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ABSTRACT The automation of classification and grading of horticultural products attending to different
features comprises a major challenge in food industry. Thus, focused on the olive sector, which boasts of a
huge range of cultivars, it is proposed a methodology for olive-fruit variety classification, approaching it as
an image classification problem. To that purpose, 2,800 fruits belonging to seven different olive varieties
were photographed. After processing these initial captures by means of image processing techniques,
the resulting set of images of individual fruits were used to train, and continuedly to externally validate, the
implementations of six different Convolutional Neural Networks architectures. This, in order to compute
the classifiers with which perform the variety categorization of the fruits. Remarkable hit rates were
obtained after testing the classifiers on the corresponding external validation sets. Thus, it was yielded
a top accuracy of 95.91% when using the Inception-ResnetV?2 architecture. The results suggest that the
proposed methodology, once integrated into industrial conveyor belts, promises to be an advanced solution
to postharvest olive-fruit processing and classification.

INDEX TERMS Computer vision, convolutional neural network, fruit variety, food industry, fruit classifi-

cation, image processing, olive.

I. INTRODUCTION
Olive (Olea europaea L.) growing is currently an agro-
nomic activity of great importance. With an ancient tradition
throughout the Mediterranean basin, its cultivation has spread
around the world in recent decades [1], [2], and consumption
of table olives and olive oil, which are the most impor-
tant products derived from this crop, have exploded. Indeed,
in accordance with the International Olive Council (I0C),
the consumption of table olives has more than doubled in
the past 20 years [3], with an estimation of 2,667,000 tonnes
in 2018/19 against the 1,185,500 tonnes consumed worldwide
during the year 1998/1999. In the case of olive oil, the num-
bers are equally significant, and in the same 20-year period
its consumption has increased in more than 500,000 tonnes,
being estimated 2,950,500 tons for the year 2018-19 [4].
Therefore, and as it is happening with other mainstream
crops, the olive sector has to face multiple challenges in order
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to satisfy this high demand market, in which the popularity
of olive-derived products does not stop growing. Increasing
production while reducing the associated costs, and all this
in an environmentally sustainable way, is a cross-cutting
problem in current agriculture [S]-[7]. The introduction of
new technologies is playing a fundamental role to deal with
this situation. And this is happening in virtually every scope
related to agricultural activities. In this sense, postharvest
tasks have become an important spotlight. Indeed, optimis-
ing processes involved in the treatment and manipulation of
horticultural products, once they are gathered, may have a
remarkable cost-saving impact [8].

Within this context, postharvest classification of horticul-
tural products, according to different features such as size or
surface condition, has become a main focus of research. This,
since it has been traditionally performed manually, imply-
ing tedious, inaccurate and time-consuming tasks. Hence, its
automation has become a major problem in food industry.
The case of olive sector is not an exception, as postharvest
fruit classification remains a challenge for olive growers.
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Thus, while the automation of the olive-fruit size grading
has historically found different solutions, all of them usually
based on mechanical approaches, the classification accord-
ing different criteria, with a potential value for farmers and
producers, is still attached to manual inspection. This may
be the case of individually classifying olive fruits according
to their variety, feature in which the present study is focused
on. By not discriminating among varieties when gathering the
olive-fruits, harvest costs can be potentially reduced. It should
be noted that harvesting is a key factor for olive growing,
obviously directly related to the prize of the eventual product,
and with a critical impact in the productivity and viability
of olive growing as a business. Therefore, olive sector has
put huge efforts to improve and optimise harvesting. New
orchards planning or harvesting mechanization are some of
the advances introduced during the last few decades in order
to enhance fruit gathering [9], [10]. Indirectly, it may benefit
from a postharvest automated classification system to sepa-
rate the fruits, once they have been transported to the mill,
according their variety. This could ease optimise harvesting,
when orchards are shared by different varieties of olive-
trees, not being necessary to consider this circumstance when
planning the collection of the fruits.

Machine Vision systems, commonly used in a great variety
of industries, have become familiar within the food sector,
when inspecting and supporting the automatic handling of
commodities [11]. By their integration throughout the manip-
ulation process, the products to handle can be imaged, and
descriptive features of each of them can be extracted in real
time, via image processing and analysis. This information
can be potentially used to label or categorize each of these
products, according to models previously computed. So, this
technology sets itself up as a potential solution to the automa-
tion of the olive-fruit variety-based classification.

