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The vortex filament equation as a pseudorandom generator
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Abstract In this paper, we consider the evolution of the so-called vortex filament
equation (VFE),

Xt = Xs ∧Xss,

taking a planar regular polygon of M sides as initial datum. We study VFE from
a completely novel point of view: that of an evolution equation which yields a
very good generator of pseudorandom numbers in a completely natural way. This
essential randomness of VFE is in agreement with the randomness of the physical
phenomena upon which it is based.
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1 Introduction

The binormal flow,
Xt = κb, (1)

where t is the time, κ the curvature, and b the binormal component of the Frenet-
Serret formulae, appeared for the first time in 1906 [24], and was rederived in [1], as
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an approximation of the dynamics of a vortex filament under the Euler equations.
It is also known as the vortex filament equation (VFE) or the localized induction
equation (LIA). An equivalent expression of (1) is

Xt = Xs ∧Xss, (2)

where ∧ is the usual cross-product, and s is the arc-length parameter. The tangent
vector T = Xs remains with constant length and, hence, we can assume that
‖T‖2 = 1, for all time. Differentiating (2) with respect to s, we get

Tt = T ∧Tss, (3)

known as the Schrödinger map on the sphere.
The question of making sense of initial data with corners in (2)-(3) has re-

cently received some attention. For instance, the existence of solutions starting
with a single corner, which are precisely the self-similar solutions of (2)-(3), has
been proven in [15] (see also [17] for the corresponding problem in the hyperbolic
space); and numerical simulations of these solutions have been carried out in [6,
18]). Furthermore, the fact that this kind of solutions yields a well-posed prob-
lem has been shown in a long-term collaboration between Banica and Vega [2,3,
4,5]; in particular, the last paper of the series, [5], closes the question, because it
proves that the problem with single-corner initial data is well-posed in an adequate
function space.

Even if the solutions of (2)-(3) for single-corner initial data are well understood,
very little has been done for more general initial data with several corners [21].
However, in a recently submitted paper [19], we have studied for the first time
the evolution of (2)-(3), taking a regular planar polygon of M sides as the initial
datum. The main ideas of [19] are as follows. In order to avoid working with the
curvature κ and the torsion τ , we consider an alternative version of the Frenet-
Serret formulae,





T

e1
e2





s

=





0 α β

−α 0 0
−β 0 0



 ·





T

e1
e2



 ; (4)

where

α(s, t) = κ(s, t) cos

(
∫ s

τ(s′, t)ds′
)

, β(s, t) = κ(s, t) sin

(
∫ s

τ(s′, t)ds′
)

. (5)

Then, the Hasimoto transformation [16] adopts the form

ψ = α+ iβ, (6)

and transforms (2)-(3) into the nonlinear Schrödinger (NLS) equation:

ψt = iψss + i

(

1

2
(|ψ|2 + A(t))

)

ψ, (7)

where A(t) is a certain time-dependent real constant. The main idea is to work
with (7), and, at a given t, to recover X(s, t) and T(s, t) from ψ(s, t) by integrating
(4), up to a rigid movement that can be determined by the symmetries of the
problem.
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Observe that, if we define N ≡ e1 + ie2 (see [16]), then it is not difficult to
check that (3) can be rewritten as

Tt =
i

2
(ψsN̄− ψ̄sN). (8)

Therefore, if the system {ψ,T,N} solves (8), then, defining

ψ̃(s, t) ≡ eiω(t)ψ(s, t), (9)

{ψ̃,T, eiω(t)N} is also a solution; i.e., the tangent vector T does not change, while
the vectors e1 and e2 rotate in the normal plane ω(t) degrees around T. Since in
this paper (and in [19]) we are interested only in T, we conclude that ψ(s, t) can
be chosen without loss of generality up to a complex value (that depends on time)
with modulus one; in particular, we can choose ψ(s, t) to be real, ψ(s, t) ≡ |ψ(s, t)|.

Given a regular planar polygon ofM sides as X(s, 0), there is no torsion; hence,
from (5), ψ(s,0) is precisely the curvature of the polygon, which is a 2π/M-periodic
sum of Dirac deltas:

ψ(s,0) ≡ κ(s) =
2π

M

∞
∑

k=−∞
δ(s− 2πk

M ). (10)

Then, bearing in mind the Galilean invariance of (7) and assuming uniqueness,
we are able to obtain ψ(s, t) at any rational multiple of 2π/M2. During all this
paper, we assume that p and q are two coprime natural numbers. Defining tpq ≡
(2π/M2)(p/q), it can be shown that

ψ(s, tpq) =
2π

Mq
ψ̂(0, tpq)

∞
∑

k=−∞

q−1
∑

m=0

G(−p,m, q)δ(s− 2πk
M − 2πm

Mq ), (11)

where ψ̂(0, tpq) is the mean of ψ(s, tpq) over a period,

ψ̂(0, tpq) =
M

2π

∫ 2π/M

0

ψ(s, tpq)ds, (12)

and

G(a, b, c) =
c−1
∑

l=0

e2πi(al
2+bl)/c (13)

denotes a generalized quadratic Gauß sum. Remark that, as explained in the lines
following (9), we can assume without loss of generality that ψ̂(0, tpq) is real.

