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Abstract
We propose a numerical approach based on the Lattice-Boltzmann method (LBM) for dealing
with mesh refinement of Non-uniform Staggered Cartesian Grid. We explain, in detail, the
strategy for mapping LBM over such geometries. The main benefit of this approach, compared
to others, consists of solving all fluid units only once per time-step, and also reducing consider-
ably the complexity of the communication and memory management between different refined
levels. Also, it exhibits a better matching for parallel processors. To validate our method, we
analyze several standard test scenarios, reaching satisfactory results with respect to other state-
of-the-art methods. The performance evaluation proves that our approach not only exhibits a
simpler and efficient scheme for dealing with mesh refinement, but also fast resolution, even in
those scenarios where our approach needs to use a higher number of fluid units.

Keywords: Lattice-Boltzmann Method, Mesh Refinement, Parallel Algorithms, Multicore.

1 Introduction

Advanced strategies for the efficient implementation of computationally intensive numerical
methods have a strong interest in the industrial and academic community. The Lattice Boltz-
mann Method (LBM) is a clever discretization of the Boltzmann equation [15]. Multiple studies
have compared the efficiency of LBM with other methods [1, 5], showing that it can achieve
an equivalent numerical accuracy over a large number of applications. Due to the particular
features of LBM, it has been adapted to numerous parallel computer architectures, such as
multicore CPU [11], manycore accelerators [16] and cluster [9] being a very profitable method
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for parallel computing, showing a high MFLUPS (Millions of Fluid Lattice Updates per Sec-
ond) ratio. Also, given the growing popularity of LBM, multiple tools [19, 7] have arisen which
has consolidated this method into academia and industry. In particular, in this work we have
considered the LBM-HPC framework [7] as our reference software tool.

LBM is an efficient and fast method, however the usage of Cartesian grids is expensive.
Although scientific problems exist for which a homogeneous description of the domain is a
reasonable choice, it is usually desirable to solve regions of high geometrical complexity with a
finer grid to minimize the computational cost. In this sense, the main contribution of this work
is a refinement approach based on a Non-uniform Staggered Cartesian Grid (NSCG) for LBM
solvers. This approach has been previously considered over other methods [20].

Several refinement techniques have been implemented for LBM-based solvers, such as
adaptive-mesh-refinement (ARM) [2], multi-grid [14], and multi-domain [6]. Each of these
techniques exhibit its own advantages and disadvantages. For ARM and multi-grid the coarse
grid is present all over the simulation domain. In the multi-domain refinement, the regions
where refined patches are inserted are taken off the coarse grid. The multi-domain method ex-
hibits better performances and higher memory savings and a more complex grids coupling with
respect to the other two approaches. Nevertheless, those approaches based on ARM present the
most complex scenario for data management, due mainly to its dynamic data structure, while
the multi-grid operations are more profitable for programming and data management. All these
approaches require the use of synchronization points as there exists a data dependence among
the different refined levels, such that those refined regions must be computed at least several
times per time-step. All this degrades the performance and disfavors the implementation on
parallel processors. Our NSCG approach attempts to address these shortcommings by reducing
considerably the complexity of the previous refinement approaches.

This paper is structured as follows: Section 2 introduces the main characteristics of LBM;
Section 3 briefly describes the physical problem at hand and the general numerical framework
that has been selected to cope with it (LBM coupled with NSCG technique). Section 4 and 5,
numerical accuracy and performance studies are performed, respectively; finally, in Section 6
some conclusions are outlined.

2 Lattice-Boltzmann Method

Lattice-Boltzmann methods (LBM) combines those characteristics developed to solve the Boltz-
mann equation over a finite number of microscopic speeds. In this sense, LBM presents some
lattice-symmetry features which allow the conservation of the macroscopic moments [3]. The
standard lattice-Boltzmann method [13] is an explicit-time-step solver for incompressible flows.
This numerical scheme divides each temporal iteration into two steps, one for propagation-
advection (stream) and a collision step which represents inter-particle interactions, achieving
a first order in time and second order in space method. This method describes the fluid be-
havior at mesoscopic level. At this level the fluid is modeled by a distribution function of the
microscopic particles, f . Similarly to the Boltzmann equation, LBM solves the particle speed
distribution by discretizing the speed space over a discrete finite number of possible speeds.
The distribution function evolves according to the equation:

∂f

∂t
+ c∇f = Ω (1)

where f is the particle distribution function, c is the discrete space of speeds and Ω is the
collision operator. By discretizing the distribution function f in space, in time and in speed
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(c = ci) we obtain fi(x, t) which describes the probability of finding a particle at time t located
at x with speed ci.

