
Multi-Domain Grid Refinement for Lattice-Boltzmann Simulations on
Heterogeneous Platforms

Pedro Valero-Lara

CFD & Computational Technology Unit
Basque Center for Applied Mathematics (BCAM)

Bibao, Spain
pvalero@bcamath.org

Johan Jansson

CFD & Computational Technology Unit and
Computational Technology Laboratory

Basque Center for Applied Mathematics (BCAM) and
KTH Royal Institute of Technology

Bilbao, Spain and Stockholm, Sweden
jjansson@bcamath.org

Abstract—The main contribution of the present work
consists of several parallel approaches for grid re-
finement based on a multi-domain decomposition for
lattice-Boltzmann simulations. The proposed method
for discretizing the fluid incorporates different regular
Cartesian grids with no homogeneous spatial domains,
which are in need to be communicated each other.

Three different parallel approaches are proposed,
homogeneous Multicore, homogeneous GPU, and het-
erogeneous Multicore-GPU. Although, the homogeneous
implementations exhibit satisfactory results, the hetero-
geneous approach achieves up to 30% extra efficiency,
in terms of Millions of Fluid Lattice Updates per Second
(MFLUPS), by overlapping some of the steps on both
architectures, Multicore and GPU.

Keywords-Parallel Computing; Lattice-Boltzmann
Method; Multi-Domain Grid Refinement;
Heterogeneous (Multicore-GPU) Platforms;

I. INTRODUCTION

The main objective of this work consists of obtain-

ing a fast grid-refinement implementation based on

lattice-Boltzmann method (LBM) by using Multicore

and GPU. In particular, it is proposed an hetero-

geneous approach which distributes either to GPU

or Multicore the different parts of the whole solver

depending on their computational cost.

The LBM is a clever discretization of the Boltz-

mann equation, which is widely used in numerous

numerical tools for Computational Fluid Dynamics

(see, for instance [6], [8]). In particular, we have con-

sidered the LBM-HPC framework [8] as our reference

software tool. LBM is an efficient and fast method,

however the usage of uniform Cartesian grids is ex-

pensive. Although scientific problems exist for which

a uniform grid is a reasonable choice, it is usually

desirable to resolve regions of high geometrical com-

plexity with a finer grid to minimize the computational

cost. Nevertheless, the refinement operation induces a

strong discontinuity in the physical quantities at the

grid transition and can therefore give rise to artifacts

in the solution.

Several refinement techniques have been imple-

mented for LBM-based solvers, such as adaptive mesh

refinement (AMR) [19], multi-grid [15], and multi-

domain [14]. Each of these techniques exhibit its own

advantages and disadvantages. For AMR and multi-

grid the coarse grid is present all over the simulation

domain. In the multi-domain refinement, the regions

where refined patches are inserted are taken off the

coarse grid. The approaches based on AMR present

the most complex scenario for data management, due

mainly to its dynamic data structure, while the multi-

grid operations are more profitable for programming

and data management. In particular, we choose the

multi-domain approach in order to have better per-

formance and higher memory savings. However, the

coupling between grids is more complex.

Classical fluid solvers based on the unsteady in-

compressible Navier-Stokes equations may turn out to

be inefficient or difficult to tune to achieve maximum

performance on heterogeneous platforms [11], [12]. A

choice that better meets the GPU hardware is based on

modeling the fluid flow through the Lattice Boltzmann

method (LBM). Several recent works have shown that

the combination of GPU-based platforms and methods

based on the LBM algorithm can achieve impressive

performance due to the intrinsic characteristics of the

algorithm [1], [5], [2], [3]. Certainly, the computing

stages of LBM are amenable to fine grain paraleliza-

tion (see for example [4], [5] and references therein).

Recently, the features of the LBM were efficiently

ported on other co-processors, such as Intel Xeon Phi

(see [17]).

