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Abstract This paper focuses on the application of hp

Hierarchic Genetic Strategy (hp–HGS) for solution of a

challenging inverse problem, namely the inversion of 3D

Direct Current (DC) resistivity logging measurements.

The problem under consideration has been formulated

as the global optimization one, for which the objec-

tive function (misfit between computed and reference

data) exhibits multiple minima. In this paper, we con-

sider the extension of the hp-HGS strategy, namely we

couple the hp-HGS algorithm with a gradient based op-

timization method for a local search. Forward simula-

tions are performed with a self-adaptive hp Finite Ele-

ment Method, hp-FEM. The computational cost of mis-

fit evaluation by hp-FEM depends strongly on the as-

sumed accuracy. This accuracy is adapted to the tree of

populations generated by the hp–HGS algorithm, which
makes the global phase significantly cheaper. Moreover,

tree structure of demes as well as branch reduction and

conditional sprouting mechanism reduces the number of

expensive local searches up to the number of minima to

be recognized. The common (direct and inverse) accu-

racy control, crucial for the hp-HGS efficiency has been

motivated by precise mathematical considerations. Nu-

merical results demonstrate the suitability of the pro-

posed method for the inversion of 3D DC resistivity

logging measurements.
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1 Introduction

To estimate the subsurface electrical properties, it is

customary to record resistivity measurements using log-

ging instruments that move along a borehole axis. These

instruments are equipped with several transmitter elec-

trodes, whose emitted signal is recorded by the receiver

electrodes that are also located along the tool. Logging

instruments are designed in such a way that the voltage

combination measured at receivers depends on the for-

mation’s electrical conductivity. Thus, logging instru-

ments are intended to estimate properties (electrical

conductivity) of the sub-surface material. The ultimate

goal is to identify and characterize hydrocarbon (oil and

gas) bearing formations. In order to design better log-

ging instruments as well as for improving the interpre-

tation of the recorded measurements, computer simu-

lations of resistivity logging measurements are essential

and widely used in many geophysical applications such

as hydrocarbon (oil and gas) exploration.

In this paper, we focus on borehole logging devices

operating of very low frequencies (close to zero), which

are numerically modeled as zero-frequency direct cur-

rent (DC). We perform simulations of 3D resistivity

measurements in deviated wells, with an angle between

the borehole and formation layers below 90 degrees.

We consider two types of problems: forward and in-

verse. The former consists of finding the voltage for a

certain position of transmitter and receiver electrodes

given known resistivities of formation layers. A series of

forward problems for consecutive positions of electrodes

provides a sequence of solutions forming a logging curve.

In the inverse problem, formalized as a global optimiza-

tion one, we are given a reference logging curve and seek

for parameters (resistivities of formation layers) that

would result in a similar curve.
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There exist a plethora of numerical simulation meth-

ods developed to improve the simulation of forward

resistivity measurements (i.e. [3,9,14,20,28,33,36,34]).

Since each simulation requires solution of a partial dif-

ferential equation in 3D, the computational cost asso-

ciated to the solution of a forward problem is elevated.

In order to minimize such cost without compromising

the accuracy, we employ a forward solver [23] based

on a combination of a Fourier series expansion in a

non-orthogonal system of coordinates with a 2D self-

adaptive hp goal-oriented Finite Element Method (hp–

FEM) [24,26,27]. This Fourier-Finite-Element Method

was formulated and applied to direct and alternating

current resistivity logging problems, and it enabled fast

and accurate simulations of resistivity measurements in

deviated wells.

When dealing with inverse problems, several chal-

lenges appear. First, these problems are often ill-condi-

tioned and a small change in parameters may cause

a huge difference in results. Moreover, they may have

a non-unique solution. Additionally, the appearance of

multiple minima (multimodality) may difficult the search

of the global extremum. The inverse problem under con-

sideration (inversion of 3D DC resistivity logging mea-

surement) is much less sensitive to the conductivities of

layers saturated by oil or gas than to the conductivities

of others surrounding layers (e.g. rock, sand) see Szeliga

[?]. Moreover, the measured response from layers satu-

rated by oil or gas has a remarkable dispersion, which

is frequently reported by a practitioners. As a result,

we may expect more than one inverse solution outline-

ing the range of conductivities of such layers. Several

strategies for the inversion of resistivity logging mea-

surements use the convex optimization methods only

(e.g., [1,2,36]). Unlikely, they do not deliver guaran-

tee of finding all solutions. Other possibility is to use

stochastic, evolutionary methods (e.g., [?,17,22]), but

their applicability is restricted by a huge computational

cost and moderate accuracy. The computational cost

problem may be partially overcome by using two-phase

strategies in which the stochastic algorithm is used as

a pre-processing (the global phase) for selecting start-

ing points of convex optimization processes (the local

phase) (e.g., [?,?]).

The main goal of this paper is to introduce the two-

phase strategy that offers the asymptotic guarantee of

success (see e.g.,[?]) and allows for dealing with multi-

modality, delivering a high final accuracy with an ex-

ceptionally low computational cost for inversion of 3D

DC resistivity logging measurements.

The global phase is performed by the dynamically

adjustable Hierarchic Genetic Strategy hp–HGS [?]. This

strategy develops a tree of dependent demes. The root-

deme performs the most chaotic search with a lower

accuracy. Going deeply along tree branches, the search

becomes more local and accurate. The strategy starts

with the root-deme only. After a number of epochs (the

metaepoch), the best individual is selected as a seed of

the child-deme. Sprouting new demes is repeated con-

currently for root and all branches excluding leaves.

It is performed conditionally, if there is a room for

new deme among existing ones at the particular level

of the hp–HGS tree (the distance between centers of

existing demes and seed of a new deme is sufficiently

large). Moreover, child-demes at each level are periodi-

cally checked, and redundant demes are reduced (joined

and commonly selected). Evolutionary process in bran-

ches and leaves are stopped if no progress is observed.

The whole strategy is stopped if a sufficient number of

well fitted leaves are obtained. Both, binary and real-

valued encoding Simple Genetic Algorithm (SGA) and

Simple Evolutionary Algorithm (SEA) are utilized.

The local phase consists of running local gradient

method starting at the satisfactory fitted individuals,

at most one per one leaf-deme. In particular, we utilize

the Broydena-Fletchera-Goldfarba-Shanno (BFGS) al-

gorithm, a quasi-Newton method utilizing the approx-

imation to the Hessian matrix.

The HGS structure results in much less total fitness

evaluations then a single population algorithm search-

ing with the maximum accuracy (see e.g., [32,35]). Only

the root-deme searches continuously with a large num-

ber of individuals. Branches and leaves are small demes

invoked only in the promising regions found by they

parental demes and quickly terminated, just after they

stop to search effectively.

Next, the conditional sprouting and redundancy re-

duction among child demes decreases significantly a

number of fitness evaluation. Moreover, these mech-

anisms allow for concurrent identification of separate

basins of attractions by separate well fitted leaf-demes.

The target accuracy in the global phase utilized by leaf-

demes should not be so high, only enough to separate

basins of attractions of different minimizers.

A huge cost reduction is caused by the scaling of the

fitness evaluation error. Forward simulations are per-

formed with a self-adaptive hp goal-oriented Finite El-

ement Method. The computational cost of misfit eval-

uation by hp–FEM depends strongly on the assumed

accuracy. This accuracy is adapted to the inverse error

at the particular level of the population tree generated

by hp–HGS, which makes the global phase cheaper. The

necessary mathematical motivation will be delivered in

Section 6 and preceding Sections 2 – 4.

Only the necessary minimum number of local sear-

ches are activated for finding all minimizers with high
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accuracy. The local gradient searches are expensive in

case of numerical gradient evaluation, which is neces-

sary if for some reasons it can not be obtained ana-

lytically (e.g. misfit irregularity or lack of its algebraic

formula). Such strategy overperforms multistart with a

uniform sampling of starting points [?].

Contrary to traditional inversion algorithms that

produce a unique solution to the problem, our hybrid

strategy delivers multiple solutions, which enables an

expert on the field to determine the best possible solu-

tion as well as the uncertainty level.

