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The vortex filament equation as a pseudorandom generator
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Abstract In this paper, we consider the evolution of the so-called vortex filament
equation (VFE),
Xt = Xs A Xss,

taking a planar regular polygon of M sides as initial datum. We study VFE from
a completely novel point of view: that of an evolution equation which yields a
very good generator of pseudorandom numbers in a completely natural way. This
essential randomness of VFE is in agreement with the randomness of the physical
phenomena upon which it is based.
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1 Introduction
The binormal flow,
X¢ = kb, (1)

where ¢ is the time, x the curvature, and b the binormal component of the Frenet-
Serret formulae, appeared for the first time in 1906 [24], and was rederived in [I], as
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an approximation of the dynamics of a vortex filament under the Euler equations.
It is also known as the vortex filament equation (VFE) or the localized induction
equation (LIA). An equivalent expression of () is

X; = X A Xss, (2)

where A is the usual cross-product, and s is the arc-length parameter. The tangent
vector T = X remains with constant length and, hence, we can assume that
IT||2 = 1, for all time. Differentiating (2] with respect to s, we get

Ty =T A Tss, (3)

known as the Schrodinger map on the sphere.

The question of making sense of initial data with corners in ([2)-(3) has re-
cently received some attention. For instance, the existence of solutions starting
with a single corner, which are precisely the self-similar solutions of ([2))-(3), has
been proven in [I5] (see also [17] for the corresponding problem in the hyperbolic
space); and numerical simulations of these solutions have been carried out in [6]
18]). Furthermore, the fact that this kind of solutions yields a well-posed prob-
lem has been shown in a long-term collaboration between Banica and Vega [2,[3]
415]; in particular, the last paper of the series, [5], closes the question, because it
proves that the problem with single-corner initial data is well-posed in an adequate
function space.

Even if the solutions of ([2)-(3) for single-corner initial data are well understood,
very little has been done for more general initial data with several corners [21].
However, in a recently submitted paper [19], we have studied for the first time
the evolution of ([2)-(3)), taking a regular planar polygon of M sides as the initial
datum. The main ideas of [I9] are as follows. In order to avoid working with the
curvature x and the torsion 7, we consider an alternative version of the Frenet-
Serret formulae,

T 0 af T
er| =[-a00]| (e ]; (4)
e —-500 (D)

where
S S
a(s,t) = k(s,t) cos (/ T(s’,t)ds’) , B(s,t) = k(s,t) sin (/ T(s’,t)ds’) . ()
Then, the Hasimoto transformation [16] adopts the form

Y =a+ifB, (6)

and transforms (2)-(B]) into the nonlinear Schrédinger (NLS) equation:

o= ttnet (0 + A ) v ™)

where A(t) is a certain time-dependent real constant. The main idea is to work
with (@), and, at a given ¢, to recover X(s,t) and T(s,t) from v (s,t) by integrating
), up to a rigid movement that can be determined by the symmetries of the
problem.
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Observe that, if we define N = eq + ez (see [16]), then it is not difficult to
check that [B) can be rewritten as

Te = 5(6sN — UsN). (8)
Therefore, if the system {¢, T,N} solves (), then, defining

D(s,t) = e Wy(s,b), 9)

{1/7, T, ei‘*’(t)N} is also a solution; i.e., the tangent vector T does not change, while
the vectors e; and es rotate in the normal plane w(t) degrees around T. Since in
this paper (and in [19]) we are interested only in T, we conclude that ¥ (s,¢) can
be chosen without loss of generality up to a complex value (that depends on time)
with modulus one; in particular, we can choose ¥ (s, t) to be real, ¥(s,t) = |¢(s,t)].
Given a regular planar polygon of M sides as X(s,0), there is no torsion; hence,
from (), 1 (s,0) is precisely the curvature of the polygon, which is a 2w /M-periodic
sum of Dirac deltas:
2 o0
¥(s,0) = k(s) = Mﬁ (s — k). (10)

k=—00

Then, bearing in mind the Galilean invariance of (7)) and assuming uniqueness,
we are able to obtain 1(s,t) at any rational multiple of 27/M?. During all this
paper, we assume that p and ¢ are two coprime natural numbers. Defining tpq =
(27/M?)(p/q), it can be shown that

o0

U - !
(s, tpq) = ﬁw(mtpq) ST 3 Glpomag)d(s — B - 2Em), (11)

k=—o0c0 m=0

where (0, tpq) is the mean of (s, tpq) over a period,

R M 2w /M
0.t = 5 [ vl tp)ds, (12)
™ Jo
and -
Gla,be) = Yo it ihe (13)
=0

denotes a generalized quadratic Gaufl sum. Remark that, as explained in the lines
following (@), we can assume without loss of generality that 1(0,pq) is real.
An important property of the generalized quadratic Gaufl sums is that