The term c∇f can be descritized as:

c∇f = ci∇fi =
fi(x + ci∆t, t+ ∆t)− fi(x, t+ ∆t)

∆t
(2)

In this way the particles can only move along the links of a regular Lattice (Figure 1)
defined by the discrete speeds (c0 = c(0, 0); ci = c(±1, 0), c(0,±1), i = 1 · · · 4; ci =
c(±1,±1), c(±1,±1), i = 5 · · · 8 with c = ∆x/∆t), so that the synchronous particle displace-
ments ∆xi = ci∆t never take the fluid particles away from the Lattice. In the present work,
we follow the standard two-dimensional 9-speed lattice D2Q9 [3].

c2 c1

c8c7

c4

c3

c6 c5

ω0
c0

ω2

ω4 ω8ω7

ω6 ω3 ω5

ω1

Figure 1: The standard two-dimensional 9-speed lattice (D2Q9) used.

The operator Ω describes the changes suffered by the collision of the microscopic particles
which affect to distribution function f . To calculate the collision operator we consider the BGK
(Bhatnagar-Gross-Krook) formulation [10] which relies upon a unique relaxation time τ toward
the equilibrium distribution feqi :

Ω = −1

τ
(fi (x, t)− feqi (x, t)) (3)

The equilibrium function feq (x, t) can be obtained by Taylor series expansion of the
Maxwell-Boltzmann equilibrium distribution [13]:

feqi = ρωi

[
1 +

ei · u
c2s

+
(ei · u)

2

2c4s
− u2

2c2s

]
(4)

where cs is the speed of sound (cs = 1/
√

3) and the weight coefficients ωi are ω0 = 4/9,
ωi = 1/9, i = 1 · · · 4 and ω5 = 1/36, i = 5 · · · 8 according to the current normalization.
Through the use of this collision operator and substituting the term ∂fi

∂t using a first order
temporal discretization, the discrete Boltzmann equation can be written as:

fi(x, t+ ∆t)− fi(x, t)
∆t

+
fi(x + ei∆t, t+ ∆t)− fi(x, t+ ∆t)

∆t
= −1

τ
(fi (x, t)− feqi (x, t)) (5)

which can be written compactly as:

fi (x + ei∆t, t+ ∆t)− fi (x, t) = −∆t

τ
(fi (x, t)− feqi (x, t)) (6)
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Equation 6 is typically advanced in time in two stages, the collision step and the streaming
step, i.e.:
Given fi(x, t) compute:

ρ =
∑
fi(x, t) and

ρu =
∑

cifi(x, t)

Collision stage:

f∗i (x, t+ ∆t) = fi (x, t)− ∆t
τ (fi (x, t)− feqi (x, t))

Streaming stage:

fi (x + ci∆t, t+ ∆t) = f∗i (x, t+ ∆t)

3 The Non-uniform Staggered Cartesian Grid (NSCG)
Algorithm for Lattice-Boltzmann Method

This section describes the main idea behind our algorithm, which consists of the concept that
the usage of different relaxation frequencies (δ = 1/τ) for the same lattice unit can be considered
for dealing with refined grids. Figure 2 illustrates some classical simulation cases for uniform
(top) and non-uniform (bottom) grid refinement.

Figure 2: Grid geometry for the first test scenario, channel flow (left), and second one, flow past
square cylinder (medium → A sub-scenario and right → B sub-scenario), for the multi-domain
(top) and NSCG (bottom) approaches.

The rescaling of physical quantities is inspired by the work by [6]. In the following, we work
in lattice units, the c subindex is assigned to coarse grid units, while the f subindex for fine
grid units. To keep the discussion simple we chose to refine the grid by a factor of two only.
Thus, ∆xc and ∆xf are the spatial discretization of the coarse and fine grid respectively, so it
follows that: ∆xf = ∆xc/2.

Given the aforementioned relation, the rescaling of the relaxation time now needs to be
discussed. Let the Reynolds number be: Ren = UnLn/vn, where n refers to fine (f) or coarse
(c) domain, U , L, v are the characteristic velocity, the characteristic length-scale and the
viscosity, respectively. Un and Ln are given by: Un = U∆tn/∆xn and Ln = L/∆xn. Forcing
the Reynolds number to be independent of the grid, one obtains:
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Rec = Ref ≡
UL∆tc
∆x2

cvc
=
UL∆tf
∆x2

fvf
(7)

Recalling that ∆xf = ∆xc/2, the rescaling of the viscosity’s:

vf =
∆xc
∆xf

vc (8)

By using the relation between the relaxation frequency and viscosity (v = c2s(1/δ−1/2)) [6],
δf can be written as:

δf =
2δc

4− δc
(9)

The rescaling process introduced above can be applied over a Nonuniform Staggered Carte-
sian Grid by following the scheme illustrated in Figure 3.
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Figure 3: kind of refined lattices for the NSCG approach (right). δc, δf and δr denoted in the
graph as c, f and r respectively.