In recent years, Computer Vision has significantly bene-
fited from the recent revitalisation of Deep Learning, which
has seen increased its popularity and it has experienced an
exponential growth, both in terms of the amount of related
research conducted and its applications. This sort of subset of
machine learning methods is nothing new, and the principles
it is based on have been around for a while [12], [13].
Nevertheless, the increase of computational power provided
by graphics processing units (GPUs) [14], along with the
huge amount of data offered by the Internet [15], have been
seen as an opportunity to boost Deep Learning performance.
Within this field, Convolutional Neural Networks (CNN) has
supposed a breakthrough in image processing and analysis,
and nowadays it comprises the main framework for image
classifiers development and pattern recognition. Its appli-
cations have reached innumerable fields, ranging from the
automotive industry, supporting self-driving cars [16]-[18],
to the healthcare sector, with automatic diagnostic systems for
the analysis of medical images [19], [20]. Smart farming and
food sector are not an exception. Thus, over the past few years
it has been published a considerable amount of literature
related to the potential application of Deep Learning-based
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technologies to agriculture and food industry [21], [22]. Yield
prediction [23]-[26], leaf defoliation estimation [27] or fruits
and crops classification [11], [28]—-[31] are just some exam-
ples of scopes within which the use of Deep Learning and
CNNs has been explored.

Olive sector can potentially gain from the use of
Deep Learning based-computer vision systems too. Hence,
the main goal of this study is to assess the viability of per-
forming a machine vision- and Deep Learning-based clas-
sification of olive-fruits according to their variety. To the
best to authors’ knowledge, the approach, methodology and
results derived from this work are unseen in the literature
to date. Whilst most research related to this topic draws on
images of the endocarps of the fruits to that end [32]-[34],
the methodology proposed here is focused on a non-invasive
approach, in which the classification is carried out uniquely
using the morphology of the olive-fruits as distinguishing
feature. For that purpose, batches of fruits, stochastically
disposed, were photographed inside an image acquisition
chamber designed to be potentially integrable in current con-
veyor belts. Then, the initial captures were transformed by
means of mathematical morphology and global thresholding
techniques, obtaining a set of images of individual fruits.
Next, different architectures of CNN were tried by training
them with these images. Finally, the resulting classifiers were
tested by using an external validation set to evaluate and
compare their performance.

The present manuscript is organized as follows. First,
section II overviews the fundamentals of CNNs as well as
briefly describes the architectures of interest for this work.
Section III-A specifies the olive varieties considered in the
research, as well as different aspects related to fruit sam-
ple collection for configuring the data of study. Then, all
aspects involved in the process of image acquisition are
detailed (section III-B). Section III-C focuses on the frame-
work employed to implement the proposed algorithms for
image classification, emphasizing the different developing
tools and technologies used. In section IV-A it is described
the methodology to transform the initial captures into the
individual fruit images that, as raw data, are used to try
the different CNN architectures considered. CNN training
and validation is detailed throughout sections IV-B-2 and
IV-B-3, respectively. Section V exposes and discusses the
results after validating the different image/olive-fruit-variety
classifiers developed. Finally, section VI comprises the sum-
mary of the most relevant aspects concluded throughout the
experimentation.

Il. OVERVIEW OF CNN ARCHITECTURES

In the present study, olive-fruit classification is approached as
an image classification problem, faced by means of machine
learning, by using CNNs. Indeed, the irruption of Deep
Learning as a mainstream technology has exploded in numer-
ous and uneven domains [35], being Computer Vision a
highly benefited niche [36], where CNNs have provided out-
standing advances in the state of the art.
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FIGURE 1. Schematic illustration of the performance of a CNN, with five convolutional layers, in determining the variety of an olive fruit. The
input is an olive-fruit image resulting from the pre-processing described in section IV-A. The image feeds the net and passes through the
convolutional layers, which model the object from the gross distinctive features to the subtle ones as the image goes deeper. Finally,

the extracted features are processed by a fully connected layer which yields a probability for the object to belong to the considered classes.

In this example, the olive fruit is classified as Arbequina.

Due to improvements in the design and manufacturing of
specialized-in-parallel-computing integrated circuits, and the
introduction of standardised architectures such as CUDA,
GPUs have become an affordable and powerful framework
for general purpose processing. This opened up a window
of opportunity for researchers and engineers to face tasks
that were not possible before because of the non-assumable
computational cost. In addition, public datasets for machine
learning purposes has increased in number over the past few
years. Thus, different initiatives, such as ImageNet [37] or
CIFAR-10 [38] among lots of others, have made available
huge quantities of quality data. This without taking into
account the exorbitant amount of information privately han-
dled by the big players in the technology industry such as
Amazon, Baidu, Facebook, Google or Microsoft, which far
from being outsiders of this trend, have become in actual
boosters of Deep Learning and its applications [15], [39].