The idea of hp–HGS was introduced in 2007 by

Schaefer, Barabasz and Paszyński [29]. Asymptotic guar-

antee of success of HGS was proved in [32]. Analysis

of the asymptotic guarantee of success and the com-

putational cost reduction with respect to the single-

and multi-deme strategies without the common scal-

ing of forward and inverse errors are discussed in [31].

The papers [6,7] show the theory necessary for apply-

ing hp–HGS to the inverse, parameter problems in heat

flow. They contain also the computational examples of

finding multiple solutions by hp–HGS. Similar results

related to the hp–HGS application to the inverse, para-

metric elasticity problems was communicated in [5].

The novelty of this paper consists of applying the

two-phase strategy combining hp-HGS and local meth-

ods to inversion of 3D DC resistivity logging measure-

ments. Moreover, all mathematical derivations leading

to the forward and inverse error relationship necessary

for the strategy verification are new. All presented sim-

ulations showing the strategy in action have not been

published before.

The paper is organized as follows. In Section 2, we

describe our model forward problem, which is governed

by the conductive media equation. We also introduce

a dual forward problem. Section 3 outlines the appli-

cation of hp Finite Element strategy for forward simu-

lations. In the next sections, we consider inverse prob-

lems. A general introduction to this topic is provided

in Section 4. Section 5 describes the Hierarchic Ge-

netic Strategy with binary and real-number encodings.

Then, we discuss the relation between approximate for-

ward and inverse solutions errors in Section 6. Sec-

tion 7 analyzes the hp–HGS strategy for solving dual

inverse problems. Section 8 discusses briefly the adven-

tages of the propsed hybridization and compares its

features with other stochastic strategies. Section 9 de-

scribes the numerical inversion of resistivity measure-

ments obtained using the hybrid strategy. Finally, con-

clusions are outlined in Section 10.

2 Forward problems

2.1 DC conductive media equation

The direct current flow in the continuum 3D conductor

is governed by the so called conductive media equation

∇ · (σ∇u) = −∇ · Jimp , (1)

where σ is the conductivity tensor field, Jimp represents

the prescribed, impressed electric current source, and u

is the scalar electric potential.

We are looking for solutions to (1) in the domain

Ω ∈ R3 being a 3D cylinder surrounding the borehole

(see Fig. 1). Notice that such Ω is a simply connected

bounded domain with Lipschitz boundary. We assume

Dirichlet and Neumann boundary conditions uD and h

on the separate nonintersecting parts ΓD, ΓN of ∂Ω,

respectively.

Multiplying test function v ∈ H1
D(Ω) = {u ∈ H1(Ω) :

u|ΓD
= 0} by equation (1), and integrating by parts

over the domain Ω, we obtain the following variational

formulation:
Find u ∈ uD +H1

D(Ω) such that:

(σ∇u , ∇v)L2(Ω) = (∇ · Jimp , v)L2(Ω)

+(h , v)L2(ΓN )

∀v ∈ H1
D(Ω),

(2)

where uD ∈ H1(Ω) is a lift of the essential Dirichlet

data uD (denoted with the same symbol), h = σ∇u ·n
is a prescribed flux on ΓN , n is the unit normal outward

(with respect to Ω) vector, and u|ΓD
= 0 is understood

in the sense of traces.

We assume that

Jimp ∈ H(div;Ω), h ∈ H1(∂Ω), (3)

σi,j ∈ L∞(Ω), i, j = 1, 2, 3, ie.

∃M > 0; |σi,j | ≤M, i, j = 1, 2, 3,

almost everywhere in Ω,

(4)

and

∃c0 > 0, ∀ξ ∈ R3;∑
i,j=1,2,3 σi,j ξi ξj ≥ c0

∑
i=1,2,3 ξ

2
i ,

almost everywhere in Ω.

(5)

In the sequel, we shall consider only the case in

which σ is a scalar field i.e. σi,j = σ δi,j where σ is a

scalar conductivity. Instead of (4), (5) we assume that:

∃c0,M ; 0 < c0 < M < +∞,
c0 ≤ σ ≤M almost everywhere in Ω.

(6)

Of course (6) implies that σ ∈ L∞(Ω). Moreover, we

set uD = 0 and ΓN = ∅ so (2) is reduced to the form:{
Find u ∈ H1

0 (Ω) such that:

(σ∇u , ∇v)L2(Ω) = (q , v)L2(Ω) ∀v ∈ H1
0 (Ω),

(7)
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Fig. 1 3D geometry of a logging instrument in a vertical
borehole penetrating three dipping layers.

where ∇ · Jimp = q ∈ L2(Ω) is the intensity of the

“current source” imposed by the probe. The above re-

lation (7) will be called the primal forward problem of

DC conduction.

For the case of deviated wells (below 90 degrees) in

a horizontally stratified layered media, we employ the

hp–Fourier Finite Element Method described in [23].

This method performs a non-orthogonal change of co-

ordinates followed by a Fourier series expansion in the

azimuthal direction. Using that technique, we obtain

fast and accurate forward simulations of 3D resistivity

logging measurements in deviated wells.

2.2 Abstract formulation

Let us rewrite (7) into a more convenient abstract form.

First, we introduce the trilinear form:

b : L∞(Ω)×H1
0 (Ω)2 3 (σ, u, v)→

b(σ;u, v) = (σ∇u , ∇v)L2(Ω) ∈ R
(8)

Assumption (6) allows to define the family of operators

B : L∞(Ω)×H1
0 (Ω) 3 (σ;u)→ B(σ;u) ∈ H−1(Ω) (9)

indexed by σ ∈ L∞(Ω), so that

< B(σ;u), v >= b(σ;u, v),

∀u, v ∈ H1
0 (Ω), ∀σ ∈ L∞(Ω),

(10)

where < ·, · > denotes the parity between H1
0 (Ω) and

H−1(Ω) (see [13], [12] for details). Moreover q ∈ L2(Ω)

allows for defining the linear, continuous functional F ∈
H−1(Ω) so that

F : H1
0 (Ω) 3 v → (q , v)L2(Ω) ∈ R. (11)

We will later denote the solution to the primary

forward problem as u(σ) in order to highlight its de-

pendence on the assumed conductivity field σ.

The family of primal forward problems indexed by

σ ∈ L∞(Ω) may be written as follows:{
Find u(σ) ∈ H1

0 (Ω) such that:

b(σ;u(σ), v) = F (v) ∀v ∈ H1
0 (Ω),

(12)

or as the family of equations in H−1(Ω){
Find u(σ) ∈ H1

0 (Ω) such that:

B(σ;u(σ)) = F.
(13)

2.3 Dual forward problem

The crucial aspect of the solution u(σ) to the primal

forward problem (2) will be its mean value over the

subdomain ΩP ⊂ Ω occupied by the receiver part of

the probe. We will define the indicator functional:

H1
0 (Ω) 3 v → < Q, v > =

1

meas(ΩP )

∫
ΩP

v dx ∈ R.(14)

Obviously Q ∈ H−1(Ω) because∣∣∣ 1
meas(ΩP )

∫
ΩP

v dx
∣∣∣ = 1

meas(ΩP )

∣∣∫
Ω
χΩP

v dx
∣∣

≤ 1
meas(ΩP ) ‖χΩP

‖L2(Ω) ‖v‖L2(Ω)

≤ C ‖v‖H1
0 (Ω) ,

where C contains the norm equivalence constant on

H1
0 (Ω). The functional Q is sometimes called the quan-

tity of interest (see [21]).

Now we are ready to define the family of dual for-

ward problems{
Find G(σ) ∈ H1

0 (Ω) such that:

b(σ;G(σ), w) = Q(w) ∀w ∈ H1
0 (Ω),

(15)

or as the family of equations in H−1(Ω){
Find G(σ) ∈ H1

0 (Ω) such that:

B(σ;G(σ)) = Q,
(16)

indexed by σ ∈ L∞(Ω).

2.4 Basic features of forward problems

It is easy to observe that b(σ; ·, ·) is symmetric, and

Lipschitz continuous in both variables with the constant

M , and coercive with the constant c0 uniformly with σ

satisfying (6).