Ve, if ¢g=1mod 2,
|G(—p,m,q)| =< v2q, if q=0mod2 A ¢/2 =m mod 2, (14)
0, if g=0mod 2 A ¢/2 # m mod 2;
therefore, we can write
\/ﬁeie’", if g =1 mod 2,

G(—p,m,q) = { V2qe", if g=0mod 2 A ¢/2=m mod 2, (15)
0, if g=0mod 2 A ¢/2 # m mod 2,
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for certain 6, that also depend on ¢. Hence, defining

N?%lﬁ(o,tpq), if g =1 mod 2,

27 7 : — —
p= M\/gz/)(o,tpq), ifg=0mod 2 A ¢/2 =m mod 2, (16)

, if g=0mod 2 A ¢/2 # m mod 2,

o

we represent (1) as

o0

qg—1
P(s,tpg) = > pe'mo(s — 2 — ) (17)

k=—00 m=0

The coefficients multiplying the Dirac deltas are in general not real, except for t = 0
and t12 = 7T/M2. Therefore, 1(s,tpq) does not correspond to a planar polygon,
but to a skew polygon with Mq (for ¢ odd) or Mq/2 (for g even) equal-lengthed
sides.

In order to recover X and T from ), we observe that every addend pew’"é(s —
2}\’2—’;) in [I7), with p # 0, induces a rotation on T, e; and ez. More precisely,
defining ¢, = cos(p), sp = sin(p), cp,, = cos(Om), sg,, = sin(Om),

Cp 5pCo,, 8050
Mm = | =spcs,, coc4, +55, (cp—1)co,. 50, (18)
2
—spse,, (cp —1)co,.50,, cpss,, +C5,,

is the matrix such that

T 2rm + T 2mtm —
(Frg ) (Frg )
er(Ffg ) | =Mm- | ex(572 ) |- (19)
e (27rm ) (27rm—)
2 Mgq €2 Mq

where all the vectors are row vectors. Notice that, when p = 0, My, is just the
identity matrix I. From (IJ)), it follows that the non-zero value of p is the angle be-
tween any two adjacent sides. Imposing that ([II]) corresponds to a closed polygon,
i.e., that

1\/[]\/[(1_1-1\/[]\4l1_2~...-1\/[1~1V[0EI7 (20)

there is very strong evidence that the non-zero value of p is given by
2cos?/9(f) — 1, if ¢=1mod 2
cos(p) = 20 ") =1 g =1mod2, (21)
2 cos /q(%) —1, if g=0mod?2;

and the value of ¥(0,tpq) follows from (I6).

The previous ideas suggest very strongly that 1 (s,t) is also periodic in time,
with period 27 /M?. Furthermore, bearing in mind the symmetries of the problem,
it follows that also T is periodic in time, while X is periodic in time up to a
movement of its center of mass with constant upward velocity.

Although the study of VFE is interesting per se, a recurring question is up
to what extent it is valid as a simplified model for describing real vortex filament
motion. In this paper, we would like to make a step forward in that direction,
by proving that the evolution of X and T for a regular polygonal initial datum
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is essentially random, or, in other words, that it gives as a by-product a simple
and powerful generator of pseudorandom numbers. More precisely, fixed ¢, we will
focus on two quantities: the triple product of three consecutive tangent vectors,
and the scalar product of a tangent vector and the second next one. Furthermore,
taking these two quantities respectively as the real and imaginary parts of a com-
plex number, we will have a generator of pseudorandom numbers located on a
circumference of center z’cg and radius sg.

The structure of this paper is as follows. In Section 2] we study the aforemen-
tioned quantities. We prove that they depend exclusively on ¢(p), which is defined
as the inverse of a multiple of p in a finite ring:

(4p)~ Ymodgq, ifg=1mod?2,
#(p) =< p~ P mod (¢/2), if ¢=2mod4, (22)
p~ ! mod g, if ¢ = 0 mod 4.

Therefore, it is convenient to consider three cases of growing difficulty, according
to the oddness of ¢ and ¢/2: Section 2] deals with ¢ odd; Section deals with
q even, but ¢/2 odd; and Section 23] deals with both ¢ and ¢/2 even.

In Section [} we analyze the pseudorandom properties of ¢(p). More precisely,
we put it in the frame of the so-called explicit inversive congruential generators.
Finally, in Sectiond] we draw the main conclusions and point out future directions
to extend this research.