Notwithstanding the computational improvements and
data availability, classical approaches using neural networks
dealt with the difficulty of finding and designing a set of
significant mathematical descriptors [40] to feed the net with,
in order to solve a specific problem. In contrast, the irrup-
tion of CNNs has supposed a game-changer in Computer
Vision, as these networks can be directly fed with image-
corresponding pixel-intensity matrixes. Thus, a CNN is basi-
cally a Deep Neural Network where, layer by layer, this raw
data provided by the initial image, is transformed into a set
of high-level features which are eventually used to realise
the classification. To that end, CNN architectures are usually
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shaped by three different types of layers: convolutional layers
in which filters or kernels, acting as feature detectors, are con-
volved over local regions of the input; pooling layers, where
it is reduced the spatial dimensionality of the convolved
features (also known as activation maps) obtained after a
convolution stage; and fully-connected layers, with which,
and by using the high-level features obtained by convolu-
tion and down-sampling, the class scores are calculated, and
therefore the image classification is performed (see Fig. 1).
Because of its demonstrated virtues, which include reduced
complexity, faster model training, capacities of capturing
local information, smaller sample volume requirements or
lower overfitting probability, researchers have shown an
increased interest, and CNNs applications and related liter-
ature [35], [36], [39], [41], that is encouraged to be consulted
for deeper study, have exploded in recent years.

For the purpose of developing a set of models to undertake
the olive-fruit variety classification, some of the most impor-
tant CNN architectures seen in recent years are considered;
they are briefly described hereafter.

AlexNet [42] supposed a breakthrough within the image
recognition scope. It is based on an 8-layer architecture,
consisting of 5 convolutional layers and 3 fully connected
ones. So, deeper when compared to the standards of that time,
another of its contributions was to model the output of the
neurons in the network with a Rectified Linear Unit (ReLU),
instead of other more conventional activation functions, like
tanh or sigmoid. Thanks to that, the CNN could be trained
much faster.
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InceptionV1 [43], as well known as GoogLeNet, imposes
1 x 1 convolutions in the middle of the network, and proposes
a global average pooling at the end of it, as a substitute for
a last fully connected set of neurons as an output. Very deep
when compared to AlexNet, the first iteration of the Inception
architecture comprises 22 layers in total.

InceptionV3 [44] reduces the number of parameters in
the network by factorizing convolutions. This, by increasing
the number of layers (up to 42 in total) and reducing the
dimensions of the filters, without loss of efficiency.

ResNet [45] implies a paradigm shift, introducing the
notion of skip (or shortcut) connection. The layer inputs
do not just depend on the outputs of the immediate pre-
vious layer. This, in order to solve a major problem with
gradient-based learning methods, the vanishing/exploding
gradients [46], [47]. Its architecture is complemented with a
bottleneck design which allows to reduce complexity with-
out significantly impoverishing performance. In this case,
different alternatives can be found regarding the depth of
the network: ResNet-50, with 50 layers; ResNet-101 with
101 layers; ResNet-152 with 152 layers.

Inception-ResNetV2 [48], based on the Inception architec-
ture, but inspired by ResNet, is trained with residual connec-
tions, allowing to speed up the process.

Ill. MATERIALS AND METHODS

A. SAMPLE COLLECTION

Seven different olive varieties were considered for this study:
Arbequina, Arbosana, Picual, Ocal, Changlot Real, Verdial
de Huévar and Lechin de Sevilla. For each of these culti-
vars, 400 fruits were handpicked in olive orchards located
in Gibraleén (37°20°09.2”N 7°02°19.8”W), province of
Huelva (Andalusia, Spain), in October 2018.

B. IMAGE ACQUISITION

For the purpose of capturing the images of the fruits, it was
set up an ad-hoc image acquisition system, inspired in that
proposed in [49]. The aim at this point was not to implement
a final version of this device, integrable in a conveyor system,
but a prototype mimicking its main features regarding image
capture conditions. This system was conceived to acquire
images with high contrast in terms of luminosity between the
fruits and the background, with a shadowless lighting. This
feature favours a subsequent stage of the experimentation,
where a solid and accurate segmentation of the captures is
necessary.

The ad-hoc image acquisition system was designed to be
potentially integrable in a conveyor belt. It consists of four
main parts: a chamber with which the capture area can be
isolated from any external light pollution; a lighting system,
based on seven equally distributed strips of 25 5V-LEDs
each, located at the base of the chamber; a semi-translucent
white plastic surface comprising the capture area, over which
olive-fruits are placed to be photographed; a digital mirrorless
camera mounted above the chamber, looking perpendicularly
at the capture area. Fig. 2 illustrates the described system.
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FIGURE 2. Image acquisition system.

