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Abstract

In some geophysical problems, it is sometimes possible to divide the sub-
surface resistivity distribution as a one dimensional (1D) contribution plus
some two dimensional (2D) inhomogeneities. Assuming this scenario, we split
the electromagnetic fields into their primary and secondary components, the
former corresponding to the 1D contribution, and the latter to the 2D inho-
mogeneities. While the primary field is solved via an analytical solution, for
the secondary field we employ a multi-goal oriented self-adaptive hp-Finite
Element Method (FEM). To truncate the computational domain, we design a
Perfectly Matched Layer (PML) that automatically adapts to high-contrast
materials that appear in the subsurface and in the air-ground interface. Nu-
merical results illustrate the robustness of the proposed PML and the gains
of the secondary field approach, where we obtain results with comparable
accuracy than with a full field based formulation but with a much lower
computational cost.
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1. Introduction

The magnetotelluric (MT) method is a passive exploration technique
based on electromagnetic (EM) waves [1, 2, 3]. It aims at estimating the
resistivity distribution, and therefore at providing an image of the Earth’s
subsurface. MT measurements are governed by Maxwell’s equations with a
surface source located at the ionosphere. In particular, when the materi-
als and the source depend only upon two spatial variables, two independent
and uncoupled modes are derived, the so-called Transverse Electric (TE)
and Transverse Magnetic (TM) polarizations. The solution to the equations
arisen from these two modes can be numerically solved with a hp-Finite Ele-
ment Method (FEM) [4, 5, 6, 7]. With those solutions, it is then possible to
compute the impedance and/or the apparent resistivity, two suitable physical
quantities to perform the inversion.

To correctly capture the complexity of the Earth’s subsurface, we employ
adaptive grids, which allow to approximate special features of the solution
by refining only in specific areas. To build the refined mesh, we employ a
goal-oriented adaptive strategy [8], which minimizes the error of a prescribed
quantity of interest represented by a linear functional (see [9, 8, 10, 11, 12]
for details). The ability of the goal-oriented algorithm to provide accurate
solutions in a region of interest in the context of hp-FEM has been described
in various works [13, 14, 15]. The hp-FEM provides exponential convergence
rates for elliptic problems with a piecewise analytic solution, whereas h or
p versions converge only algebraically. This was proved in 1D by Gui and
Babuska [16] and in 2D by Babuska and Gui [17] and Schwab [18].Only the
hp-FEM is able to combine small elements (needed to capture geometrical
details such as thin edges) with high orders of approximation (necessary to
decrease the dispersion error for wave propagation problems [19, 20, 21]).
Besides, it is robust for singularly perturbed problems, that is, it still per-
forms appropriately when a parameter involved in a given elliptic problem
approaches a critical value [18].

In some geophysical applications, as in MTs, the data is acquired at sev-
eral receivers located at the Earth’s surface. It becomes then necessary to
obtain accurate results at multiple positions, being this the reason to extend
the goal-oriented strategy to a multigoal-oriented one. There exist two possi-
ble approaches towards multigoal-oriented adaptivity. The first one consists
of using one grid for each goal, as in [22], where the implementation needs
to handle multiple grids, which in general may be complicated. The second
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one consists of defining a new quantity of interest that takes into account
all goals (see [23, 24]). Based on this second approach, we implement the
algorithm proposed by Pardo in [25].

In geophysics in general and in MT in particular, when the subsurface
distribution of the resistivity depends upon multiple spatial variables, it is
sometimes possible to interpret it as a 1D formation plus some 2D (or 3D)
heterogeneities. In this work, we consider a horizontally layered Earth model
with 2D heterogeneities. Then, in order to solve the TE and TM modes,
we split the electric and magnetic fields into their primary and secondary
components. The first corresponds to the fields arisen from some reference
conductivity model (1D), while the second arises from the difference between
the actual conductivity distribution with respect to the reference model (2D).

Since the 1D solution is known analytically, the main advantage of this
approach is that we only need to accurately solve the secondary field vari-
ations (the term “secondary field” is also known as “scattered field” in the
electrical engineering community), which in general are easier to solve, since
they exhibit less variations (smaller gradients) than the primary field. Hence,
it is generally possible to employ coarser grids, and hence reduce the com-
putational cost.