An important property of the generalized quadratic Gauß sums is that

|G(−p,m, q)| =











√
q, if q ≡ 1 mod 2,

√
2q, if q ≡ 0 mod 2 ∧ q/2 ≡ m mod 2,

0, if q ≡ 0 mod 2 ∧ q/2 6≡ m mod 2;

(14)

therefore, we can write

G(−p,m, q) =











√
qeiθm , if q ≡ 1 mod 2,

√
2qeiθm , if q ≡ 0 mod 2 ∧ q/2 ≡ m mod 2,

0, if q ≡ 0 mod 2 ∧ q/2 6≡ m mod 2,

(15)
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for certain θm that also depend on q. Hence, defining

ρ =















2π
M

√
q ψ̂(0, tpq), if q ≡ 1 mod 2,

2π

M
√

q
2

ψ̂(0, tpq), if q ≡ 0 mod 2 ∧ q/2 ≡ m mod 2,

0, if q ≡ 0 mod 2 ∧ q/2 6≡ m mod 2,

(16)

we represent (11) as

ψ(s, tpq) =
∞
∑

k=−∞

q−1
∑

m=0

ρeiθmδ(s− 2πk
M − 2πm

Mq ). (17)

The coefficients multiplying the Dirac deltas are in general not real, except for t = 0
and t1,2 = π/M2. Therefore, ψ(s, tpq) does not correspond to a planar polygon,
but to a skew polygon with Mq (for q odd) or Mq/2 (for q even) equal-lengthed
sides.

In order to recover X and T from ψ, we observe that every addend ρeiθmδ(s−
2πm
Mq ) in (17), with ρ 6= 0, induces a rotation on T, e1 and e2. More precisely,

defining cρ ≡ cos(ρ), sρ ≡ sin(ρ), cθm ≡ cos(θm), sθm ≡ sin(θm),

Mm =





cρ sρcθm sρsθm
−sρcθm cρc

2
θm + s2θm (cρ − 1)cθmsθm

−sρsθm (cρ − 1)cθmsθm cρs
2
θm + c2θm



 (18)

is the matrix such that






T( 2πmMq
+
)

e1(
2πm
Mq

+
)

e2(
2πm
Mq

+
)






= Mm ·







T( 2πmMq
−
)

e1(
2πm
Mq

−
)

e2(
2πm
Mq

−
)






, (19)

where all the vectors are row vectors. Notice that, when ρ = 0, Mm is just the
identity matrix I. From (18), it follows that the non-zero value of ρ is the angle be-
tween any two adjacent sides. Imposing that (11) corresponds to a closed polygon,
i.e., that

MMq−1 ·MMq−2 · . . . ·M1 ·M0 ≡ I, (20)

there is very strong evidence that the non-zero value of ρ is given by

cos(ρ) =

{

2 cos2/q( π
M )− 1, if q ≡ 1 mod 2,

2 cos4/q( π
M )− 1, if q ≡ 0 mod 2;

(21)

and the value of ψ̂(0, tpq) follows from (16).
The previous ideas suggest very strongly that ψ(s, t) is also periodic in time,

with period 2π/M2. Furthermore, bearing in mind the symmetries of the problem,
it follows that also T is periodic in time, while X is periodic in time up to a
movement of its center of mass with constant upward velocity.

Although the study of VFE is interesting per se, a recurring question is up
to what extent it is valid as a simplified model for describing real vortex filament
motion. In this paper, we would like to make a step forward in that direction,
by proving that the evolution of X and T for a regular polygonal initial datum
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is essentially random, or, in other words, that it gives as a by-product a simple
and powerful generator of pseudorandom numbers. More precisely, fixed q, we will
focus on two quantities: the triple product of three consecutive tangent vectors,
and the scalar product of a tangent vector and the second next one. Furthermore,
taking these two quantities respectively as the real and imaginary parts of a com-
plex number, we will have a generator of pseudorandom numbers located on a
circumference of center ic2ρ and radius s2ρ.

The structure of this paper is as follows. In Section 2, we study the aforemen-
tioned quantities. We prove that they depend exclusively on φ(p), which is defined
as the inverse of a multiple of p in a finite ring:

φ(p) ≡











(4p)−1 mod q, if q ≡ 1 mod 2,

p−1 mod (q/2), if q ≡ 2 mod 4,

p−1 mod q, if q ≡ 0 mod 4.

(22)

Therefore, it is convenient to consider three cases of growing difficulty, according
to the oddness of q and q/2: Section 2.1 deals with q odd; Section 2.2 deals with
q even, but q/2 odd; and Section 2.3 deals with both q and q/2 even.

In Section 3, we analyze the pseudorandom properties of φ(p). More precisely,
we put it in the frame of the so-called explicit inversive congruential generators.
Finally, in Section 4, we draw the main conclusions and point out future directions
to extend this research.

2 Two interesting quantities

As we have mention in the introduction, we will divide the problem in three cases,
according to the oddness of q and q/2.