FIGURE 3. Example of image acquired for Ocal variety.

It should be noted that the camera used for imaging the
fruits, a Sony o 7-11 (Sony Corp., Tokyo, Japan), was equipped
with a Zeiss 24/70mm lens (Carl Zeiss AG, Oberkochen,
Germany) and configured in manual mode, with an aperture
of f/7.1, shutter speed of 1/50s, focal length of 31mm and ISO
sensitivity of 250. The initial captures were saved in JPEG
format, with a resolution of 6000 x 3376 pixels and 24 bits
of colour depth. The pixel density was set to 350ppi.

Every variety-set of 400 fruits was photographed in batches
of 50 individuals, thus generating 8 images per variety.
With the aim of mimicking a realistic scenario, it should be
remarked that the fruits were stochastically placed on the
capture area, with the only restriction of not appearing any of
them touching the border in the resulting image. Fig. 3 shows
an example of an image taken following the specified
criteria.

C. IMAGE PROCESSING ALGORITHM IMPLEMENTATION
AND CNN TRAINING/VALIDATION

The image processing algorithm, developed to transform the
starting captures into the set of images to be used throughout
the experimentation, was implemented with MATLAB and
its Image Processing Toolbox, release 2018a (The Math-
Works Inc., Natick, Massachusetts, USA). A MATLAB
framework was also used in order to perform the training
of the CNNs for image classification, and the validation of
the results yielded by them. CNN training was conducted
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FIGURE 4. Colour variability of four different olive-fruits, of the
Arbequina variety, collected at the same time within the same orchard.

by transfer learning [19], so pre-trained implementations
of the different CNN architectures approached in the
present study (which will be later briefly described), avail-
able through the MATLAB Deep Learning Toolbox, were
used.

The different networks tried were trained by GPU com-
puting, using a single 8GB-NVIDIA GTX 1080 graphic card
(Nvidia Corporation, Santa Clara, California, USA).

IV. DEVELOPED METHODOLOGY

A. IMAGE PRE-PROCESSING

As stated before, the main goal of the present study is to pro-
vide a computer-vision methodology for the individual clas-
sification of olive-fruits, according to their variety, present in
images containing multiple individuals, even in touch. A first
approach to the problem may consider colour characteristics
as a feature to base the classification on. However, for the
case of this crop, colour is known to be strongly dependent of
the state of maturity of olive-fruits [50], [51]. In this regard,
it must be additionally highlighted that, even for any given
tree, fruit ripening may vary depending to conditions such
as its location within the tree or its degree of exposure to
direct sunlight, among other. In order to illustrate this fact,
Fig. 4 shows a set of four Arbequina-variety olive-fruits, all
of them collected in the same orchard, and at the same time,
where it can be appreciated the lack of uniformity in terms of
colour between the fruits.

As a consequence of these facts, it can be concluded that
colour variability induced by fruit maturity may be, at least,
comparable to that induced by fruit variety. It is for this reason
that colour features were discarded from the beginning, this
is from image capture, so morphological characteristics of
the fruits were explored as distinctive features for variety
categorization.

As detailed in section III-B, fruits were photographed in
batches of 50 individuals each. In addition, they were stochas-
tically disposed over the capture area, enabling a scenario in
which the fruits may appear touching each other. With the aim
of making the methodology able to individually categorise
every single olive-fruit present in the images, the first step of
pre-processing is to transform initial captures into a suitable
set of individual-fruit images.

The methodology proposed by [49] provides an efficient
procedure for transforming the starting captures of multiples
olive-fruits into binary images, where all the connected com-
ponents corresponding to the different fruits are accurately
separated. This method exploits the high contrast, in terms
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- Transformation to HSV colour space
- Binarization of the grayscale image comprised by
the value-of-colour channel (V) by Otsu’s method
- Noise/pedicel removal (by means of morphological
transforms)

INDIVIDUAL OLIVE-FRUIT SEGMENTATION
- Marker-controlled Watershed segmentation

IMAGE POST-PROCESSING
- Border-components removal (by means of
morphological transforms)

l

Binary images, segmented
at fruit level

FIGURE 5. Representative diagram of the methodology proposed in [49]
for the segmentation of the olive-fruits which appear in an image
stochastically positioned.

of luminosity, between the fruits and background to perform
the segmentation of the images. This latter, by discriminant
analysis-based global thresholding [52]. After that, and by
morphological analysis, the resulting binary images are trans-
formed in order to yield a set of markers with which it is
carried out an eventual marker-controlled Watershed segmen-
tation [53]. This last step allows to separate those connected
components which may appear wrongly fussed, for belonging
to fruits that are touching each other in the original capture.
Fig. 5 offers a diagram briefly describing this procedure.
Fig. 6 shows the result of its application to one of the images
initially acquired for this study.