Additionally, in MTs the computational domains are usually very large if
one models the incident plane wave source. In the secondary field formula-
tion, the source term is not at the ionosphere, but where the inhomogeneities
are considered. Since it is not necessary anymore to model the ionosphere
source, this allows us to considerably reduce the computational domain. Fi-
nally, since we separate the primary from the secondary field, we may obtain
additional physical relevant information by analyzing each field (primary and
secondary) separately.

The main contribution of this work is then to solve, via the hp-FEM,
the MT direct problem using the secondary field formulation to simulate
MT measurements. The mentioned benefits of this approach will then be
notorious in the inversion. On the one hand, there exists the possibility of
analyzing 1D and 2D effects separately. On the other hand, since the solution
of the inverse problem is based on reiterated solutions of the direct problem,
reducing the computational cost of solving the direct problem produces large
savings in the computational costs.

Additionally, we provide an automatic technique to truncate the com-
putational domain, a further problem that appears when applying a FEM
to unbounded region problems such as MT. Different approaches can be em-
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ployed for this purpose. We employ a Perfectly Matched Layer (PML), which
is an exact method at the continuous level, and thus, it matches the high-
accuracy delivered by the hp-adaptive FEM. The work of Gomez-Revuelto
et al. [26] shows the suitability of the utilization of PMLs in this context.

PMLs were proposed by Berenger [27] (1994) in an electromagnetic con-
text as an artificial layer intended to reduce reflections from the boundary
of a truncated computational domain. In this method, one has to select the
decay profile of the wave into the PML region. This profile needs to ensure
that reflections from the boundary are arbitrarily small, which implies that
the solution decays arbitrarily fast, creating then a “boundary layer” with
strong gradients within the PML region. Thus, while a low decay produces
incoming waves reflected from the boundary, an excessive decay requires a
very fine grid to approximate the boundary layer. To find an equilibrium
between a fast and a slow decay, it is necessary to properly adjust the PML
parameters, which is usually tricky since they depend on the problem it-
self. Moreover, when we have a layered material with high contrasts on the
material properties, this selection of the parameters is even more challenging.

Thus, in this work we also provide a method to automatically adjust
the PML parameters, even in the most complex scenarios where the mate-
rial contrast properties among neighboring materials are as high as sixteen
orders of magnitude. These type of scenarios often appear in geophysical
electromagnetic (EM) applications that involve both, air and ground. We
show that the proposed PML produces an appropriate decay of the solution
in the air and in the subsurface without introducing spurious reflections, and
thus, providing accurate solutions.

The present work is organized as follows. In Section 2 we define the
formulation of the problem. Section 3 describes the formulation of the PML
and how the parameters are adjust in the Automatically Adapted PML. We
derive the secondary field formulation in Section 4 and numerical results
based on the MT problem are illustrated in Section 5. Section 6 is devoted
to the conclusions.

2. Formulation of the Method

MT measurements are governed by the electromagnetic phenomena, which
is described by Maxwell’s equations. Assuming a time-harmonic dependence
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of the form ejωt, these equations can be expressed in frequency domain as: ∇×E = −jωµH −M imp (Faraday),

∇×H = (σ + jωε)E + J imp (Ampère),
(1)

where E and H are the electric and magnetic fields, respectively. These
fields are driven by an impressed prescribed electric and magnetic density
current sources, J imp = (0, Jy, 0) and M imp = (0,My, 0), respectively. We
emphasize that, as explained in [28], magnetic impressed currents are only
mathematical symbols utilized to represent sources. j is the imaginary unit,
ω is the angular frequency, and σ stands for the conductivity of the media.
We assume that

σ =

σ 0 0
0 σ 0
0 0 σ

 , ε =

ε 0 0
0 ε 0
0 0 ε

 , µ =

µ 0 0
0 µ 0
0 0 µ

 , (2)

where the electrical permitivity ε and the magnetic permeability µ are as-
sumed to be that of the vacuum (ε0 and µ0 respectively) and σ(x, y, z) to be
piecewise constant, non-negative, and bounded above.

