
LBM-HPC an Open-Source Tool for Fluid Simulations.
Case Study: Unified Parallel C (UPC-PGAS)

Pedro Valero-Lara
CFD & Computational Technology Unit

Basque Center for Applied Mathematics (BCAM)
Bibao, Spain

pvalero@bcamath.org

Johan Jansson
CFD & Computational Technology Unit and

Computational Technology Laboratory
Basque Center for Applied Mathematics (BCAM) and

KTH Royal Institute of Technology
Bilbao, Spain and Stockholm, Sweden

jjansson@bcamath.org, jjan@csc.kth.se

Abstract—The main motivation of this work is the evalua-
tion of the Unified Parallel C (UPC) model, for Boltzmann-
fluid simulations. UPC is one of the current models in the
so-called Partitioned Global Address Space paradigm. This
paradigm attempts to increase the simplicity of codes and
achieve a better efficiency and scalability. Two different UPC-
based implementations, explicit and implicit, are presented and
evaluated. We compare the fundamental features of our UPC
implementations with other parallel programming model, MPI-
OpenMP. In particular each of the major steps of any LBM
code, i.e., Boundary Conditions, Communication, and LBM
solver, are analyzed.

Keywords-Lattice-Boltzmann Method; Parallel Computing;
CLUSTER; Partitioned Global Address Space (PGAS); Unified
Parallel C (UPC);

I. INTRODUCTION

In order to increase the efficiency and scalability of
distributed-memory programming environments, many at-
tempts have been made over the past several years. One such
programming enviroment consists of the Partitioned Global
Address Space (PGAS) [1] model. This model provides a
shared memory view of distributed memory systems, hiding
the most important aspects regarding parallel programming
by facilitating the implementation of parallel codes and
providing better efficiency and scalability. Recently, some
PGAS languages have arisen, such as Coarray Fortran, Uni-
fied Parallel C [2], the Global address space Programming
Interface (GPI), among others.

The Lattice Boltzmann Method (LBM) is a clever dis-
cretization of the Boltzmann equation [3]. Due to the particu-
lar features of LBM, it has been adapted to numerous parallel
computer architectures, [4], [5]. Also, given the growing
popularity of LBM, multiple tools have arisen which have
consolidated this method into academia and industry. In
particular, we have considered the open-source LBM-HPC
framework [6].

A recent work which covers a subject closely related to the
present contribution is the one by [7], where they analyze
the performance of matrix-vector multiplication and LBM
via GPI and MPI-OpenMP programming models. This study

shows that the performance achieved by both approaches
is similar. Here, we will focus on another PGAS-based
model, UPC. Also, we study two different UPC approaches,
explicit and implicit. Besides, the three parts of any LBM
code, boundary conditions (BCs), communication and LBM
solver, are studied individually.

This paper is structured as follows: Section II briefly
describes the UPC framework and the different implemen-
tations. In Section III, a performance study is carried out to
compare the computational efficiency of each implementa-
tion; finally, in Section IV some conclusions are outlined.

II. IMPLEMENTATION

Unified Parallel C (UPC) is an extension of C, see [2] for
a complete review. It focuses on providing low-latency, high
speed communication routines for large scale systems.

Next, we briefly introduce the main features of the
UPC programming model. In UPC, there are two thread
monitoring expressions, THREADS, a macro gives the total
number of threads, and, MYTHREAD, an integer expression
gives the index of the current thread whose range is 0
...THREADS-1. To declare a global array accessible by
all threads, it must include the tag shared. Although data
is accessible by every thread, every part of the data has an
“affinity”. The affinity can be controlled by using the block-
size qualifier.

shared type variable;

shared [block_size] type variable [index];

shared [] type variable [index];

shared [*] type variable [index];

(1)

When there is no block-size qualifier (default), elements
are distributed such that the ith element has affinity to thread
i%THREADS. If block-size is specified, the ith element
has affinity to thread (i/block_size)%(THREADS×
block_size). This is an efficient approach for exploiting

locality. All elements have affinity to thread 0, considering
the [] qualifier. Finally, [*] qualifier is commonly used
for multidimensional arrays. The elements, variable[i],
have affinity to i%THREADS, regardless of other dimen-
sions.

Parallelization in UPC is carried out from the use
of MYTHREAD and THREADS (explicit), or the parallel
loop statement, upc_forall (implicit). The usage of
upc_forall is equivalent to a normal for loop, except
that it automatically divides the loops among the threads
according to a fourth parameter (affinity):

upc_forall(initial;test;increment;affinity)

The affinity parameter can be either a pointer, or an
integer expression. The integer expression distributes the
loop iterations over the set of threads with respect to
(affinity%THREADS). This expression identifies the id
of the UPC thread, which computes that iteration. If it is
a pointer, threads will execute those iterations in which the
address referenced by the affinity parameter is stored into
local memory.

