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Abstract:  12 

Pyrite is the most common mineral in polymetallic sulphides ores. In order to apply the combustion group 13 

theory to the pyrometallurgical processes that occur in the reaction shaft it is necessary to know the 14 

kinetic processes that happen in pyrite. In this study a thermogravimetric analysis was carried out under 15 

oxidative atmospheric conditions with 100% O2 and a heating ramp of 5, 10, 15 and 20 ºC min-1. The 16 

material used was pyrite with a grain size of 63-125 μm. From the thermogravimetric data we got the 17 

kinetic parameters of the oxidative reactions of pyrite. The different kinetic methods used in this study 18 

have been E1641-16 ASTM, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman.  19 

These methods were used for obtaining the kinetic parameters through Regression analysis, Sum of 20 

squares, mean residuals between experimental and calculated values and Student coefficient (95%) and to 21 

determine which kinetic method is the most suitable to describe the kinetics of pyrite oxidation. 22 
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1. Introduction 29 

Pyrite (FeS2) is the most common mineral in sulphide ores. It is composed of 53.48% sulphur and 46.52% 30 

iron [1] and it has cubic structure with unit-cell edge around 5.42Å. Usually appears in association with 31 

other minerals such as chalcopyrite (CuFeS2), galena (PbS), tetraedrite (Cu6[Cu4(Fe,Zn)2]Sb4S13), 32 

chalcocite (Cu2S) and sphalerite (ZnS) [2]. 33 

To use polymetallic sulphides in extractive copper pyrometallurgical processes it is necessary to enrich 34 

sulphide ores in copper through grinding and flotation techniques to increase copper concentration from 35 

0.5-2 Wt. % to a material called "concentrate” (Fig.1) with a copper concentration of 20-30 Wt. % [3, 4]. 36 

 37 

Fig. 1: BSE (Back-scattered Electron) image of a concentrate obtained through an electronic 38 

microprobe model JEOL, model JXA-8200 Super probe. Working conditions used were an 39 

acceleration voltage of 15 kV and a current of 20 nÅ of beam intensity with an electron beam 40 

diameter between 1 and 5 μm. Py: Pyrite (FeS2), Dg: Digenite (Cu9S5), Mb: Molybdenite (MoS2). 41 

The concentrates are blended to get a regular composition material to minimise the fluctuation of the 42 

pyrometallurgy process. 43 

Oxidative melting of the blend is made through two stages (Flash smelting and conversion processes) in 44 

order to minimise copper losses. [3]. 45 

In the first stage, two immiscible liquids are produced through flash smelting: matte and slag [5]. Matte is 46 

a melt composed of FeS and Cu2S (usually the matte grade is around 62 wt.% Cu). Slag melts are 47 

composed, mainly, of fayalite (Fe2SiO4) and magnetite (Fe3O4) in a proportion that depends on oxygen 48 

partial pressure (usually 10-7 atm for flash smelting). The liquid immiscibility region between slag and 49 

matte was shown by the experimental work of Yazawa and Kameda [6] over the ternary system of SiO2-50 

FeO-FeS (Fig. 2). 51 

 52 

Fig. 2: Isothermal phase diagram (FeO-FeS-SiO2) based on Yazawa and Kameda [6]. Point A and B 53 

are in equilibrium and marks, respectively, the composition of an oxide rich melt (slag) and the 54 

composition of a sulphide rich melt (matte). Both compositions, A and B correspond to the 55 

equilibrium compositions of slag and matte at the limit of silica solubility. To the right of line A-B 56 

the immiscible melts coexist with solid silica. 57 

 58 
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As it is showed in the isothermal phase diagram for the system FeO-FeS-SiO2 [6], the blends are brought 59 

inside the immiscibility region by addition of SiO2 (arrow in bold in Figure 2) as a flux component for 60 

melting. The objective to take the system inside the liquid immiscibility region is to get two immiscible 61 

liquids (slag and matte) in order to extract part of the iron in concentrates to the slag and the copper to the 62 

