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One-dimensional chaos in a system with dry
friction: analytical approach.
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Abstract. A simple mechanical system consisting of a mass and a dry friction element is
considered. The mathematical model of such mechanical system is described. We show that
the considered system corresponds to a skew product over a piecewise smooth mapping of a
segment. We demonstrate that this base map for some value of parameters a robust chaotic
dynamics can be observed.
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Introduction.

Systems with dry friction form a wide class inside discontinuous dynamical systems. They
appear in many applications, especially in manufacturing systems: vibrating conveyors, per-
cussion drilling, metal cutting, etc (see [2,3,4,5,6,12,13,14,16,19,22,23] and references therein
for review). Their properties manifest many principle differences with ones of smooth dy-
namics. For instance, the uniqueness theorem is not valid any more. An approach to study
such systems has been developed by A.F. Filippov [7]. He offered to consider piecewise
continuous systems of differential equations as families of vector fields, defined on disjoint
domains of the phase space and define auxiliary tangent flows on boundaries, respecting
limit directions of vector fields. This approach reduces a discontinuous system to differen-
tial inclusions. Moreover, the phase space may become multidimensional i.e. a set of initial
data of the full dimension may be transferred to a set of a lower dimension. The theory of
discontinuous systems and specific bifurcation is well-developed [2,3,5,7,10,14,16,18,22]. It
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is also well-known that chaotic dynamics frequently occurs in such systems, particularly in
ones with dry friction [1,2,3,4,6,8,16,17,19,20,22,23].

Apart from numerical and experimental simulations, the most common analytic approach
involves a reduction of dimension. For some systems with a dry friction it is possible to
demonstrate that there exists an invariant set of dimension 1 where the attractor resides.
A method to find this attractor has been developed by M.Wiercigroch, E. Pavlovskaya and
A.Krivtsov in papers [12,13] and, in its general form, in the paper [17]. In our paper we use
some ideas of this approach. Another powerful method has been proposed by R. Szalai and
H.M.Osinga [20]. They have proved that for a general class of systems with a dry friction
that the attractor resides in a polygon type set and demonstrated a possibility of a chaotic
dynamics there. Later [21] they have shown, using a modification of their method that some
complex structures like Arnold tongues can be observed in a neighborhood of the so-called
grazing-sliding bifurcation [2,3,18].

The main aim of this paper is to provide a new method which allows to find chaotic invariant
sets in systems with a dry friction. To demonstrate this method, we use a very simple
example of a system with dry friction, first considered be A. Krivtsov and M. Wiercigroch
[12]. First of all, we show that the considered dynamical system engenders a discontinuous
mapping of a segment. Here we use ideas from [17]. Then we study properties of this mapping
which allows us to find two disjoint segments such that the image of every one of them covers
their union. Moreover, we prove that the considered mapping is continuous on the union of
these segments. This allows us to apply well-known techniques of one dimensional dynamics
[11, Part 3, Section 15] and to demonstrate that a kind of chaotic dynamics, similar to one
described by T. Li and J. Yorke [15] is there.

The main advantages of the offered method are the following.

(1) We can obtain chaotic sets which, in general, are not attractors.
(2) For simple systems with dry fiction, the offered method gives coefficient type criteria

of chaos.
(3) Though we need a presence of a small parameter in our proofs, it is possible to estimate

numerically how small this parameter must be. The presence of chaotic invariant sets
does not correspond to a neighborhood of any bifurcation.

(4) The presence of chaotic behavior (but not corresponding invariant sets) is robust.
(5) A corresponding invariant measure can be described using techniques of [11, Part 3,

Section 15].

The paper is organized as follows. In Section 1 we introduce the mathematical model of
the considered system and describe possible regimes of motion. In Section 2 we define the
main object of our investigation: the 1 dimensional mapping, corresponding to phases of
switching for solutions. For this, we describe all possible scenarios of behavior of solutions.
In the next section we describe the main properties of the introduced mapping. The main
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part of the proof is given in Section 4 where we study how the segments of continuity of
the constructed mapping look like and find out two segments of continuity whose images
cover their union. Section 5 is technical. We would like to prove existence of periodic points
of all possible periods but we cannot apply the theory of mappings of a segment directly
since we deal with a discontinuous mapping. However, still we can use standard methods
of this theory to finish our proof. The main result is formulated in Section 5. A discussion,
including notes on the robustness of the obtained set and some plans on the future research
is given at Section 7.