A. MPI-OpenMP
Our hybrid MPI-OpenMP approach is a classic implemen-

tation in which the loops of the main LBM steps (stream and
collision) are computed by using OpenMP, and the bound-
aries, among the different local blocks, are transfered be-
tween the computational nodes, by using MPI send/receive
calls. The communication is managed by using a scheme
based on the use of ghost cells. The ghost cells consists of
replicates of the borders of all immediate neighbors. These
ghost cells are not updated locally, but provide stencil values
when updating the borders of local blocks.

B. Unified Parallel C
Our first UPC implementation follows an explicit ap-

proach; it consists of using the block-size qualifier [*],
which distributes one square fluid-block per thread. To
implement this scheme, it is necessary to use an additional
dimension, whose size is equal to number of threads to be
executed. (Algorithm 1).

All the major steps are carried out by accessing memory
positions directly, whether local or remote (in other nodes).

Similarly to the MPI-OpenMP implementation, our
Explicit-UPC approach implements a ghost-cell based
scheme. It requires a higher use of memory space, however
in contrast to the MPI-OpenMP implementation, our UPC
implementation is not in need of using MPI-type explicit
calls (MPI Send/Recv) or data buffers for sending or re-
ceiving data.

Our second UPC implementation follows an implicit
approach; this approach increases the transparency of those
aspects related to parallel programming, reducing consider-
ably the cost of the implementation with respect to the two
previous approaches.

Algorithm 1 UPC explicit.
1: // UPC x(y) number of UPC threads in x(y)-direction
2: // MT = MYTHREAD
3: int main(int argc, char **argv){
4: mid x = MT%UPC x;
5: mid y = floor(MT/UPC x);
6: static shared [*] double u[THREADS][Ly][Lx],v,p;
7: static shared [*] double f1[THREADS][Ly][Lx][9], f2;
8: t=0;
9: while(t<It){

10: /*——————– Boundary Conditions ——————–*/
11: // Top boundary
12: if(mid y == 0){
13: for(j=0; j<Lx; j++){
14: u[MT][0][j] = uMax; v[MT][0][j] = v0; p[MT][0][j] = p0;
15: for(z=0; z<9; z++){
16: cu=3*(cx[z]*uMax+cy[z]*v0);
17: f=p0*w[z]*(1.+cu+1./2.* (cu)2) . . .
18: f1[MT][0][j][z] = f;
19: } } . . . // Other boundary conditions
20: /*———————— Communication ————————*/
21: // From bottom to top
22: if(mid y > 0 && UPC y > 1){
23: for(j=0; j<Lx; j++){
24: for(z=0; z<9; z++){
25: f1[MT][0][j][z]=f1[MT-UPC x][Ly-2][j][z];
26: } } } . . . // Other directions
27: /*—————————— LBM ——————————*/
28: for(i=1; i<Ly-1; i++){
29: for(j=1; j<Lx-1; j++){
30: u local=0.;v local=0.;p local=0.;
31: for(z=0; z<9; z++){
32: new i=i-cx[z]; new j=j-cy[z];
33: ftmp[z]= f1[MT][new i][new j][z];
34: } . . .} }
35: t++;
36: }
37: }

In this case, the block-size qualifier for shared memory
variables is set to [Lx*Ly/THREADS] by following an
implicit scheme .In contrast with the previous UPC imple-
mentation, Blocks of rows are assigned to each thread. As
we see later, the implicit affinity-distribution has a significant
impact on performance. As a consequence of using the
implicit approach is that the maximum number of UPC-
threads to be executed is limited by the vertical size (number
of rows) of our fluid-domain.

This approach (Algorithm 2) uses a upc_forall con-
structor with a pointer as the affinity parameter, which
forces the thread which have the pointer &u[i][0] stored
into local memory to be executed by these iterations. The
communication layer is packed in the LBM solver, being
totally invisible from a programmer’s point of view.

Here the variables Lx and Ly refer to the whole fluid-
domain, not to local domain per thread, as in the explicit
approach.