2.1 Case with q ≡ 1 mod 2

The simplest case is when q is odd. Then, ψ(s, tpq) in (17) adopts over the first
period the form

ψ(s, tpq) = ρ

q−1
∑

m=0

eiθmδ(s− 2πm
Mq ), s ∈ [0, 2πM ), (23)

i.e., the vertices of X, denoted by Xm, are located at s = 2πm
Mq , and the sides

are the segments that join Xm+1 and Xm. As stated in the introduction, we are

interested in calculating the triple product of T( 2πmMq
−
), T( 2πmMq

+
) ≡ T( 2π(m+1)

Mq

−
),

and T( 2π(m+1)
Mq

+
); and the scalar product of T( 2πmMq

−
) and T( 2π(m+1)

Mq

+
). Let us

calculate the first quantity:

[

T( 2πmMq
−
),T( 2πmMq

+
),T( 2π(m+1)

Mq

+
)
]

=
(

T( 2πmMq
−
) ∧T( 2πmMq

+
)
)

·T( 2π(m+1)
Mq

+
)
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=

∣

∣

∣

∣

∣

∣

∣

T( 2πmMq
−
)

T( 2πmMq
+
)

T( 2π(m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

.

(24)

It is important to bear in mind that both the triple product of three vectors and
the scalar product of two vectors are rotation-invariant, and, thus, we do not have
to determine the global rotation of the whole skew polygon, which is very involved.

Instead, we can simply assume that T( 2πmMq
−
) = (1, 0,0), e1(

2πm
Mq

−
) = (0,1, 0), and

e2(
2πm
Mq

−
) = (0,0, 1), i.e., they form the identity matrix. Then, from (18)-(19),









T( 2π(m+1)
Mq

−
)

e1(
2π(m+1)

Mq

−
)

e2(
2π(m+1)

Mq

−
)









=







T( 2πmMq
+
)

e1(
2πm
Mq

+
)

e2(
2πm
Mq

+
)






= Mm, (25)

and








T( 2π(m+1)
Mq

+
)

e1(
2π(m+1)

Mq

+
)

e2(
2π(m+1)

Mq

+
)









= Mm+1 ·









T( 2π(m+1)
Mq

−
)

e1(
2π(m+1)

Mq

−
)

e2(
2π(m+1)

Mq

−
)









. (26)

More precisely, T( 2πmMq
+
) is the first row of Mm, while T( 2π(m+1)

Mq

+
) is the first

row of Mm+1 ·Mm. Defining ∆m = θm+1 − θm, c∆m
= cos(∆m), s∆m

= sin(∆m),
a straight calculation shows that

T( 2π(m+1)
Mq

+
) =

(

c2ρ − s2ρc∆m

cρsρcθm(1 + c∆m
)

−sρsθms∆m

cρsρsθm(1 + c∆m
)

+sρcθms∆m

)

. (27)

Therefore, (24) becomes

∣

∣

∣

∣

∣

∣

∣

T( 2πmMq
−
)

T( 2πmMq
+
)

T( 2π(m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0
cρ sρcθm sρsθm

c2ρ − s2ρc∆m

cρsρcθm(1 + c∆m
)

−sρsθms∆m

cρsρsθm(1 + c∆m
)

+sρcθms∆m

∣

∣

∣

∣

∣

∣

∣

∣

= s2ρs∆m
= s2ρ sin(θm+1 − θm)

= s2ρℑ(eiθm+1e−iθm)

= s2ρℑ
[

G(−p,m+ 1, q)√
q

Ḡ(−p,m, q)√
q

]

, (28)

where we have used (15) in the last line. On the other hand, the generalized
quadratic Gauß sums can be explicitly calculated (see for instance the Appendix
of [19]):

G(−p,m, q) =
q−1
∑

l=0

e−2πi(p/q)l2+2πi(m/q)l

=







√
q
(

p
q

)

e2πiφ(p)m
2/q , if q ≡ 1 mod 4,

−i√q
(

p
q

)

e2πiφ(p)m
2/q , if q ≡ 3 mod 4,

(29)
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where φ(p) denotes the inverse of 4p in the finite ring Zq = {0, 1, . . . , q−1}. Bearing
in mind (15), and that the Jacobi symbol satisfies

(

p
q

)2
= 1, we get

∣

∣

∣

∣

∣

∣

∣

T( 2πmMq
−
)

T( 2πmMq
+
)

T( 2π(m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

= s2ρℑ
[

e2πiφ(p)(m+1)2/qe−2πiφ(p)m2/q
]

= s2ρ sin

(

2πφ(p)(2m+ 1)

q

)

, (30)

where s2ρ = 1 − c2ρ is obtained from (21). The other quantity we are interested in

is the scalar product of T( 2πmMq
−
) = (1,0, 0) and T( 2π(m+1)

Mq

+
):

T( 2πmMq
−
) ·T( 2π(m+1)

Mq

+
) = c2ρ − s2ρc∆m

= c2ρ − s2ρ cos(θm+1 − θm)

= c2ρ − s2ρℜ(eiθm+1e−iθm)

= c2ρ − s2ρℜ
[

G(−p,m+ 1, q)√
q

Ḡ(−p,m, q)√
q

]