Not many works extend the parallel efficiency

of LBM to cases involving multi-domain refinement

techniques. A very recent work that covers a subject

closely related with the present contribution is [15],

2015 IEEE 18th International Conference on Computational Science and Engineering

978-1-4673-8297-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSE.2015.9

1

where a new and efficient 2D implementation of

LBM method for muti-grid flows is presented. Here,

we focus on a different approach based on multi-

domain coupled with LBM introduced in the work

presented by D. Lagrava et al. [14]. This method-

ology has been analyzed deeply and validated in

several numerical scenarios (see [14], [7]), so that

we focus on the implementation techniques adopted

to keep the solver highly efficient on Multicore-GPU

heterogeneous platforms. The present work extends

the previously published work [2] with additional

contributions. In particular, it includes a comparative

study among the two standard LBM implementations,

pull and push, over our GPU platform, and different

approaches for memory mapping applied to LBM on

Multicore. We include the use of two grid-refined

levels. We also follow the CUDA extension Dynamic
Parallelism to deal with multiple domains on GPU.

This paper is structured as follows. Section II briefly

introduces the physical problem at hand and the

general numerical framework that has been selected

to cope with it: LBM coupled with multi-domain

refinement technique. We also detail the specific po-

tential parallel features of LBM and the parallel strate-

gies envisaged to optimally enhance the performance

(Section III) of the multi-domain LBM algorithm

on homogeneous Multicore/GPU and Multicore-GPU

heterogeneous platforms. Finally, Section IV contains

a performance analysis of the proposed techniques and

in Section V some conclusions are outlined.

II. MULTI-DOMAIN GRID REFINEMENT ON

LATTICE-BOLTZMANN METHOD

LBM has been extensively used in past decades (see

[9] for a complete overview) and now is regarded

as a powerful and efficient alternative to classical

Navier Stokes solvers. In what follows, we briefly

recall the basic formulation of the method. The LBM

is based on an equation that governs the evolution of

a discrete distribution function fi(x, t) describing the

probability of finding a particle at Lattice site x at

time t with speed v = ei. In this work, we consider

the BGK formulation [10] that relies upon an unique

relaxation time τ toward the equilibrium distribution

feq
i :

fi (x+ eiΔt, t+Δt)− fi (x, t) =

− Δt

τ
(fi (x, t)− feq

i (x, t))

(1)

The particles can move only along the links of a

regular Lattice defined by the discrete speeds (e0 =
c(0, 0); ei = c(±1, 0), c(0,±1), i = 1 · · · 4; ei =

c(±1,±1), c(±1,±1), i = 5 · · · 8 with c = Δx/Δt)
so that the synchronous particle displacements Δxi =
eiΔt never take the fluid particles away from the

Lattice. For the present study, the standard two-

dimensional 9-lattice directions D2Q9 is used, but

all the techniques that will be presented can be

extended in a straightforward manner to three di-

mensional lattices. Essentially, the three-dimensional

lattice requires more lattice directions (for instance,

27 directions instead of 9 for the three-dimensional

LBM standard D3Q27), but the two major LBM steps,

stream and collide, are computed identically equal

than in the two-dimensional LBM. The equilibrium

function feq (x, t) can be obtained by Taylor series

expansion of the Maxwell-Boltzmann equilibrium dis-

tribution [13]:

feq
i (x, t) = ρ�i

[
1 +

ei · u
c2s

+
(ei · u)2

2c4s
− u2

2c2s

]
(2)

In equation 2, cs is the speed of sound (cs = 1/
√
3)

and the weight coefficients �i are �0 = 4/9, �i =
1/9, i = 1 · · · 4 and �5 = 1/36, i = 5 · · · 8
according to the current normalization.

The equation 1 is typically advanced in time in

two stages: collision and streaming.

Given fi(x, t) compute:

ρ =
∑

fi(x, t) and

ρu =
∑

eifi(x, t)

Collision stage:

f∗
i (x, t+Δt) =

fi (x, t)− Δt
τ (fi (x, t)− feq

i (x, t))

Streaming stage:

fi (x+ eiΔt, t+Δt) = f∗
i (x, t+Δt)

When using multi-resolution approaches [14], a

communication between the grids is needed. In the

case of multi-domain methods the communication is

done on the boundaries connecting the grids. The

coupling is made in two directions: from coarse to

fine and from fine to coarse grids. On the boundaries

of each refinement level, after a “collide-and-stream”

operation there will be some missing information

(some populations fi are unknown on the coarse and

on the fine grids) that one needs to reconstruct. For

the sake of clarity, let us call C the ensemble of

coarse sites and F the ensemble of all fine sites. Let

us now define xf→c the fine sites that are contained

in F and C where the coupling from fine to coarse

is performed and xc→f all the sites contained in

2

F and C where the coupling goes from coarse to

fine. Let us also define xc
f→c = {x|x ∈ xf→c and

x �∈ F}, xc
c→f = {x|x ∈ xc→f and x �∈ F} and

xf
c→f = {x|x ∈ xc→f and x �∈ xc

c→f}. The coupling

proposed in this work requires the grids to overlap

themselves by a domain of at least one coarse cell

width, as Figure 1 illustrates.

