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ON KOLMOGOROV ENTROPY COMPACTNESS ESTIMATES FOR
SCALAR CONSERVATION LAWS WITHOUT UNIFORM

CONVEXITY∗

FABIO ANCONA† , OLIVIER GLASS‡ , AND KHAI T. NGUYEN§

Abstract. In the case of scalar conservation laws ut + f(u)x = 0, t ≥ 0, x ∈ R, with uniformly
strictly convex flux f , quantitative compactness estimates—in terms of Kolmogorov entropy in L1

loc—
were established in [C. De Lellis and F. Golse, Comm. Pure Appl. Math., 58 (2005), pp. 989–998;
F. Ancona, O. Glass, and K. T. Nguyen, Comm. Pure Appl. Math., 65 (2012), pp. 1303–1329] for
sets of entropy weak solutions evaluated at a fixed time t > 0, whose initial data have a uniformly
bounded support and vary in a bounded subset of L∞. These estimates reflect the irreversibility
features of entropy weak discontinuous solutions of these nonlinear equations. We provide here an
extension of such estimates to the case of scalar conservation laws with a smooth flux function f
that either is strictly (but not necessarily uniformly) convex or has a single inflection point with a
polynomial degeneracy.
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1. Introduction. Consider a scalar conservation law in one space dimension

(1.1) ut + f(u)x = 0,

where u = u(t, x) is the state variable, and f : R → R is a twice continuously
differentiable map. Without loss of generality, we will suppose

(1.2) f ′(0) = 0,

since one may always reduce the general case to this one by performing the space-
variable and flux transformations x → x + tf ′(0) and f(u) → f(u) − uf ′(0). It is
well known that, no matter how smooth the initial data are, solutions of the Cauchy
problem for (1.1) generally stay smooth only up to a critical time beyond which dis-
continuities (shocks) develop. Hence, it is natural to consider weak solutions in the
sense of distributions that, for the sake of uniqueness, satisfy an entropy admissi-
bility criterion [12, 16] equivalent to the celebrated Oleinik E-condition [22] which
generalizes the classical stability conditions introduced by Lax [18]:

Oleinik E-condition. A shock discontinuity located at x and connecting a left
state uL

.
= u(t, x−) with a right state uR

.
= u(t, x+) is entropy admissible if and only
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63, 35121 Padova, Italy (ancona@math.unipd.it).
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if there holds

(1.3)
f(uL)− f(u)

uL − u
≥ f(uR)− f(u)

uR − u

for every u between uL and uR, where u(t, x±) denote the one-sided limits of u(t, ·)
at x.

Equation (1.1) generates an L1-contractive semigroup of solutions (St)t≥0 that
associates, to given initial datum u0 ∈ L1(R) ∩ L∞(R), the unique entropy admissi-
ble weak solution Stu0

.
= u(t, ·) of the corresponding Cauchy problem (cf. [12, 16]).

This yields the existence of a continuous semigroup (St)t≥0 acting on the whole space
L1(R). Under the assumption that the flux function f is uniformly strictly convex, it
was shown by Lax [17] that such a semigroup St is compact as a mapping from L1(R)
to L1

loc(R), for every t > 0. Indeed, in this case entropy admissible weak solutions
satisfy the one-side Oleinik inequality [22] which yields uniform bounded variation
(BV) bounds on the solutions at any fixed time t > 0 which in turn, applying Helly’s
compactness theorem, imply the compactness of the mapping St. This property re-
flects the irreversibility features of entropy weak (discontinuous) solutions of these
equations. De Lellis and Golse [13], following a suggestion by Lax [19, 20], used the
concept of Kolmogorov ε-entropy, recalled below, to provide a quantitative estimate
of this compactness effect.

Definition 1.1. Let (X, d) be a metric space and K a totally bounded subset of
X. For ε > 0, let Nε(K) be the minimal number of sets in a cover of K by subsets of
X having diameter no larger than 2ε. Then the ε-entropy of K is defined as

Hε(K | X)
.
= log2Nε(K).

Throughout the paper, we will call an ε-cover, a cover of K by subsets of X
having diameter no larger than 2ε.