2 Two interesting quantities

As we have mention in the introduction, we will divide the problem in three cases,
according to the oddness of ¢ and ¢/2.

2.1 Case with ¢ = 1 mod 2

The simplest case is when ¢ is odd. Then, ¥(s,tpq) in ([I7) adopts over the first
period the form

q—1
'B’WL
U(s,tpg) =p D €Omo(s — Fm), s €[0,37), (23)
m=0
i.e., the vertices of X, denoted by X,,, are located at s = 2}\72—’", and the sides

are the segments that join X,,4+1 and X;,. As stated in the introduction, we are

interested in calculating the triple product of T( 2&’; ), T( 2’”; Jr) = T(M;l) )

and T(%{;‘l) ); and the scalar product of T(372") and T(M ). Let us
calculate the first quantity:

)

mm 7rm+ m(m + mm 7'rm+ T +
T3 ), T3 ), TR = (TR ) AT ) - TR
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T %’:;)

=| T(ZE )
2 1

T (2T

(24)

It is important to bear in mind that both the triple product of three vectors and
the scalar product of two vectors are rotation-invariant, and, thus, we do not have
to determine the global rotation of the whole skew polygon, which is very involved.

Instead, we can simply assume that T(QA’}—’;_) = (1,0,0), el(%\Z—’;_ =(0,1,0), and
62(21\72_7;1* =(0,0,1), i.e., they form the identity matrix. Then, from (I8)-(I9),
T(Qﬂ'(m+1)_) T(Qﬂ—_m-‘r)
— Mg Mq
er (Bt ) | = | er (B T) | =M, (25)
- 2mm
e (g )
and
2 n+ 2 1)~
TG ) TG )
el () | =M | e () | (26)
ea( ) e2(*ipr )

+
More precisely, T(Q;JTZL_‘_) is the first row of My, while T(%{j‘l) ) is the first
row of My,41 - M. Defining Am = 01 — Om, ca,, = cos(Am), sa,, = sin(Am),
a straight calculation shows that

+ cpspce, (1+ca. ) cpspse, (1+ca.)
T(2mt) ™y _ [ 2 _ 2 P3PCOm, m PP Om m . 2
( Mq ) Cp — SpCA,, —5p59, SA,, +8pC9, SA,, ( 7)

Therefore, [24]) becomes

T(Q]@m*) 1 0 0
T(Qﬂr?z +) _ Cp S5pCo,, $pS0,,
2#(157[111)"' 2 —s2c, cpspce,, (L+ca,,) cpspse, (1+ca,,)
T(=5g— ) poopmam —5p50,,5Am 18pCo,,5A,,

= s?)sAm = 5,2J sin(@m+1 — Om)

= S§S(€i0m+1ef’i9m)

G(7p7 m + 17 q) é(7p7 m, q)
Vi Vi

where we have used (IZ) in the last line. On the other hand, the generalized

quadratic Gaufl sums can be explicitly calculated (see for instance the Appendix
of [19]):

: (28)

_ 2
f8pr|:

q—1
=0
NG (g) 627TZ'<15(IJ)7”2/‘17 if ¢ =1 mod 4,

= ) 2 29
—i/q (%) 2™ /4 if ¢ = 3 mod 4, (29)
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where ¢(p) denotes the inverse of 4p in the finite ring Z4 = {0,1,...,g—1}. Bearing
2
in mind (1), and that the Jacobi symbol satisfies (%) =1, we get

T(27rm
T(27rm+) =529 {627”'45(1))(m+1)2/q6—2wi¢(p)m2/q}
T(%(J\E_l)+)
= 8,2; sin (—2ﬂ¢(p) (q2m + 1)) ) (30)

where 5,2J =1- c%, is obtained from (2I)). The other quantity we are interested in

is the scalar product of T(%’J{; ) =(1,0,0) and T(QW(]C?;-I)JF).

- +

T(Zm ) TG = &) — sPea,,
= c,z) — 5,2J cos(Om+1 — Om)
= c,z) — 81233%(61'0%1671'9”1)

2 8;2;3% |:G(7p7m+17q) G(7p7m7Q):|

v NG Vi
=c2— 2R [62m'd>(p)(M+1)2/qe*2ﬂi¢(p)m2/q}
— 22— 2 cos <M) 4 (31)

Finally, taking (B0) and (BI) respectively as the real and imaginary parts of a
complex number, we define

T35 )
q
+ +
qum(p)z T(QIC}ZL )+ +ZT(27rm ) T(QW(IU[L:l) )
2 1
T )

Loy (2R 1)) (32)

=1ic, —18,exp g

+ - +
Summarizing, fixed ¢ and m, [T( QI@T; ), T( QI’VZ?+) T(%jl) )], T(%\Z—Zl )-T(%[;rl) ),
and, hence, z¢,m(p), depend exclusively on ¢(p), i.e., on the inverse of 4p modulo

q, which, as we will see in Section [3] is essentially random.