matte. In this process it is very important to minimize the copper dissolution in the slag melts through a 63 

control of the oxygen partial pressure. 64 

After the first stage, in the conversion process the matte melts are transformed in blister copper through 65 

two oxygen-blowing stages. In the first stage (slag blowing) the oxygen reacts with FeS to produce iron 66 

and sulphur dioxide. At the same time, iron reacts with the silica flux to make fayalite (Fe2SiO4). This 67 

blowing stage produces white metal melt (Cu2S) (Eq.1): 68 

𝐶𝑢2𝑆 + 2𝐹𝑒𝑆 + 𝑆𝑖𝑂2 + 3𝑂2 → 𝐶𝑢2𝑆 + 𝐹𝑒2𝑆𝑖𝑂4 + 2𝑆𝑂2 (Eq. 1) 69 

 70 

The white metal produced in slag blowing is used to get copper blister through the second stage of 71 

oxidation named Copper blowing [7] (Fig. 3). 72 

 73 

Fig. 3: Equilibrium phase diagram from Sharma and Chang [7]. The dotted line marks the 74 

different compositions (Points a, b, c and d) of the conversions process at 1200 ºC in copper 75 

blowing. 76 

 77 

The equilibrium phase diagram (Fig. 3) shows the copper blowing stage at 1200 °C. Beginning with the 78 

white metal (Point a) the system goes into a new liquid immiscible region to give molten blister copper 79 

plus molten white metal. As the oxidative process goes on the proportion of blister copper increase from 80 

point b to point c generating an SO2 gas phase.  81 

Schematically, the conversion process follows the next reaction (Eq. 2): 82 

(𝐶𝑢, 𝐹𝑒, 𝑆)(𝑚𝑜𝑙𝑡𝑒𝑛 𝑚𝑎𝑡𝑡𝑒) + 𝑂2(𝑖𝑛 𝑜𝑥𝑖𝑔𝑒𝑛 𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 𝑎𝑖𝑟) + 𝑆𝑖𝑂2(𝑠𝑜𝑙𝑖𝑑 𝑓𝑙𝑢𝑥) → 𝐶𝑢0(𝑙) + 2𝐹𝑒𝑂 ·83 

𝑆𝑖𝑂2(𝑖𝑛 𝑚𝑜𝑙𝑡𝑒𝑛 𝑠𝑙𝑎𝑔) + 𝐹𝑒3𝑂4(𝑖𝑛 𝑚𝑜𝑙𝑡𝑒𝑛 𝑠𝑙𝑎𝑔) (Eq. 2) 84 

Oxidative melting of blends, of sulphides concentrates, in the flash-smelting step depends on process 85 

parameters as ignition temperature and combustion kinetic of the sulphides. Both parameters are relevant 86 

for the process in the reaction flame produced at the end of the burner located at the top of the reaction 87 
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shaft within the flash furnace. As the flame oxidative melting is a time limited process, the combustion 88 

kinetic of each type of sulphides is relevant for the global process.  89 

Ignition of sulphides concentrates (blends) is an exothermic process that starts for the most reactive 90 

sulphide grains and spread to the rest of grains through radiative heat flow. The application of the group 91 

combustion theory to the flash smelting process data about the kinetics of sulphides species are required. 92 

Most of the studies carried out about sulphides oxidative evolution focus on the analysis of mechanisms 93 

of oxidation processes, thermogravimetric behaviour of minerals versus variations in mineral grain sizes 94 

and intrinsic water content or differences in the composition of the working gas [8-13].  95 

To analyse in deep the oxidative-melting in pyrometallurgical process taken over metallurgical copper 96 

sulphide concentrates (blends) it is necessary to understand the oxidation kinetics of each type of the 97 

sulphides that composes the concentrates used in the industrial copper extractive metallurgy. Pyrite is a 98 

sulphide usual in concentrates and has an important role in the process temperature of the copper flash 99 

smelting. Then it is relevant to study and determine the combustion kinetic of pyrite.  100 