Once images are binarized, and the contained components
are correctly isolated by applying this methodology, each of
them is extracted and individually included in a new square
binary image of 501 pixels high and wide. It should be noted
that each component is positioned at the centre, i.e., matching
its centre of mass with the centre of the 501 x501 frame. Here-
after, the rest of the processing is applied to these individual
olive-fruit images.

As the generated images are binary, fruits appear as
flat objects. The next step pursues to transform them into
olive-fruits with a depth consistent with their shape. To do
so, a weighing function based on the distance transform
is applied, converting the binary images into a greyscale
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FIGURE 6. (a) Original image; (b) image (a) segmented according with the procedure proposed in [49]; (c) closeup of the red-squared area in image (b).

format. Hence, different grey level values are assigned to
each olive-fruit pixel, thus providing the sphericity and three-
dimensionality of the fruits [49]. So, being p a foreground
pixel of a binary image f of 501x501 pixels in size which
contains a single centred olive-fruit, the grey level value v,
assigned to p in the transform image can be computed as
follows:

vp = logz(1 + 2 x [D()](p)), ey

where D refers to the distance function [54] applied to
image f, so the expression [D(f)](p) can be defined as the
Euclidean distance between p and the nearest background
pixel, g. Mathematically:

DENP) = min{dep. ) If @ =0}, @
. @) = \Jpx =4 =y — > (3

where (py, py) and (qx, gy) are, respectively, the coordinates
of the pixels p and q.

The entire process is illustrated in Fig. 7. Note that for
the sake of facilitating the visualization of the partial results
of the methodology, a sub-image of the original one, which
contains a batch of 50 olive-fruits, is used. On the other
hand, Fig. 8 shows examples of individual olive-fruit images
obtained by the procedure proposed, for each of the varieties
considered in the investigation.
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B. IMAGE CLASSIFICATION

1) IMAGE DATASET ORGANIZATION

As commented before, the image dataset used throughout
the experimentation was generated from photographs of 400
olive-fruits per variety. As proposed in section IV-A, initial
captures were processed to obtain individual fruit images,
yielding a total of 2,800 of them (400 per each of the seven
varieties). 1,050 out of the 2,800 images (150 per vari-
ety) were kept for external validation, whereas the resting
1,750 images (250 per variety) were used for training the
different CNNs. In order to increase this training dataset,
a data augmentation based on image rotation was carried
out.

Therefore, per single-fruit image belonging to the train-
ing set described hereabove, a rotation transform of 45°
was applied. This transformation was repeated by using the
resulting image, and so on until seven rotations were per-
formed. Thus, seven extra images were yielded per fruit.
Hence, in short, the 1,750 fruits (250 per variety), initially
photographed in batches of 50, delivered 14,000 501 x 501
pixel-resolution images (2,000 per variety), each of them
contains a single olive-fruit. On the other hand, it should
be noted that the CNN architectures considered were imple-
mented such that the input expected for all of them was
3-channel images. Since the methodology proposed is based
on greyscale images, the image-structures obtained by the
procedure described hereabove are triplicated and integrated

VOLUME 7, 2019
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FIGURE 7. Representative diagram of the developed procedure for transforming the initial captures into a set of individual olive-fruit images.

(2) (b) (c) (d) (e) U] (2

FIGURE 8. Examples of individual olive-fruit images obtained for each of the varieties under study, after transforming initial captures by the proposed
procedure: (a) Arbequina variety; (b) Arbosana variety; (c) Changlot Real variety; (d) Lechin de Sevilla variety; (e) Ocal variety; (f) Picual variety;

(g) Verdial de Huévar variety.

into the same file, so the final images are made up of
three channels containing exactly the same information.
Fig. 9 illustrates the data augmentation performed.

Table 1 summarizes, per variety, how the corresponding
image dataset was organized.