Remark 1 Given all above assumptions, both forward

problems (primal and dual ones) (12), (15) have the

unique solutions u(σ), G(σ) (see [12,13] for details) for

each fixed σ satisfying (6). Moreover, the solution to

the primal forward problem u(σ) depends continuously

on q (in L2(Ω) and H1
0 (Ω) topologies) while G(σ) on

Q (in H−1(Ω) and H1
0 (Ω) topologies).
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Remark 2 Since b(σ; ·, ·) is symmetric, then (15) may

take a form:{
Find G(σ) ∈ H1

0 (Ω) such that:

b(σ;w,G(σ)) = Q(w) ∀w ∈ H1
0 (Ω).

(17)

Because H1
0 (Ω) is reflexive (i.e. (H1

0 (Ω))′′ is isomor-

phic with H1
0 (Ω)), we may associate the solution G(σ)

to (17) to an element of (H1
0 (Ω))′′ such that, in partic-

ular

< G(σ), F > = F (G(σ)) = < Q, u(σ) >, (18)

where the angle brackets at the left-hand side denote

the parity between (H1
0 (Ω))′′ and H−1(Ω), while the

parity between H−1(Ω) and H1
0 (Ω) is denoted by the

angle brackets at the right-hand side. G(σ) might be

then interpreted as the functional that returns the quan-

tity of interest associated with the solution u(σ) to the

primal forward problem (13) obtained for the right-

hand side F being its argument.

Remark 3 Coupling (18) with (12) and (15), we obtain

F (G(σ)) = b(σ;u(σ), G(σ)) = Q(u(σ)) (19)

or using the parity convention

< G(σ), F >=< B(σ;u(σ)), G(σ) >=< Q, u(σ) > .(20)

Lemma 1 The solution to the primal forward problem

(12) depends Lipschitz-continuously on the parameter

σ i.e.

∃C > 0;
∥∥u(σ1)− u(σ2)

∥∥
H1

0 (Ω)
≤ C

∥∥σ1 − σ2
∥∥
L∞(Ω)

.(21)

Proof : We will follow strictly the ideas of the proof

of Theorem 3.1 from our earlier paper [6]. Let us de-

note for convenience u1 = u(σ1), u2 = u(σ2), two so-

lutions to the primal forward problem (12). We have

b(σ1;u1, v) = b(σ2;u2, v) = F (v) ∀v ∈ H1
0 (Ω). Then:

b(σ1;u1 − u2, v)

= (σ1∇(u1 − u2),∇v)L2(Ω)

= (σ1∇u1 − σ1∇u2 + σ2∇u2 − σ2∇u2,∇v)L2(Ω)

= −( (σ1 − σ2)∇u2,∇v)L2(Ω)

= − b(σ1 − σ2;u2, v).

Then,

c0 ‖u1 − u2‖2H1
0 (Ω) ≤ |b(σ1;u1 − u2, v)|

= |b(σ1 − σ2;u2, v)|.

Using Hölder inequality, we obtain:

c0 ‖u1 − u2‖2H1
0 (Ω)

≤
∥∥σ1 − σ2

∥∥
L∞(Ω)

‖u2‖H1
0 (Ω) ‖u1 − u2‖H1

0 (Ω)

≤ 1
c0
‖F‖H−1(Ω)

∥∥σ1 − σ2
∥∥
L∞(Ω)

‖u1 − u2‖H1
0 (Ω) .

Finally, ‖u1 − u2‖H1
0 (Ω) ≤ C

∥∥σ1 − σ2
∥∥
L∞(Ω)

, where

C = 1
(c0)2

‖F‖H−1(Ω).

2.5 Galerkin solutions

Let us study now the Galerkin solutions to both primal

and dual problems (12), (13), (15), (16). We introduce

the sequence {Xi}+∞i=1 of subspaces of H1
0 (Ω) so that

Xi ⊂ Xi+1, i = 1, 2, 3, . . . and dim(Xi) = ni < +∞,

ni+1 > ni. Moreover, ∀u ∈ H1
0 (Ω)

limi→+∞

{
infui∈Xi

‖ui − u‖H1
0 (Ω)

}
= 0, (22)

which implies that
⋃+∞
i=1 Xi = H1

0 (Ω).

Let us define the approximate family of Galerkin

primal forward problems:{
Find ui(σ) ∈ Xi such that:

b(σ;ui(σ), v) = F (v) ∀v ∈ Xi,
(23)

and the Galerkin dual forward problem:{
Find Gi(σ) ∈ Xi such that:

b(σ;w,Gi(σ)) = Q(w) ∀w ∈ Xi,
(24)

where now b : L∞(Ω)×Xi ×Xi → R is the restriction

of the bilinear form b, and F : Xi → R, Q : Xi → R
are the restrictions of the right-hand side functionals.

For the sake of simplicity, we do not introduce new de-

scriptions for these restrictions. Their correct meaning

will be determined by the context.

The assumed features of b, F , and Q imply that

‖ui(σ)− u(σ)‖H1
0 (Ω) → 0,

‖Gi(σ)−G(σ)‖H1
0 (Ω) → 0

for i→ +∞,

(25)

where u(σ), G(σ) are the exact solutions to the primal

and dual forward problems (12), (13), (15), (16) (see

e.g. [8]). Furthermore, Remark 3 implies that

∀i = 1, 2, 3, . . .

F (Gi(σ)) = b(σ;ui(σ), Gi(σ)) = Q(ui(σ)),
(26)

where ui(σ), Gi(σ) ∈ Xi are the corresponding solu-

tions to the Galerkin primal and dual forward problems,

respectively.

Let us prove a lemma that is convenient for future

error estimations.

Lemma 2 Let ui(σ), uj(σ), i > j be two consecutive

solutions of the Galerkin primal forward problem (23)

and Gi, Gj the corresponding solutions to the Galerkin

dual forward problems (24). Then,

Q(ui(σ)−uj(σ)) = b(ui(σ)−uj(σ), Gi(σ)−Gj(σ)).(27)
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Proof Taking into account (24), (26) and Xj ⊂ Xi ⊂
H1

0 (Ω), we have that

Q(ui(σ)− uj(σ))

= b(σ;ui(σ)− uj(σ), Gi(σ))

= b(σ;ui(σ), Gi(σ))− b(σ;uj(σ), Gi(σ))

= b(σ;ui(σ), Gi(σ))− b(σ;uj(σ), Gi(σ))

−F (Gj(σ)) + b(σ;uj(σ), Gj(σ))

= b(σ;ui(σ), Gi(σ))− b(σ;ui(σ), Gj(σ))

−b(σ;uj(σ), Gi(σ)) + b(σ;uj(σ), Gj(σ))

= b(σ;ui(σ), Gi(σ)−Gj(σ))

−b(σ;uj(σ), Gi(σ)−Gj(σ))

= b(σ;ui(σ)− uj(σ), Gi(σ)−Gj(σ)).

2.6 Logging curve

Taking into account N positions of the probe and de-

noting by qi to the intensity of current sources imposed

by their position, we obtain a vector of primal forward

problems:{
Find ui(σ) ∈ H1

0 (Ω) such that:

b(σ;ui(σ), v) = F i(v) ∀v ∈ H1
0 (Ω),

(28)

where

F i : H1
0 (Ω) 3 v → (qi, v)L2(Ω) ∈ R. (29)

Let us define next the vector of the influence operators

Qi ∈ H−1(Ω), so that

H1
0 (Ω) 3 v → < Qi, v > =

1

meas(ΩiP )

∫
Ωi

P

v dx ∈ R,(30)

for i = 1, . . . , N and ΩiP ⊂ Ω being the domains occu-

pied by the probe’s receiver at its consecutive positions.

Now, we will define a vector of dual problems:{
Find Gi(σ) ∈ H1

0 (Ω) such that:

b(σ;w,Gi(σ)) = Qi(w) ∀w ∈ H1
0 (Ω).

(31)

Remark 3 and (29) imply immediately that

(qi, Gi(σ))L2(Ω) = F i(Gi(σ)) = Qi(ui(σ)), (32)

where ui(σ), Gi(σ) are the solutions of the primal and

dual problems (28) and (31), respectively.

