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Discontinuous High-Order

Finite-Volume/Finite-Element Method for

Inviscid Compressible Flows

Ali Ramezani∗, Goran Stipcich∗, Lakhdar Remaki†
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The discontinuous, hybrid control-volume/finite-element method merges the desirable
conservative properties and intuitive physical formulation of the finite-volume technique,
with the capability of local arbitrary high-order accuracy distinctive of the discontinuous
finite-element method. This relatively novel scheme has been previously applied to the
solution of advection-diffusion problems and the shallow-water equations, and is in the
present work extended to the Euler equations. The derivation of the method is presented
in the general multi-dimensional case, and selected numerical problems are solved in the
one- and two-dimensional case.

Nomenclature

A Flux Jacobian matrix
f Flux quantities vector
n Unit normal vector
u State variables vector
x Position vector, m
d Spatial dimension of the problem
E Total energy per unit volume, N/m2

e Element
h Mesh size
L Lagrange polynomials
p Pressure, N/m2

P e Elemental polynomial order
t Time, s
u, v Cartesian velocity components, m/s
V Control volume

Subscripts

i, j Running indices

Symbols

ũ Limited state variables vector
f̂ Numerical flux vector
Ω Computational domain
φ Test function
ρ Density, kg/m3

Th Discretization of the domain
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· Closure of a set in Rd

Superscripts

−, + One-sided limit solution

I. Introduction

The hybrid finite-volume/finite-element method (CVFEM) arises from the instance of merging the ex-
cellent numerical conservation properties and the intuitive physical formulation distinctive of the finite-

volume methodology, with the geometrical flexibility of the finite-element method, resulting in the vertex-
or node-based finite-volume method. The CVFEM can be seen as a finite-element method in which volume
indicator distributions are used as weight functions.1 The method has been developed originally by2 for
advection-diffusion problems on triangular elements, where the integral conservation equations are enforced
on polygonal control volumes constructed around each node of the mesh. The CVFEM has been further
extended to incompressible flow using bilinear, quadrilateral elements and tetrahedral elements.3,4, 5, 6 A
detailed analysis of consistent and lumped versions of the CVFEM algorithm for diffusion-type problems has
been carried out.7 Some of the positive characteristics of the CVFEM approach are pointed out: local con-
servation is achieved at control volume level and the discrete maximum principle8 is preserved. A high-order
CVFEM for unstructured grids was proposed by9 for advection-diffusion problems, featuring a quadrature-
free approach on quadrilateral elements. It is shown that an appropriate distribution of interpolation points
and control-volume edges leads to a well conditioned matrix.

Discontinuous methods have been developed at first in the finite-element framework. The resulting dis-
continuous Galerkin methods (DG), are characterized by the relaxation of the continuity constraint between
neighboring elements, which is imposed in weak form through the numerical fluxes.10,11 The specific for-
mulation of numerical fluxes strongly affects the consistency, stability and accuracy of the method.10 The
discontinuous philosophy has been applied within the CVFEM framework,12,13 giving rise to discontinuous
control volume/finite element methods (DCVFEM, hereafter). Research in this area has been mainly focused
on hyperbolic problems.12,13 The continuous Galerkin finite-element method, Taylor-Galerkin Least Square
finite elements, DG and DCVFEM are compared in13 for the solution of the linear advection equation, us-
ing quadrilateral elements with interpolating polynomials of degree four to nine. The spatial discretization
comprises a dual grid structure, the globally elemental unstructured subdivision and the local structured
control-volume subdivision. The authors remark the straightforward ability to implement slope or flux
limiters inherent in the DCVFEM formulation.13 The DCVFEM has been applied to the solution of the
advection-diffusion equation in the one- and two-dimensional case.14 A formal derivation is provided, along
with a detailed Fourier analysis, and the spectral accuracy of the method is verified by theoretical and
numerical results.

The present work, the DCVFEM is extended to the solution of the Euler equations in the one- and
two-dimensional case. The derivation in the general multi-dimensional case is presented, and the method is
applied to the solution of selected numerical problems.

II. Model

II.A. Governing equations

The hyperbolic system of conservation laws is considered

∂tu +∇ · f (u) = 0, u (x, t) ∈ Rn (1)

defined on a domain Ω ⊂ Rd with a piecewise smooth boundary ∂Ω. The time partial derivative is denoted
as ∂t = ∂/∂t, u = (u1, . . . , un)

T
stays for the state variables vector, x is the spatial coordinate vector, and

f = (f1, . . . , fd) : Rn −→ (Rn)
d

is a nonlinear mapping with fi : Rn −→ Rn, i = 1, . . . , d, such that the Jacobian matrix A = ∂f/∂u have
only real eigenvalues.15 System (1) is closed by the ideal gas law16 and complemented by suitable initial and
boundary conditions.
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II.B. Weak formulation