= c2ρ − s2ρℜ
[

e2πiφ(p)(m+1)2/qe−2πiφ(p)m2/q
]

= c2ρ − s2ρ cos

(

2πφ(p)(2m+ 1)

q

)

. (31)

Finally, taking (30) and (31) respectively as the real and imaginary parts of a
complex number, we define

zq,m(p) ≡

∣

∣

∣

∣

∣

∣

∣

T( 2πmMq
−
)

T( 2πmMq
+
)

T( 2π(m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

+ iT( 2πmMq
−
) ·T( 2π(m+1)

Mq

+
)

= i c2ρ − i s2ρ exp

(

2πiφ(p)(2m+ 1)

q

)

. (32)

Summarizing, fixed q andm, [T( 2πmMq
−
),T( 2πmMq

+
),T( 2π(m+1)

Mq

+
)],T( 2πmMq

−
)·T( 2π(m+1)

Mq

+
),

and, hence, zq,m(p), depend exclusively on φ(p), i.e., on the inverse of 4p modulo
q, which, as we will see in Section 3, is essentially random.

2.2 Case with q ≡ 2 mod 4

The cases with q even are similar, so we will omit most details. When q is even
and q/2 is odd, ψ(s, tpq) in (17) adopts over the first period the form

ψ(s, tpq) = ρ

q/2−1
∑

m=0

eiθ2m+1δ(s− 4πm+2π
Mq ), s ∈ [0, 2πM ), (33)
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i.e., only the odd addends are to be considered. In this case, the vertices of
X, denoted by X2m+1, are located at s = 4πm+2π

Mq ; so we have to calculate

[T( 2π(2m−1)
Mq

−
),T( 2π(2m−1)

Mq

+
),T( 2π(2m+1)

Mq

+
)] and T( 2π(2m−1)

Mq

−
) ·T( 2π(2m+1)

Mq

+
).

The case t = tpq = t12 is trivial, with the first quantity being zero, and the second
one being cos( 4πM ); hence, we consider q > 2.

The calculations for the triple product are exactly the same as in (30), bearing
in mind that we have to consider the right subscripts, i.e., substitute cm and sm
by c2m−1 and s2m−1, respectively, and redefine ∆m = θ2m+1 − θ2m−1. Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

T( 2π(2m−1)
Mq

−
)

T( 2π(2m−1)
Mq

+
)

T( 2π(2m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

∣

= s2ρs∆m

= s2ρ sin(θ2m+1 − θ2m−1)

= s2ρℑ(eiθ2m+1e−iθ2m−1)

= s2ρℑ
[

G(−p,2m+ 1, q)√
2q

Ḡ(−p,2m− 1, q)√
2q

]

. (34)

The generalized quadratic Gauß sums are now given by

G(−p,2m+ 1, q) = 2G(−2p,2m+ 1, q/2)

=







√
2q
(

2p
q/2

)

e4πiφ1(p)(2m+1)2/q , if q ≡ 2 mod 8,

−i√2q
(

2p
q/2

)

e4πiφ1(p)(2m+1)2/q , if q ≡ 6 mod 8,
(35)

where φ1(p) is the inverse of 4(2p) = 8p in Zq/2. Bearing in mind that 4(2m+1)2−
4(2m− 1)2 = 32m, (34) becomes

∣

∣

∣

∣

∣

∣

∣

∣

T( 2π(2m−1)
Mq

−
)

T( 2π(2m−1)
Mq

+
)

T( 2π(2m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

∣

= s2ρ sin

(

32πφ1(p)m

q

)

, (36)

where s2ρ = 1 − c2ρ is obtained from (21). On the other hand, (8p)φ1(p) ≡ 1 mod
(q/2) implies that 8φ1(p) is the inverse of p in Zq/2, which we denote by φ(p).
Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

T( 2π(2m−1)
Mq

−
)

T( 2π(2m−1)
Mq

+
)

T( 2π(2m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

∣

= s2ρ sin

(

2πφ(p)m

q/2

)

, (37)

where we prefer to write q/2 in the denominator, because we are working in Zq/2.
Reasoning in the same way, the equivalent of (31) is

T( 2π(2m−1)
Mq

−
) ·T( 2π(2m+1)

Mq

+
) = c2ρ + (c2ρ − 1) cos

(

2πφ(p)m

q/2

)

, (38)
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and of (32) is

zq,m(p) ≡

∣

∣

∣

∣

∣

∣

∣

∣

T( 2π(2m−1)
Mq

−
)

T( 2π(2m−1)
Mq

+
)

T( 2π(2m+1)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

∣

+ iT( 2π(2m−1)
Mq

−
) ·T( 2π(2m+1)

Mq

+
)

= i c2ρ − i s2ρ exp

(

2πiφ(p)m

q/2

)

. (39)

Summarizing, all the quantities depend exclusively on φ(p), i.e., on the inverse of
p modulo q/2.