2.1. Transverse Electric (TE) and Transverse Magnetic (TM) Modes
Pre-multiplying both sides of Faraday’s Law by µ−1, applying the curl,

and using Ampère’s Law, we obtain the reduced wave equation,

∇× (µ−1∇×E)− k2E = −jωJ imp −∇×
(
µ−1M imp

)
, (3)

where k2 = ω2ε − jωσ. A similar equation is obtained in terms of the
magnetic field by multiplying both sides of Ampère’s Law by σ̂−1 = (σ +
jωε)−1 and applying the curl to Faraday’s Law

∇× (σ̂−1∇×H) + jωµH = −M imp + ∇×
(
σ̂−1J imp

)
. (4)

When the materials and the source depend only upon two spatial variables
(x, z), then ∂/∂y = 0 and two independent and uncoupled modes are derived
from Maxwell’s equations. The uncoupled TE mode involves (Ey, Hx, Hz)
field components, while TM only considers (Hy, Ex, Ez). Our aim is to find
the y component of the electric and magnetic fields Ey(x, z), Hy(x, z) ∈
H1(Ω) that satisfy the BCs and equations (3), and (4), respectively.
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To derive the variational formulation, we first define the L2-inner product
of two possible complex and vector valued functions g1 and g2 as:

〈g1, g2〉L2(Ω) =
∫

Ω
g1

∗g2dΩ, (5)

where g∗ denotes the adjoint (transpose of the complex conjugate) of g.

2.1.1. TE Variational Formulation
To obtain the corresponding variational formulation, we pre-multiply (3)

by the complex conjugate of a test function F ∈ V (Ω), where V (Ω) =
H1

ΓD
(Ω) = {F ∈ L2(Ω) : F |ΓD

= 0,∇F ∈ L2(Ω)} is the space of admis-
sible test functions. Then, we integrate by parts and we incorporate the
homogeneous Dirichlet BC (the ones considered in the present work) over
ΓD = ∂Ω. Thus, we obtain: Find Ey ∈ V (Ω), such that:

〈∇F, µ−1∇Ey〉L2(Ω) − 〈F, k2Ey〉L2(Ω) = −jω〈F, J impy 〉L2(Ω) ∀F ∈ V (Ω),
(6)

2.1.2. TM Variational Formulation
In a similar way, from (4) we obtain the corresponding variational formu-

lation for the magnetic field Find Hy ∈ V (Ω), such that:

〈∇F, σ̂−1∇Hy〉L2(Ω) + jω〈F, µHy〉L2(Ω) = −〈F,M imp
y 〉L2(Ω) ∀F ∈ V (Ω),

(7)
We employ an hp-Finite Element Method [4] to solve both problems (6)

and (7). The objective of the traditional goal-oriented method is to construct
an optimal hp-grid in the sense that it minimizes the problem size needed to
achieve a given tolerance error for a given quantity of interest (solution at
the receiver) Li(u), being u either Ey or Hy. This quantity is a linear and
continuous functional [14, 15] in u associated to the i-th receiver and defined
as:

Li(u) = 1
|ΩRi|

∫
ΩRi

u dΩ, (8)

where ΩRi is the domain occupied by the i-th receiver.

6



Since we have more than one receiver, we need to properly compute sev-
eral quantities of interest. Therefore, we employ a multigoal-oriented strat-
egy, proposed in [25], where a new linear quantity of interest that takes into
account all receivers is employed.

From the solution to the variational problems, we compute the impedance
and/or the apparent resistivity, which are two post-processed transfer func-
tions that are typically used during inversion in MT problems. The impedance
Z is defined as

Z iTE = Z iyx = Li(Ey)
Li(Hx)

, Z iTM = Z ixy = Li(Ex)
Li(Hy)

, (9)

where Hx and Ey are obtained from Maxwell’s equations as

Hx = 1
jωµ

∂Ey
∂z

, Ex = − 1
σ + jωε

∂Hy

∂z
. (10)

The apparent resistivity ρapp is defined as

ρappmn = |Zmn|
2

ωµ
. (11)

For the sake of simplicity in the notation, we omit the y subscript from Ey,
Hy, J impy , and M imp

y from now on.

3. Truncation of the Domain

When applying a FEM to unbounded region problems such as MT, the
computational domain must be truncated. We employ PMLs for this pur-
pose, and we follow the interpretation introduced by Teixera and Chew
in [29, 30], where they consider a PML as an analytic continuation of the
governing equations into the complex plane (see also [31]).