The vector Qi(ui(σ)), i = 1, . . . , N being the or-

dered collection of values of the indicator functionals

obtained for the consecutive positions of the probe will

be called logging curve. Its coordinates might be ex-

pressed by the dual solution or by both primal and dual

solutions (see (32)). In other words, computing the log-

ging curve will consist of solving a sequel of forward

dual problems (28) respecting the assumed resistivities

(see e.g. Figure 2).

Remark 4 Notice that all features proved for the primal

forward and dual problems (as existence and uniqueness

of solution, continuous dependency on right-hand sides

as well as convergence of Galerkin approximations) are

true for each of the logging curve component problem

(28).

3 Adaptive hp Finite Element strategy for

solving forward problems

For the forward simulations, we employ a Finite Ele-

ment Method (hp–FEM) with variable element size h

and polynomial order of approximation p throughout

the computational grid. Once the problem is solved in a

given discretization (mesh), the error associated to the

discrete solution is estimated using a reference solution

associated to a finer grid. If that error is above a given

threshold level, the discretization is enriched either by

dividing some elements containing most of the error or

by increasing the polynomial order of approximation

in certain areas of the domain. After performing these

refinements, the quality of the solution is again evalu-

ated using a reference solution in a finer grid, and the

entire enrichment procedure is repeated until the final

solution exhibits a given degree of accuracy.

To estimate the error of a given hp–grid, we employ

as a reference solution the one associated to the globally

hp–refined grid, i.e., the h/2, p+1-mesh. Details on the

automatic refinement strategy can be found in [10,11].

The main advantage of the self-adaptive hp–FEM is

that it delivers exponential convergence rates in terms

of the error vs. the number of unknowns for the prob-
lems considered in this paper (elliptic problems with a

piecewise analytic solution). A proof of this result can

be found in [4] and references therein (including [15,

16]). Notice that other versions of the FEM (including

h- and p-FEM) converge at best algebraically.

In order for the error to converge exponentially fast

in a particular quantity of interest (solution at receivers)

rather than in a global energy norm, we employ a mod-

ification of the traditional energy-norm based hp–adap-

tive strategy called goal-oriented hp–adaptive strategy.

Such refinement strategy employs the solution of a dual

(adjoint) problem (15) to estimate the error in the quan-

tity of interest (see [25] for details).

Let us denote the relative error of the primary for-

ward problem (12) by erel and by εrel the relative error

of the dual forward problem being the difference be-

tween two consecutive approximate solutions obtained

by the goal-oriented hp–FEM.

In particular, the exponential convergence of the

self-adaptive goal oriented hp–FEM is experimentally
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Fig. 2 The computation of the sample logging curve consists of solving a sequel of multiple forward problems (28) over a
domain composed of a borehole and five formation layers with assumed conductivities. This set of layers will be utilized in the
experimental section.

confirmed as the straight line y = −ax + b in the sys-

tem of coordinates, where horizontal axis represents the

cube root of the number of degrees of freedom x = N1/3

and vertical axis represents the logarithm of the relative

error y = log10(‖erel‖), ‖erel‖ < 1, where ‖·‖ denotes

the proper norm in the space of forward primal problem

solutions. The constants a and b are positive a, b > 0

and problem dependent. This implies the following re-

lation

log10(‖erel‖) = −a(N1/3) + b, ‖erel‖ < 1, (33)

which in turn implies

N = −c1(log10(c2 ‖erel‖))3, ‖erel‖ < 1, (34)

where the constants are problem specific c1 = a−3, c2 =

10−b > 0. The computational cost of the solution of the

problem by using direct solver over the two dimensional

mesh, depends on the structure of the hp refined mesh.

For regular mesh the cost is of the order O
(
N3/2

)
. For

meshes with point-wise singularities the cost can be re-

duced down to the linear one O (N). Finally,

cost = O
(
−c1(log10(c2 ‖erel‖))3r

)
, ‖erel‖ < 1, (35)

where r ∈ [1, 3/2], and this time c1 = a−3r, c2 = 10−b >

0.

Having hp–FEM primary forward solution, the dual

forward solution can be obtained with a linear computa-

tional cost O(N). We can utilize the LU factorization of

the primal problem matrix, and perform one additional

forward and backward substitution. Thus, the relation

between the computational cost and relative error has

the same form (35) for primal and dual problems so-

lution (they may differ only in value of constant c1).

4 Inverse problem

We intend to find the best approximation of the un-

known resistivities (inverse of the conductivity field)

ρ = 1
σ having measured the logging curveQi(ui(σ)), i =

1, . . . , N . Let us define the search domain as

D = {ω ∈ L∞(Ω); ∃M, c0;M > c0 > 0;

1
M ≤ ω ≤

1
c0
, almost everywhere in Ω}.

(36)

The dual inverse problem may be defined as follows:

Find ω̂ ∈ D such that:

limh→0,p→+∞

{∑N
i=1

∣∣∣F i(Gih,p( 1
ω̂ ))− F i(Gi( 1

ρ ))
∣∣∣}

≤
limh→0,p→+∞

{∑N
i=1

∣∣∣F i(Gih,p( 1
ω ))− F i(Gi( 1

ρ ))
∣∣∣}

∀ω ∈ D,

(37)

where ρ = 1
σ ∈ D denotes exact parameters, ω de-

notes approximated parameters, Gi( 1
ρ ) is the exact so-

lution to the dual problem (31) for the i-th position of

the probe associated with the i-th point of the logging

curve for the exact parameters ρ, and Gih,p(
1
ω ) is the
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approximate (by hp–FEM) solution to the dual prob-

lem (31) for the i-th position of the probe associated

with the i-th point of the logging curve for the approx-

imated parameter ω. Moreover F i ∈ H−1(Ω) is such

that F i(v) = (qi, v)L2(Ω) ∀v ∈ H1
0 (Ω).

Taking into account (19) in Remark 3, we can rewrite

the above problem (37) to the equivalent form:

Find ω̂ ∈ D such that:

limh→0,p→+∞

{∑N
i=1

∣∣∣Qi(uih,p( 1
ω̂ ))−Qi(ui( 1

ρ ))
∣∣∣}

≤
limh→0,p→+∞

{∑N
i=1

∣∣∣Qi(uih,p( 1
ω ))−Qi(ui( 1

ρ ))
∣∣∣}

∀ω ∈ D.

(38)

In other words, for a given reference logging curve,

geometry of the formation layers and resistivities of the

borehole and top and bottom formations, we seek for ω̂

resistivities of the formation layers. The reference log-

ging curve is usually obtained from the field measure-

ments. The idea of the inverse logging curve problem

was illustrated by the simple example of finding 3 pa-

rameters (ω0, ω1, ω2) being the constant value of the

resistivity function ω̂ (see Figure 3).

5 Hierarchic Genetic Strategy for solving

global optimization problems

The Hierarchic Genetic Strategy (HGS) produces a tree-

structured set of concurrent evolutionary processes (see

Figure 4). HGS was introduced by Ko lodziej and Schae-

fer in [32]. The structure of the tree changes dynami-

cally and its depth is bounded by m < +∞.

HGS performs calculations in the following way:

– The first deme (population) of order one is created.

There is always exactly one deme at the first level

and it is called the root deme. The root-deme per-

forms a chaotic search with low accuracy.

– After a fixed number of genetic epochs K called the

metaepoch, each parental deme (at level < m) se-

lects its best fitted individual and sprouts a child-

deme in the neighborhood of this individual. Sprout-

ing new demes is repeated concurrently for root and

all active demes laying below in the GS tree (at lev-

els < m), called branches, excluding deepest demes

(at level m), called leaves.

– Demes at the consecutive levels search with higher

and higher accuracy. The maximum, target accu-

racy in the global phase is performed by leaves.

– To prevent redundancy, HGS implements conditional

sprouting and branch reduction. The former allows

new demes to be sprouted only in regions, which

level 3

level 1

level 2

d
1

d
2

d
3

D

root deme

leaf demes

branch

demes

Fig. 4 HGS tree and corresponding coding meshes for binary
implementation.

are not explored by demes already activated at the

particular level of the HGS tree. The latter reduces

(joins and jointly selects) demes at the same level

that perform search in the common landscape re-

gion or in the regions that were already explored.