In the case of uniformly strictly convex conservation laws, De Lellis and Golse
established in [13] an upper bound on the Kolmogorov ε-entropy of the image set St(C)
for bounded subsets C of L1 of order 1/ε. In [3], we have supplemented the upper
estimate established in [13] with a lower bound on the ε-entropy of St(C) of the same
order 1/ε, thus showing that the estimate of De Lellis and Golse was optimal. Entropy
numbers play a central role in various areas of information theory and statistics as
well as of learning theory. In the present setting, this concept could provide a measure
of the order of “resolution” and of the “complexity” of a numerical method for (1.1),
as suggested in [19, 20].

The aim of this paper is to extend this type of quantitative estimate on the com-
pactness property of the mapping St, t > 0, to the case of conservation laws (1.1) with
a flux function that either is strictly (but not necessarily uniformly) convex or has a
single inflection point with polynomial degeneracy. Notice that, when one removes the
assumption of uniform convexity of the flux function, entropy weak solutions do not
satisfy anymore the classical Oleinik inequality and they may have unbounded vari-
ation (see [7]). However, it was shown in [8, 14] that for such equations the positive
variation of the derivative of the flux composed with a bounded solution is uniformly
bounded at any positive time, hence it belongs to the BV space. Hence, in the case
of a conservation law with a single inflection point, given a bounded subsets C of L1,
we shall
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– exploit the BV bounds on f ′(u) and invoke [6, Theorem 1] to construct an
ε′-covering U ′ of the set L .

=
{
f ′ ◦u

∣∣ u ∈ St(C)} with cardinality Card (U ′) ≈
2a/ε

′
for some constant a > 0;

– associate with U ′ an ε-covering U of the set St(C), with cardinality Card (U) ≈
Card (U ′) · 2b/f ′(ε) for some other constant b > 0;

– take ε′ = f ′(ε) to produce an ε-covering U of the set St(C) with cardinality
Card (U) ≈ 2(a+b)/f ′(ε).

As a consequence, we find that the ε-entropy of St(C) has an upper bound of order
1/f ′(ε). We also show that this estimate is optimal providing a lower bound of the
same order 1/f ′(ε) for the ε-entropy of a subset of St(C), and, hence, for the ε-entropy
of St(C). Namely, performing a similar analysis as in [3], we establish such a lower
bound for the ε-entropy of St(C+ ∪ C−), where C+, C−, denote the classes of initial
data in C which assume only nonnegative and nonpositive values, respectively. Notice
that, for the particular class of fluxes f(u) = um+1/(m + 1), m even, we find that
the Kolmogorov ε-entropy of St(C) is of order 1/εm, which shows how accurate this
concept is in reflecting the nonlinearity of the flux. We finally prove that even in the
case of strictly, but not uniformly, convex flux there hold the same upper and lower
bounds of order 1/f ′(ε) for the Kolmogorov ε-entropy of St(C).

Specifically, we shall assume that the flux function satisfies one of the standing
assumptions:

(C) f : R→ R is a twice continuously differentiable, strictly convex function.
(NC) f : R → R is a smooth, nonconvex function with a single inflection point at

zero having polynomial degeneracy, i.e., such that

(1.4)
f (j)(0) = 0 for all j = 2, . . . ,m, f (m+1)(0) 6= 0 ,

f ′′(u) · u · sign
(
f (m+1)(0)

)
> 0 for all u ∈ R \ {0}

for some even integer m ≥ 2.
Notice that, generically, smooth fluxes satisfy one of the assumptions (C), (NC), since
a generic property of smooth maps f : R→ R is that f (3)(x) 6= 0 whenever f ′′(x) = 0.

In connection with a flux f : R → R and any constant M > 0, we introduce a
map ∆f,M : (0,+∞)→ R measuring the oscillation of f ′, defined by setting

(1.5) ∆
f,M

(s)
.
= s · inf

|u|,|v|≤M u·v ≥ 0
|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ for all s > 0 .

Notice that since in (1.5) we are taking the infimum in a compact subset of R2, if
f satisfies either of the assumptions (C) or (NC), it follows that ∆

f,M
(s) > 0 for all

s > 0.
We then consider sets of bounded, compactly supported initial data of the form

(1.6) C[L,M ]
.
=
{
u0 ∈ L∞(R)

∣∣ Supp (u0) ⊂ [−L,L] , ‖u0‖L∞ ≤M
}
.