Considering a discretization Th of Ω into elements e [17, ch. 3.1], the discontinuous approximate solution
can be defined by a weighted residual statement.10 System (1) is multiplied by a weight function φ and
integrated over the whole domain, and, upon integration by parts, the equation for the single element e read
as ∫

e

∂u

∂t
φdx−

∫
e

f · ∇φdx +

∫
∂e

f · nφds = 0 (2)

where n denotes the outward-pointing normal unit vector. Each element e ∈ Th is further subdivided into
control volumes V ⊂ e13 (see Section II.D), and the weight function φ in (2) is chosen to be the volume
indicator distribution,1 defined as

φ ≡ φV (x) =

{
1 if x ∈ V

0 otherwise
(3)

System (2) then yields the following weak formulation for the single control volume V∫
V

∂u

∂t
dx +

∫
∂V

f · n ds = 0 (4)

II.C. Coupling conditions: numerical flux

On the boundary of the control volume V , a suitable numerical flux f̂ is defined. The surface integral in (4)
is calculated as ∫

∂V

f · n ds '
∫
∂V

f̂ · n ds (5)

The definition of the numerical flux is crucial, since it affects the consistency, stability and accuracy of
the resulting discontinuous method.10 In the present work, the Roe’s scheme is enforced.15 In order to
avoid detrimental numerical oscillations near shock waves and discontinuities, a slope limiting strategy is
applied on the state variables vector. Considering the i-th control volume V , a local projection limiting18 is
implemented componentwisely as

ũ−
i ' u∗

i + minmod
(
u−
i − u∗

i , ∆i+1u
∗, ∆iu

∗) (6a)

ũ+
i ' u∗

i −minmod
(
u∗
i − u+

i , ∆i+1u
∗, ∆iu

∗) (6b)

where ũ is the modified state vector, the symbol “∗” indicates the mean value over the control volume V , and
the “+” and “−” signs denote the one-sided limit solution when approaching the control volume’s boundary
∂V . The jumps of the mean values between neighbouring control volumes in a structured pattern are given
as ∆i+1u

∗ = u∗
i+1 − u∗

i and ∆iu
∗ = u∗

i − u∗
i−1.18

II.D. Space discretization: subdivision into control volumes

Each element e ∈ Th is further subdivided into control volumes, entirely contained in the respective element,
accordingly to the local polynomial order of accuracy P e

Vi ⊂ e, i = 1, . . . , (P e + 1)
d

The elemental subdivision forms a structured dual partition with respect to the original discretization Th,
allowing for the straightforward implementation of flux schemes and slope limiters on the control volume’s
boundaries13 (Section II.C).

In principle, any subdivision into control volumes V can be formed, and in the present work the equally
spaced partition is chosen. Figure 1 shows the proposed subdivision for the one- and two-dimensional element,
for polynomial orders P e = 1, 2. For d = 2, 3, the tensor product of the one-dimensional element is used,
as shown in Figure 1(c-d). The mentioned partitioning procedure is naturally extended to any polynomial
order P e.

The DCVFEM features the property, inherent in the discontinuous formulation, that the resulting ap-
proximate solution is not required to satisfy any inter-element continuity constrain.10 As a consequence,
different orders of approximation P e can be employed in different sub-domains of Ω, rendering the method
ideal for use with p-adaptivity.19
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(a) P e = 1 (b) P e = 2

(c) P e = 1 (d) P e = 2

Figure 1. Sketch of the subdivision into control volumes V for a (a-b) one- and (c-d) two-dimensional element e, of
polynomial order (left) P e = 1 and (right) P e = 2.

II.E. Finite dimensional subspace and basis functions

The unknowns u (x, t) are approximated by element-based polynomial expansions.11 The numerical approx-
imations uh (x, t) are chosen in the same finite-dimensional subspace of L2 (Ω),17 spanned by a basis of
piecewise polynomials Lj , defined in the transformed reference space [−1, 1]d, which do not respect inter-
element continuity. In the present work, the Lagrange coefficients are used. For example, the restriction ue

h

of uh to the element e is given by

ue
h ≡

∑
j

Lj ue
j , j = 1, . . . , (P e + 1)

d
(7)

where {ue
k} is the set of nodal values of uh in the element e. In principle, the interpolation nodes may be

located everywhere inside an element, and in the present study the equally spaced placement is chosen.

III. Results

System (1), coupled with suitable initial and boundary conditions for selected one- and two-dimensional
test cases, is solved using the DCVFEM, and the results are presented in the following. In all the numerical
experiments, a fourth order Runge-Kutta quadrature scheme is employed for the time marching.