COARSE GRID FINE GRID

Fine to Coarse

Coarse to Fine

Figure 1. Example of a multi-domain scheme.

In LBM a regular Cartesian grid is used. Therefore

an abrupt transition occurs when refining the compu-

tational domain. This change of scales induces a need

for a rescaling of the physical quantities between the

grids. To clarify, we chose to refine the grids by a

factor of two.

Thus defining δxc and δxf the spatial discretization

of the coarse and fine grids respectively one has the

following relation between them [14]:

δxf = δxc/2 (3)

The temporal loop in the fine grid must do twice

the iterations of the coarse grid. Another consequence

of the convective scaling, is that the velocity and the

pressure in lattice units are continuous fields on the

grid transition, while the relaxation time τ must be

rescaled [14].

ωf =
2ωc

4− ωc
(4)

The rescaling of the distribution function fi now

needs to be discussed. The basic ideas of the algorithm

are explained in the following. Each fi,n can be

written as [14]:

fi,n = feq
i (ρn,un) + fneq

i,n (�u) (5)

feq
i,n does not need any rescaling [14], as it only

depends on ρ and u and both are continuous between

the grids. On the other hand, the non-equilibrium part

fneq
i,n = fi,n−feq

i,n is proportional to the gradient of the

velocity, it is therefore necessary to rescale it when it

is moved between grids with different resolutions [14].

fneq
i,c =

2ωf

ωc
fneq
i,f (6)

We are now going to discuss in more detail the

actual coupling procedure between the coarse and fine

grids. In the F → C boundary, the fine grid has

more sites than the coarse one. The necessary steps

are: restrict the values, rescale them and copy them

to the coarse grid. The proposed coupling is over the

sites marked as xf→c. It is expressed by the following

equation

fi,c(x
c
f→c, t) = feq

i (ρf (x
c
f→c, t),uf (x

c
f→f , t))

+
2ωf

ωc
fneq

i,f (x
c
f→c, t)

(7)

where ρf =
∑

i fi,f and uf =
∑

i eifi,f and

fneq
i,f (x

c
f→c, t) is the result of applying the restric-

tion to the incoming fine grid values. We carry out

only a filter on the non-equilibrium part of the popu-

lations fneq
i averaging over all the q lattice directions,

thus obtaining the following restriction

fneq
i,f (x

c
f→c, t) =

1

q

q−1∑
i=0

fneq
i,f (xc

f→c + ei, t) (8)

The coupling over the C → F boundary (xc→f)

is given by two different operations. If a point has a

corresponding coarse site in xc→f (i.e. if a computa-

tional node has both a coarse and a fine site, or in a

mathematical notation if xf ∈ xc
c→f) then

fi,f (x
c
c→f) = feq

i (ρc(x
c
c→f),uc(x

c
c→f))

+
ωc

2ωf
fneq
i,c (xc

c→f),
(9)

where ρc =
∑

i fi,c and uc =
∑

i eifi,c and fneq
i,c

are computed from the populations of the coarse grid.

However, if the fine site does not correspond to a

coarse site in xc→f

fi,f (x
f
c→f) = feq

i (ρc,uc) +
ωc

2ωf
fneq

i,c, (10)

where ρc,uc and fneq
i,c are interpolated from the

values where the fine and coarse sites are coincident.

Next we present a detailed version of the coupling

algorithm that we implemented.

1) A “collide-and-stream” operation is performed

on the coarse grid bringing it to time t + δtc.

3

At this point the populations in xf→c that were

supposed to be streamed from the fine grid are

unknown.