2.2 Case with ¢ = 2 mod 4

The cases with g even are similar, so we will omit most details. When ¢ is even
and q/2 is odd, ¥ (s, tpq) in (7)) adopts over the first period the form

q/2—-1
Wisitpg) = p p_ €Pms(s — AmEEE) e [0,57), (33)

m=0
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i.e., only the odd addends are to be considered. In this case, the vertices of

X, denoted by Xom,+1, are located at s = 4”7]\}#; so we have to calculate

[T(2#(?\27}1—1)7)7,11(271'(?\27;—1)4_)7 T(QF(?V’IIT;+1)+)] and T(Qﬂ'(?\;[r;—l) *) _T(Qw(?\;[r;+1)+)'
The case ¢t = tpq = t12 is trivial, with the first quantity being zero, and the second
one being cos(4%); hence, we consider g > 2.

The calculations for the triple product are exactly the same as in ([B0), bearing
in mind that we have to consider the right subscripts, i.e., substitute ¢, and sm,

by cam—1 and sam,—1, respectively, and redefine Ay, = 0241 — 021—1. Therefore,

T(ZW(?\Z*I)_)
+
T(ZEn-l 1)+) =554,
27 (2 1
T(% )

= 8,23 sin(f02m+1 — O2m—1)

_ 20 i02m41 ,—102m—1
=5,3(e e )

2~ G(7p72m+17Q) é(7p72m717Q)
=5, 34
o[ ST er (34
The generalized quadratic Gaufl sums are now given by
G(—p,2m+1,q) =2G(—2p,2m+ 1,q/2)
V2q (%) eAmidn(p)(2m+1)*/q if ¢ =2 mod 8,
= ! (35)

—iv/2q (;7’)2) At () (2m+1)*/a if ¢ = 6 mod 8,

where ¢1(p) is the inverse of 4(2p) = 8p in Z/,. Bearing in mind that 4(2m+1)* —
4(2m — 1)? = 32m, (34) becomes

T(27'r(2m 1)7)

Mgq
T(QW(?V}T; 1)+) = s?, sin <7327T¢;(p)m> , (36)
TG

where s> = 1 — ¢} is obtained from (ZI). On the other hand, (8p)¢1(p) = 1 mod
(¢/2) implies that 8¢1(p) is the inverse of p in Z, /5, which we denote by ¢(p).
Therefore,

T( 27r(2m 1)~ )

T(MU spsm( mg)m), (37)

T( 27r(2m+1) +)

where we prefer to write ¢/2 in the denominator, because we are working in Z /,.
Reasoning in the same way, the equivalent of (31]) is

T(zw(zm H~ )- T(QW(2m+1)+) = c?, + (0,2) —1)cos (%) ) (38)
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and of (B2) is
T(27r(2m 1)~ )

zg,m(p) = T(w+) (21T, T(w+)
T(M"‘)

:ic,%fis,%exp <%> . (39)

Summarizing, all the quantities depend exclusively on ¢(p), i.e., on the inverse of
p modulo ¢/2.

2.3 Case with ¢ = 0 mod 4

When ¢/2 is even, ¢ (s,tpq) in (7)) adopts over the first period the form

q/2—1
9 m
¥(s,tpg) = p Z (s — ), s €[0,57), (40)

i.e., only the even addends are to be considered. In this case, the vertices of X, de-

- + +
noted by Xa,, are located at s = QFI(V[Q’") so we have to calculate [T( 27716[2?) ), T( QFI(VIQ;H) ) T(QW(?\Z;FQ) )]

+
and T(Qw(zm) ) (Qﬂ(%ﬁ;'g) ). For that, we have to substitute in (80) ¢, and
Sm by cam and sam, respectively, and redefine Ay, = 02y42 — O2,. Therefore,

T(27r(2m) )
T(%Qq’,n)+) = S/QJSAm = 8f27 Sin(92m+2 - 927”)
+
r(=ma)
_ Sz(\( 7;62771.-%—2671-02771)
G(—p,2m +2,q) G(—p,2m, q)
_ 2~ ) ) ) )
=5, . 41
P /2q /2q ( )