1. Description of the mathematical model.

Consider a single degree-of-freedom mechanical system, consisting of a point mass and a
delimiter with dry friction (Fig. 1) which gives a simple model of percussion drilling. This
system consists of a unit mass, whose motion is controlled by a harmonic external force F (t)
which is a sum of a positive constant component equal to 2b and a harmonic component
of a positive amplitude a and a period equal to 2π. Also, the considered system includes
a delimiter which provides an additional dry friction as soon as the mass reaches it. The
maximal value of this friction is q. Here and later we always suppose that all considered
parameters are non-dimensional.

Our main aim is to prove that provided some additional conditions are satisfied, the dynam-
ics of the considered system is robustly chaotic in topological sense. Let x be the current
position of the mass and y be one of the delimiter. We assume that the inequality x ≤ y is
always satisfied i.e. the mass cannot penetrate through the delimiter and that the delimiter
cannot move to the left so the value y is always non-decreasing.








Fig. 1. The considered mechanical system.

Consider the value ϑ0 ∈ [0, π/2] such that

π − ϑ0 = cot(ϑ0/2). (1)

This value is unique and ϑ0 ≈ 0.81047, sinϑ0 ≈ 0.724611.

We make the following assumptions on the parameters of the system:

a > 0, b > 0, q ∈ (a sinϑ0, a). (2)
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We shall always suppose that b % a (which implies b % q). This means that we always
suppose that the ratio b/a is as small as necessary.

There are five types of motions of the considered system.

(1) Free motion (f). This motion takes place if x < y i.e. the mass and the delimiter do
not interact. Then

ẍ = F (t) = a sin t + 2b; ẏ = 0. (3)

(2) Progression (p). In this regime we have an additional friction. The motion is defined
by equations

ẍ = F (t)− q = a sin t + 2c = a sin t+ 2b− q; y = x. (4)

(3) Stop (s). Here the mass and the delimiter are both immobile, i.e.

x = y, ẋ = ẏ = 0. (5)

(4) Instantaneous stop (is). This happens if Condition (5) is satisfied for a fixed instant
of time but is not true in its vicinity. So, this happens if the system switches from or
to free motion or from/to motion with progression.

(5) Transition from the free regime to motion with progression (fp). This is an
instant such that the mass was moving in a free regime before and switches to motion
with progression there.

We always suppose that the free motion, motion with progression and the stop regime are
observed at open intervals of time. This allows us to classify all instants of transition.

Let t0 < t1 be zeros of the function F (t) − q and t2 < t3 be ones of the function F (t) on
[0, 2π]. Later on we consider the phase ϕ = t mod 2π. Here ϕ ∈ S1 = R/2πZ.

Now we describe how we may proceed from one regime to another.

If the mass, moving according to Eq. (3) collides with the delimiter with a non-zero velocity,
it proceeds to the progression regime. The transition (f) → (is) → (s) is possible at t = θ0
if and only if x(θ0) = y(θ0), ẋ(θ0) = 0. If F (θ0) > 0 then ẋ(t) is negative before t = θ0 which
is impossible. If F (θ0) < 0, the mass returns back, ”ignoring” presence of the delimiter. We
have an instantaneous stop there. Otherwise, F (θ0) = 0. If Ḟ (θ0) < 0 then again we have
ẋ(t) < 0 in a left neighborhood of θ0. So, Ḟ (θ0) ≥ 0 and, consequently, θ0 = t3 mod 2π.
Then we have an instantaneous stop and the stop regime later on.

The progression regime is characterized by condition ẋ > 0. As soon as the solution x(t)
reaches its maximal value, corresponding to t = θ′, the mass stops and then proceeds to
free motion if F (t) < 0 in a right neighborhood of θ′. Also, we may proceed to the ”long”
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(non-instantaneous) stop regime if F (t) ∈ [0, q] there. Otherwise, we stay in progression
regime. Anyway an instantaneous stop takes place.

The system stays in stop regime until we have F (t) < 0 or F (t) > q. In the first case we
proceed to the free regime, in the second one we start progression. See Fig.2 for illustration.