In this study the reaction kinetic evolution of the pyrite oxidation process by studying different kinetics 101 

methods is analysed to determine the suitable kinetic method for use with pyrite, from thermogravimetry 102 

studies performed on pyrite minerals. The kinetics methods used are E1641-16 [14], Ozawa/Flynn/Wall 103 

[15-17], Kissinger-Akahira-Sunose (KAS) [18, 19] and Friedman [20]. 104 

 105 

2. Materials and Methods 106 

2.1. Raw materials 107 

The composition of the pyrite is usually pure although in some occasions there may be substitutions of 108 

metallic elements such as Ni, Co or more rarely Cu replacing the Fe. 109 

The pyrites are quite chemically stable, we checked it by studying 40 different pyrite compositions 110 

obtained through the RRUFF database [1]. This similarity of compositions gives us that the 111 

thermogravimetry study is significant and it has a wide validity because there are no variations in the 112 

composition.  113 

The average composition of the pyrites, according to the Rruff database is 46.76% Fe and 53.24% S. 114 

The pyrite was crushed and screened into the fraction 63-125 µm for used in the study.  115 

The pyrite sample used for the study was analyzed by x-ray diffraction model BRUKER D8 Advance, in 116 

Bragg-Brentano geometry, using copper Kα radiation (Kα = 1,5406 Å) excited by a current of 30 mA of 117 
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intensity and 40 kV of voltage. The working conditions were a scan interval of 3 to 65 º of 2 Ɵ, an 118 

increase of angle step of 0.2 º of 2 Ɵ, and an exposure time per step of 0.6s. 119 

The treatment and evaluation of diffractometry data is done using the DIFFRACplus software and 120 

XPowder.12 software used with the database AMSCD (American Mineralogist Crystal Structure 121 

Database). 122 

The diffractogram obtained shows that the sample used during the study was of pyrite composition. (Fig. 123 

4). 124 

 125 

Fig. 4: Pyrite diffractogram pointing to the D-Spacing in amperes. 126 

 127 

2.2. TG experiments 128 

A thermo-gravimetric analyzer (TG) (Mettler Toledo TG/DSC1 STARe System) has been used to study 129 

pyrite thermo-chemical oxidation behavior. The experiments were performed by heating 70-130 mg 130 

sample under a temperature range of 25-900°C and four heating rates of 5, 10, 15 and 20°C min-1 and 20 131 

cm3 min-1 oxygen flow has been also used. Pyrite oxidation kinetic data, based on Arrhenius activation 132 

energy (Ea) and pre-exponential constant (A) from TG data have been calculated by using four proven 133 

free isoconversional methods such as: E1641–16 [14], Ozawa/Flynn/Wall [15-17], Kissinger-Akahira-134 

Sunose (KAS) [18, 19] and Friedman [20] models. In this form, the reactions processes could be studied 135 

without the assumption of any kinetic model. NETZSCH Kinetics Neo® software to analyze thermo-136 

chemical processes data has been used. Among above mentioned studied methods, the most suitable 137 

statistical data obtained have been exposed. 138 

 139 

3. Results and Discussion 140 

3.1. Thermogravimetric analysis of the thermochemical process. 141 

The TG and DTG (first derivative TG curve) for pyrite (mean of the three replicates per heating rate) over 142 

the range of temperature from 25 ºC to 850 ºC under four heating rates (5, 10, 15 and 20 ºC min-1) and 143 

oxygen atmosphere are shown in Figures 5 and 6 respectively. The Fig 5 and 6 show that different results, 144 

for each studied heating rate, are obtained. Main differences in the obtained curve at 5 ºC/min have been 145 

observed. In general, TG curves show that the oxidation reactions for pyrite in a range from 440-500 ºC 146 

and from 500-850 ºC approximately have been observed. Specifically, an initial pyrite degradation at 440 147 
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ºC (Fig. 6), with a loss of mass (approximately 30% of the initial mass) have been observed in Fig. 5. 148 

