,
a performance benchmark between different evolutionary solvers (e.g. genetic
algorithms) will be done in terms of Pareto optimality.
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