Depending on the direction to be refined, one of the three different δ factors, δc, δf , are
considered δr. Both, δc and δf have been described in the above subsection. δr is computed as
arithmetic average of the other two δ factors (δr = (δc + δf )/2). This scheme only affects the
collision-LBM stage (Equation 9):

Next, we present the coupling algorithm: It consists of a simple communication from/to the
different refined levels, which affects only the streaming-LBM stage. In essence, an adaptation
to the local relaxation factor is performed before computing the streaming step over those lat-
tice functions (fi), which need to be communicated to boundary regions among the different
levels. To visualize the differences among our NSCG algorithm with respect to standard LBM,
the major steps of our method are now detailed:
Given fi(x, t) compute:

ρ =
∑
fi(x, t) and

ρu =
∑

cifi(x, t)

Collision stage:

f∗i (x, t+ ∆t) = fi (x, t)− δ∗ (fi (x, t)− feqi (x, t))
Depending on the lattice direction (i) and the refinement level associated, δc, δr or δf is

considered.

Streaming stage:
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If target (f ti ) and source (fsi ) lattice direction share the same refinement level do:
fi (x + ci∆t, t+ ∆t) = f∗i (x, t+ ∆t)
If the target lattice-direction refinement level is different do:
f ti = fsi − δt∗(fsi − f

s−eq
i )

To clarify, next, we show the transfers from/to the lattices, for the streaming major step,
according to the simple geometry illustrated by Figure 3. The enumeration is in agreement
with respect to Figure 1.

f c2 = fhor.−f2 − δc(fhor.−f2 − fhor.−f−eq2 ) fhor.−f1 = f c1 − δf (f c1 − f
c−eq
1 )

f c6 = ff6 − δc(f
f
6 − f

f−eq
6 ) fver.−f4 = f c4 − δf (f c4 − f

c−eq
4 )

f c3 = fver.−f3 − δc(fver.−f3 − fver.−f−eq3 ) ff8 = f c8 − δf (f c8 − f
c−eq
8 )

The previous case can be easily generalized for the rest of streaming cases. Unlike other
refinement approaches, [6, 2, 14], the LBM-steps are computed on every fluid node only once
per time step. It is not necessary to have additional overlapping regions between the different
refined levels and complex communication (interpolation) processes from/to each of the levels.
Also, our new approach allows to refine only in one direction, which can be very appropriate
and accurate-enough for some scenarios(Figure 2-left), demanding a lower computational cost.
However, when dealing with refined domains over more than one direction, additional lattice
units are necessary (Figure 2-medium and right).

4 Numerical Validation

To validate our NSCG approach for the LBM we carry out two different test scenarios: the first
being a classical channel flow, while the second one is a simulation of the flow past a square
cylinder. In both scenarios, three different LBM implementations are compared: No refinement,
where no refined fluid domain is considered; multi-domain approach (MDA) based on the work
of D. Lagrava et al. [6]; and our NSCG approach.

In the first scenario, the refined region is located in the bottom-half of the fluid domain. The
multi-domain consists of a one-step coarse and a two-step fine algorithm over the horizontal
and vertical directions [6]. In contrast, the NSCG considers only a one-step fine refinement over
the horizontal direction. Figure 2-left graphically illustrates the different grid geometries with
respect to MDA and NSCG approaches, for the first test scenario. To clarify Table 1 contains the
different settings for every approach in terms of the number of lattice units. Several Reynolds
numbers (50, 100, 150 and 200) have been tested for the same configuration. In LBM the
Reynolds number equation (Re = UL

υ ) is related to the relaxation time τ (Equation 6) as:
τ = [(3 ∗ UL)/Re] + 0.5 [15].

To visualize the numerical accuracy of every approach, we illustrate, in Figure 4, the hori-
zontal velocity, for each Reynolds number, on the plane x = 100 over the fine-grid for time step
500.

On the other hand, in the second scenario are considered two sub-scenarios, A and B (Fig-
ure 2-medium and right). The finer domain is located around and behind the square cylinder.
For the NSCG, two additional refined regions are necessary. One located in the top-bottom
around the main refined region, and one located in the left (B sub-scenario) and left-right (A
sub-scenario) of the cylinder. For the cylinder diameter D, the grid flow is set as 21D × 14D.
When the Reynolds number is lower than 100, there is no vortex structure formed during the
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Channel Flow

Approach No Refine. MDA NSCG
Coarse Grid 100 × 200 50 × 200 50 × 200
Fine Grid 100 × 400 100 × 200
Fluid Units 20000 50000 30000

Flow Past Square Cylinder (A Sub-scenario)

Approach No Refine. MDA NSCG
Coarse Grid 210 × 140 210 × 140 190 × 120

−20 × 20 (fine grid)
Fine Grid 40 × 40 40 × 140 (top-bottom)

210 × 40 (left-right)
Fluid Units 29400 30600 36800

Flow Past Square Cylinder (B Sub-scenario)

Approach No Refine. MDA NSCG
Coarse Grid 210 × 140 210 × 140 20 × 120

−190 × 20 (fine grid)
Fine Grid 380 × 40 380 × 120 (top-bottom)

20 × 40 (left)
240 × 40 (around-behind)

Fluid Units 29400 40800 61600

Table 1: Test scenarios setting.