2) A “collide-and-stream” cycle is performed on

the fine grid bringing it at time t + δtc/2. The

grid lacks information in xc→f .

3) Coarse → Fine communication. One then

performs a double interpolation, one in time and

one in space. First the values of ρc, uc and fneq
i,c

of the coarse sites in xc→f are interpolated at

time t+ δtc/2. Then the values of the fine sites

ρc(t + δt/2), uc(t + δt/2) and fneq
i,c (t + δt/2)

are interpolated in space.

4) A second “collide-and-stream” operation is per-

formed on the fine grid, bringing it to time

t + δtc. At this point we have the information

from the coarse grid to complete the fine grid

in xc→f .

5) Fine → Coarse communication. All the pop-

ulations of the coarse grid in xc→f are replaced

according Eqs. 7 and 8.

III. LBM IMPLEMENTATON

The actual computational scheduling of LBM is

based on the works by [5], [3], a novel efficient

implementation based on a pull single-loop strategy.

This approach reduces the number of accesses to main

memory by computing the macroscopic variables,

velocities and density, in top regions of the hierar-

chy of memory. To exploit the high data parallelism

presented in LBM, we keep in memory two copies

of lattice. Each time step inputs from one copy and

writes results to the other.

The information for each lattice node should be

stored in sequential memory locations that reflect

their geometrical ordering to improve coalescing. In

contrast, other approaches are more efficient for Mul-

ticore processors and low latency memories. We have

proposed several strategies adapted to LBM.

The first strategy (Uncoalesced) does not suppose

an elaborate management of memory. Basically, the

set of 9 speeds associated to each lattice unit is

stored in consecutive locations of memory. The lat-

tice is stored in memory as an Array of Structure

(AoS). Although, it can be efficiently implemented

for systems which exploit a coarse grain parallelism,

this memory mapping makes it difficult to use vector

(intrinsic) instructions due to the displacement of data-

memory among the lattice-velocities for consecutive

lattice units.

To mitigate the inconvenience found in the previ-

ous approach, other alternative (Coalesced) is given,

which consists of storing each of the 9 lattice-

directions consecutively. Henceforth, we consider to

use a Structure of Array (SoA) approach instead of

using AoS. This approach has proven to be a very

efficient memory mapping on CUDA-based imple-

mentations [5], [3], [16], [15], [20]. Despite that this

approach is more amenable to vectorized instructions,

we find a large space of memory, as big as the

size of the fluid domain, among the different lattice-

velocities.

Finally in order to take advantage of the main

features of both aforementioned strategies, another

approach arises: Blended, it consists of joining both

features by introducing a chunk among lattice speeds

to exploit vectorial instructions efficiently. The size of

vector unit imposes the maximum number of elements

to be grouped (chunk).

The homogeneous Multicore implementation con-

sists of using OpenMP pragmas, which orchestrates

the distribution of the workload over the set of threads.

These pragmas are placed before iterative sentences,

being very transparent from programmer point of

view.

Next, we introduce the homogeneous GPU imple-

mentation. First, the coarse grid is computed in one

kernel. The number of threads is equal to the number

of lattice nodes. Then, a second Stream-Collide step

is carried out on the nodes of the fine grid. After

that, the next step consists of computing the coarse to
fine communication. In particular this step is carried

out on both set of points, coarse and fine, located in

the coarse to fine region of the fine grid (Figure 1).

This step is divided into three different interpolation

operations: temporal interpolation on coarse points,

spatial and temporal interpolations on fine points. The

first kernel corresponds to the Equation 9. The next

two interpolations correspond, first, to the elements

ρc,uc and fneq
i,c (spatial-interpolation), and, second

(temporal-interpolation), of the Equation 10. The two

first interpolations are independent between them, and

so, we use a single kernel. The third interpolation is

carried out by a separate kernel. After computing the

first communication step, the fine grid is completed

for a second Stream-Collide step. Finally, the F → C
communication is carried out on the points of the

coarse grid of the fine to coarse region (Equation 7)

in a separate kernel. We have used the Dynamic
Parallelism CUDA extension [18] to implement our

homogeneous GPU approach. Dynamic Parallelism

enables a CUDA kernel to create and synchronize new

nested work. It avoids the use of CPU for synchroniz-

ing the different steps for computing multiple domains

4

on GPU.

