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Abstract

It is known that piecewise linear continuous finite element (FE) approx-
imations on nonobtuse tetrahedral FE meshes guarantee the validity of
discrete analogues of various maximum principles for a wide class of ellip-
tic problems of the second order. Such analogues are often called discrete
maximum principles (or DMPs in short). In this work we present several
global and local refinement techniques which produce nonobtuse conform-
ing (i.e. face-to-face) tetrahedral partitions of polyhedral domains. These
techniques can be used in order to compute more accurate FE approxima-
tions (on finer and/or adapted tetrahedral meshes) still satisfying DMPs.

Keywords: Discrete maximum principle, Nonobtuse tetrahedral refinement,
Finite element method.

1. Introduction: maximum principles

The maximum principles (i.e. a priori estimation of the unknown solution via
given data) represent the most basic properties of (classical) solutions of the
second order elliptic problems [17]. In this paper we survey some of our results on
their discrete analogues – discrete maximum principles (DMPs) for 3d nonlinear
elliptic boundary-value problems solved by linear tetrahedral finite elements
(FEs). The present work generalizes our earlier paper [8] in several respects -
thus, we also survey some recently developed algorithms for local (around edges
and near faces/interfaces) conforming refinements of the meshes preserving the
nonobtuseness property, which is a sufficient condition guaranteeing the validity
of DMPs.

Linear tetrahedral finite elements are very popular for solving various prob-
lems described by partial differential equations (PDEs), especially if a high
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Figure 1: Tetrahedron ABCD whose faces ACD and BCD form the angle α.

regularity of the corresponding solutions cannot be guaranteed (e.g. in the case
of complicated geometries). The structure and properties of the associated FE
matrix strongly depend on the dihedral angles between faces of tetrahedral el-
ements. To demonstrate this, let us consider an arbitrary tetrahedron ABCD
(see Fig. 1). Let φi and φj be two linear functions such that

φi(A) = 1, φi(B) = φi(C) = φi(D) = 0,

φj(B) = 1, φj(A) = φj(C) = φj(D) = 0.

Then a straightforward calculation leads to the following formula (see [15])

∇φi · ∇φj = −meas2ACD meas2BCD

9 (meas3ABCD)2
cosα, (1)

where α is an angle between the faces ACD and BCD, and the symbol measd

stands for d-dimensional measure (i.e. the area of a triangle for d = 2 and
the volume of a tetrahedron for d = 3). Thus, each obtuse dihedral angle of
the tetrahedron ABCD gives a positive contribution to the corresponding off-
diagonal entry of the element FE matrix e.g. when solving a boundary value
problem with the Laplace operator by FEM.

Note that the same observation holds (see [15, 5]) for a wider class of non-
linear elliptic problems of the form

−div(b(x, u,∇u)∇u) = f(x) in Ω, (2)

u = 0 on ∂Ω, (3)

where b(·, ·, ·) is some positive smooth function. Here and in what follows Ω
is a bounded polyhedral domain with Lipschitz boundary ∂Ω. Equation (2) is
used for modelling many phenomena in real-life applications, see [5] for some
examples.

For problem (2)–(3) the most popular maximum principle reads as follows
(cf. [17])

f(x) ≤ 0 in Ω =⇒ max
x∈Ω

u(x) ≤ 0. (4)
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It is thus natural to look for a class of finite elements such that a similar
implication (i.e. DMP) is guaranteed for the corresponding FE approximations
a priori. In our case it means that (cf. [3])

f(x) ≤ 0 in Ω =⇒ max
x∈Ω

uh(x) ≤ 0, (5)

where uh is the piecewise linear continuous FE approximation of the solution of
(2)–(3). (The definition for the subindex h will be given in the next section.)

2. On nonobtuse tetrahedral FE meshes

Definition 1 A finite set of tetrahedra is called a tetrahedral FE mesh of Ω if

i) the union of all the tetrahedra is Ω,

ii) the interiors of the tetrahedra are mutually disjoint,

iii) any face of any tetrahedron from the set is either a face of another
tetrahedron in the set, or a subset of ∂Ω.

For a given FE mesh Th (with elements denoted by the symbol T ) the dis-
cretization parameter h stands for the maximum length of all edges in Th, i.e.,

h = max
T∈Th

hT , where hT = diamT.