According to Zivkovic et al. [21] the first degradation could be due to a pyrite dissociation following Eq. 149 

3. In this sense, it is worth mentioning that in the study carried out by Zivkovic et al., [21] the first loss of 150 

mass occurred at 370 ºC, at 350 °C for Zhou [22]. Earnest [23] described the degradation at 400 ºC. The 151 

oxidation of Pyrite for Hongfei Chen [24] starts at 400 ºC, Pérez et al., [13] among 485 to 625 ºC, Dunn 152 

et al., [25] among 425-435 ºC, Dunn [26] among 330 to 630 ºC and for Zhou [22] the main mass loss 153 

occurred at 450 ºC. The obtained sulphur, under an oxidative atmosphere, had been oxidized to SO2 (Eq. 154 

4) and the oxidation of FeS2 to magnetite (Fe3O4, Eq.5) could also have taken place at that temperature. 155 

 156 

Fig. 5: Thermal gravimetric analysis of pyrite with 100% O2. 157 

 158 

Fig. 6: Differential thermal gravimetric analysis of pyrite with 100% O2. 159 

 160 

2𝐹𝑒𝑆2(𝑠) → 2𝐹𝑒𝑆(𝑠) + 𝑆2(𝑔) (Eq. 3) 161 

𝑆2(𝑔) + 2𝑂2(𝑔) → 2 𝑆𝑂2(𝑔) (Eq. 4) 162 

𝐹𝑒𝑆2(𝑠) +
8

3
𝑂2(𝑔) →

1

3
𝐹𝑒3𝑂4(𝑠) + 2𝑂2(𝑔)                         (Eq. 5) 163 

 164 

After the first degradation phase, under an increase in temperature (≈480 ºC), occurred a sulphation (Eq. 6 165 

and magnetite was oxidized to hematite (Eq. 7), which leads to a slight increase (0.3% of the initial mass) 166 

in mass (Fig 6), 167 

𝐹𝑒𝑆(𝑠) + 2𝑂2(𝑔) → 𝐹𝑒𝑆𝑂4(𝑠)                     (Eq. 6) 168 

 4𝐹𝑒3𝑂4(𝑠) + 𝑂2(𝑔) → 6𝐹𝑒2𝑂3(𝑠)                   (Eq. 7) 169 

Under high temperatures (≥650 ºC) the formed iron (II) sulphate was degraded (approximately 3.5% of 170 

the initial mass) into hematite (iron (III) oxide, Eq. 8) 171 

2𝐹𝑒𝑆𝑂4(𝑠) → 𝐹𝑒2𝑂3(𝑠) + 𝑆𝑂2(𝑔) + 𝑆𝑂3(𝑔)                (Eq. 8) 172 

 173 

3.2. Analysis of pyrite oxidation kinetics 174 

The kinetic parameters were calculated by using the above mentioned model-free methods. As expected, 175 

not all studied models are in agreement to an adequate fit for the oxidative degradation of pyrite. Thus, in 176 
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Table 1 the main statistical values (regression analysis, sum of deviation squares, mean residuals between 177 

experimental and calculated values and Student coefficient) calculated from the models are shown.  178 

From Table 1, among the studied methods, Kissinger's method seems to be the best way to describe the 179 

oxidative thermal behavior of pyrite. 180 

The KAS method [19] (Eq. 9) is an extension to the 0.1-0.9 interval of the initial Kissinger model [18]. In 181 

this sense, KAS’s kinetic method is an isoconversional method where the activation energy is a function 182 

of the conversion degree of a chemical reaction and can be applied without any assumption concerning 183 

the kinetic model  f( 184 

 k

jk

a

ajk

i g
RT

E

E

RA

T


 



 lnlnln 0

2
























 Eq. 9 185 

where Ea and A0 are the apparent activation energy and the pre-exponential factor at a given conversion 186 

degree k, and the temperatures Tjk are those which the conversion k is reached at a heating rate j. for a 187 

series of experiments at different heating rates (β). In this form, Tjk is the temperature peak of the DTG 188 

curve and a series of different heating rate measurements are (I,j) required in this model (Fig. 7).  189 