PMLs transform propagating and evanescent waves into exponentially
fast decaying evanescent waves. Since waves are strongly attenuated inside
the PML region, the bounded computational domain can be limited by a
surface on which one can set perfectly reflecting BCs (in our case, we set
homogeneous Dirichlet BCs). Indeed, any reflected wave is so much absorbed
inside the layer that it does not pollute the solution inside the domain of
study. Then, the selected BCs for both problems imply that the tangential
component of the fields are zero on the outer part of the boundary. For a
recent review of the state of the art of this truncation technique, see [32]
and [33].
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3.1. PML Definition
Let the Cartesian coordinate system x = (x, z) be the reference system

of coordinates in a 2D scenario, where for simplicity, we select the vertical
coordinate z as the direction perpendicular to the ground-air interface. Given
an arbitrary complex system of coordinates ζ = (ζ1, ζ2), we define our change
of coordinates by x = ψ(ζ) and we denote the Jacobian matrix and its
determinant by J and det(J ). The change of coordinates is assumed to
be represented by an injective differentiable function with continuous partial
derivatives and nonzero determinant at any point.

We define a one dimensional change of variables in the positive direction
of the i-th coordinate as

ζxi
(xi) =

∫ xi

0
h(η)dη, for i = 1, 2, x1 = x, x2 = z, (12)

where h(·) is a possibly complex valued function to be determined in sec-
tion 3.3. The case corresponding to the negative direction can be defined

analogously. The Jacobian is given by [J ]i,j =
[
∂ζi
∂xj

]
i,j

, for i, j = 1, 2. Thus,

it is expressed as

J =

h(x) 0

0 h(z)

 , where det(J ) = h(x)h(z), (13)

denotes the determinant of the Jacobian.
With this particular change of coordinates, the Jacobian is diagonal.

However, we derive herein the variational formulation for a general, non
orthogonal change of variables. This is useful for other purposes, e.g. devel-
opment of non-orthogonal Fourier FEMs in certain geometries (see [34, 35]).

3.2. Variational Formulation in an Arbitrary System of Coordinates
We define the change of coordinates Ẽ := E ◦ ψ = Ẽ(ζ), F̃ := F ◦

ψ = F̃ (ζ), and J̃ imp := J imp ◦ ψ = J imp(ζ). Using Einstein’s summation
convention, according to the chain rule, denoting with the upper bar the
complex conjugate, and taking into account that if f ∈ C1(Ω), then for all i

∂f

∂ζi
= ∂f

∂ζ i
,

∂f

∂ζ i
= ∂f

∂ζi
, (14)
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we obtain that

∇ζẼ = ∂Ẽ

∂xi

∂xi
∂ζn

exn = (J −1)T∇E,

∇ζẼ = ∂Ẽ

∂xi

∂xi

∂ζn
exn = (J −1)∗∇E.

(15)

Therefore, multiplying (3) by the complex conjugate of a test function F̃ ,
integrating by parts, and incorporating the homogeneous Dirichlet BC over
Γ̃D, we obtain:

〈∇ζF̃ , µ̃−1∇ζẼ〉
L2(Ω̃) = 〈(J −1)∗∇F, µ−1(J −1)T∇E det(J )〉L2(Ω) =

= 〈∇F,J −1µ−1(J −1)T∇E det(J )〉L2(Ω) ,

〈F̃ , k̃2Ẽ〉
L2(Ω̃) = 〈F, k2E det(J )〉L2(Ω),

〈F̃ , J̃ imp〉
L2(Ω̃) = 〈F, J impdet(J )〉L2(Ω),

(16)
where µ̃ := µ ◦ψ, k̃ := k ◦ψ, Ω̃ := Ω ◦ψ, and Γ̃D := ΓD ◦ψ.
Following the ideas of [36] concerning the inclusion of metric-dependent vari-
ables within material coefficients, we define the following functions:

µTENEW = J Tµ J 1
det(J ) =


µ
h(x)
h(z) 0

0 µ
h(z)
h(x)

 ,
k2
NEW = k2 det(J ) = k2h(x)h(z),

J impNEW = J imp det(J ) = J imph(x)h(z).