Definition 2 An infinite sequence F = {Th}h→0 of FE meshes of Ω is called a
family of FE meshes if for every ε > 0 there exists Th ∈ F with h < ε.

Definition 3 A tetrahedron is said to be nonobtuse if all its six dihedral angles
between the faces are less than or equal to π/2.

Definition 4 A tetrahedral FE mesh is said to be nonobtuse if it contains only
nonobtuse tetrahedra.

By [3], linear triangular nonobtuse finite elements guarantee the validity
of DMP (5) for the Poisson equation in 2d. This result was generalized to 3d
case in [15], namely, that linear tetrahedral FEs applied to problem (2)–(3) yield
approximations satisfying (5) if nonobtuse tetrahedral FE meshes are used. The
main ingredient in those works was to provide that resulting FE matrices are
monotone. This is the case if they are e.g. Stieltjes ones, in particular, if they
have nonpositive off-diagonal entries (see [20] for details). The last condition is
obviously guaranteed for nonobtuse tetrahedral meshes due to formula (1).

In order to decrease the discretization error, a given FE mesh should be
refined locally and/or globally during the computational process. That is why
the issue of preserving the nonobtuseness property while refining the meshes
naturally arises.
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2.1. Global nonobtuse refinement technique

In this subsection we describe a global refinement algorithm producing nonob-
tuse tetrahedra only.

Definition 5 A tetrahedron is said to be a path tetrahedron if it has three mu-
tually perpendicular edges which do not pass through the same vertex.

The reason for the name of the above defined tetrahedron is due to the fact
that its three perpendicular edges form a “path” (see Fig. 2 (left)).

Lemma 1 Any path tetrahedron is nonobtuse.

For the proof see [7, p. 728–729].

Theorem 1 Let T be an arbitrary tetrahedron such that its circumcentre be-
longs to T , and let all faces of T be nonobtuse triangles. Then there exists a
family of tetrahedral FE meshes of T , which contains only path tetrahedra.

This theorem is proved in [7] and [16].

Note that each path tetrahedron satisfies the assumptions of Theorem 1,
since its faces are right triangles and its circumcentre is the midpoint of the
longest edge. In Fig. 2 (right) a partition of a tetrahedron T , that satisfies the
assumptions of Theorem 1, into path tetrahedra, is sketched. Such a partition
is defined in the following way. First we divide each face F of T into 6 or
4 right subtriangles by connecting the circumcentre of F with 3 vertices and
3 midpoints of sides of F . The common vertex of these subtriangles is the
circumcentre of F . This kind of plane refinement we call 2d yellow. Denoting
the circumcentre of T by G, we can define the path subtetrahedra as convex
hulls of G and particular right subtriangles on the surface of T . We call such a
three-dimensional refinement as the 3d yellow.

It is clear that a common face F of any two adjacent tetrahedra (satisfying
the assumptions of Theorem 1) in a given mesh is divided by the above technique
in a unique way. Therefore, we can formulate the main result of this subsection
as follows.

Theorem 2 Let the initial FE mesh of Ω be such that for any tetrahedron T
its circumcentre belongs to T , and let all faces of all T be nonobtuse triangles.
Then there exists a family of tetrahedral FE meshes of Ω containing only path
tetrahedra.

2.2. Local nonobtuse refinement techniques

Towards a vertex: The key idea of local refinement technique producing only
nonobtuse tetrahedra in the face-to-face manner towards some vertex is exposed
in the following theorem.
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Figure 2: A path tetrahedron ABCD, whose edges AB, BC, and CD form a
“path”, all its right angles (within faces and dihedral ones) are indicated (left).
3d yellow partition of a tetrahedron into path subtetrahedra (right).
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Figure 3: Partition of a path tetrahedron ABCD into 5 path subtetrahedra
(left). Local refinement into nonobtuse tetrahedra near Fichera corner (right).

Theorem 3 Let ABCD be a path tetrahedron whose edges AB, BC, and CD
are mutually perpendicular. Then there exists an infinite sequence of nonobtuse
tetrahedral FE meshes of ABCD consisting of path tetrahedra only that locally
refine towards the vertex A.