The main results of the paper show that the Kolmogorov ε-entropy of St(C[L,M ]) with
respect to the L1-topology is of order ≈ ε−m for fluxes satisfying the assumption (NC),
and has an upper bound of order ≈ (∆

f,M
(ε))−1 for fluxes satisfying the assumption

(C). Precisely, we prove the following upper and lower bounds for the Kolmogorov
ε-entropy of St(C[L,M ]).

Theorem 1.2. Let f : R → R be a function satisfying (1.2) and the assumption
(C), and let {St}t≥0 be the semigroup of entropy weak solutions generated by (1.1) on
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the domain L1(R). Then, given L,M, T > 0, for every ε > 0 sufficiently small the
following estimates hold:

Hε
(
ST (C[L,M ]) | L1(R)

)
≤ Γ+

1 ·
1

∆
f,M

(
ε
γ+

1

) ,(1.7)

Hε
(
ST (C[L,M ]) | L1(R)

)
≥ Γ−1 ·

1

ε ·min

{
max

z∈
[
0, 6ε

L

]f ′′(z), max
z∈
[
− 6ε
L , 0
]f ′′(z)} ,(1.8)

where

Γ+
1 = c1

(
L+ T +

L2

T

)
, γ+

1 = c1

(
1 + L+ T

)
,(1.9)

Γ−1 =
c1
T

(1.10)

for some constant c1 > 0 depending only on f and M .

Remark 1.3. In the case where the derivative f ′ of a strictly convex flux f is
a convex function on [0,+∞) and a concave function on (−∞, 0], and we assume
that (1.2) holds, by definition (1.5) it follows that

∆
f,M

(s) = min
{
|f ′(−s)|, |f ′(s)|

}
for all s > 0

for every M > 0, while

min
{

max
z∈[0,s]

f ′′(z), max
z∈[−s,0]

f ′′(z)
}

= min
{
f ′′(−s), f ′′(s)

}
for all s > 0 .

Therefore, in this case, by (1.7)–(1.8) the L1-Kolmogorov ε-entropy of St(C[L,M ])

turns out to be of order ≈ 1/|f ′(±ε)| ≈ 1/
(
ε · f ′′(±ε)

)
. Instead, if we assume that

f ′′(u) ≥ c > 0 for all u ∈ R, applying the mean-value theorem to f ′ it follows that

∆
f,M

(s) ≥ c · s for all s > 0 .

On the other hand, for every fixed M > 0, there exists some constant cM > 0 such
that

min
{

max
z∈[0,s]

f ′′(z), max
z∈[−s,0]

f ′′(z)
}
≤ cM for all s ∈ (0,M ] .

Thus, in this second case we recover the estimate Hε(ST (C[L,M ]) |L1(R)) ≈ 1/ε es-
tablished in [3, 13] for uniformly strictly convex fluxes.

Remark 1.4. If we consider a smooth, strictly convex flux f with a polynomial
degeneracy at zero, i.e., such that

(1.11)
f (j)(0) = 0 for all j = 1, . . . ,m, f (m+1)(0) 6= 0 ,

f ′′(u) > 0 for all u ∈ R \ {0}

for some odd integer m ∈ N , one can show that there exist some constant αM > 0
depending on f,M , and α > 0 depending only on f , such that

(1.12) ∆
f,M

(s) ≥ sm

αM
, min

{
max
z∈[0,s]

f ′′(z), max
z∈[−s,0]

f ′′(z)
}
≤ α · sm−1
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for all s > 0 sufficiently small (see Remark 3.6 and Lemma 4.4). Hence, for fluxes satis-
fying the assumption (1.11), by (1.7)–(1.8) the L1-Kolmogorov ε-entropy of St(C[L,M ])
turns out to be of order ≈ 1/εm.