In the following, we present our heterogeneous

scheduler as an alternative to the homogeneous ap-

proaches. The strategy is based on a temporal segmen-

tation of our problem. It takes advantages of both, the

independence among some steps and the coupling of

non balanced features of our numerical algorithm on

our non homogeneous system. Depending on the size

of grids, the computational cost concerning different

steps is different. To clarify, Figure 2 graphically illus-

trates the proposed strategy. Our overlapped scheduler

is now introduced. The execution of the temporal

interpolation on the coarse points of the coarse to
fine region (Equation 9) can be overlapped with the

first LBM step of the fine grid, since the output of

this interpolation is required by the temporal inter-

polation on fine points of the same region (Equation

10), which has to be computed after the first fine-

LBM step. The fine to coarse communication step

is lightly modified with respect the homogeneous

GPU approach. In particular, it is implemented by

a single OpenMP-function/CUDA-kernel which com-

putes, first, the spatial interpolation on fine points, and

then, the temporal interpolation on the same points

(Equation 10). Additionally, it is possible to compute

a prediction operation for the next coarse-LBM step,

while all the previous steps on fine grid are being

computed. However, it is necessary to compute a

Stream-Collide step on points which lack information

concerning coarse points of the fine to coarse region.

Although, this step is not overlapped with others, it

does not suppose an important overhead, as it is only

carried out on the points located in the fine to coarse
region of the coarse grid.

The heterogeneous approach requires more mem-

ory transfers with respect to the homogeneous GPU

counterpart. In particular, the boundary regions among

grids have to be transfered from (to) both memories,

main (Multicore) and global (GPU). As Figure 2

shows, after computing the interpolation on the bound-

ary region the missing information is transfered from

(to) both grids.

Two different heterogeneous approaches arise (Fig-

ure 2), Top-GPU, in which GPU computes the top

pipeline (Figure 2) and Multicore the bottom pipeline,

and Top-Multicore, in which Multicore computes the

top pipeline and the GPU the bottom pipeline. We

have extended this strategy to problems with 2 refined

levels, in which we consider the next grid distribution;

the two refined domains on Multicore/GPU and the

coarsest level on GPU/Multicore. As in the homoge-

neous GPU implementation, we follow the Dynamic

Parallelism CUDA extension [18] when dealing with

multiple domains on GPU.

IV. PERFORMANCE EVALUATION

To critically evaluate the performance of our multi-

domain LBM implementation, next we consider a

number of tests executed on our Multicore-GPU sys-

tem. More details of the specific architectures are

given in Table I. According to memory requirements,

the GPU memory hierarchy has been configured as

16KB shared memory and 48KB L1, since our codes

do not take advantage of a higher amount of shared

memory. All the simulations have been performed

using double precision. We use the conventional

MFLUPS metric (Millions of Fluid Lattice Updates

per Second) reported in most LBM studies. We have

used a CUDA block size equal to 256.

Platform Xeon E5520 Kepler K20c
Cores 8 2496

(on-chip L1 32KB (per core) SM 16/48KB (per MP)
Memory) L2 512KB (unified) L1 48/16KB (per MP)

L3 20MB (unified) L2 768KB (unified)
Memory 64GB DDR3 5GB GDDR5

Bandwidth 51.2 GB/s 208 GB/s
Compiler gcc 4.6.2 nvcc 5.5

Table I
DETAILS OF THE TEST PLATFORM.

Based on insights extracted from previous

works [1], [2], [3], [4], [5], [6], we have focused

on analyzing the performance of LBM on GPU

by exploiting the coalesced memory mapping

presented in Section 3, and a fine-grain scheme (one

thread per lattice unit). We analyze two standard

approaches, push (Collide-Stream) [1] and pull

(Stream-Collide) [3], for computing LBM over

GPU. This study also includes the performance

achieved by the sailfish framework [6], which

exploits a push-based LBM approach. It is CUDA

compatible. We also analyze the three memory

storage strategies proposed for our Intel Xeon

processor. Vectorization is the main recommendation

for boosting the performance over Intel Multicore

processors. We have explored Auto-vectorization as

a way to maintain a common code baseline among

others architectures, guiding the compiler towards an

efficient SIMD exploitation.