   














Fig. 2. Possible regimes of the system and transitions according to the phase.

2. Reduction to dimension 1.

Solutions of Eqs. (3), (4) and (5) can easily be written down. If x(θ0) = x0, ẋ(θ0) = x1 we
have

x(t) = −a sin t + b(t− θ0)
2 + (x1 + a cos θ0)(t− θ0) + x0 + a sin θ0 (6)

for Eq. (3) (free motion) and

x(t) = −a sin t+ c(t− θ0)
2 + (x1 + a cos θ0)(t− θ0) + x0 + a sin θ0 (7)

for progression. For stop regime we always have x1 = 0 and x(t) ≡ x0.

Let us show that none of the considered regimes can be eternal.

Starting from the free motion, the mass will always return to the delimiter since b > 0. Then
we immediately proceed to progression motion unless we reach the delimiter with a velocity
equal to zero. Let this zero velocity approach happens at the instant t which corresponds to
the phase τ . Note that τ ∈ (t2, t3] otherwise the velocity would be negative in a left vicinity
of τ . Then if τ ∈ (t2, t3) the mass stops and starts moving in the free regime immediately
after that. If τ = t3 the mass stops until the next instant t0 + 2πk.

In the motion with progression the derivative ẋ vanishes soon or later since c < 0. If this
happens when ϕ ∈ [t2, t3) we immediately proceed to free motion. Otherwise, the mass
stops. If this happens for ϕ ∈ [t1, t2) the mass stops until ϕ = t2 and then switches to free
motion. Note, that progression cannot be stopped while t ∈ [t0, t1). If it is stopped on [t3, t0)
the mass waits the next instant t0 + 2πk and then starts moving according to Eq. (4). In
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this case, we have θ0 = t0 and x1 = 0 in Eq. (7). Consequently,

ẋ(t) = −a(cos t− cos t0) + 2c(t− t0). (8)

This function increases (and, therefore, cannot vanish) until t = t1. However, since b % q,
we may say that cos t3 > cos t0 and the right hand side of Eq. (8) is negative for t = t3. So,
the motion stops somewhere at [t1, t3) and then proceeds to the free flight regime. The stop
regime may be finished by a transition to a free motion at t = t2 + 2πk or by transition
to the motion with a progression at t = t0 + 2πk. It is impossible neither on (t0, t1) nor on
(t2, t3).

All together, this means that wherever and whenever the motion starts, finally, it has a
transition to a free motion via an instantaneous stop.

Take an initial instant θ of such transition. There we have θ ∈ [t2, t3], x(θ) = y(θ) (without
loss of generality, we may assume that this value is zero) and ẋ(θ) = 0. Then the value θ
uniquely defines the farther dynamics.

If T (θ) is the phase of the next transition to free motion from stop or progression, it is
uniquely defined by θ. So, we may consider the 1D mapping T : [t2, t3) ! which is, generally
speaking, discontinuous. Considering this mapping, we lose some information about initial
dynamical system, for instance, we do not know any more how the delimiter is shifted.

One of the following scenarios takes place for the considered motion.

(1) Scenario A: (f) → (fp) → (p) → (is) → (f);
(2) Scenario B: (f) → (fp) → (p) → (is) → (s) → (is) → (f);
(3) Scenario C:

(f) → (fp) → (p) → (is) → (s) → (is) → (p) → (is) → (s) → (is) → (f);

(4) Scenario D:

(f) → (fp) → (p) → (is) → (s) → (is) → (p) → (is) → (f).

Also, there are two degenerate scenarios, corresponding to a zero-velocity stop of the free
motion corresponding to t = t3 + 2πk:

(1) Scenario C’:

(f) → (is) → (s) → (is) → (p) → (is) → (s) → (is) → (f);

(2) Scenario D’:
(f) → (is) → (s) → (is) → (p) → (is) → (f);
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Here we omit all possible instantaneous stops after which the motion returns to the same
regime. This does not hurt to equations of motion. However, such stops play an important
role since they correspond to discontinuities of stroboscopic mappings. Let us study them
more carefully.

3. Properties of the mapping T .

Let us introduce two auxiliary mappings T1 and T2. The first one corresponds to the first
after θ approach to the delimiter. Denote the corresponding instant by θ1, i.e. T1(θ) = θ1.
Note that the image of T1 is an instant, not phase, so it can be greater than 2π.