The HGS stopping policy is composed of a local

branch stopping conditions that terminates the evolu-

tion in leaves and branches, and a global stopping con-

dition that evaluates the total maturity of the global

search. Local stopping conditions monitor evolution pro-

gress in deme and stop it, if unsatisfactory. The whole

strategy might be stopped if no new demes are sprouted

after a sufficiently large number of metaepochs and all

active leaves were stopped. The other possibility is to

stop the strategy when the satisfactory number of well

fitted individuals were already found. Some details of

stopping policy for logging measurements inversion will

be explained later in Section 7.

The strategy was implemented and studied twofold:

using binary encoding and SGA engines (see [18,32]) for

each branch and leaf, and using real-number encoding

and Simple Evolutionary Algorithms (SEA) for running

evolution of each deme (see [35]).

In the binary version of HGS, we use various encod-

ing precisions and changing length of binary genotypes

in demes at different levels, to obtain different search

accuracies. The length of a genotype increases along

with increasing level in the HGS tree. We apply a hier-

archical nested encoding to obtain search coherency for

populations at different levels: we begin with defining

the densest mesh of phenotypes in D for populations at

m-th level and recursively select some nodes to create

meshes for lower-order demes (see Figure 4). The maxi-
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Fig. 3 The inverse problem is to find resistivities of formation layers from a given logging curve (for details of this example
refer to Section 9).

mum diameter of the mesh δj (satisfying δm < . . . < δ1)

determines the search accuracy at j-th level of the HGS

tree.

In the real-number encoding version of HGS, a geno-

type is a vector of floating point numbers. In order to

introduce a sequence of increasing genetic spaces for

subsequent orders of branches, we use a sequence of

scaling coefficients +∞ > η1 ≥ η2 ≥ . . . ≥ ηm = 1. Let

us denote a search domain by D =
∏N
i=1[ai, bi] ⊂ RN ,

where ai, bi; ai < bi are the lower and upper bounds

for i-th decision variable. The genetic space at i-th

level is defined as
∏N
i=1[0, bi−aiηi

] ⊂ RN . In this way,

we obtain genetic spaces that are smaller for lower level

branches, closer to the root. The genetic space for leaves∏N
i=1[0, (bi − ai)] is of the same size as the admissible

domain D, and has the richest numerical representa-

tion. If a target search accuracy in leaves equals δm,

the accuracy in the underlying demes will be reduced

to δj = ηj δm, for j = 1, . . . ,m− 1.

Asymptotic analysis of HGS with binary encoding

was studied in [32]. It was proved that the strategy pos-

sesses an asymptotic guarantee of success. The decrease

of computational cost vs. the single population SGA

with the finest encoding, represented in HGS leaves was

also estimated. HGS application to other inverse prob-

lems was shown in [18,19]. Real-number HGS, along

with its efficiency, is discussed in [35].

6 Relation between approximate forward and

inverse solutions errors

6.1 Estimation for a single position of the probe

Let us denote by erel(
1
ω ) = uh/2,p+1( 1

ω ) − uh,p( 1
ω ) the

relative error of the hp–FEM solution to the primal for-

ward problem (28) and, similarly, denote by εrel(
1
ω ) =

Gh/2,p+1( 1
ω )−Gh,p( 1

ω ) to the relative error of the hp–

FEM solution of the dual forward problem (15) for some

ω ∈ D.

Let us compute now:

Q(uh/2,p+1( 1
ω ))−Q(u( 1

ρ ))

= Q(uh/2,p+1( 1
ω )− uh,p( 1

ω ))

+Q(uh,p(
1
ω )− u( 1

ω )) +Q(u( 1
ω )− u( 1

ρ ))

= Q(erel(
1
ω )) +Q(uh,p(

1
ω )− u( 1

ω ))

+Q(u( 1
ω )− u( 1

ρ )).

Using Lemma 2 for erel(
1
ω ) and εrel(

1
ω ), we have

|Q(erel(
1
ω ))| = |b(erel( 1

ω ), erel(
1
ω ))| and

|Q(uh/2,p+1( 1
ω ))−Q(u( 1

ρ ))|

≤ L
∥∥erel( 1

ω )
∥∥
H1

0 (Ω)

∥∥εrel( 1
ω )
∥∥
H1

0 (Ω)

+ ‖Q‖H−1(Ω)

∥∥uh,p( 1
ω )− u( 1

ω )
∥∥
H1

0 (Ω)

+ ‖Q‖H−1(Ω)

∥∥∥u( 1
ω )− u( 1

ρ )
∥∥∥
H1

0 (Ω)
,

(39)

where L > 0 is the continuity constant of the bilinear

form B.
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Proposition 1 Taking into account the assumptions

of Lemma 1, it is easy to prove that∥∥u ( 1
ω1

)
− u

(
1
ω2

)∥∥
H1

0 (Ω)
≤ C

∥∥ω1 − ω2
∥∥
L∞(Ω)

, (40)

where ωi = 1
σi , i = 1, 2 and now C = 1

(c0)4
‖F‖H−1(Ω).

Using (40) and (39) we are able to formulate the

target evaluation for the single position of the probe:

Proposition 2 The absolute indicator functional error

by solving the hp–FEM dual inverse problem is evalu-

ated by the product of relative hp–FEM errors of primal

and dual solutions added to the absolute hp–FEM error

of primal solution and the accuracy of solving the in-

verse problem i.e.

|Q(uh/2,p+1( 1
ω ))−Q(u( 1

ρ ))|

≤ L
∥∥erel( 1

ω )
∥∥
H1

0 (Ω)

∥∥εrel( 1
ω )
∥∥
H1

0 (Ω)

+ ‖Q‖H−1(Ω)

∥∥uh,p( 1
ω )− u( 1

ω )
∥∥
H1

0 (Ω)

+
(

1
(c0)4

‖Q‖H−1(Ω) ‖F‖H−1(Ω)

)
‖ω − ρ‖L∞(Ω) ,

(41)

where c0 and L stand for the coercivity and Lipschitz

continuity constants of B, respectively.

6.2 Estimation for the dual inverse problem

The estimation delivered by (41) in Proposition 2 will

be true for each pair of component problems (28), (31)

for i = 1, . . . , N

|Qi(uih/2,p+1( 1
ω ))−Qi(u( 1

ρ ))|

≤ L
∥∥eirel( 1

ω )
∥∥
H1

0 (Ω)

∥∥εirel( 1
ω )
∥∥
H1

0 (Ω)

+
∥∥Qi∥∥

H−1(Ω)

∥∥∥uih,p( 1
ω )− ui( 1

ω )
∥∥∥
H1

0 (Ω)

+
(

1
(c0)4

∥∥Qi∥∥
H−1(Ω)

∥∥F i∥∥
H−1(Ω)

)
‖ω − ρ‖L∞(Ω) ,

(42)

where eirel(
1
ω ) = uih/2,p+1( 1

ω ) − uih,p( 1
ω ) and εrel(

1
ω ) =

Gih/2,p+1( 1
ω )−Gih,p( 1

ω ). Summing both sides of the above

inequality we obtain∑N
i=1 |Qi(uh/2,p+1( 1

ω ))−Qi(u( 1
ρ ))|

≤ L
∑N
i=1

∥∥eirel( 1
ω )
∥∥
H1

0 (Ω)

∥∥εirel( 1
ω )
∥∥
H1

0 (Ω)

+
∑N
i=1

∥∥Qi∥∥
H−1(Ω)

∥∥∥uih,p( 1
ω )− ui( 1

ω )
∥∥∥
H1

0 (Ω)

+ 1
(c0)2

(∑N
i=1

∥∥Qi∥∥
H−1(Ω)

∥∥F i∥∥
H−1(Ω)

)
‖ω − ρ‖L∞(Ω) .