In this occasion, the generalized quadratic Gaul sums are slightly more involved.
Let us decompose g = 2"¢', where ¢’ is odd; then,

G(=p,2m,q) = G(—p,2m,2"¢") = G(=2"p, 2m,¢")G(—¢'p,2m,2"). (42)
On the one hand,

\/q_ (2_) 2mig1(p)(2m)? /q if q’ = 1mod 4,

_9Tp 9 N —
G=2'p 2m.q) —i/q' (2 p) e2midn(p)(2m)? /q , if ¢ =3 mod 4,

(43)

where ¢1(p) is the inverse of 4(2"p) = 2"*?p in Z,/. On the other hand,

G(—q'p,2m,27) = ™92} (@m)?/2"" <q27;) (1-i1P)V2r, (44)
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where ¢2(p) is the inverse of ¢'p in Zor. Putting all together,

G(=p,2m +2,9) G(=p,2m,0) _ 2migy (p)(2m+2)*/d micn(p) (2m+2)* /27

V24 Vo R

o 2mit () (2m)*/q’ i (p)(2m)? /2"

— 2mil2" 41 (p)+d' $2(p)] (2m+1) /q (45)

This last expression can be further simplified. Indeed,

2"2pp1(p) =1 mod ¢ = 2" 2pp1(p) + ¢d'pd2(p) = 1 mod ¢

/ _ T r4+2 / _ 7. (46)
qpd2(p) =1 mod 2" = 2" pp1(p) + ¢'pd2(p) = 1 mod 2;
then, applying the well-known Chinese remainder theorem,
2"2p ¢1(p) + d'p $2(p) = p(2" 261 (p) + ¢'$2(p)) = 1 mod g, (47)

if and only if 2" 2¢1 (p) + ¢ ¢2(p) is the inverse of p modulo ¢, which we denote by
o (p):

2"2¢1(p) + ¢’ d2(p) = ¢(p) mod q. (48)

Inserting this last expression into ([@5), it follows from (AI]) that

T(Zﬂ']&?m)_)

q

a(2m)+ . 2 2m+1

T(2Zm ™) | = s2sin <—¢(p)(q ))7 (49)
s m +

T(% )

where s = 1 — ¢}, is obtained from (ZI]). In the same way, the equivalent of (ZI)) is

T(QWI\(/IQ?) ) T(QW(m+2)+) = 0;2; + (0;2; — 1) cos (—27r¢(p)(q2m+ 1)) ) (50)
and of (B2) is
27 (2m) —
TR ) ) N
zqm(p) = | T(ZEEMT) | 4iT(E ) TG
2r(2m42)t
T(% )
=ic), —is,exp (—2W2¢(p)22m+ 1)) . (51)

Summarizing, all the quantities depend exclusively on ¢(p), i.e., on the inverse of
p modulo gq.

We can combine the results of Sections 2] and 23] into the following
theorem:
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Theorem 1 Let us consider the triple product of three consecutive tangent vectors
(given by BQ), BT) and [@9)), and the scalar product of a tangent vector and the
second next one (given by (BI) and BY) and BW)). Then, those quantities depend
exclusively on ¢(p):

(4p)"*mod ¢, if¢=1mod 2,
¢(p) =< p~ ' mod (¢/2), if ¢ =2mod 4, (52)
p~ ! mod ¢, if ¢ = 0 mod 4.

Furthermore, taking the first quantity as the real part and the second quantity as the
imaginary part of a complex number zqm(p) (defined respectively in (B2), BI) and
&), zq,m(p) lies, for all p, on a circumference of center ic,% and radius 5,2), where cp

is given by 21):

®) ich —is5exp w), if ¢ # 2 mod 4,
zgm(p) = .
o ich —is5exp %), if ¢ =2 mod 4.

(53)

3 Randomness

In the previous section, we have shown in Theorem [0 how the triple product of
three consecutive tangent vectors, and the scalar product of a tangent vector and
the second next one, depend exclusively on ¢(p) as defined in (B2)), i.e., we have
transformed the problem into one of finding inverses in finite rings. The existence
and uniqueness of ¢(p) is guaranteed since ged(p,q) = 1. Hence, for any given g,
both p and ¢(p) can take ¢(q) different values in the corresponding finite ring,
where (g) is Euler’s totient function, which gives the amount of positive integers
less than or equal to ¢ that are coprime to ¢ (in fact, when ¢ = 2 mod 4, we have
0(q) = 0(2(q/2) = v(2)¢(q/2) = ¢(q/2)). On the other hand, z4,m(p) can take
©(q/ged(g,2m + 1)) different values, if ¢ Z 2 mod 4; and ¢((q/2)/gcd(q/2,m))
different values, if ¢ = 2 mod 4. Therefore, we are interested in choosing m such
that z¢,m(p) gives the largest possible amount of different numbers, i.e., such that
ged(g,2m + 1) = 1, if ¢ # 2 mod 4; and ged(q/2,m) = 1, if ¢ = 2 mod 4. Without
loss of generality, we can take m = 0, if ¢ # 2 mod 4; and m = 1, if ¢ = 2 mod 4.
Then, (B3)) becomes