2.3 Case with q ≡ 0 mod 4

When q/2 is even, ψ(s, tpq) in (17) adopts over the first period the form

ψ(s, tpq) = ρ

q/2−1
∑

m=0

eiθ2mδ(s− 4πm
Mq ), s ∈ [0, 2πM ), (40)

i.e., only the even addends are to be considered. In this case, the vertices of X, de-

noted byX2m, are located at s = 2π(2m)
Mq ; so we have to calculate [T( 2π(2m)

Mq

−
),T( 2π(2m)

Mq

+
),T( 2π(2m+2)

Mq

+
)]

and T( 2π(2m)
Mq

−
) · T( 2π(2m+2)

Mq

+
). For that, we have to substitute in (30) cm and

sm by c2m and s2m, respectively, and redefine ∆m = θ2m+2 − θ2m. Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

T( 2π(2m)
Mq

−
)

T( 2π(2m)
Mq

+
)

T( 2π(2m+2)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

∣

= s2ρs∆m
= s2ρ sin(θ2m+2 − θ2m)

= s2ρℑ(eiθ2m+2e−iθ2m)

= s2ρℑ
[

G(−p,2m+ 2, q)√
2q

Ḡ(−p,2m,q)√
2q

]

. (41)

In this occasion, the generalized quadratic Gauß sums are slightly more involved.
Let us decompose q = 2rq′, where q′ is odd; then,

G(−p,2m, q) = G(−p,2m,2rq′) = G(−2rp, 2m,q′)G(−q′p, 2m,2r). (42)

On the one hand,

G(−2rp, 2m,q′) =







√

q′
(

2rp
q′

)

e2πiφ1(p)(2m)2/q′ , if q′ ≡ 1 mod 4,

−i
√

q′
(

2rp
q′

)

e2πiφ1(p)(2m)2/q′ , if q′ ≡ 3 mod 4,
(43)

where φ1(p) is the inverse of 4(2rp) = 2r+2p in Zq′ . On the other hand,

G(−q′p, 2m,2r) = eπiφ2(p)(2m)2/2r+1

(

2r

q′p

)

(1− iq
′p)

√
2r, (44)
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where φ2(p) is the inverse of q′p in Z2r . Putting all together,

G(−p,2m+ 2, q)√
2q

Ḡ(−p,2m,q)√
2q

= e2πiφ1(p)(2m+2)2/q′eπiφ2(p)(2m+2)2/2r+1

· e−2πiφ1(p)(2m)2/q′e−πiφ2(p)(2m)2/2r+1

= e2πi[2
r+2φ1(p)+q′φ2(p)](2m+1)/q. (45)

This last expression can be further simplified. Indeed,

2r+2pφ1(p) ≡ 1 mod q′ ⇒ 2r+2pφ1(p) + q′pφ2(p) ≡ 1 mod q′

q′pφ2(p) ≡ 1 mod 2r ⇒ 2r+2pφ1(p) + q′pφ2(p) ≡ 1 mod 2r;
(46)

then, applying the well-known Chinese remainder theorem,

2r+2pφ1(p) + q′pφ2(p) ≡ p(2r+2φ1(p) + q′φ2(p)) ≡ 1 mod q, (47)

if and only if 2r+2φ1(p)+ q′φ2(p) is the inverse of p modulo q, which we denote by
φ(p):

2r+2φ1(p) + q′φ2(p) ≡ φ(p) mod q. (48)

Inserting this last expression into (45), it follows from (41) that

∣

∣

∣

∣

∣

∣

∣

∣

T( 2π(2m)
Mq

−
)

T( 2π(2m)
Mq

+
)

T( 2π(2m+2)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

∣

= s2ρ sin

(

2πφ(p)(2m+ 1)

q

)

, (49)

where s2ρ = 1− c2ρ is obtained from (21). In the same way, the equivalent of (31) is

T( 2π(2m)
Mq

−
) ·T( 2π(2m+2)

Mq

+
) = c2ρ + (c2ρ − 1) cos

(

2πφ(p)(2m+ 1)

q

)

, (50)

and of (32) is

zq,m(p) ≡

∣

∣

∣

∣

∣

∣

∣

∣

T( 2π(2m)
Mq

−
)

T( 2π(2m)
Mq

+
)

T( 2π(2m+2)
Mq

+
)

∣

∣

∣

∣

∣

∣

∣

∣

+ iT( 2π(2m)
Mq

−
) ·T( 2π(2m+2)

Mq

+
)

= i c2ρ − i s2ρ exp

(

2πiφ(p)(2m+ 1)

q

)

. (51)

Summarizing, all the quantities depend exclusively on φ(p), i.e., on the inverse of
p modulo q.

We can combine the results of Sections 2.1, 2.2 and 2.3 into the following
theorem:
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Theorem 1 Let us consider the triple product of three consecutive tangent vectors

(given by (30), (37) and (49)), and the scalar product of a tangent vector and the

second next one (given by (31) and (38) and (50)). Then, those quantities depend

exclusively on φ(p):

φ(p) ≡











(4p)−1 mod q, if q ≡ 1 mod 2,

p−1 mod (q/2), if q ≡ 2 mod 4,

p−1 mod q, if q ≡ 0 mod 4.