(43)

The first component of the right-hand side might be

evaluated using Cauchy-Buniakowski inequality

L
∑N
i=1

∥∥eirel( 1
ω )
∥∥
H1

0 (Ω)

∥∥εirel( 1
ω )
∥∥
H1

0 (Ω)

≤ LC
(∑N

i=1

∥∥eirel( 1
ω )
∥∥
H1

0 (Ω)

)
(∑N

i=1

∥∥εirel( 1
ω )
∥∥
H1

0 (Ω)

)
,

(44)

where C is the norm equivalence constant in RN . We

are ready to formulate the final estimation.

Proposition 3 The norm of the logging curve error

might be evaluated as the product of norms of relative

hp–FEM errors of primal and dual solutions added to

the norm of absolute hp–FEM errors of primal solutions

obtained for all coordinates of the logging curve and the

accuracy of solving the inverse problem i.e.∑N
i=1 |Qi(uih/2,p+1( 1

ω ))−Qi(u( 1
ρ ))|

=
∑N
i=1 |F i(Gih/2,p+1( 1

ω )−Gi( 1
ρ ))|

≤ C ′
(∑N

i=1

∥∥eirel( 1
ω )
∥∥
H1

0 (Ω)

)
(∑N

i=1

∥∥εirel( 1
ω )
∥∥
H1

0 (Ω)

)
+C ′′

∑N
i=1

∥∥∥uih,p( 1
ω )− ui( 1

ω )
∥∥∥
H1

0 (Ω)

+C ′′′ ‖ω − ρ‖L∞(Ω) .

(45)

where

C ′ = LC,

C ′′ = maxi=1,...,N

{∥∥Qi∥∥
H−1(Ω)

}
,

C ′′′ = 1
(c0)4

(∑N
i=1

∥∥Qi∥∥
H−1(Ω)

∥∥F i∥∥
H−1(Ω)

)
and c0, L stand for the coercivity and Lipschitz conti-

nuity constants of B, respectively, and C is the Cauchy-

Buniakowski constant in RN .

Let us apply the above Proposition 3 to the fitness

evaluation at the j-th level of the hp-HGS tree.

Remark 5 The first right-hand side component of (45)

expresses the influence of the limit relative direct er-

rors (primal and dual ones) imposed on the hp-FEM

refinement process. The second one is proportional to

the absolute FEM error, which decreases to 0 during

hp refinements (see Remark 4). The third component

is evaluated from below by C ′′′δi, where δj expresses

the error appearing in the inverse search performed by

the j-th level HGS branch (the grid size in case of bi-

nary implementation). In order to make the hp-HGS in-

version on the j-th level computationally economic, we
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should keep the first and the third component compa-

rable. In different words, decreasing
∥∥eirel( 1

ω )
∥∥
H1

0 (Ω)
and∥∥εirel( 1

ω )
∥∥
H1

0 (Ω)
below the quantityRatio(j) = 1

N

√
δj
C′′′

C′

does not improve the accuracy of fitness evaluation.

7 The adaptive strategy for solving dual

inverse problems

The mathematical results concerning relations between

the approximate forward and inverse errors (Proposi-

tion 3 and Remark 5) allow to apply the HGS strategy

for inversion of 3D DC resistivity logging measurements

(38) in an exceptionally economic way.

The misfit evaluation needs to solve the series of

forward problems (15) associated with each point of

the logging curve. Computational cost of solving the

forward problem by the hp–FEM (see formula (34) in

Section 3) depends strongly on the assumed accuracy.

We are able to apply cheap, low accuracy misfit evalu-

ations during evolution in root-deme. The accuracy of

misfit evaluation will grow deep into the HGS tree, ac-

cording to the ratio introduced by Remark 5, up to the

maximum one in leaves. The resulted strategy is called

hp–HGS.

A typical configuration of hp–HGS tree imposes large

root-deme and strongly decreasing size of branch-demes

up to the smallest one for a leave-demes containing only

several individuals.

Both, conditional sprouting and branch reduction

mechanisms (see Section 5) are based on a distance

analysis performed in the phenotype space. In the first

case, the distance between the seed individual (the best

fitted individual distinguished from the parental deme

and re-coded to the consecutive, child-level of the hp–

HGS tree) and the centroids of demes already sprouted

at the child-level is tested. If this distance is lower then

the assumed threshold, sprouting operation is aban-

doned. The threshold is frequently set as the double of

mutations standard deviation at the child-deme level.

In the current hp–HGS version, we restricted the range

of distance comparison to the child-demes of the sprout-

ing parental one.

Similarly, branch reduction is based on a distance

between centroids of two demes at the same level of the

hp–HGS tree. If it is smaller than the threshold (usually

set as a mutation’s standard deviation at the particular

level of the hp–HGS tree), the union of both demes is

commonly selected, creating a new deme, whose evo-

lution is continued. Branch reduction mechanism is in-

voked periodically, after each assumed number of metae-

pochs.

Local stopping conditions monitor the progress of a

mean fitness in branches and leaves. If it does not de-

crease more than an assumed value in the prescribed

number of epochs, the evolution of this deme is aban-

doned. The stopping parameters are set to be restric-

tive, i.e. they usually allow to make only several most

effective steps of evolution. Generally, it is more eco-

nomic to sprout new demes than to run ineffective ones

for a long time.

The whole hp–HGS is stopped when a satisfactory

number of well fitted individuals is found. It is possi-

ble to define a satisfactory fitted individual in the case

of inverse problems, because its minimum value (the

minimum misfit value) is always zero. The number and

possible location of minimizers might be assessed by

experts on the field of petroleum and gas survey.

A brief description of the hp–HGS strategy is pre-

sented in the form of a pseudocode (Algorithms 1, 2).

1: initialize the root deme Proot;
2: AD = {Proot};
3: while global stop condition() = false do
4: AW = AD;
5: for P ∈ AW do
6: execute in parallel metaepoch(P );
7: end for;
8: end while;
9: STOP;

Algorithm 1: Pseudo-code of hp–HGS.

In the first algorithm, we use sets AD and AW to

store alive demes. The function global stop condition()

checks if either a satisfactory solution has been found

or no more local extrema can be found.

Let us denote by Θ( 1
ω ) = (θ1( 1

ω ), . . . , θN ( 1
ω )), where

θi( 1
ω ) =

∥∥εirel( 1
ω )
∥∥
H1

0 (Ω)
the vector of relative errors

of hp–FEM appearing by the solving direct problems

(15) for all logging curve points i = 1, . . . , N . The hp-

adaptation of the FEM solution of the forward dual

problem is performed until at least one quantity θi( 1
ω )

is below than or equal to the assumed Ratio(j) (see

Remark 5).

The function branch stop condition(P ) returns true

if it detects a lack of evolution progress of the current

deme P . The generic function fitness(i) computes fit-

ness accordingly to the position of P in the hp–HGS

tree.

The conditional sprouting mechanism is implemented

as follows. The procedure children comparison(x) com-

pares the phenotype averages (centroids) of all child-

demes with the phenotype of the best fitted individual

x distinguished from the parental deme P . This proce-

dure returns true if x is sufficiently close to the cen-
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1: t← 0;
2: repeat
3: for (i ∈ P ) do
4: solve forward problem for 1

ω
= code(i) on coarse and

fine FEM meshes;
5: compute Θ( 1

ω
);

6: while for all i (θi( 1
ω

) > Ratio(j)) do
7: execute one step of hp adaptivity;
8: solve problem on new coarse and fine FEM

meshes;
9: compute Θ( 1

ω
);

10: end while;
11: compute fitness(i) using final FEM mesh;
12: end for
13: if (P 6= Proot) then
14: if (branch stop condition(P )) then
15: AD = AD \ {P};
16: end if
17: end if
18: if ((t = K) ∧ (P in not a leaf)) then
19: distinguish best fitted individual x from deme P ;
20: if (¬ children comparison(x)) then
21: AD = AD ∩ {sprout(x, P )};
22: end if
23: end if
24: perform proportional selection, obtaining a multiset of

parents;
25: perform SGA genetic operations on this multiset;
26: establish new contents of population P after the ge-

netic epoch;
27: t← t+ 1;
28: until (t = K)

Algorithm 2: Pseudo-code of the metaepoch function.

troids of the existing child-demes. The generic function

sprout(x, P ) returns a new child-deme surrounding x

using proper encoding and sampling, according to the

position of the parental deme P in the hp–HGS tree.