(17)

The new source and new material tensors incorporate the information about
the change of coordinates. Thus, the variational formulation can be expressed
in terms of an arbitrary system of coordinates by simply considering the new
source and materials. The new variational formulation for the electric field
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in the new system of coordinates is then given by
Find E ∈ Ṽ (Ω), such that:

〈∇F, (µTENEW )−1∇E〉L2(Ω) − 〈F, k2
NEWE〉L2(Ω) =

−jω〈F, J impNEW 〉L2(Ω), ∀F ∈ Ṽ (Ω),
(18)

and an analogous procedure for the magnetic field yields
Find H ∈ Ṽ (Ω), such that:

〈∇F, σ̂−1
NEW∇H〉L2(Ω) + jω〈F, µTMNEWH〉L2(Ω) =

−〈F,M imp
NEW 〉L2(Ω), ∀F ∈ Ṽ (Ω),

(19)

where Ṽ (Ω) = H̃1
ΓD

(Ω) = {E ∈ L2(Ω) : E|ΓD
= 0, (J −1)T∇E ∈ L2(Ω)}

in both cases, and new materials and sources for the magnetic field are now
given by:

σ̂NEW = J T σ̂ J 1
det(J ) =


σ̂
h(x)
h(z) 0

0 σ̂
h(z)
h(x)

 ,
µTMNEW = µ det(J ) = µh(x)h(z),

M imp
NEW = M imp det(J ) = M imph(x)h(z).

(20)

3.3. Automatic Adjustment of PML Parameters
Given the general change of coordinates (12), we select

h(xi) =

 1 , xi < xai

φi ∈ C , xi ∈ [xai , xbi),
(21)

where [xai , xbi) defines the position of the PML in the positive direction of the
i-th coordinate.

Far away from the source, the solution can be assumed to be a sum of
plane waves. Thus, it may be decomposed into functions of the form e−jβx·v

(see [37]), where β =
√
ω2µε− jωµσ is the wavenumber and v is an unit

vector that indicates the direction of propagation of the wave.
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When implementing a PML, one has to select the decay profile of the wave
into the PML region, which is usually a tricky task due to the dependence on
the problem itself. To find an equilibrium between a fast and a slow decay, it
is neecessary to properly adjust the PML parameters. Moreover, for layered
formations with high contrasts on the material properties, this selection of
the parameters is even more challenging.

The worst scenario, the one in which the wave travels the shortest dis-
tance, corresponds to a plane wave traveling perpendicularly to the PML
towards the positive direction of the xi variable (an analogous analysis can
be performed for the negative direction). Then, the solution in the PML
region for the new variable is given by

E(ζ(xi)) = e−jβζ(xi) = e−jβφixi . (22)

Our aim is to make the solution vanish in the PML region without introducing
reflections. Therefore, we define the decay factor α, which measures the decay
of the solution from xai to xbi , as

α := E(xbi)
E(xai )

= e−jβφi(xb
i −xa

i ). (23)

Then, we select
φi = j

log(α)
β(xbi − xai )

. (24)

Remark. With this formula we obtain the final definition of the Automatically
Adapted PML. It adjusts the parameters without further user interaction,
even if the material properties change abruptly. This is especially important
for our MT application, since we have layers with highly varying conductiv-
ities. The most prominent example of this occurs on the air-Earth interface.
The only user interaction is to define the desired decay into the PML region,
i.e., α. Then, φi is automatically computed guaranteeing a minimum decay
in the outer part of the PML according to the selected α.

4. Secondary Field Formulation

We consider the reference conductivity model as a 1D layered media with
a known analytical solution (see [38] for instance), and we denote it by σP .
Let Ω2 be the domain where the 2D inhomogeneities are located while Ω1
corresponds to the remaining part (see Figure 1). Defining σS = σ−σP , then
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x
z

Ω2(x, z)
σ(x, z)

Ω1(z)
σ(z)

Figure 1: Illustration of the computational subdomains Ω1 and Ω2 and the material
properties inside each subdomain. σ only depends on z in Ω1, whereas on x and z
in Ω2.

σS is equal to zero outside Ω2. If we denote the solution to the primary field
by (EP ,HP ), then the secondary field (ES,HS) is defined as the difference
between the total and the primary fields as:

ES = E −EP , HS = H −HP . (25)

Under these considerations, the equations for the electric (3) and magnetic (4)
fields become:

∇×
(
µ−1∇×ES

)
− k2ES = −jωσSEP , (26)

∇×
(
σ̂−1∇×HS

)
+ jωµHS = −∇×

(
σ̃−1∇×HP

)
(27)

where σ̃−1 = σ̂−1 − (σ̂P )−1.
These equations yield a similar weak formulation to the one derived in

the previous section. The main modification is on the right hand side. This
implies that after incorporating the PML, the new materials are also com-
puted in the same way. In particular, for a 2D model Earth with a PML, we
obtain that the variational problems are stated as

Find ES ∈ Ṽ (Ω), such that:

〈∇F, (µTENEW )−1∇ES〉L2(Ω) − 〈F, k2
NEWE

S〉L2(Ω) =

−jω〈F, σSNEWEP 〉L2(Ω) ∀F ∈ Ṽ (Ω),
(28)
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for the electric field, and
Find HS ∈ Ṽ (Ω), such that:

〈∇F, σ̂−1
NEW∇HS〉L2(Ω) + jω〈F, µTMNEWHS〉L2(Ω) =

−〈∇F, σ̃−1
NEW∇HP 〉L2(Ω), ∀F ∈ Ṽ (Ω),

(29)
for the magnetic field. σ̃NEW is then given by

σ̃NEW =


σ̃
h(x)
h(z) 0

0 σ̃
h(z)
h(x)

 , (30)

and in both cases we have that Ṽ (Ω) = H̃1
ΓD

(Ω) = {F ∈ L2(Ω) : F |ΓD
=

0, (J −1)T∇F ∈ L2(Ω)}.
Because of the linearity of Li, we compute the quantities of interest as:

Li(E) = Li(EP ) + Li(ES), (31)

and
Li(H) = Li(HP ) + Li(HS). (32)

Notice that the use of a secondary field formulation can be straightforwardly
extended to a 3D problem when considering 3D inhomogeneities.

5. Numerical Results

In this section we study the impact of the automatically adjusted PML
into our MT model problem, and we illustrate the savings obtained from
using the secondary field formulation as opposed to the full field formulation.
To limit the paper size and for simplicity, in this section we display results
obtained with the TE mode only.

5.1. Model Problem
We assume a horizontally layered Earth model with some 2D inhomo-

geneities. We model the source as an infinitely long (in x and y directions)
rectangular surface located at the ionosphere. This allows us to treat the
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Figure 2: 2D MT problem. Blue rectangle: natural source. Red circles: receivers.

electromagnetic fields as plane waves that propagate in the vertical direction
towards the Earth’s surface [2].

The physical problem is illustrated in Figure 2. The computational do-
main in consideration, of 2500×130 km2, consists of air and a layered media
(eventually with a target region) for modelling the subsurface formation. The
horizontal dimension corresponds to the x spatial variable (with zero at the
center), and the vertical to the z (with zero on the surface). The physical
domain is truncated with a PML and a Dirichlet homogeneous BCs imposed
at the PML’s outer part. The relative permittivity and permeability are the
same in all materials, and equal to one, while we set different values for the
conductivity (σ1, ..., σ4) for the numerical results. The receivers are located
at the Earth’s surface and are represented with red circles. The source, lo-
cated at the ionosphere, is represented with a dark blue rectangle. When the
media is only 1D dependent (invariant in x), the solution along the surface
is constant (x and y independent), and therefore, it is sufficient to consider
only one receiver. However, when 2D inhomogeneities are considered, we are
interested in having the solution at different horizontal positions.

Figure 3 illustrates the computational domain when the secondary field
formulation is considered. In this case, the source is located at the 2D inho-
mogeneities. For both domains (full and smaller one), we select the forcing
term J imp = 1.

For the 1D problem, we implement the exact solution proposed by Chew [38],
and for the numerical calculations we employ the multigoal-oriented hp-
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Figure 3: 2D MT Problem for the Secondary Field. The light area represents the
new (smaller) computational domain considered for the secondary field formula-
tion. Blue square: source region for the secondary field problem. Red circles:
receivers.

FEM [25, 6], which ensures accurate solutions at all receivers.

5.2. Validation Results
We first ensure that our automatically adapted PML provides accurate

solutions when using the hp-FEM with the full formulation (without the
secondary field formulation) approach.

We consider a 5 km thick PML. A geometric scaling of the initial mesh
in each direction of the PML region is depicted in Figure 4. The number of
elements into the PML region typically represents approximately the 15% of
the total amount of elements. We define a decay factor of α = 10−5, ensuring

2500m

225m
25m

5000m

675m
75m

Figure 4: Layers of the FEM mesh in an arbitrary direction into the PML region.

that the wave decays sufficiently fast when arriving to the boundary of the
domain.