(52)

Furthermore, taking the first quantity as the real part and the second quantity as the

imaginary part of a complex number zq,m(p) (defined respectively in (32), (39) and

(51)), zq,m(p) lies, for all p, on a circumference of center ic2ρ and radius s2ρ, where cρ
is given by (21):

zq,m(p) =







i c2ρ − i s2ρ exp
(

2πiφ(p)(2m+1)
q

)

, if q 6≡ 2 mod 4,

i c2ρ − i s2ρ exp
(

2πiφ(p)m
q/2

)

, if q ≡ 2 mod 4.
(53)

3 Randomness

In the previous section, we have shown in Theorem 1 how the triple product of
three consecutive tangent vectors, and the scalar product of a tangent vector and
the second next one, depend exclusively on φ(p) as defined in (52), i.e., we have
transformed the problem into one of finding inverses in finite rings. The existence
and uniqueness of φ(p) is guaranteed since gcd(p, q) = 1. Hence, for any given q,
both p and φ(p) can take ϕ(q) different values in the corresponding finite ring,
where ϕ(q) is Euler’s totient function, which gives the amount of positive integers
less than or equal to q that are coprime to q (in fact, when q ≡ 2 mod 4, we have
ϕ(q) = ϕ(2(q/2) = ϕ(2)ϕ(q/2) = ϕ(q/2)). On the other hand, zq,m(p) can take
ϕ(q/ gcd(q, 2m + 1)) different values, if q 6≡ 2 mod 4; and ϕ((q/2)/gcd(q/2,m))
different values, if q ≡ 2 mod 4. Therefore, we are interested in choosing m such
that zq,m(p) gives the largest possible amount of different numbers, i.e., such that
gcd(q,2m+ 1) = 1, if q 6≡ 2 mod 4; and gcd(q/2,m) = 1, if q ≡ 2 mod 4. Without
loss of generality, we can take m = 0, if q 6≡ 2 mod 4; and m = 1, if q ≡ 2 mod 4.
Then, (53) becomes

zq(p) =







i c2ρ − i s2ρ exp
(

2πiφ(p)
q

)

, if q 6≡ 2 mod 4,

i c2ρ − i s2ρ exp
(

2πiφ(p)
q/2

)

, if q ≡ 2 mod 4,
(54)

which yields exactly ϕ(q) different complex numbers lying on the same circum-
ference. In other words, there is a one-to-one correspondence between zq(p) and
φ(p). φ(p) can be efficiently computed, for instance, by the extended Euclidean
algorithm; another more explicit (but less efficient) way is via Euler’s theorem.
For example, in Zq,

pϕ(q) ≡ 1 mod q ⇔ pϕ(q)−1 ≡ p−1 mod q, ∀p ∈ Zq/ gcd(p, q) = 1. (55)



12 Francisco de la Hoz, Luis Vega

When q prime, this last expression is known as Fermat’s little theorem (of which
Euler’s theorem is in fact a generalization); in that case, ϕ(q) = q − 1, so

pq−1 ≡ 1 mod q ⇔ pq−2 ≡ p−1 mod q, ∀p ∈ Zq\{0}. (56)

In this paper, however, we are not interested so much in finding φ(p), but rather in
its randomness properties or, equivalently, in the randomness properties of (54).
There are diverse methods of generating pseudorandom numbers, the most popular
ones being the linear congruential generators (LCGs) (see for instance [22, Section
3.2.1]). Given a large q ∈ N and a, b, x0 ∈ Z, a linear congruential sequence (xn)n≥0

of nonnegative integers smaller than m is defined by

xn+1 ≡ axn + b mod q, n ≥ 0. (57)

Then, after a careful choice of q, a, b, x0, a sequence (un)n≥0 of linear congruential
pseudorandom numbers uniformly distributed in the interval [0,1) is obtained by
the normalization un = xn/q, for n ≥ 0.

The quality of LCGs heavily depends on the coarseness of the lattice structure

of s-dimensional vectors u
(s)
n = (un, . . . , un+s−1) generated from the periodic se-

quence (un)n≥0. It often happens [12] that the lattice can be covered by a small
amount of parallel hyperplanes: a sadly well-known example is the formerly pop-
ular RANDU generator

xn+1 ≡ 65539xn mod 231. (58)

Since RANDU satisfies xn+2 ≡ 6xn+1−9xn mod 231, it fails most three-dimensional
criteria for randomness. Indeed, taking (xn, xn+1, xn+2) as “random” points in the
three-dimensional space, these points lie in exactly 15 planes! Therefore, the results
obtained through RANDU are to be seen as suspicious.