The value θ1 corresponds to the first zero of the equation

b(t− θ)2/a = sin t− cos θ(t− θ)− sin θ. (9)

satisfying the condition t > θ.

The left hand side of Eq. (9) is always positive and proportional to the small parameter
b/a. The right hand side is initially positive and grows faster than the left hand side. This
is the distance between the graph of sine function and the tangent line to it, drawn at θ.
Note that sin θ ≤ −b/a < 0. If θ ∈ (3π/2, 2π) i.e. cos θ > 0, the graph and its tangent line
intersect once again on (θ,+∞) and, therefore θ1−θ < 2π. Otherwise, they do not intersect
and, for small b, there exists a constant C > 0 which does not depend on θ and is such that

θ1 − θ ≥
Ca

b
cos θ. (10)

The mapping T1 is, in general, discontinuous. All possible discontinuities correspond to the
case when θ1 is not a simple zero of (9). Namely, derivatives of the left and the right hand
side of (9) coincide for t = θ1 which means that the following condition is satisfied

− a cos θ1 + 2b(θ1 − θ) + a cos θ = a

(

2
sin θ1 − sin θ

θ1 − θ
− cos θ − cos θ1

)

= 0. (11)

4. Points of discontinuity.

Lemma 1. The intersection of the set of discontinuity points of the mapping T1 with L0 =
[101π/100, t3] is finite.

Proof. If b/a is small t2 < 101π/100. Note that if

θ1 < θ2, θ1,2 ∈ L0, (12)
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then T1(θ1) > T1(θ2). Indeed, consider the function

h(t, θ) = b(t− θ)2/a− sin t+ cos θ(t− θ) + sin θ.

The derivative of this function with respect to θ equals to

−

(

2b

a
+ sin θ

)

(t− θ)

and is positive if θ ∈ L0, b/a is small and t > θ. If θ1 and θ2 satisfy (12) and t1 is such
that h(t1, θ1) = 0 then h(t1, θ2) > 0 and the function h(t, θ2), negative in a right vicinity of
t = θ2 must have a zero on (θ2, t1).

So the function T1 is monotonous. Note that if θ1 ∈ L0 is a point of discontinuity and
t1 = T1(θ1) then

d2h

dt2
(t1, θ1) =

2b

a
+ sin t1.

Note that due to (10) and (11) we have sin t1 = sin θ1 + O(b/a) which implies that this
second derivative must be greater that a fixed negative value. So there exists a ρ > 0 such
that for all discontinuity points corresponding ”jumps” of the function T1 must be greater
than ρ. This proves that the number of discontinuity points on L0 is finite. "

It follows from Eq.(11) that for any discontinuity points θ of the mapping T1 we must have

cos θ1 = − cos θ +O((θ1 − θ)−1). (13)

Another useful note is that T1(θ) mod 2π ∈ [t2, t3) cause we cannot have a transition to a
free regime in other points. Meanwhile, for these discontinuity points, the second derivative of
solutions (right hand side of Eq. (3)) must be negative, since x < y (delimiter is always to the
right of the mass). So, the corresponding value θ1 must belong to [3π/2, t3] if θ ∈ [t2, 3π/2].

In non-degenerate scenarios ((A)–(D)) at the moment t = θ1 progression regime starts. The
initial velocity of the motion is x1 = −a cos θ1 + 2b(θ1 − θ) + a cos θ. The dynamics of this
velocity is described by the formula ẋ(t) = x1+2c(t−θ1)−a cos t+a cos(θ1). The progression
regime stops as soon as this derivative becomes negative and the next transition θ2 = T2(θ)
to free flight or to the stop may be found from equations

2b(θ1 − θ) + a cos θ + 2c(θ2 − θ1)− a cos θ2 = 0.

Lemma 2. There exists a b0(q) > 0 such that if b < b0(q) the following statement is true.
Starting progression at the point t0 with an initial velocity equal to zero, the motion must
stop at the instant t4 ∈ [t1, t2]. Consequently, Scenarios D and D’ are impossible.
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Proof. If x(t) is a solution of Eq.(4) with ẋ(t0) = 0, we have

ẋ(t2) = −a cos t2 + a cos t0 + 2c(t2 − t0). (14)

In order to prove that this ẋ(t) vanishes somewhere at [t0, t2) it suffices to prove that the
right hand side of Eq. (14) is negative. Instead of this one could prove that

a + a cos t0 − (q − 2b)(π − t0) < 0.