Figure 3-left graphically illustrates the performance

achieved by each of the LBM schedulers, being the

pull-LBM (Stream-Collide) more efficient than the

push-based approaches counterparts. As in GPU, the

pull-LBM scheduler is more efficient when dealing

5

Fine Grid
t

Stream
Collide Macros.

C
om

m
.

C
om

m
.

Stream
Collide Macros.

t+1
Fine Grid

t+1
Coarse Grid

t
Communication
Fine to Coarse

(coarse)
Spacial

t
Communication
Coarse to Fine

(fine)
Spacial/Temp

t
Temporal
(coarse)

t+1

(Fine to Coarse)
Coarse Grid

Figure 2. Steps of the multi-domain LBM code for our heterogeneous (Multicore-GPU) approach.

0 2 4 6 8 10 12 14
50

100

150

200

250

300

350

400

450

500

550

Number of fluid nodes x106

M
F

LU
P

S

Pull(stream−macro−collide)
Sailfish−Push(macro−collide−stream)
Push(collide−stream−macro)

 30

 35

 40

 45

 50

 55

 60

 65

 70

2 4 6 8 10

M
F

LU
P

S

Number of fluid nodes x 106

Blended
Coalesced

Uncoalesced

Figure 3. Performance, in terms of MFLUPS, for the two LBM schedulers over GPU (left) and for the three memory mappings implemented
over Multicore (right).

with Multicore. Unlike GPU, the gain gap by us-

ing the pull-LBM scheme over Multicore is not so

high with respect to the use of the push-LBM. The

MFLUPS reached by each memory-storage strategy

over our Multicore processor is graphically illustrated

in Figure 3-right. The uncoalesced approach turns

to be the worst strategy, whereas the blended ap-

proach is the most efficient strategy followed by the

coalesced. Our parallel implementations achieved a

speedup around 4× and 6× by implementing the

coalesced and blended approaches with respect to the

sequential counterpart respectively. As consequence,

in our heterogeneous implementation, the memory

access pattern for those steps computed on Multicore

follows the Blended mapping, while steps computed

on GPU and regions of the fluid domain to be com-

municated follow the Coalesced mapping.

Taking into account the high number of case-

study with particular requirements in terms of

size of the fine domains over the size of coarse

domain/s, we have carried out several synthetic cases,

which are composed by 4 different ratios, which

simulates several real scenarios of academia and

industrial interest [14], [7], [21]; finesize/coarsesize
for one refined-level (0.25×, 0.5×, 1×, 2×),

and (fine2
nd

size/fine
1st

size, fine
1st

size/coarsesize)
for two refined-levels

((0.1×,0.25×),(0.25×,0.5×),(0.5×,1×), and

(1×,2×)). A ratio equals 0.25× means that the

coarse domain is 4 times bigger than fine domain

and a ratio equals 2× means that the fine grid

is 2 times bigger than the coarse domain. Three

implementations are studied, one homogeneous GPU

and two heterogeneous Multicore-GPU, Top-GPU
and Top-Multicore, previously introduced. Figure 4-

left graphically illustrates the performance achieved

in terms of MFLUPS. A larger fine domain exhibits a

much lower performance, as fine grids are computed

twice (first refined level) or four times (second refined

level) per time step. Better results are reached for

smaller fine domains.

The Top-Multicore approach reaches a good perfor-

6

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 6 8 10

M
F

LU
P

S

Number of fluid nodes x 106

Top-Mul(0.25x)
Top-GPU(0.25x)

GPU(0.25x)
Top-Mul(0.5x)

Top-GPU(0.5x)
GPU(0.5x)

Top-Mul(1x)
Top-GPU(1x)

GPU(1x)
Top-Mul(2x)

Top-GPU(2x)
GPU(2x)

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.25 0.5 1 2

%

Ratios

Top-Mul
Top-GPU

 0

 50

 100

 150

 200

 250

2 4 6 8 10

M
F

LU
P

S

Number of fluid nodes x 106

Top-Mul(0.1x,0.25x)
Top-GPU(0.1x,0.25x)

GPU(0.1x,0.25x)
Top-Mul(0.25x,0.5x)