In order to solve de deficiencies of LCGs, nonlinear random generators have
been introduced [7]. Their idea is that, given a large q prime number, the elements
are generated recursively by means of an integer-valued nonlinear function f :

xn+1 ≡ f(xn) mod q, n ≥ 0; (59)

then, we apply again the normalization un = xn/q as in the LCGs, to obtain
pseudorandom numbers uniformly distributed over [0,1). An important particular
case are the inversive congruential generators (ICGs), introduced by [9]:

xn+1 ≡
{

ax−1
n + b mod q, xn ≥ 1,

b, xn = 0,
n ≥ 0, (60)

with q prime, a 6≡ 0 mod q, which are characterized by the absence of any lattice
structure, although their computational generation is not so efficient as with the
LCGs. Remark that, in the literature, it is customary to write

xn+1 ≡ axn + b mod q, n ≥ 0, (61)

where z ≡ zp−2 mod q. From (56), z is simply the multiplicative inverse of z, if
z 6≡ 0 mod q; while z is zero, if z ≡ 0 mod q.
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Due to Eichenauer-Herrmann [11] are as well the related explicit inversive
congruential generators (EICGs), which are the relevant ones in this paper:

xn ≡ an+ b mod q, n ≥ 0, (62)

with q prime, a 6≡ 0 mod q. It is immediate to see that xn has a period equal to
q, i.e., {x0, . . . , xq−1} = Zq; hence, any EICG with the normalization un = xn/q

passes the uniformity test for equidistribution in [0,1). However, statistical in-
dependence properties of pseudorandom numbers are as important for stochas-
tic simulations as uniformity properties. To study their statistical independence,
Eichenauer-Herrmann used in [11] the so-called serial test, which analyzes the dis-
crepancy of tuples of pseudorandom numbers, and which we explain briefly here.
The idea is, for a given dimension k ≥ 2 and for N arbitrary points (ξ0, . . . , ξN−1) ∈
[0,1)k, to consider their discrepancy, which is defined as

DN (ξ0, . . . , ξN−1) = sup
J

|FN (J)− V (J)|, (63)

where the supremum is extended over all the subintervals J of [0,1)k; FN (J) is N−1

times the number of terms among ξ0, . . . , ξN−1 falling into J; and V (J) denotes
the volume of J.

In [11], given a sequence of numbers (un)n≥0 obtained with an EICG, the
k-dimensional points

un = (un+n1
, . . . , un+nk

) ∈ [0,1)k, 0 ≤ n < p, (64)

were considered, with n1, . . . , nk arbitrary integers satisfying 0 = n1 < . . . < nk < p,
and the abbreviation

D
(k)
p = Dp(u0, . . . ,up−1) (65)

being used for the discrepancy of the points. Then, an EICG passes the k-dimensional

serial test if D(k)
p is reasonably small. In this regard, the following two theorems

were formulated in [11]:

Theorem 2 Let 2 ≤ k < p. Then, the discrepancy D
(k)
p for any EICG satisfies

D
(k)
p < 2p−1/2

(

(k − 1)

(

2

π
log p+

7

5

)k

+ 1

)

+ kp−1.

Theorem 3 Let 0 < t ≤ 1. Then there exist more than Ap(t)(p− 1) values of a ∈ Z
∗
p

such that the discrepancy D
(k)
p for any corresponding EICG satisfies

D
(k)
p ≥ t

2(π + 2)
p−1/2

for all dimensions k ≥ 2, where

Ap(t) =
(1− t2)p

(4− t2)p+ 12p1/2 + 9
.
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Theorems 2 and 3 show that, in the EICG method, the discrepancy D(k)
p has

on the average an order of magnitude between p−1/2 and p−1/2(log p)k. However,
it is precisely in this range of magnitudes where the discrepancy of p indepen-
dent and uniformly distributed points taken from [0, 1)k is found, which is roughly
p−1/2(log log p)1/2. In this sense, we can say that EICGs model true random num-
bers very closely, or, in Eichenauer-Herrmann’s words, EICGs have even better

structural and statistical independence properties than the standard type, i.e., than
(60). Furthermore, they also behave very well in parallel and vector computations,
as shown by Niederreiter in [23]. Indeed, if we define a family of N EICGs:

xin ≡ ain+ bi mod q, n ≥ 0, i = 1, . . . , N, (66)

then, the N-tuples of the form (x1n, . . . x
N
n ) have good statistical properties if all

the N numbers biai are distinct. Summarizing, this approach is, in Niederreiter’s
words, eminently suitable for the generation of parallel streams of pseudorandom num-

bers with desirable properties.
In principle, it could be possible to work in Zq, with q an arbitrary natural

number, although the most common choices are q prime, as in the definitions (60)
and (62), or q a power of two. For instance, in [8], Eichenauer and Ickstadt study
the equally good pseudorandom properties of EICGs defined by the inverses of the
odd integers in Zq, with q = 2ω, ω ≥ 5:

xn ≡ (an+ b)−1 mod 2ω, n ≥ 0, (67)

with a ≡ 2 mod 4, b ≡ 1 mod 2; it is immediate to see that xn has a period equal
to q/2 = 2ω−1, i.e., xn takes all the possible odd values in Zq, or, in other words,
{x0, . . . , xq/2−1} = Z

∗
q .

Coming back to (54), all the previous arguments should be more than enough
to justify the extremely good pseudorandom character of (54) and, hence, of X

and T. In particular, when q is an odd prime,

zq(p) = i c2ρ − i s2ρ exp(2πiup), (68)

where up = xp/q, and xp is given by (62), with a ≡ 4 mod q, b ≡ 0 mod q; i.e.,
xp ≡ 4p mod q. Therefore, by direct application of Theorems 2 and 3, up is a
sequence of pseudorandom numbers uniformly distributed in the interval (0,1),
which, from our Theorem 1, implies that zq(p) is a sequence of pseudorandom
numbers uniformly distributed in the circumference of center i c2ρ and radius s2ρ.
Observe that we have to exclude the case p = 0 and, hence, the numbers lie on
(0,1) instead of [0,1). Nevertheless, since u0 = 0, we are just omitting the first
term of the sequence (and the point z0 = i cos(2ρ) in the circumference), which
makes this minor issue irrelevant for all purposes.