_ icf,—isf,exp %ﬂp) , if ¢ # 2 mod 4, 54
O S NI (54)
icp —ispexp (= ), if ¢ =2 mod 4,

which yields exactly (q) different complex numbers lying on the same circum-
ference. In other words, there is a one-to-one correspondence between z4(p) and
#(p). ¢(p) can be efficiently computed, for instance, by the extended Euclidean
algorithm; another more explicit (but less efficient) way is via Euler’s theorem.
For example, in Zg,

-1

P =1modge p? P =p T modg, Vpc Zq/ged(p,q) = 1. (55)
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When ¢ prime, this last expression is known as Fermat’s little theorem (of which
Euler’s theorem is in fact a generalization); in that case, ¢(q) = ¢ — 1, so

p ' =1modqep

72 = p~mod q, Vpe Zg\{0}. (56)
In this paper, however, we are not interested so much in finding ¢(p), but rather in
its randomness properties or, equivalently, in the randomness properties of (54).
There are diverse methods of generating pseudorandom numbers, the most popular
ones being the linear congruential generators (LCGs) (see for instance [22, Section
3.2.1]). Given a large ¢ € N and a, b, zo € Z, a linear congruential sequence (zn)n>0
of nonnegative integers smaller than m is defined by

Tnt1 = axn +bmodgq, n>0. (57)

Then, after a careful choice of ¢, a, b, zo, a sequence (un)n>¢ of linear congruential
pseudorandom numbers uniformly distributed in the interval [0, 1) is obtained by
the normalization up = xn/q, for n > 0.

The quality of LCGs heavily depends on the coarseness of the lattice structure
of s-dimensional vectors u,(f) = (un,...,unts—1) generated from the periodic se-
quence (un)p>o- It often happens [12] that the lattice can be covered by a small

amount of parallel hyperplanes: a sadly well-known example is the formerly pop-
ular RANDU generator

Tnt1 = 65539z, mod 2! (58)

Since RANDU satisfies zy,+2 = 6xn+1—92, mod 231 it fails most three-dimensional
criteria for randomness. Indeed, taking (zn, Tn+1,Tn+2) as “random” points in the
three-dimensional space, these points lie in exactly 15 planes! Therefore, the results
obtained through RANDU are to be seen as suspicious.

In order to solve de deficiencies of LCGs, nonlinear random generators have
been introduced [7]. Their idea is that, given a large ¢ prime number, the elements
are generated recursively by means of an integer-valued nonlinear function f:

Tnt1 = f(zn) mod g, n > 0; (59)

then, we apply again the normalization un = zn/q as in the LCGs, to obtain
pseudorandom numbers uniformly distributed over [0,1). An important particular
case are the inversive congruential generators (ICGs), introduced by [9]:
-1
b mod >1
gnpr= 2 T Gotn=5 s, (60)
b, zn =0,

with ¢ prime, a Z 0 mod ¢, which are characterized by the absence of any lattice
structure, although their computational generation is not so efficient as with the
LCGs. Remark that, in the literature, it is customary to write

Tn+1 = aTp +bmod g, n >0, (61)

where Z = 272 mod ¢. From [BA), z is simply the multiplicative inverse of z, if
z Z 0 mod ¢; while Z is zero, if 2 = 0 mod gq.
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Due to Eichenauer-Herrmann [I1I] are as well the related explicit inversive
congruential generators (EICGs), which are the relevant ones in this paper:

Tn =an+bmod g, n >0, (62)

with ¢ prime, a # 0 mod ¢. It is immediate to see that x, has a period equal to
q, i.e., {zo,...,2q-1} = Zg; hence, any EICG with the normalization un = zn/q
passes the uniformity test for equidistribution in [0,1). However, statistical in-
dependence properties of pseudorandom numbers are as important for stochas-
tic simulations as uniformity properties. To study their statistical independence,
Eichenauer-Herrmann used in [I1] the so-called serial test, which analyzes the dis-
crepancy of tuples of pseudorandom numbers, and which we explain briefly here.
The idea is, for a given dimension k > 2 and for N arbitrary points (£, ...,{n_1) €
[0, l)k, to consider their discrepancy, which is defined as

D (8os-&n—1) = sup [Fy () = V)], (63)

where the supremum is extended over all the subintervals J of [0, 1)%; Fj(J) is N~*
times the number of terms among &,...,&y_1 falling into J; and V(J) denotes
the volume of J.