Top-GPU(0.25x,0.5x)
GPU(0.25x,0.5x)
Top-Mul(0.5x,1x)

Top-GPU(0.5x,1x)
GPU(0.5x,1x)

Top-Mul(1x,2x)
Top-GPU(1x,2x)

GPU(1x,2x)

 0

 5

 10

 15

 20

 25

 30

 35

 40

(0.1,0.25) (0.25,0.5) (0.5,1) (1,2)

%

Ratios

Top-Mul
Top-GPU

Figure 4. One refined level (top) and Two refined levels (bottom). Performance (left), in terms of MFLUPS, achieved by the three
approaches, homogeneous GPU, heterogeneous Top-Multocore and heterogeneous Top-GPU. Gain (right), in terms of percentage, of each
of the both heterogeneous implementations, Top-Multicore and Top-GPU, against the homogeneous GPU implementation.

mance for small fine domains, achieving a good bal-

ancing for ratios equal to 0.25× and (0.1×, 0.25×).
However, worse gains are achieved in the rest of

experiments. A different trend arises for the Top-GPU
approach. This load distribution is very beneficial for

greather fine grids. For balanced domains (1× and

(1×,2×)), the heterogeneous Top-GPU implementa-

tion is approximately 30% and 15% faster over the ho-

mogeneous GPU counterpart for one refined level and

two refined levels respectively. The difference among

the regions of both grids has an important impact in

performance, which degrades or increases the whole

performance, so that both heterogeneous implementa-

tions, Top-Multicore and Top-GPU, present a better

performance with respect to the other depending on

this ratio. Figure 4-right graphically illustrates the gain

of both heterogeneous approaches over the homoge-

neous GPU, for each ratio. The dealing of multiple

domains over GPU degrades the benefit of using the

Top-GPU approach. This reduces the benefit of using

our heterogeneous approach, at least in those case-

study with greater fine grids. Despite the overheads

aforementioned, our heterogeneous implementation is

able to outperform the homogeneous counterpart in all

cases evaluated.

V. CONCLUSIONS

In this paper, we have investigated the performance

of a mesh refinement algorithm for lattice-Boltzmann

solvers that simulates regular Cartesian grids with

multiples space domains. While the lattice-Boltzmann

method has been widely studied on heterogeneous

platforms, the parallelization of mesh refinement al-

gorithms based on this method is an emerging topic.

We have implemented and analyzed two different

heterogeneous approaches that take advantages of

both architectures, Multicore and GPU, in a cooper-

ative way. Our heterogeneous approach outperforms

the performance achieved by the homogeneous GPU

counterpart. We consider, as the main contribution

of the present work, the study of the influence in

performance of the ratio among the sizes of the set

of domains. This factor is the key to choice what is

7

the best heterogeneous distribution for multi-domain

LBM problems.

ACKNOWLEDGMENT

This research has been supported by EU-FET

grant EUNISON 308874, the Basque Excellence Re-

search Center (BERC 2014-2017) program by the

Basque Government, the Spanish Ministry of Econ-

omy and Competitiveness MINECO: BCAM Severo

Ochoa accreditation SEV-2013-0323 and the Project

of the Spanish Ministry of Economy and Compet-

itiveness with reference MTM2013-40824. We also

thank NVIDIA GPU Research Center program for the

provided resources.

REFERENCES

[1] J. Tölke, Implementation of a Lattice Boltzmann kernel
using the compute unified device architecture developed
by nVIDIA. Comput. Visual. Sci. 13(1):29-39, 2010.

[2] P. Valero-Lara. A Fast Multi-Domain Lattice-Boltzmann
Solver on Heterogeneous Architectures, Proceedings of
the 14th International Conference on Computational
and Mathematical Methods in Science and Engineering
(CMMSE), 2014.

[3] P. Valero-Lara, A. Pinelli, M. Prieto-Matı́as. Accelerat-
ing Solid-fluid Interaction using Lattice-boltzmann and
Immersed Boundary Coupled Simulations on Hetero-
geneous Platforms. The International Conference on
Computational Science (ICCS), 50-61, 2014.