The same reasoning is valid when q is twice a prime number. Then, (68) also
holds, with up = xp/(q/2) and xp ≡ p mod (q/2), i.e., we are taking a ≡ 1 mod (q/2)
and b ≡ 0 mod (q/2) in (62). Again, we exclude u0 = 0, and the whole previous
paragraph is valid in its integrity.

Let us mention also the case with q = 2ω. Then, (68) also holds, with up = xp/q,
and xp ≡ 2p− 1 mod q, i.e, we are taking a ≡ 1 mod q and b ≡ −1 mod q in
(67). Again, we have obtained a sequence of pseudorandom numbers uniformly
distributed in the circumference of center i c2ρ and radius s2ρ, but, unlike the two
previous cases, it is not necessary to exclude any number.
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Analyzing all the possible values of q lies certainly beyond the scope of this
paper. Moreover, (68) is not the only possible probability generator which can
be obtained from the evolution of X in T. For instance, given N different primes
q1, . . . , qN ≥ 5, it is possible to combine (68) in a way that closely resembles the
so-called compound approach explained in [10]. Let us particularize (54) as

c2ρj
+ izqj (p)

s2ρj

= exp

(

2πiφj(p)

qj

)

, (69)

where ρj is the angle corresponding to qj ; φj(p) ≡ (4p)−1 mod qj ; and p 6≡ 0 mod qj .
Then,

N
∏

j=1

c2ρj
+ izqj (pj)

s2ρj

= exp



2πi
N
∑

j=1

φj(p)

qj



 . (70)

Denoting now

up ≡
N
∑

j=1

φj(p)

qj
mod 1, (71)

(70) becomes

N
∏

j=1

c2ρj
+ izqj (pj)

s2ρj

= exp(2πiup), p 6≡ 0 mod qj , ∀j. (72)

The left-hand side is directly obtained from T, and its good random properties
follows directly from [10]. The only minor difference is that, in our case, p can take
(q1 − 1) · . . . · (qN − 1) different values modulo q1 · . . . · qN , while its equivalent in
[10] can take all the q1 · . . . ·qN values. However, in practice, taking q1, . . . , qN large
enough, the amount of values that we are excluding is, for all purposes, irrelevant.

4 Conclusions

In this paper, we have considered the evolution of (2)-(3), taking a regular planar
polygon of M sides as the initial datum. Bearing in mind the recent results in [19],
where we gave very strong evidence that X(s, t) is a skew polygonal at times which
are rational multiples of 2π/M2; we have studied (2)-(3) from a completely novel
point of view: that of an evolution equation which yields a very good pseudorandom
generator in a completely natural way.

Due to the algebraic complexity of the calculations involved, we have limited
ourselves mainly to the study at rational times of two quantities, which are illustra-
tive enough of the essential random character of (2)-(3): the triple product of three
consecutive tangent vectors; and the scalar product of a tangent vector and the sec-
ond next one. These quantities, when taken respectively as the real and imaginary
parts of a complex number, yield an excellent generator of pseudorandom num-
bers uniformly located on a circumference. Furthermore, it is straightforward to
combine different rational times to develop additional pseudorandom generators.

Although the main aim of this paper is to show the randomness in the evolu-
tion of (2)-(3), for which it is largely enough to work with T, it is not irrelevant
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to mention here that, as observed in [19], X(0, t) is very intimately related to
Riemann’s nondifferentiable function,

f(t) =
∞
∑

k=1

sin(πk2t)

πk2
, (73)

which, as proved by Jaffard [20], is a multifractal and, in fact, fits under the so
called Frisch-Parisi conjecture proposed in [14] (see also [13] for more details).
Therefore, although giving a complete algebraic characterization of X(0, t) reveals
as a complex task which clearly lies beyond the scope of this paper and which
we postpone for the future, we can nonetheless expect an even richer randomness
structure in X.

The ideas presented here can be most probably extended to other types of
evolution equations, in order to obtain new probability generators. Obviously, this
approach is not intended for competing with commercially developed algorithms;
even though, during the simulation of (2)-(3), large sequences of pseudorandom
numbers with good statistical properties can be generated with virtually no addi-
tional cost, i.e., for free.

As we have said in the introduction, a recurring question is up to what extent
VFE is valid as a simplified model. In this line, the random character of (2)-(3)
proved in this paper is at the very least not in contradiction with the physical
motion of a real vortex filament. Furthermore, we venture to suggest that finding
the existence of well-behaved pseudorandom sequences of numbers inside the evo-
lution of a proposed physical model might be a first test in validating that model
with respect to the phenomenon that it is trying to describe. Indeed, real natural
phenomena are in general characterized by their chaotic, truly random behaviour.
Therefore, a model with an easily predictable structure might be suspected not to
match reality accurately.
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