In [11], given a sequence of numbers (un)p>o obtained with an EICG, the
k-dimensional points

U = (Untngs- - Uning) €[0,1)%, 0<n<p, (64)

were considered, with ny, ..., ny arbitrary integers satisfying0 = n; < ... <ni <p,
and the abbreviation

DI()k) = Dp(ug,...,up—1) (65)

being used for the discrepancy of the points. Then, an EICG passes the k-dimensional
serial test if Dék) is reasonably small. In this regard, the following two theorems
were formulated in [T1]:

Theorem 2 Let 2 < k < p. Then, the discrepancy Dz(,k) for any EICG satisfies
K 2 7\"
D,g ) < 2p_1/2 ((k -1) (; logp + 3) + l) +kp L.
Theorem 3 Let 0 <t < 1. Then there exist more than Ap(t)(p — 1) values of a € Zy,

such that the discrepancy D](gk) for any corresponding EICG satisfies

k) L 172
Dr™ 2 5 2y?

for all dimensions k > 2, where

(1—t*)p
Ap(t) = .
»(t) (4—12)p+12p/2 +9
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Theorems [ and Bl show that, in the EICG method, the discrepancy Dz(jk) has
on the average an order of magnitude between p_1/2 and p_l/Q(logp)k. However,
it is precisely in this range of magnitudes where the discrepancy of p indepen-
dent and uniformly distributed points taken from [0, 1)* is found, which is roughly
p_l/Q(log log p)l/Q. In this sense, we can say that EICGs model true random num-
bers very closely, or, in Eichenauer-Herrmann’s words, EICGs have even better
structural and statistical independence properties than the standard type, i.e., than
(©0). Furthermore, they also behave very well in parallel and vector computations,
as shown by Niederreiter in [23]. Indeed, if we define a family of N EICGs:

2, =ain+bimodgq, n>0, i=1,...,N, (66)

then, the N-tuples of the form (zk,...2]) have good statistical properties if all
the N numbers b'ai are distinct. Summarizing, this approach is, in Niederreiter’s
words, eminently suitable for the generation of parallel streams of pseudorandom num-
bers with desirable properties.

In principle, it could be possible to work in Z4, with ¢ an arbitrary natural
number, although the most common choices are ¢ prime, as in the definitions (60)
and (62)), or ¢ a power of two. For instance, in [§], Eichenauer and Ickstadt study
the equally good pseudorandom properties of EICGs defined by the inverses of the
odd integers in Zg4, with ¢ = 2%, w > 5:

zn = (an+b) ' mod 2¥, n>0, (67)

with a = 2 mod 4, b = 1 mod 2; it is immediate to see that x, has a period equal
to ¢/2 = 2¢~1 je., zn takes all the possible odd values in Zgq, or, in other words,
{:Eo, e 7xq/271} = ZZ

Coming back to (B4), all the previous arguments should be more than enough
to justify the extremely good pseudorandom character of (54) and, hence, of X
and T. In particular, when ¢ is an odd prime,

zq4(p) = ici - 2'3,2J exp(2miup), (68)

where up = zp/q, and zp is given by ([62), with a = 4 mod ¢, b = 0 mod ¢; i.e.,
xp = 4p mod q. Therefore, by direct application of Theorems B and B wup is a
sequence of pseudorandom numbers uniformly distributed in the interval (0,1),
which, from our Theorem [I implies that z4(p) is a sequence of pseudorandom
numbers uniformly distributed in the circumference of center icf, and radius s%,.
Observe that we have to exclude the case p = 0 and, hence, the numbers lie on
(0,1) instead of [0,1). Nevertheless, since ug = 0, we are just omitting the first
term of the sequence (and the point zo = icos(2p) in the circumference), which
makes this minor issue irrelevant for all purposes.

The same reasoning is valid when ¢ is twice a prime number. Then, ([ES) also
holds, with up = zp/(q/2) and x, = p mod (q/2), i.e., we are taking a = 1 mod (q/2)
and b = 0 mod (¢/2) in ([62). Again, we exclude ug = 0, and the whole previous
paragraph is valid in its integrity.