Lines 15 and 21 in Algorithm 2 are mutually ex-

cluded among all instances of Metaepoch(P ) function

processing in parallel, because the set of active demes

AD constitutes a common, shared data. A particular

implementation-based mechanism of critical section han-

dling is applied. The modifications of the set of alive

demes AD, imposed by the particular deme P (see lines

15 and 21 in the Metaepoch routine), do not influence

changes performed by other demes, because of their tree

structure (see Figure 4). The branch reduction mecha-

nism is not described in the Algorithms 1 and 2 for the

sake of simplicity.

The presented general algorithmic description con-

stitutes a basis for the various implementations. The

serial (trivial) one forces to execute the loop 5 - 7 in

Algorithm 1 sequentially. The highly developed struc-

ture of hp–HGS demes creates an opportunity for ad-

vanced coarse grained distributed implementations. No-

tice, that the fitness evaluations costs dominate and are

several degree of magnitude higher than all other costs

associated with individuals and demes handling (muta-

tion, crossover, sprouting, branch reduction, etc.) when

solving parametric inverse problems. Thus a typical im-

plementation runs all operation except fitness evalua-

tion on a single computer node (e.g. front-end work-

station or single node of a cluster), while the hp–FEM

solving forward problems are computed in parallel, dy-

namically scheduled to multiple sub-complexes of com-

putational nodes distinguished from a high performance

cluster. Local optimization methods utilized in the sec-

ond phase are scheduled in a similar way. We refer to

[?,?,?] for the more advanced agent-based scheduling of

hierarchic genetic computations in a distributed envi-

ronment.

8 Short discussion of hybrid strategy features

We synthesize the main advantages of the proposed hy-

brid strategy:

It can find all minima of misfit after a sufficient num-

ber of steps, which results from the asymptotic guar-

antee of success of the global phase, performed by hp–

HGS (see [31]). Notice that this result is not trivial in

the case of complex multi-deme strategy with adaptive

search accuracy. We can obtain at least one well fitted

individual in basin of attraction of each global mini-

mizer. The asymptotic guarantee of success allows to

study ill–posed inverse problems with ambiguous solu-

tions, which are difficult or even impossible to obtain

by other methods.

There are three ways of decreasing the computa-
tional cost:

– By minimizing the number of fitness calls in the

global phase. It is obtained mainly by reducing the

size and number of child-demes (branches and leaves).

More accurate, intensive searches are mainly acti-

vated in promising regions. Moreover, local stopping

conditions restrict the evolution in child-demes to

the several most effective initial epochs, because it

is more economic to sprout new demes than to run

ineffective ones for a long time. Conditional sprout-

ing and branch reduction mechanisms result in the

additional, significant reduction of the number of

active branches and leaves, protecting search redun-

dancy.

– By common scaling of the forward and inverse search

accuracy. The computational cost of misfit evalua-

tion by the hp–FEM rapidly decreases if the accu-

racy is reduced (see formula (35), Section 3). The

proper scaling of the forward error with respect to
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the assumed inverse one at each level of the hp–

HGS tree (see Proposition 5, Algorithm 2) allows

for a cheap, exhaustive exploration in root-deme and

branches close to the root. The maximum accuracy

of the global phase utilized by leaf-demes is also far

from the target one, only sufficient for recognizing

and separating basins of attraction of different min-

imizers.

– By reducing a number of local searches. The global

phase allows to start only one local search per each

recognized basin of attraction. Reduction of the num-

ber of local processes is crucial, because of their huge

computational expense caused by many fitness calls

necessary for Hessian approximation, and the high

computational cost of a single misfit evaluation with

the highest target accuracy.

We compare advantages underlined before with fea-

tures of competing strategies:

– Genetic algorithm with a single population and multi-

deme, island model. It performs more fitness calls

than hp–HGS because it does not concentrate the

search in promising areas, it does not use a restric-

tive stopping condition in order to preserve global

search and it may concentrate the search in a single

basin of attraction “a premature convergence” for a

long time. The above proposition may be supported

by the tests for continuum optimization benchmarks

[32,18,35]. Moreover, in contrast to hp–HGS, the

considered group of genetic strategies performs all

fitness evaluations with a uniform high accuracy,

which generates an enormous unacceptable compu-

tational cost.

– Local search with multiple restarts (departing from

random solutions). This strategy needs to start a

large number of expensive local processes, compa-

rable to the size of a root-deme in hp–HGS in order

to find multiple minimizers, which generates an un-

acceptable total computational cost, much greater

than in the case of two-phase strategies, in which the

number of starting points is significantly reduced

(see e.g., [?]).

– Memetic algorithm, where the local search is used

in the main loop of the GA. Local, convex optimiza-

tion methods incorporated in evolutionary search as

a “gradient mutation” can degrade its exploratory

power if activated too frequently. Moreover, too many

local searches bound the memetic search to the multi-

start strategy, thwarting its efficiency. The core idea

in memetic strategies is to gain experience to make

a further more economic search. This idea is rep-

resented in the proposed strategy, being a compo-

sition of hp–HGS with local, convex methods. This

strategy offers the hierarchy of searches with var-

ious degrees of locality. All of them are activated

by the main, genetic one, performed by the root-

deme. Each path in the hp–HGS tree represents

stochastic processes that explore the selected region

of admissible domain more locally and accurately

(without loosing an asymptotic guarantee of suc-

cess). The deeper exploration is undertaken condi-

tionally when it is promising (e.g., the well fitted

individual is found in the region penetrated by a

parental deme). During this procedure, demes in-

troduced in the same basin of attraction bound one

to each other and are reduced by the branch reduc-

tion mechanism. The most promising paths reach

the leaf-level and point out the basins of attraction

of separate minimizers. Most local, expensive convex

methods are started from the best fitted individuals

in such leaves.

9 Experiments

The problem under considerations is the inverse DC

problem in which we are searching for the values of

three ground layer resistivities ω0, ω1 and ω2. The ref-

erence values are ω0 = 1 Ω ·m, ω1 = 5 Ω ·m and

ω2 = 20 Ω ·m. We have performed the following series

of computations.

– Global search by means of the hp-HGS with the

binary encoding

– Local gradient-based (Broyden - Fletcher - Goldfarb

- Shanno) method started from the points found by

the binary HGS

– Global search by means of the hp-HGS with the

floating-point encoding

– Local gradient based (Broyden - Fletcher- Goldfarb

- Shanno) method started from the points found by

the floating-point HGS

In all these simulations, the misfit values are com-

puted as the square of the Euclidean distance (hence:

without the square root) between an obtained logging

curve and the reference logging curve (the “exact” one).

9.1 Global “binary” search

We performed a simulation of the 3D DC bore-

hole resistivity measurements problem using hp–HGS

method with three levels. Parameters of the simulation

are presented in Table 1. Population sizes were selected

to balance the time of evaluating a single solution with
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Table 1 Parameters of the simulation in 3D DC case. Ac-
curacy corresponds to the maximum relative error decrement
in a single hp–FEM step applied to the solution of a forward
problem.

level 1 level 2 level 3

Population size 12 6 4
Code length 45 63 81
Mutation rate 0.1 0.01 0.001
Crossing rate 0.5 0.5 0.5
Accuracy 0.1 0.01 0.001

search capabilities of a population. Code length for a

single parameter was 15 on the first level, 21 on the

second level, and 27 in the leaves (third level). Parame-

ters setting discussed above is based on our experience

in solving ill-posed inverse parametric problems of heat

conduction and elasticity [5–7,29].

The reference logging curve is usually obtained from

the field measurements. For testing purposes, we com-

puted this curve for the 60 degrees deviated well by

using a self-adaptive goal oriented hp–FEM algorithm

with high accuracy (10−5). The model problem is com-

posed of: a borehole with resistivity 0.1Ω · m, a sand

layer with resistivity 100Ω · m, a shale layer with re-

sistivity 5Ω · m, an oil layer with resistivity 20Ω · m,

a water layer with resistivity 1Ω ·m, and a rock layer

with resistivity 1000Ω ·m, which makes a total of five

layers, as illustrated in Figure 3.