 190 

Fig. 7: Kissinger-Akahira-Sunose plot of pyrite. 191 

 192 

The apparent activation energy and Arrhenius pre-exponential factor (under different conversion grade) 193 

could be obtained from the slope and the intercept, respectively, of the linear plot of   













2ln
jk

i

T

  vs. 
jkT

1 .  194 

According to Eq. 9 several conversion (α) values (0.1 to 0.9) for all curves (different heating rates) have 195 

been evaluated. The KAS equation (slope and R2) shows a high relationship between of ln (βi/Tjk
2) and 196 

1000/Tαi (Fig. 7). Therefore, this method for obtaining the activation energy for thermochemical oxidation 197 

of pyrite is considered suitable. After that, apparent activation energy (Ea) values could be assessed from 198 

the slopes of these equations for each . As shown in Figure 7, the obtained slopes, and therefore, the 199 

calculated values for apparent Ea, regardless of the rate of heating, appear to be similar. The α values 200 

from 0.1 to 0.9 on the curve obtained at 15 ºC min-1 (medium value) heating rate have been chosen to 201 

determine the kinetic parameters. In Figure 8, the calculated Ea values results show that the activation 202 

energy was not similar for all conversion indicates the existence of a complex mechanism that occurs in 203 

the solid state.  204 
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 205 

Fig. 8: Apparent activation energy (Ea) values for pyrite thermal oxidative degradation calculated 206 

from the KAS equation for each conversion grade (α) value. 207 

 208 

In Figure 9 an evolution of the pre-exponential factor (A) is shown. t is important to note that, according 209 

to Vyazovkin [27], model-free kinetic models have the inconvenient to treating the experimental value of 210 

A as a dependent parameter. In spite of this, similar behavior to that described for Ea, can be observed for 211 

this parameter.  212 

 213 

Fig. 9: Fig. 12: Pre-exponential factor (A) values calculated from the KAS equation for each 214 

conversion grade (α) value. 215 

 216 

The obtained Ea and A values were highly dependent on the extent of conversion which could indicate 217 

that the process must be described as a multi-step reaction. The calculated Ea values at the different 218 

conversion rates show higher values under low conversion degree (200-450 kJ mol-1). The initial increase 219 

in activation energy conversion may be attributed to ignition and pyrite oxidation (Eq. 3-5). After that, a 220 

progressive decline to values close to 80 kJ mol-1 at =0.8 is found. The lower kinetic values of Ea and A 221 

values obtained under high conversion values, compared to those obtained in the initial reaction zone, 222 

may be due to the fact that magnetite which had lower decomposition rate than hematite. There may also 223 

have been a catalytic effect from inorganic elements on that degradation. 224 

 225 

4. Conclusions  226 

Thermal degradation kinetic for oxidation process of pyrite have been studied in TG by using E1641–16, 227 

Ozawa/Flynn/Wall, Kissinger-Akahira-Sunose and Friedman models. 228 

The most suitable model, among those studied, seems to be the one proposed by Kissinger.  229 

The oxidation process of pyrite can be described as a multi-step reaction because values of Ea and A were 230 

highly dependent on the degree of conversion. 231 

The calculated Ea values ranged among 450 kJ mol-1 at = 0.3 and 80 kJ mol-1 at 0.8.  232 

 233 
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Table 1. Statistical parameters for pyrite oxidative thermochemical behavior under several kinetic methods.  

 

Table CAPT



1 
 

 1 

Kinetic Method R2 Sum of dev. squares Mean residuals Student coef. 

95% 

ASTME1641–16 0.851 136415.21 9.45 1.9 

Friedman 0.913 108294.27 7.26 1.9 

Ozawa-Flynn-Wall 0.969 85452.26 6.07 1.9 

KAS 0.992 564.13 1.09 1.9 

 2 

Table 