III.A. One-dimensional case

System (1) is considered in the one-dimensional case (d = 1 and n = 3):

∂u

∂t
+
∂f

∂x
= 0 (8a)

u = (ρ, ρu, E)
T

(8b)

f =
(
ρu, ρu2 + p, u (E + p)

)T
(8c)

where ρ denotes the density, u the velocity, p is the pressure and E is the total energy per unit volume.16 The
reference solution is obtained by the finite-volume scheme on a very fine mesh of 10 000 elements, labelled
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as “Ref” in the legend.

III.A.1. Sod’s shock-tube problem

The shock-capturing capability of the DCVFEM is tested by the Sod shock-tube problem.20 System (8) is
coupled with the following initial conditions

(ρ, u, p) =

{
(1, 0, 1) t = 0, x ≤ 0.5

(0.125, 0, 0.1) t = 0, x > 0.5
(9)

on the domain Ω = [0, 1]. The density distribution is shown in Figure 2 for different polynomial orders of
accuracy P e = 1, 2, 3. A coarse mesh of 100 elements is used.
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Figure 2. Density distribution for the shock-tube problem (9) on a coarse mesh of 100 elements for P e = 1 to P e = 3.
The dots represent the average values over elements.

The following considerations can be made:

• The DCVFEM exhibits a “sharper” shock-capturing as the polynomial order is increased.

• The approximated solution is free from apparent numerical oscillations and overshooting for the con-
sidered polynomial orders P e.

III.A.2. Shu-Osher wave interaction problem

The shock-entropy wave interaction problem21 is solved in order to test the proposed method on shock-
capturing and shock-turbulence interaction. The entropy waves are very sensitive to numerical dissipation
introduced by a numerical scheme, and can be excessively damped. Equations (8) are solved, coupled with
the following initial condition

(ρ, u, p) =

{
(3.857143, 2.629369, 10.33333) t = 0, x < −4

(1 + 0.2 sin(5x), 0, 1) t = 0, x ≥ −4
(10)

on the domain Ω = [−5, 5]. The density distribution is shown in Figure 3 for different polynomial orders of
accuracy P e = 1, 2, 3. A coarse mesh of 200 elements is used.

The following considerations can be made:
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Figure 3. Density distribution for the shock-entropy wave interaction problem (10) on a coarse mesh of 200 elements
for P e = 1 to P e = 3. The dots represent the average values over elements.

• The DCVFEM capability of capturing both shocks and small length scales enhances as the polynomial
order P e is increased.

• The approximated solution is free from apparent numerical oscillations and overshooting for the con-
sidered polynomial orders P e.

III.B. Two-dimensional case

Considering the two-dimensional case (d = 2 and n = 4), system (1) read as

∂u

∂t
+
∂f1
∂x

+
∂f2
∂y

= 0 (11a)

u = (ρ, ρu, ρv, E)
T

(11b)

f1 =
(
ρu, ρu2 + p, ρuv, u (E + p)

)T
(11c)

f2 =
(
ρv, ρuv, ρv2 + p, v (E + p)

)T
(11d)

where the cartesian components of the velocity are denoted by u, v.

III.B.1. Oblique shock reflection

The oblique shock reflection over an inviscid wall [16, ch. 4] is solved by the DCVFEM on the domain
Ω = [0, 2]× [0, 1]. A shock with angle of 35.24◦ is imposed, with a Mach 2 free-stream inflow.

Figure 4 shows the contour of the density ρ, for the DCVFEM solution on a mesh of 80 × 40 elements
for different polynomial orders of accuracy P e = 1, 2, 3. Equally spaced density contours are plotted for
reference. Additionally, a line plot of the density distribution at y = 0.2 is shown in Figure 5. The DCVFEM
results are compared with the exact solution [16, ch. 4], labelled as “Exact” in the legend. The following
considerations can be made:

• A “sharper” shock-capturing capability is achieved by increasing the polynomial accuracy P e.

• The approximated solution is free from apparent numerical oscillations and overshooting for the con-
sidered orders P e.
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(a) P e = 1

(b) P e = 2

(c) P e = 3

Figure 4. Density distribution for the oblique shock reflection problem on a mesh of 80 × 40 elements for (a-c) P e = 1
to P e = 3. Equally spaced density contours are shown.
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Figure 5. Line plot at y = 0.2 of density distribution for the oblique shock reflection problem. The dots represent the
average values over control volumes.

IV. Conclusion

The high-order DCVFEM is successfully extended to the solution of the Euler equations in the one- and
two-dimensional case. The derivation for the general multi-dimensional case is reported, and the solution to
selected test cases is presented. The shock waves and small length scales are accurately approximated, and
the numerical solution is free from apparent unphysical oscillations as the polynomial order of accuracy is
increased. This desirable feature is related to the weak formulation of the of the DCVFEM, which allows
for naturally implement the flux formulation and slope limiting on the control volume’s faces at sub-element
level.
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