[4] M. Bernaschi, M. Fatica, S. Melchiona, S. Succi, E.
Kaxiras. A flexible high-performance Lattice Boltzmann
GPU code for the simulations of fluid flows in complex
geometries. Concurrency Computa.: Pract. Exper. 22,
1-14, 2010.

[5] P. R. Rinaldi, E. A. Dari, M. J. Vénere, A. Clausse.
A Lattice-Boltzmann solver for 3D fluid simulation on
GPU. Simulation Modelling Practice and Theory, 25,
163-171, 2012.

[6] M. Januszewski and M. Kostur. Sailfish: A flexi-
ble multi-GPU implementation of the lattice Boltz-
mann method. Computer Physics Communications,
185(9):23502368, 2014.

[7] P. Valero-Lara, J. Jansson. A Non-uniform Staggered
Cartesian Grid Approach for Lattice-boltzmann Method.
The International Conference on Computational Science
(ICCS), 296-305, 2015.

[8] LBM-HPC. Computational Fluid Dynamics & Com-
putational Technology Unit at BCAM. http://www.
bcamath.org/en/research/lines/CFDCT/software, 2015.

[9] S. Succi. The lattice Boltzmann equation: for fluid
dynamics and beyond. Oxford university press New
York, 2001.

[10] P. Bhatnagar, E. Gross and M. Krook. A model for col-
lision processes in gases. I: small amplitude processes
in charged and neutral one-component system. Physical
Review, 94, 511-525, 1954.

[11] P. Valero-Lara, A. Pinelli, J. Favier, M. Prieto-Matı́as.
Block Tridiagonal Solvers on Heterogeneous Archi-
tectures. The 10th IEEE International Symposium on
Parallel and Distributed Processing with Applications
(ISPA), 609-616, 2012.

[12] P. Valero-Lara, A. Pinelli, M. Prieto-Matı́as. Fast fi-
nite difference Poisson solvers on heterogeneous archi-
tectures. Computer Physics Communications, 185(4),
1265-1272, 2014.

[13] Y. Qian, D. D’Humieres and P. Lallemand. Lattice
BGK Models for Navier-Stokes Equation. Europhysics
Letters, 17 (6), 479-484, 1992.

[14] D. Lagrava, O. Malaspinas, J. Latt and B. Chopard.
Advances in multi-domain lattice Boltzmann grid re-
finement. Journal of Computational Physics, 231, 4808-
4822, 2012.

[15] M. Schönherr, K. Kucher, M. Geier, M. Stiebler, S.
Freudiger, M. Krafczyk. Multi-thread implementations
of the lattice Boltzmann method on non-uniform grid
for CPUs and GPUs. Computers and Mathematics with
Applications 61 (2011), 3730-3743.

[16] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, E.
Kaxiras. A flexible high-performance Lattice Boltzmann
GPU code for the simulations of fluid flows in com-
plex geometries. Concurrency Computat.: Pract. Exper.
2010; 22: 1-14.

[17] G. Crimi, F. Mantovani, M. Pivanti, S.F. Schifano, R.
Tripiccione. Early Experience on Porting and Running a
Lattice Boltzmann Code on the Xeon-phi Co- Processor.
Procedia Computer Science. 18, 551-560, 2013.

[18] Nvidia Corp. Dynamic Parallelism in CUDA - Nvidia
technical report. http://developer.download.nvidia.
com/assets/cuda/files/CUDADownloads/TechBrief
Dynamic Parallelism in CUDA.pdf, 2013.

[19] A. Fakhari, T. Lee. Finite-difference lattice Boltz-
mann method with a block-structured adaptive-mesh-
refinement technique. Phys. Rev. E. 89 (3), 12, 2014.

[20] P. Valero-Lara, F. D. Igual, M. Prieto-Matas, A. Pinelli,
J. Favier. Accelerating fluid-solid simulations (lattice-
boltzmann & immersed-boundary) on heterogeneous
architectures. Journal of Computational Science, 10
(2015), 249-261.

[21] M. A. Mussa, S. Abdullah, C. S. Azwadi, N. Muhamad
and K. Sopian. Numerical Simulation of Lid-driven
Cavity Flow Using the Lattice Boltzmann Method. Pro-
ceedings of the 13th WSEAS International Conference
on Applied Mathematics. 236-240, 2008.

8