2) CNN TRAINING

Implementations of the considered CNN architectures were
trained in order to potentially perform the classification of
the olive fruits. To that end, first, the 14,000 individual-fruit
training images were appropriately labelled according to their
variety. Then, as the CNN architectures were available pre-
trained with the thousands of images contained in the Ima-
geNet dataset [37], transfer learning [19] was accomplished
to retain convolutional patterns a-priori ‘known’ by the nets.
However, all implementations were modified in order to
consider the right number of classification classes. Indeed,
ImageNet contains labelled images from 1,000 categories,
while the present study considers seven not included in that
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set, those in accordance with the olive cultivars under study.
Therefore, the output layer was conveniently modified in all
cases by reducing it to seven classification nodes.

Here below, Table 2 details the configuration parameters
and the main training milestones for the different CNN archi-
tectures tried.

Each of the CNNs were trained during a different number
of epochs, depending on the particularities of each architec-
ture which makes them to converge to an optimum result at a
different pace. This convergence was judged by analysing the
partial results offered by the loss function evolution during
training. In the same way, the mini-batch size used was not
necessarily the same for the different architectures either.
Indeed, this parameter was adapted to each specific case for
optimising the learning time. It should also be noted that
during training and before every epoch, the training-data was
shuffled. When dividing the training dataset into mini-batches
of a same given size, the division was not exact for any
case, thus producing residual images not used in the learning
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501x501 pixel- resolution
grey-scale image

ROTATION-BASED DATA AUGMENTATION

(000

RGB image file (same
information per channel)

FIGURE 9. Representative diagram of the rotation-based data augmentation performed.

TABLE 1. Materials: organization of the image dataset.

Number of fruits Initial captures with  Individual-fruit images Training individual- Validation individual-
samples multiple fruits fruit images fruit images
i-th variety 400 8 400 2,000° 150
Total (7 varieties) 2,800 562 2,800 14,000b 1,050

50 fruits per capture.
b After data augmentation.

process. Thanks to data shuffling, the residual images were
substituted after every training epoch, thus exploiting the
knowledge provided by the whole imagery.

Fig. 10 shows the three maximum filter responses pro-
duced by the five convolutional layers of AlexNet, after
being trained, when it is excited with sub-image (a). It shows
how the outer layers model gross distinctive features of the
olive, whereas the inner ones focus on the subtle details.
Regarding these last, note how the depth given to the fruit
in the pre-processing is captured and exploited by the net for
characterisation.

3) CNN VALIDATION

Once the networks were trained, they were tried in classify-
ing the images corresponding to the external validation set.

147636

This, in order to assess the goodness of the models yielded
after the training process.

The metric proposed for quantifying the performance of
the classifiers was based on the ratio between the numbers of
fruits correctly categorized within a specific variety, and the
total number of them included in the corresponding validation
subset. Mathematically:

) “)

where hcy,, is the number of olive-fruits of the variety v
correctly categorized by the convolutional neural network
CN, and N,, correspond to the total number of fruits (actually
images of individual fruits) belonging to that variety, in the
external validation set. N,, will be 1,050 in all cases.
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TABLE 2. Summary of the configuration of the CNNs, and the main milestones registered from their training.

. . Inception-
AlexNet InceptionV1 InceptionV3 ResNet-50 ResNet-101
ResNetV2

Epochs 168 85 67 50 77 74
Iterations 117,648 26,598 37,602 14,090 43,202 103,661
Mini-batch size 20 45 25 50 25 10
Input image size  227x227 224x224 299x299 224x224 224x224 299299
(pixels)
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001

(b) (©)

(d) (e) U]

FIGURE 10. Representation of the three maximum filter responses produced by AlexNet to the input image (a); the net was trained with the set
of 14,000 individuals kept to this effect. Responses follow the order of their corresponding layers, being (b) those from the outer layer and (f) from the
inner. Note how finer details are characterised as the layer is deeper. Also, analyse how the depth given to the fruits in the pre-processing is exploited

by the net, especially in the deeper layers, for fruit characterisation.

In addition, the average hit-rate obtained by each classifier,
CN, is defined as follows:

HRcy,
%, (5)

where #v refers to the number of olive varieties (seven in the
present case study).

HRcy =

V. RESULTS AND DISCUSSION

Table 3 shows the results, in terms of the metrics defined in
(4) and (5), obtained with the six different CNN architec-
tures. The results were measured from the classifications per-
formed by the different CNNs for the total of 1,050 individual
olive-fruit images in the external validation set.

As it can be checked, Inception-ResNetV2 offered the
overall best results. Nevertheless, exclusively attending to
these outcomes, the differences in terms of accuracy among
the different architectures, maybe excepting that given by

VOLUME 7, 2019

AlexNet, was not substantial enough to draw definitive con-
clusions regarding the supremacy of one of them for the case
of study. Indeed, in general, performance of all classification
models was remarkable, with an average accuracy above 90%
in almost all cases.