Reference CD Reference CD Reference CD

Numerical Data: Experimental Data: This work:
Verstappen and Veldman [17] 2.09 Lyn et al. [8] 2.1 No Refinement 2.48

Porquie et al. [12] 2.2 (UK1) MDA 2.02
2.3 (UK2) NSCG 2.01
2.23 (UK3)

Wang and Vanka [18] 2.03
Kawashima and Kawamura [4] 2.72 (ST2)

2.73 (ST5)

Table 2: Comparison between the numerical results yield by this work and other previous
studies.

evolution, i.e., the flow field is laminar and steady. In contrast, for a Reynolds number of 100,
the symmetric rectangular zones disappear and an asymmetric pattern is formed. The vortic-
ity is shed behind the circular cylinder, and vortex structures are formed downstream. This
phenomenon is well-capture by our NSCG approach. It is graphically illustrated in Figure 5.

One important dimensionless number is studied, the drag (CD = FD

0.5ρU2D ) coefficient. FD
corresponds to the resistance force of the square cylinder to the fluid in the streamwise direction,
ρ is the density of the fluid, and U is the velocity of inflow. In order to verify the numerical
results, the coefficients were calculated and compared with the results of previous studies (Table
2).

5 Performance Study

Before visualizing the performance results (Figure 6), it is important to note that multi domain
approach requires a higher number of points compared to NSCG approach for the first scenario
(Table 1). However, in the second scenario the NSCG approach requires of a higher number of
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Figure 4: Numerical results for the first test scenario for characteristic velocity of 0.1.

Figure 5: Streamlines for flow past a square cylinder at Re = 100.

fluid points.
To evaluate the efficiency of our approach, we perform a set of tests which consists of the

same scenarios studied for the numerical validation. The computational platform consists of a
single computational node of the supercomputing Lindgren Cray XE6 system based on AMD
Opteron 12-core Magny-Cours (2.1 GHz) processors at KTH. In particular, we have carried out
all our performance studies over a node composed of 24 cores divided between 2 sockets, with
12 cores each ( L1 cache: 64KB data cache, L2 cache: 512KB per core, L3 cache: 12MB per
processor) and 32 GB DDR3 per node using the cc compiler and -fopenmp -O3 as optimization
flags.

In this performance analysis (Figure 6), we obtain execution time (ms) and MFLUPS (Mil-
lions of Fluid Units Per Second) ratio (MFLUPS = (#Fluid Units/time(s))/106), consid-
ering 1, 12 and 24 OpenMP-threads. Table 3 illustrates the benefit (speedup) of our ap-
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Figure 6: Time (left) and MFLUPS (right) for both refinement approaches, MDA and NSCG,
over the three test scenarios, Channel flow (MDACh, NSCGCh), flow past cylinder, A (MDAA,
NSCGA) and B (MDAB , NSCGB) sub-scenarios.

proach compared to MDA in terms of execution time (timeMDA/timeNSCG) and MFLUPS
(MFLUPSNSCG/MFLUPSMDA).

Time MFLUPS

Test Scenario Sequential 12 Threads 24 Threads Sequential 12 Threads 24 Threads
Channel flow 2.65 2.60 2.67 1.59 1.56 1.60

A 1.18 1.51 1.8 1.42 1.82 2.16
B 1.04 1.37 1.59 1.58 2.07 2.41

Table 3: Speedup reached by the NSCG approach against MDA approach.

6 Conclusions

In this work we have proposed, developed and analyzed a new approach for dealing with mesh
refinement over LBM based on Non-uniform Staggered Cartesian Grid (NSCG). This approach
exhibits a similar numerical accuracy compared to LBM refinement method based on multi-
domain, Also it requires a lower computational and programming effort. The NSCG approach
has been validated and analyzed for three different test scenarios. Although the gain of using
our approach is reflected in every test, the benefit is greater when dealing with a higher number
of threads, thus, it is a profitable scheme for parallel processors.

As a future research topic we plan to investigate more complex physical scenarios which
require a higher amount of memory, making the use of memory distributed platforms mandatory.
In addition, we plan to analyze other parallel platforms such as the nVidia GPU and the Intel
Xeon Phi, as well as to implement more elaborate strategies for memory management and data
distribution.
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