For a detailed constructive proof see [9]. Its main idea is sketched in Fig. 3
(left). Using several appropriate orthogonal projections, we first subdivide the
tetrahedron ABCD into five nonobtuse tetrahedra. Then we show that the
path tetrahedron ATSQ from Fig. 3 (left) is similar to the original tetrahedron
ABCD. The subtetrahedron ATSQ can be now decomposed into 5 subtetra-
hedra in a similar way as ABCD. In this manner, we obtain recursively the
required infinite sequence of nonobtuse tetrahedral FE meshes condensing to-
wards the point A.

The above idea can be used e.g. for local refinements a polyhedral domain
Ω = (−1, 1)3 \ [0, 1)3 which is the union of 7 cubes, see Fig. 3 (right). Each
cube is first divided in a standard way into 6 path tetrahedra having a common
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Figure 4: Partition of two adjacent square prisms into nonobtuse tetrahedra.

vertex in the reentrant corner of Ω. For each of the 7 × 6 = 42 tetrahedra we
apply the algorithm given by Theorem 3 such that the partition of each path
tetrahedron is just the mirror image of the partition of any adjacent tetrahedron
having a common face. Note that the concave (also named reentrant) corner
in Fig. 3 (right) is often called the Fichera corner. See [9] for similar handling
some Fichera-like corners.

Near a face/interface: Here, we present the key from our recent work [10] (see
Fig. 4 and 5) on nonobtuse tetrahedral refinements towards a flat face/interface
of the solution domain. For this purpose we take a square prism and its adjacent
square prism. Denote their vertices and some other nodes as sketched in Fig. 4,
where also partitions of some faces are given.

In what follows, let s = |B1B3| = |B3B5| denote the lengths of the edges
of the square faces of the prisms, and let l1 = |A0B0| and l2 = |B0C0| be their
thicknesses. First, we decompose the left square prism A1A3A5A7B1B3B5B7 of
Fig. 4 into four triangular prisms whose common edge is A0B0. Second, we de-
compose each triangular prism into four tetrahedra. For instance, the triangular
prism A0A1A3B0B1B3 will be divided in the following way (see Fig. 5):

A0A1A3B0, A1B1B2B0 (path tetrahedron),
A3B3B2B0 (path tetrahedron), and A1A3B0B2.

The first three resulting tetrahedra are clearly nonobtuse. The last tetrahe-
dron A1A3B0B2 is nonobtuse if and only if

|B1B3| ≤ 2|A0B0|, i.e. l1 ≥ s

2
. (6)

The other three triangular prisms, A0A3A5B0B3B5, A0A5A7B0B5B7, and
A0A1A7B0B1B7, can be subdivided similarly.

Next, we decompose the right adjacent square prisms B1B3B5B7C1C3C5C7

of Fig. 4 into eight triangular prisms whose common edge is B0C0. Further, e.g.
the triangular prism B0B1B2C0C1C2 will be divided into four tetrahedra like
in the previous step:

B0B1B2C2 (nonobtuse tetrahedron), B0C0DC2 (path tetrahedron),
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Figure 5: Decomposition of a prism A0A1A3B0B1B3 into 4 tetrahedra.

?

Figure 6: Several refinements towards the vertical edge (marked by the bold
dot, view from the top). The problematic zone is marked by the question mark.

B1C1DC2 (path tetrahedron), and B0B1DC2.

The last tetrahedron is nonobtuse provided

|B0B1| ≤ 2|B0C0|, i.e. l2 ≥
√

2s

4
. (7)

This condition is necessary and sufficient to guarantee a nonobtuse decomposi-
tion of the triangular prism B0B1B2C0C1C2 into four nonobtuse tetrahedra as
described above.

The other seven triangular prisms can be divided into nonobtuse tetrahedra
similarly. In this way (i.e., under conditions (6) and (7)) we get a face-to-face
nonobtuse partition of two adjacent square prisms. The left square prism of
Fig. 4 is subdivided into 16 and the right prism into 32 nonobtuse tetrahe-
dra. This enables us to form layers and use this process repeatedly towards
faces/interfaces (see [10] for some practical examples).