For a certain image, the CNN output provides a proba-
bility value of belonging to each of the seven varieties. The
higher the probability given of belonging to the correct class,
the better the CNN was able to correctly recognise the variety.
Table 4 details the average probability, of belonging to the
correct class, and the corresponding standard deviation given
by the different architectures when classifying the 150 images
of each of the seven varieties; figures are also calculated
considering images from all varieties as a whole. It can
be identified that Inception-ResnetV2 also outperformed the
other alternatives from this perspective; AlexNet was again
the less accurate solution.
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TABLE 3. CNN implementations tested accuracy, based on results obtained after classifying the images which integrate the external validation set.

CNN architecture

Variet AlexNet IRngSeIIl) ;(\);2_ InceptionV1 InceptionV3 Resnet-50 Resnet-101
Y (HReny) R (HReny) (HReny) (HReny) (HReny)
(HRcn.v)
Arbequina 0.9333 0.9333 0.9467 0.9533 0.9400 0.9267
Arbosana 0.9133 0.9067 0.9467 0.9400 0.9133 1.0000
Changlot 0.8667 0.9400 0.9200 0.9600 0.9600 0.9333
Lechin 0.8333 0.8867 0.9267 0.9067 0.9200 0.9067
Picual 0.9467 0.8933 0.9600 0.9600 0.9400 0.9867
Ocal 0.9133 0.9333 0.9667 0.9933 0.9667 0.9733
Verdial 0.8867 0.9333 0.9733 0.9600 0.9400 0.9867
Overall 0.8990 0.9181 0.9486 0.9533 0.9400 0.9591

TABLE 4. Average (x) and standard deviation (o) of the probability of belonging to the correct class given by the different architectures, measured on the

150 images of each of the seven varieties, and also considering images from all varieties as a whole.

CNN architecture
Variety .E\fl’e;(;\let gl;sefettigg ?;(ffp)tionVI ?;(ff[;tionv3 1(1;5:)&—50 l(lgsg)et— 101
(%,0)

Arbequina (0.9283, 0.2241) (0.9333,0.2199) (0.9280, 0.2240) (0.9419, 0.2029) (0.9477, 0.1910) (0.9374, 0.2094)
Arbosana (0.8913, 0.2605) (0.9894, 0.0573) (0.9081, 0.2632) (0.9312, 0.2199) (0.9342, 0.2007) (0.9100, 0.2563)
Changlot (0.8610, 0.3120) (0.9183, 0.2404) (0.9294, 0.2283) (0.9075, 0.2319) (0.9461, 0.1792) (0.9561, 0.1583)
Lechin (0.8270, 0.3448) (0.9077, 0.2539) (0.8767, 0.2880) (0.9076, 0.2286) (0.8990, 0.2371) (0.8993, 0.2493)
Picual (0.9293, 0.228) (0.9743,0.1154) (0.8938, 0.2771) (0.9465, 0.1762) (0.9449, 0.1702) (0.9339, 0.2135)
Ocal (0.9001, 0.2665) (0.9757, 0.1346) (0.9318, 0.2244) (0.9630, 0.1490) (0.9701, 0.1005) (0.9668, 0.1300)
Verdial (0.8901, 0.2855) (0.9738, 0.1046) (0.9324,0.2184) (0.9637,0.1314) (0.9469, 0.1822) (0.9639, 0.1409)
Overall (0.8896, 0.2789) (0.9532, 0.1783) (0.9143, 0.2485) (0.9373, 0.1961) (0.9413, 0.1852) (0.9382, 0.2011)

Thus, for the case of the images of Arbosana, the average
probability of belonging to that variety provided by the net
was 0.9894, with a very small standard deviation of 0.0573.
This effect can be also found for the case of Lechin, Picual,
Ocal, Verdial and considering all instances together. As with
results from Table 3, differences were not so significant so as
to take assertive conclusions. Notwithstanding, both sets of
outcomes induce to analogous reflections.

It is worth noting that the CNN based on the AlexNet
architecture, closely followed by the InceptionV 1-based one,
yielded the poorest results in both cases. The rest of CNNs
performed better. To note that they all suppose a considerable
increase of layers when compared with AlexNet and the
first version of the Inception architecture. But nor this fact,
neither the use of shortcuts-based architectures, as it happens
in some of the cases (note that Resnet-50 yielded better results
than Resnet-101), could necessary justify the better accuracy.
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At least more than the evidence that these four CNNs corre-
spond to more recent and refined neural networks models.
Hence, it should be necessary to undertake more research
before stating the association between accuracy and the depth
of the network. Be that as it may, such a homogeneous and
general accurate result registered for all CNNs spotlights that
the initial hypothesis of using the morphological modelling of
the fruits as distinguishing characteristic is potentially valid.
Indeed, given the reasons why colour features might not be
appropriate to carry out an accurate variety categorization,
the methodology proposed is potentially more suitable in
order to achieve a more generalisable solution.