We consider four 1D model problems with analytical solution, as de-
scribed in Table 1. In Figure 5 we display the relative error at different
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σ1 σ2 σ3
Model 1 1 1 1
Model 2 1 1/10 1/3
Model 3 1 1/10 1/10
Model 4 1 1/100 1/3

Table 1: Different models for the formation of the subsurface. Conductivities are
given in S/m.

frequencies between the numerical hp-FEM solution and the exact solution.
We obtain relative errors below 1.5%, a superb accuracy for these type of
simulations.
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Figure 5: Relative error between the exact and numerical solutions for different
subsurface formations against frequency.

To study the behavior of the solution into the PML region, we consider
Model 4 with frequency equal to 10−4 Hz and we display the logarithm of the
module of the impedance along all sides of the computational domain. Thus,
we represent log(|ZTE|) in Figure 6. We appreciate that the PML behaves
properly everywhere, with a smooth decay for the solution and without in-
troducing numerical reflections even in the areas with high contrast between
material properties. Panels (a) and (b) correspond to the intersection be-
tween air and ground. There, the contrast between resistivities is about
sixteen orders of magnitude and even in this scenario, the decay seems to be
superb.
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(a) (b)

(c) (d)

Figure 6: log(|ZTE |) corresponding to Model 4, with a 5 km thick PML and α =
10−5. Panel (a) corresponds to the left side of the domain. (b), (c), and (d)
correspond to the right, top and bottom parts of the domain, respectively. The
black line indicates the region where the PML starts.

5.3. Secondary Field Formulation
We consider now a 2D scenario with the following conductivity distribu-

tion: σ1 = 1/3, σ2 = 1/2, σ3 = 1/4, σ4 = 1/200 S/m. The most sensitive
frequency to the target area, that is, the frequency at which the presence
of the target affects most the measurements at the receivers, corresponds to
0.05 Hz. Figure 7 shows the final grids after executing the multi-goal ori-
ented adaptivity for the full formulation (left) and for the secondary field
based problem (right) at this frequency. The left panel shows a zoom of the
final grid with the origin of coordinates at the center. The size of the repre-
sented domain is of 40× 70 km2. The grid in the right panel is the complete
grid for the secondary field problem (50× 70) km2.

Figure 8 displays the relative errors in the apparent resistivity between
the full field and secondary field solutions. There, positions 1 to 4 correspond
to measurements obtained at 0, 4, 8 and 20 km from the center of the do-
main, respectively. Due to the low errors observed in Figure 8, we conclude
that both approaches provide analogous results. However, the number of
unknowns needed to achieve these small errors are not the same.

We now consider the same model with the same frequency of 0.05 Hz. We
compute an overkill solution with a much finer grid obtained after performing
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Figure 7: Final multi-goal oriented hp-grids. Different colors indicate different
values of p. Left: full formulation based problem (zoom). Right: secondary field
based problem.

adaptivity. We use it to estimate the relative errors corresponding to the sec-
ondary field and full formulations after several h and/or p global refinements.
Figure 9 displays the results of these computations for the receiver located
at the center of the domain. We appreciate that, for instance, to achive a
(small) relative error of 0.1%, one only requires around 7000 unknowns with
the secondary field formulation, while to solve the full formulation problem
with the same accuracy, we need around 17000 unknowns. Therefore, with
the first approach we only need approximately 40% of the unknowns.

6. Conclusions

The multi-goal oriented hp-FEM provides accurate solutions for the MT
problem at different receivers simultaneously. We show that by employing
the secondary field approach, we obtain significant benefits in comparison
with directly using the full field formulation: we can obtain additional phys-
ical relevant information by analyzing each field (primary and secondary)
separately, and furthermore, this is obtained employing a significantly lower
number of unknowns. Since the solution of the inverse problem is based on
iterated solutions of the direct problem, reducing the computational cost of
solving the direct problem induces high savings in the inversion process.

We also provide a method to automatically truncate the computational
domain employing PMLs. To find an equilibrium between a fast and a slow
decay on the PML region is usually tricky. It depends on the problem itself
and it is even more complicated when there exists high contrasts on adjacent
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Figure 8: Comparison between the results when using the full formulation and the
secondary field formulation.

material properties. We have shown that in these complicated scenarios,
the Automatically Adapted PML provides an adequate decay, not so fast to
require a too fine grid and not so slow to introduce artificial reflections. Since
the choice of PML parameters is automatic, the proposed approach is also
suitable for inverse problems.

Even if the reduction of the computational cost is itself beneficial, the
main advantage of solving the inverse problem with this approach consists
on the fact that it allows for separate analysis of 1D and 2D effects. This
will be analyzed in future research.
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