Around an edge: Here, the recent algorithm from [11] is sketched. In the
construction of the previous case (about refinements near face/interface), we
take both prisms be of the thickness d

2
, i.e. l1 = l2 = d

2
. Therefore, two square

prisms in Fig. 4 form a cube with edges of the length d.
In Figure 6, we observe several principal refinement steps towards the chosen

vertical edge in the upper right corner (view from the top). The advancing
(according to arrows) blocks with the shown refinement of their upper faces
are always treated as in Fig. 4 and 5 (with their “own” l1 = l2 = d

2
). The

problematic zone (marked by the question sign) and its refinement which provide
the conformity with the “surroundings” will be discussed further. It is enough
to consider a few first steps only (as in Fig. 6), since the situation repeats up to
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Figure 7: Refinement of one of the two cubes in the problematic zone, only forced
“face refinement” lines (due to the conformity requirements) are sketched (left).
Full “face refinement” of the left cube (the bold dot is its center) (right).

scaling. In what follows, we always consider only the upper layer (of the width
d) from the initial mesh, since the (possible) other layers (under it, each of the
width d, too) can be treated similarly using symmetry argument.

The zone marked by the question mark in Fig. 6 is, in fact, made of two
cubes (one above the other) of the size d

2
× d

2
× d

2
each. It is enough to show

how to partition, conformly with the surroundings, the upper cube, since the
lower cube can be partitioned using the mirror reflection via their common
face. The method for this purpose is illustrated in Fig. 7 and 8. First, in
Fig. 7 (left) we sketch those faces whose refinement stencils are dictated by the
previous constructions, and further, as illustrated in Fig. 7 (right) we partition
the cube into nonobtuse tetrahedra taking convex hulls of the center of the cube
and the marked right triangles on the faces, besides the upper and lower right
subcubes, which we split in a special way (into 5 nonobtuse teterahedra each)
as demonstrated in Figure 8.

We notice that we can do infinitely many steps in the total above construc-
tion with the choice l1 = l2 = d

2
and the overall conformity of any resulting

meshes, obviously moving towards the chosen edge, is guaranteed.
In real-life calculations we perform only a finite number of refinements.

Therefore, we have to divide the “remaining” zone around the edge, whose
position is illustrated by the black dot in Fig. 6. Each subcube in that zone has
to be divided so that it fits to the triangulation of the right face of the right
cube from Fig. 4 (right). We could apply for this purpose e.g. the division into
24 cube corner tetrahedra as sketched in Fig. 8 (right). A direct calculation
shows that the above algorithm applied to a cube produces, in terms of Fig. 6
(from the left to the right) conforming nonobtuse tetrahedral meshes with 640,
1536, and 3328 elements, respectively.

3. Concluding remarks

Remark 1 Nonobtuseness of tetrahedral FE meshes represents only a sufficient
condition to guarantee DMP. In [12] we present a weakened DMP-condition on
the shape of tetrahedra, which enables us to use also some tetrahedra with
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Figure 8: Refinement of one of the two sub-cubes into 5 nonobtuse tetrahedra
(left). Partition of a cube into 24 cube corner tetrahedra. They are defined as
the convex hull of the centre of the cube and a particular triangle on the surface
(right).

dihedral angles slightly bigger than π/2.

Remark 2 If we consider a more general elliptic problems with lower-order
terms [5], DMP would be guaranteed on acute tetrahedral FE meshes only,
i.e. on those meshes whose elements are acute tetraheda (with acute dihedral
angles). However, the problem of partitioning into acute tetrahedra is more
hard than that one in the case of nonobtuse ones. Available results in this
direction are reported in works [1, 2, 6, 14, 18, 19].

Remark 3 DMPs can also be used for proving the convergence of FE approx-
imations in the maximum norm [3].

Remark 4 More sophisticated forms of maximum principles (on continuous
and discrete levels) are presented e.g. in [5] – for boundary conditions different
from the zero Dirichlet one (3), and in [4] – for the case f from (2) is arbitrary.

Remark 5 Nonobtuse tetrahedra satisfy the so-called maximum angle condi-
tion (see [13]), which is commonly used for convergence proofs in the FE analysis.
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[5] J. Karátson & S. Korotov, Discrete maximum principles for finite element solutions
of nonlinear elliptic problems with mixed boundary conditions, Numer. Math. 99
(2005), 669–698.
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[15] M. Kř́ıžek & Q. Lin, On diagonal dominance of stiffness matrices in 3D, East-West

J. Numer. Math. 3 (1995), 59–69.
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