A contingency table is presented in Table 5 for the clas-
sifications performed by Inception-ResnetV2. As it can be
observed, the net overestimated some classes and underes-
timated others. Of special interest is the analysis of the actual
class Arbequina, where six of their images were wrongly
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TABLE 5. Contingency table of the classification performed by Inception-ResnetV2 on the set of images for external validation.

Actual class

Predicted Arbequina Arbosana Changlot Lechin Picual Ocal Verdial Predlcted
class instances
Arbequina 139 0 0 ! 0 0 0 140
(92.67%) (0.0%) (0.0%) (0.67%) (0.0%) (0.0%) (0.0%)
Arbosana 6 150 0 ! ! 0 0 158
(4.0%) (100%) (0.0%) (0.67%) (0.67%) (0.0%) (0.0%)
Changlot ! 0 140 2 0 ! ! 145
(0.67%) (0.0%) (93.33%) (1.3%) (0.0%) (0.67%) (0.67%)
Lechin ! 0 3 136 ! 0 0 141
(0.67%) (0.0%) (2.0%) (90.67%) (0.67%) (0.0%) (0.0%)
Picual 0 0 4 1 148 0 0 153
(0.0%) (0.0%) (2.67%) (0.67%) (98.67%) (0.0%) (0.0%)
Ocal 2 0 0 8 0 146 1 157
(1.3%) (0.0%) (0.0%) (5.3%) (0.0%) (97.33%) (0.67%)
Verdial ! 0 3 ! 0 3 148 156
(0.67%) (0.0%) (2.0%) (0.67%) (0.0%) (2.0%) (98.67%)
Actual instances 150 150 150 150 150 150 150 1050

classified as Arbosana. This phenomenon could be relevant
if it would have also appeared in the contrary case, as it
could indicate certain difficulty for the CNN to distinguish
between both varieties. However, none of the Arbosana
images were misclassified as being from Arbequina. A sim-
ilar case occurred when attending to the actual class Lechin,
as eight of its images were classified as Ocal. Notwithstand-
ing, as for the previous case, there were not any images from
Ocal classified as Lechin. This fact strengthen confidence
in the capability of the net for discriminating among the
different varieties thanks to the image pre-processing applied,
and points to enrich the training set with more variability to
obtain even better results.

VI. CONCLUSION

The purpose of this study was to assess the viability of a
Computer Vision-based methodology to support the auto-
matic and individual classification of olive-fruits, according
to the variety they belong to. To that end, it was designed
a procedure, based on image processing and analysis and
CNN:ss, for developing a set of image classifiers. To the best
to authors’ knowledge, the presented algorithm is the first
available proposal achieving that end in a non-invasive and
accurate manner.

Hence, these image classifiers showed a remarkable
behaviour in terms of performance, as high rates of accuracy
were obtained in general for all of them, and in particular
for the deeper CNN architectures. The outstanding accuracy
found for all the different CNN architectures and versions,
provides strong signs to validate the initial hypothesis of
using morphological modelling of the fruits as distinctive
varietal feature, at the expense of discarding colour charac-
teristics.

Despite the quality of the results, further work may be
approached by increasing the number of elements the neural
networks were trained with. This, to the purpose of testing if
it is possible to yield even better accuracy. Along the same
lines, future research should include new olive cultivars in
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order to evaluate the goodness of the methodology proposed,
as a general solution to the olive-fruit variety classification.

In addition, it should be underscored that the background
the methodology proposed is based on, is aimed to satisfy
real-time inspection of olive-fruits when they are transported
on a real conveyor belt. By integrating the image processing
procedure here presented to transform the initial captures of
the fruits, and by applying the classification models com-
puted, an integral solution could be built, potentially applica-
ble to the olive sector, able to perform real time labelling of
the olive-fruits, thus making possible their automatic grading
and variety-based classification. Particularly, variety-based
classification could have an important impact in reducing har-
vesting costs, as the need of sequentially processing collected
fruits of a single variety at a time would disappear; by this
way, harvesting could be organised by attending exclusively
to the optimisation of operative costs. Additionally, the ability
to classify olive-fruits in line could also have an impact in
optimising the available space at the warehouse.
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