Here we replaced t2 with π in (14) and respected the fact that 2c = 2b−q. If we demonstrate
for a fixed q that

a+ a cos t0 − q(π − t0) < a(1 + cos t0 − sin t0(π − t0)) < 0. (15)

then for this fixed q there exists a b0(q) > 0 such that if b < b0(q) then the estimate (14) is
true.

Inequality (15) is equivalent to the following: cot(t0/2) < π− t0 which is true if t0 > ϑ0 (see
Eq.(1)) or, equivalently if q > sinϑ0a. "

Lemma 3. The map T is such that T (θ) = θ2 if θ2 ∈ [t2, t3). Otherwise, if a motion with
stop has been observed (Scenarios B and C), T (θ) = t2.

Proof. If θ2 ∈ [t2, t3) then a motion, starting near the delimiter with the velocity, equal
to zero, corresponds to the free regime, so T = θ2. If θ2 ∈ [t3, t0], the mass stops until the
instant t0 then starts moving in progression regime until t = t4, stops until t2 and proceeds
to a free regime. If θ2 ∈ [t1, t2) the motion stops until t = t2 and also proceeds to the free
regime. Since θ2 cannot belong to (t0, t1), we obtain the statement of lemma. "

To finish our proof, we need the following lemma.

Lemma 4. There exist two disjoint subsegments J0 and J1 of the segment [t2, 3π/2] such
that T (Ji) ⊃ [t2, 3π/2] and T is continuous on both segments Ji.

Remark. Then we may say without loss of generality that T (Ji) = [t2, 3π/2].

Proof. Let L1 be the arc [197π/100, t3] and L2 be the arc [101π/100, 51π/50]. The first arc
is correctly defined if the ratio b/a is sufficiently small.

Let θ ∈ L1. Consider the solution x(t) such that x(θ) = 0, ẋ(θ) = 0. Then, direct calculations
show that for b = 0, the considered solution starts from a short period free motion and then
stops after a short period of motion with a progression. So, ẋ(t0) = 0. Due to continuous
dependence of the solution on the parameter b, the same is true provided the ratio b/a is
sufficiently small. In this case, as we have already proved T (θ) = t2.
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Let z1 < z2 < ... < zn (n ≥ 0) be discontinuity points of the map T1 inside the interval L2.
Denote z0 = 101π/100, zn+1 = 51π/50.

Suppose that n < 3. Then there exists i ∈ {0, . . . , n} such that there is a subsegment
I ⊂ (zi, zi+1) of the length not less than π/500. Let θ ∈ I, θ1 = T1(θ).

It follows from Eq. (9) that

θ1 − θ =
a

b

(

− cos θ +
sin θ1 − sin θ

θ1 − θ

)

.

Consequently, if b/a is sufficiently small, values {θ1 mod 2π : θ ∈ I} cover [0, 2π). Since T1

is continuous on I, we have
2b

a
(θ1 − θ) ,= cos θ1 − cos θ

or, equivalently,

2
sin θ1 − sin θ

θ1 − θ
− (cos θ1 + cos θ) ,= 0 (16)

everywhere on I. However, due to Eq. (10), the maximum of the left hand side of in-
equality (16) is positive while the minimum is negative. So this inequality cannot hold true
everywhere.

So, n ≥ 3. Then it suffices to prove that T ((zi, zi+1]) ⊃ [t2, 3π/2] for all i = 1, . . . , n − 1.
Note that estimate (13) implies that T1(zi+1) > 3π/2 if b/a is small. Since ẋ(T1(zi+1)) = 0,
the corresponding motion proceeds to the free flight immediately after t = T1(zi+1) and,
consequently, T (zi+1) = T1(zi+1) ∈ L1.