Algorithm 2 UPC implicit.
1: #DEFINE CHUNK Lx*Ly/THREADS
2: int main(int argc, char **argv){
3: static shared[CHUNK] double u[Ly][Lx],v,p;
4: static shared[CHUNK] double f1[Ly][Lx][9],f2;
5: t=0;
6: while(t<It){
7: /*——————– Boundary Conditions ——————–*/
8: upc forall(i=0; i<Ly; i++; &u[i][0]){
9: for(j=0; j<Lx; j++){

10: // Top boundary
11: if(i==0){
12: u[i][j] = uMax; v[i][j] = v0; p[i][j] = p0;
13: for(z=0; z<9; z++){
14: cu=3*(cx[z]*uMax+cy[z]*v0);
15: f=p0*w[z]*(1.+cu+1./2.* (cu)2) . . .
16: f1[i][j][z] = f;
17: } } . . . // Other boundary conditions
18: }
19: /*——————-LBM and Communication——————-

*/
20: upc forall(i=1; i<Ly-1; i++; &u[i][0]){
21: for(j=1; j<Lx-1; j++){
22: u local=0.; v local=0.; p local=0.;
23: for(z=0; z<9; z++){
24: new i=i-cx[z]; new j=j-cy[z];
25: ftmp[z]=f1[new i][new j][z];
26: } . . .} }
27: t++;
28: }
29: }

III. PERFORMANCE ANALYSIS

To critically evaluate the performance of the different
approaches implemented, next, we carry out a scaling study
over Hornet, a new supercomputer system at the High
Performance Computing Center Stuttgart (HLRS). It is a
Cray XC40 system, based on Intel Haswell processors and
Cray Aries interconnect technology. The specific features are
given in Table I.

Platform Hornet (Cray XC40)
Cabinets 21

Compute nodes 3944
Compute cores 94656 (24 cores per node)

Processor Intel Xeon CPU E5-2680 v3
(30M Cache, 2.50 GHz)

cores/processor 12
Total compute memory 5.4 PB (128 GB per node)
Node-node interconnect Cray Aries (Dragonfly topology)

Peak performance (TOP 500) 3786 TeraFLOPS

Table I
DETAILS OF THE EXPERIMENTAL PLATFORMS.

We analyze the strong scaling. Our LBM problem consists
of a size of around 1000 million lattice-nodes. All tests have
been performed using double precision. Our test-bed is a
well-known and standard case for fluid simulations, the lid-
driven cavity flow [8].

The three major steps of any LBM code over distributed
memory platforms, BCs, communication, and LBM, are
studied individually. As the Implicit-UPC exhibits some
particular features, we include a separate subsection for its
study. At the end of this section, we present an overview
which includes all major steps. The number of cores con-
sidered in this study ranges from 240 to 30720.

A. Boundary Conditions

First, we analyze the performance for computing BCs
(Figure 1 �). Both, MPI-OpenMP and Explicit-UPC ap-
proaches share the same workload distribution, i.e. uniform
square blocks are distributed to each of the MPI processes or
UPC threads. This distribution is well-balanced for this kind
of operations. However, for the Implicit-UPC implementa-
tion, a set of rows is assigned to each of the threads. It
supposes an important unbalancing, as UPC threads, which
compute the top and bottom regions of the fluid-domain,
represent a much higher computational cost, with respect to
the rest of threads.

The best behavior, in terms of strong scaling, is found in
the hybrid MPI-OpenMP approach. The trend presented by
the Explicit-UPC approach is similar, being the fastest for
the first tests carried out (from 240 to 960 number of cores).
The unbalancing, caused by the implicit affinity, provides
the worst scenario for computing BCs, since increasing the
number of UPC threads does not reduce the cost associated
to the top and bottom boundaries, which is a consequence
of the workload distribution.

B. Communication

We lack information about the performance of the
Implicit-UPC implementation, as it integrates both, the LBM
solver and the communication, without using explicit mem-
ory transfer calls (Figure 1 N).

Although the other approaches have a similar behavior,
the Explicit-UPC approach exhibits better results with re-
spect to the hybrid MPI-OpenMP approach. However, the
benefit achieved in the first tests is reduced considerably by
increasing the number of cores. In terms of speedup, time
consumed by the memory transfers of the MPI-OpenMP
approach over the Explicit-UPC approach, the benefit of
using the PGAS-based implementation evolves from 11.45
(240 cores) to 3.57 (30720 cores).

C. LBM solver

Next, we study the results obtained from the hybrid MPI-
OpenMP and the Explicit-UPC approaches when executing
LBM. Except in the first tests (from 240 cores to 1920
cores), in which the time consumed by the Explicit-UPC
approach is slightly inferior, both implementations exhibit
an equivalent result for the rest of tests.