Let us mention also the case with ¢ = 2¢. Then, (68)) also holds, with up = xp/q,
and zp = 2p— 1mod g, i.e, we are taking a = 1modgqg and b = —1 modq in
(©1). Again, we have obtained a sequence of pseudorandom numbers uniformly
distributed in the circumference of center 2'0,2J and radius 3,2), but, unlike the two
previous cases, it is not necessary to exclude any number.



The vortex filament equation as a pseudorandom generator 15

Analyzing all the possible values of ¢ lies certainly beyond the scope of this
paper. Moreover, (68) is not the only possible probability generator which can
be obtained from the evolution of X in T. For instance, given N different primes
a,--.,9n > b, it is possible to combine ([E8) in a way that closely resembles the
so-called compound approach explained in [I0]. Let us particularize (4] as

C/QJj +izg; (p) — exp (27Ti¢j (P))

2
Sbj 4j

(69)

where p; is the angle corresponding to g¢;; ¢;(p) = (4p)~! mod g;; and p #Z 0 mod g;.
Then,

N 2 . N
c,. +1zq.(p; ;
| | Pj 2‘1] (p.]) = exp 271_22 : ¢](p) ) (70)
] Cr ‘ a;
j=1 Pj j=1 J
Denoting now
= 65(p)
up = —L— mod 1, (71)
=1 U
([) becomes
N 2 .
c,. +izg: (p;
| | s L VI 5 0 ;) = exp(2miup), p # 0 mod g;, Vj. (72)
55,
j=1 Pj

The left-hand side is directly obtained from T, and its good random properties
follows directly from [I0]. The only minor difference is that, in our case, p can take
(g1 —1)-...-(gn — 1) different values modulo ¢ - ... gy, while its equivalent in
[10] can take all the g1 -...-qn values. However, in practice, taking ¢1,..., gy large
enough, the amount of values that we are excluding is, for all purposes, irrelevant.

4 Conclusions

In this paper, we have considered the evolution of (2)-(3), taking a regular planar
polygon of M sides as the initial datum. Bearing in mind the recent results in [19],
where we gave very strong evidence that X(s,t) is a skew polygonal at times which
are rational multiples of 27 /M?; we have studied (@)-(3) from a completely novel
point of view: that of an evolution equation which yields a very good pseudorandom
generator in a completely natural way.

Due to the algebraic complexity of the calculations involved, we have limited
ourselves mainly to the study at rational times of two quantities, which are illustra-
tive enough of the essential random character of ([2)-(3)): the triple product of three
consecutive tangent vectors; and the scalar product of a tangent vector and the sec-
ond next one. These quantities, when taken respectively as the real and imaginary
parts of a complex number, yield an excellent generator of pseudorandom num-
bers uniformly located on a circumference. Furthermore, it is straightforward to
combine different rational times to develop additional pseudorandom generators.

Although the main aim of this paper is to show the randomness in the evolu-
tion of ([@)-(@), for which it is largely enough to work with T, it is not irrelevant
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to mention here that, as observed in [19], X(0,¢) is very intimately related to
Riemann’s nondifferentiable function,

oo

£(t) = Z sin(7r162t)7 (73)

k2
k=1

which, as proved by Jaffard [20], is a multifractal and, in fact, fits under the so
called Frisch-Parisi conjecture proposed in [I4] (see also [I3] for more details).
Therefore, although giving a complete algebraic characterization of X(0,t) reveals
as a complex task which clearly lies beyond the scope of this paper and which
we postpone for the future, we can nonetheless expect an even richer randomness
structure in X.

The ideas presented here can be most probably extended to other types of
evolution equations, in order to obtain new probability generators. Obviously, this
approach is not intended for competing with commercially developed algorithms;
even though, during the simulation of ([2))-(3), large sequences of pseudorandom
numbers with good statistical properties can be generated with virtually no addi-
tional cost, i.e., for free.

As we have said in the introduction, a recurring question is up to what extent
VFE is valid as a simplified model. In this line, the random character of ([2)-(B)
proved in this paper is at the very least not in contradiction with the physical
motion of a real vortex filament. Furthermore, we venture to suggest that finding
the existence of well-behaved pseudorandom sequences of numbers inside the evo-
lution of a proposed physical model might be a first test in validating that model
with respect to the phenomenon that it is trying to describe. Indeed, real natural
phenomena are in general characterized by their chaotic, truly random behaviour.
Therefore, a model with an easily predictable structure might be suspected not to
match reality accurately.
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