On the other hand, T1(θ) −→ T1(T1(zi)) as θ −→ zi+0 (in the limit case, we have a motion,
which ”ignores” presence of the delimiter). Since T1(zi) ∈ L1 the corresponding motion is
in the stop regime for t = t0 and, consequently, T (θ) = t2 for all θ from the right vicinity of
zi. This finishes the proof. "

5. Infinite set of periodic points.

So, for the mapping T we have obtained two disjoint segments J0 and J1 which are subsets
of the arc [t2, t3] of the unit sphere such that for both i = 0, 1 mappings T |Ji are continuous
and T (Ji) ⊃ J0

⋃

J1. Then we prove that for any m ∈ N the mapping T has a point of the
minimal period m. The prove is absolutely standard, but it has to be given, since formally,
the existing theorem is applicable to continuous maps of a segment. Also, note that we do
not claim that periodic point of a fixed period is unique. There might exist a segment (or,
even a Cantor set), consisting of such points. Take a sequence {σk ∈ {0, 1} : k ∈ N

⋃

{0}}.
First of all, we prove that there exists a point p ∈ Jσ0

such that T k(p) ∈ Jσk
for any k ∈ N.
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There exists a segment Jσ0σ1
⊂ Jσ0

such that T (Jσ0σ1
) = Jσ1

. Then, we may find a segment
Jσ0σ1σ2

⊂ Jσ0σ1
such that T (Jσ0σ1σ2

) = Jσ2
. Repeating this procedure, we obtain a nested

sequence of segments
Jσ0

⊃ Jσ0σ1
⊃ Jσ0σ1σ2

⊃ . . .

The corresponding intersection is non-empty and, consequently contains a desired point p.

Fix a number m and consider the sequence σ, obtained by infinite repetition of a finite
sequence 0, . . . , 0, 1 of the length m. Let I = J0...01 (see above). Then I ⊂ Tm(I) and the
mapping Tm is continuous on this segment. Applying Weierstrass principle to the continuous
function Tm(x)− x on the segment I, we obtain a periodic point. Clearly, this point cannot
be one of a lower period.

6. Conclusion.

Let us formulate the principle result of the paper as a single theorem.

Theorem 1. For all a and q, satisfying inequalities (2) there exists a b0 = b0(a, q) > 0
such that for all b ∈ (0, b0) the mechanical system, described by equations (3), (4) and (5) is
chaotic in the following sense. The phase of transition to free flight of the motion uniquely
defines the phase of the next transition. This defines a discontinuous mapping T from the
segment [t2, t3] into itself. Here t2 and t3 are zeros of the function

F (t) = a sin t+ b.

There exist two disjoint segments J0 and J1 of the segment [t2, 3π/2] such that T (Ji) ⊃
[t2, 3π/2] and T is continuous on both segments Ji. Particularly, there exists an infinite set
P of periodic points of the mapping T . Minimal periods of points of P are unbounded.

7. Discussion and future work.

First of all, let us note that the obtained chaotic dynamics is robust. Of course, we cannot
say anything about stability of points of the set P . Every particular point of this set may
appear or disappear if we slightly change parameters a, b and q. The power of the set P may
be continuum for some values of parameters, while this set is countable for other values.
Neither, the method we offer does not specify the topological structure of the set P and one
of its closure.

However, we can select a family of segments J0 and J1 from the statement of Theorem 1 so
that boundary points of these segments locally continuously depend on parameters a, b and
q. This means that the fact of presence of the one dimensional turbulence in the considered
system is robust. The same is true for the fact of existence of an infinite set P . Moreover,
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for all fixed values a, b and q, satisfying inequalities (2), there exists an ε > 0 such that for
any C2 function

G(t, x, ẋ) : S1 × R
2 → R

such that

|G(t, x, ẋ)| < ε,

∣

∣

∣

∣

∣

∂G

∂(t, x, ẋ)

∣

∣

∣

∣

∣

< ε

for all t, x and ẋ an analog of Theorem 1 is true for the system, where equation (3) is
replaced with

ẍ = F (t) +G(t, x, ẋ); ẏ = 0,

equation (4) is replaced with

ẍ = F (t) +G(t, x, ẋ)− q; ẏ = 0.

and equation (5) is the same.

Particularly, the presence of the considered chaotic dynamics must be observed in simula-
tions and experiments. However, in this paper, we are not going to study the general case.
We just offer a method how a non-classical chaos may be found. We plan to use this methods
for more general systems with a dry friction (see [17] as an example) and provide for these
”real life systems” theoretical results accompanied with simulations and experimental data.
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