D. Implicit-UPC

The Implicit-UPC compacts LBM solver and commu-
nication, thus, to analyze the performance of this ap-
proach, we compare the results for our MPI-OpenMP ap-
proach and Explicit-UPC approach with the Implicit-UPC
approach while executing both, communication and LBM.
The speedup of using Implicit approach against Explicit,
ranges from 1.12, when 3840 cores are used, to 2.19,
when we consider 30720 cores. The speedup obtained by
the Implicit-UPC against the MPI-OpenMP is even more
significant, which ranges from 1.26, for 1920 cores, to 2.45,
for 30720 cores. Given these results, we can assume that the
overhead caused by the memory transfers into Implicit-UPC
is equivalent or even smaller than in the case of Explicit-
UPC.

E. Overview

5 6 7 8 9 10 11
log(num_cores)

4

6

8

10

12

14

16

lo
g(

tim
e)

MPI-OMP
MPI-OMP Comm
MPI-OMP BC
UPC-Ex
UPC-Ex Comm
UPC-Ex BC
UPC-Im
UPC-Im BC

Figure 1. Overview for the hybrid MPI-OpenMP, Explicit-UPC, and
Implicit-UPC approaches.

As Figure 1 illustrates, the contribution of the BCs in
both, MPI-OpenMP and Explicit-UPC, is similar, being
slightly inferior for MPI-OpenMP. On the other hand, the
contribution of the memory communication is considerably
superior in MPI-OpenMP than in Explicit-UPC. Obviously,
the higher the number of cores (computational nodes) con-
sidered the higher the communication overhead. The over-
head caused by the memory transfers for the MPI-OpenMP
ranges from 2% to 7.5% over the total time, and from 0.3%
to 1.8% for the Explicit-UPC. The dominant part in Implicit-
UPC is the BCs computation; which ends up being the main
bottleneck. As we have previously introduced, this is mainly
caused by the workload distribution provided by the implicit
model. Finally, the peak saved time for the Implicit-UPC and
Explicit-UPC corresponds to 27% and 19%, respectively.

Despite the great overhead caused by the BCs overhead,
the Implicit-UPC is presented as the most efficient approach
among the tested approaches. However, the overall speedup
reached is degraded considerably, when considering 30720
cores, in which the benefit of using the Implicit-UPC is
equivalent to that of using the Explicit-UPC.

IV. CONCLUSION

For conclusions, we highlight the benefit of using UPC
against MPI-OpenMP model is mainly reflected in an impor-
tant reduction of the communication overhead. Although, the
Implicit-UPC performance overtakes the performance shown
by the other two approaches, when considering the LBM and
communication steps, the benefit reached in these two steps
is degraded by the overhead caused by the BCs. Despite
this, the Implicit-UPC is proven to be the fastest approach,
reaching a peak benefit around 27% and 15%, in terms of
execution time, with respect to the MPI-OpenMP and the
Explicit-UPC counterparts, respectively.

ACKNOWLEDGEMENTS

This research was supported by the Basque Govern-
ment through the BERC 2014-2017 program, by Spanish
MINECO: BCAM Severo Ochoa excellence accreditation
SEV-2013-0323. The author would like to thank the com-
puting facilities of High Performance Computing Center
Stuttgart (HLRS) at the University of Stuttgart.

REFERENCES

[1] “Partitioned global address space.” [Online]. Available:
http://www.pgas.org/

[2] “Berkeley upc - unified parallel c.” [Online]. Available:
http://upc.lbl.gov/

[3] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics
and Beyond (Numerical Mathematics and Scientific Computa-
tion), ser. Numerical mathematics and scientific computation.
Oxford University Press, USA, Aug. 2001.

[4] P. Valero-Lara, A. Pinelli, and M. Prieto-Matias, “Accelerating
solid-fluid interaction using lattice-boltzmann and immersed
boundary coupled simulations on heterogeneous platforms,”
Procedia Computer Science, vol. 29, no. 0, pp. 50 – 61, 2014,
2014 International Conference on Computational Science.

[5] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, “Scal-
able lattice boltzmann solvers for cuda gpu clusters,” Parallel
Computing, vol. 39, no. 67, pp. 259 – 270, 2013.

[6] “Lbm-hpc.” [Online]. Available: http://www.bcamath.org/en/
research/lines/CFDCT/software

[7] F. Shahzad, M. Wittmann, M. Kreutzer, G. H. Thomas Zeiser,
and G. Wellein, “Pgas implementation of spmvm and lbm using
gpi.” Proceedings of the 7th International Conforence on PGAS
Programming Models (PGAS), 2013.

[8] M. A. Mussa, S. Abdullah, C. S. Azwadi, N. Muhamad, and
K. Sopian, “Numerical simulation of lid-driven cavity flow
using the lattice boltzmann method,” pp. 236–240, 2008.