Fitness value of each candidate solution ω (resis-

tivity vector) was evaluated as the Euclidean norm of

the difference between discrete representations of the

reference logging curve calculated with high accuracy

and the logging curve computed by the self-adaptive

goal-oriented hp–FEM algorithm for ω with accuracy

depending on the level in HGS tree. The accuracy (see

last row in Table 1) corresponds to the maximum rela-

tive error decrement in a single hp–FEM step (see e.g.

[30]) applied to the solution of a forward problem at a

particular HGS level.

The results of the global binary search phase are

presented in Table 2. For testing purposes, we have exe-

cuted the self-adaptive goal-oriented hp-FEM algorithm

on these points, in order to generate and plot the re-

sulting logging curves. The curves corresponding to the

found six points are presented in Figure 5. The curves

have been also compared to the exact logging curve,

denoted by bold light gray color. The best fitted point

2 is the most similar point to the exact logging curve,

as expected.

Fig. 5 The logging curves corresponding to points found af-
ter binary global search phase. The bold gray curve corre-
sponds to the exact logging curve.

Table 2 Results of the global binary search.

ω2 ω0 ω1 misfit
1 56.998 1.019 70.624 0.220766696114
2 37.186 0.549 6.540 0.0420046286544
3 33.791 0.760 18.789 0.0919687357984
4 91.5683 1.022 62.664 0.224530498495
5 99.774 1.069 69.583 0.236968057675
6 31.900 1.004 70.920 0.201298418709

Fig. 6 The results of the global and local binary phases.

9.2 Local “post-binary” search

The local phase was executed from the points ob-

tained from the binary global phase. We have used the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, and

the accuracy of the self-adaptive hp-FEM algorithm

was set to 0.1. The results from the binary global and

local phases are summarized in Figure 6. On the plot we

do not display the value of ω0 approximatelly equal to 1

even after the global phase. We can draw the following

conlusions from the experiments. The global phase have

found some points with ω2 parameter ranging from 20

to 100. However, only points with ω2 approximatelly

equal to 20 have minimal misfit and local phase cor-

rected them slightly. .

9.3 Global “floating-point” search
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Table 3 Parameters of the floating point HGS.

root intermediate level leaves
population size 12 6 4
mutation probability 0.1 0.01 0.001
mutation std. dev. 1.0 0.2 0.01
crossover probability 0.5 0.5 0.5
crossover mean 0.5 0.5 0.5
crossover std. dev. 0.01 0.01 0.01
sprout std. dev. 0.1 0.01
sprout min. distance 0.5 0.2
sprout max. value 2 0.5
encoding scale (η) 16384 128 1
Ratio 265 13557 694136

Fig. 7 The logging curves corresponding to points found af-
ter floating-point global search phase. The bold gray curve
corresponds to the exact logging curve.

We have also implemented and executed the HGS

algorithm with floating point coding. The HGS used

the same 3 accuracy levels as in the binary case and the

same strategy was used for selecting local phase starting

points. Also the population sizes, mutation and crossing

rates were as in the binary case. The scale parameters

utilized by the floating point search are the following:

η1 = 16384, η2 = 128, η3 = 1

The floating-point HGS parameters are summarized in

Table 3.

The floating point HGS algorithm found the fol-

lowing starting points, summarized in Table 4. Again,

for testing purposes, we have executed the self-adaptive

goal-oriented hp-FEM algorithm on these points, in or-

der to generate and plot the resulting logging curves.

The curves corresponding to the found twelve points are

presented in Figure ??. The curves have been also com-

pared to the exact logging curve, denoted by bold light

gray color. We can see that the floating-point global

search has found much more points than binary global

search and generally more points are better fitted.

9.4 Local “post-floating-point” search

The local phase was executed from the points ob-

tained from the floating-point global phase. We have

Table 4 Results of the floating point global search.

ω2 ω0 ω1 misfit
1 491.275 1.003 2.287 0.0309955725861
2 81.736 1.518 40.215 0.18913950464
3 15.336 1.677 52.161 0.18563908906
4 13317.938 0.429 1.441 0.0998952955352
5 33995.309 0.955 7.895 0.0155211450748
6 409.705 0.410 9.422 0.0788856673271
7 275.680 0.803 19.114 0.103517536713
8 1089.258 1.541 0.469 0.234231539517
9 40.410 0.320 1.090 0.158735090456
10 64.404 1.436 5.081 0.0123941038654
11 3.732 2.370 5.692 0.248640339227
12 8691.385 1.398 1.038 0.13256144668

Fig. 8 The results of the global and local floating-point
phases.

utilized the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method again, and the accuracy of the self-adaptive hp-

FEM algorithm was set to 0.1. The results from the

floating-point global and local phases are summarized

in Figure 8. To make the plot two dimensional we have

omitted the value of ω0 approximatelly equal to 1 even

after the global phase. We can draw the following con-

lusions from the experiments. The floating-point global

phase have found much more points than binary global

phase. In particular the floating-point global phase have

found some points with ω1 parameter ranging from 0

to 60, as well as ω2 parameter ranging from 3 up to

33000. However, only points with ω1 from range of 0 to

10 have minimal misfit and the local phase corrected

them slightly.

10 Conclusions

We described a hybrid strategy for solving inverse prob-

lems exhibiting multiple minima. The strategy utilized

a hp–HGS algorithm on the global level. The hp–HGS

algorithm tuned the length of the genetic code as well

as the accuracy of the goal-oriented self-adaptive hp–

FEM solver. This allowed to find relatively quickly on

the global level the regions where we expect to find the

local minima. In these regions, we increased the accu-

racy of the genetic search by increasing the length of

the genetic code and the requested accuracy for the

goal-oriented self-adaptive hp–FEM solver. After sev-
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eral iterations of the hp–HGS strategy, we switched to

the (local) gradient search to quickly converge to the lo-

cal minima within the regions delivered by the hp–HGS

algorithm.

The hp-HGS strategy requires knowledge of the re-

lation of approximate forward and inverse solutions er-

rors. We estimated the error relation for the considered

problems in Section 6 (see Propositions 2, 3 and Re-

mark 5). The crucial features necessary for establishing

this relation were Lipshitz continuity of the primal so-

lution with respect to the conductivity distribution (see

Lemma 1) and the proper evaluation of the quantity of

interest functional taken for the relative hp-FEM error

(see Lemma 2).

We tested our strategy on a challenging numerical

problem consisting of the inversion of 3D DC borehole

resistivity measurements. In the global phase we per-

formed the tests for binary coding of the hp-HGS as

well as for floating-point coding. The binary hp-HGS

found only six starting points, the floating-point hp-

HGS found twelve starting points, proving to be more

powerful tool for global phase solution.

After the global phase, the value of ω0 was approxi-

mately equal to 1 as expected, however the values of ω1

varied between 10 and 70 after the binary global search,

and between 3 up to 33000 after the floating point

global search. Similarly, the values of ω2 varied between

40 and 100 after binary global search and 1 and 52 after

floating-point global search. We have selected the best

fitted points after the global phases and executed the

local gradient search with Broyden-Fletcher-Goldfarb-

Shanno method. After the local phase check, the fi-

nal points from the binary global phase have ω0 ≈ 1,

ω1 ∈ (5, 20) and ω2 ≈ 40. This may suggest that the

problem is not much sensitive to the ω1 value. Hovewer,

if we compare these results to the results of floating-

point search, we can see that actually final points after

the local phase have the following properties: ω0 ≈ 1,

ω1 ∈ (0, 10) and the problem in indeed insensitive to

the ω2 value.

We conclude that using the floating point coding al-

gorithm allows to find additional results, not possible

to found by binary coding algorithm. We also conclude

that the DC measurements are not sensitive to the re-

sistivity of ω2.

These results enable an expert on the field to eval-

uate all possible solutions, and thus, they allow to bet-

ter estimate the subsurface properties as well as to as-

sess the uncertainty level. Thus, the proposed hybrid

method provides an adequate alternative for solving

challenging multimodal inverse problems.
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