Theorem 1.5. Let f : R → R be a function satisfying (1.2) and the assumption
(NC). Then, in the same setting as Theorem 1.2, for any given L,M, T > 0, and for
every ε > 0 sufficiently small, the following estimates hold:

Hε
(
ST (C[L,M ]) | L1(R)

)
≤ Γ+

2 ·
1

εm
,(1.13)

Hε
(
ST (C[L,M ]) | L1(R)

)
≥ Γ−2 ·

1

εm
,(1.14)

where

(1.15)

Γ+
2 = c2

(
1 + L+ T +

L2

T

)m+1

,

Γ−2 = c2 ·
Lm+1

T

for some constant c2 > 0 depending only on f and M .

Remark 1.6. If a flux f satisfies the assumption (NC) and (1.2), one can show
that, for every fixed M > 0, there exists some constant βM > 0 such that

(1.16)
sm

βM
≤ ∆

f,M
(s) ≤ βM · sm

for all s > 0 sufficiently small (see Lemma 3.5). Hence, the upper estimates on the
Kolmogorov ε-entropy of St(C[L,M ]) provided by Theorem 1.5 are of the same order
as the ones stated in Theorem 1.2.

We observe that, for fluxes having one inflection point where all derivatives van-
ishes the composition of the derivative of the flux with the solution of (1.1) fails in
general to belong to the BV space (see [21] and Remark 2.4 here). However, for
weakly genuinely nonlinear fluxes, that is to say, for fluxes with no affine parts, it is
shown in [23, Theorem 26] that equibounded sets of entropy solutions of (1.1) are still
relatively compact in L1 (see also [21]). Therefore, for fluxes of such classes that do
not fulfill the assumption (NC), it remains an open problem to provide quantitative
compactness estimates on the solutions set of (1.1). In this case, a different approach
from the one developed in the present paper must be pursued to obtain upper bounds
on the Kolmogorov ε-entropy of the solution set, perhaps exploiting the BVΦ-bounds
obtained in [21, Theorem 1], Φ being a convex function linked to the degeneracy of
the flux.

The paper is organized as follows. In section 2 we collect notations and prelimi-
nary results concerning the theory of scalar conservation laws and the estimates of the
Kolmogorov ε-entropy for sets of functions with uniformly BV. In section 3 we estab-
lish the upper bounds on the ε-entropy of the solution set stated in Theorems 1.2–1.5,
while the proof of the lower bounds is carried out in section 4.

2. Notations and preliminaries. Throughout the paper we shall denote by
• L1(R), the Lebesgue space of all (equivalence classes of) summable functions

on R, equipped with the usual norm ‖ · ‖L1 ;
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• L∞(R), the space of all essentially bounded functions on R, equipped with
the usual norm ‖ · ‖L∞ ;

• Supp(u), the essential support of a function u ∈ L∞(R);
• TV {u |D}, the total variation of u on the interval D ⊂ R; in the case where
D = R we just write TV {u};

• BV (D), the set of functions with bounded total variation on D;
• bxc .= max

{
z ∈ Z |z ≤ x

}
, the integer part of x.

Remark 2.1. We recall [12, 16] that a scalar conservation law (1.1) generates a
unique L1-contractive semigroup

{
St : L1(R)→ L1(R)

}
t≥0

that associates with any

u0 ∈ L1(R) ∩ L∞(R) the unique entropy solution

u(t, x)
.
= Stu0(x) , x ∈ R, t > 0 ,

of (1.1) with initial datum u(0, x) = u0. Notice that, if the flux function f satis-
fies either of the assumptions (C) or (NC) stated in the introduction, although Stu0

may well have unbounded variation, it is still true that Stu0 admits one-sided limits
Stu0(±x) at every point x ∈ R. This is the consequence of the Lax–Oleinik represen-

tation formula [18] in the (C) case, and of the BV
1
p regularity (see [21, Theorem 3])

in the (NC) case.

For any L,M > 0, consider the class of functions in (1.6) and set

(2.1) f ′M
.
= sup
|v|≤M

|f ′(v)| .

The next classical result provides an upper bound on the L∞-norm and on the support
of STu0 for every u0 ∈ C[L,M ].

Lemma 2.2. Let f : R → R be a differentiable map. For any L,M, T > 0 and
u0 ∈ C[L,M ], there holds

(2.2)
∥∥STu0

∥∥
L∞(R)

≤ M and Supp(STu0) ⊆
[
− l[L,M,T ], l[L,M,T ]

]
with

(2.3) l[L,M,T ]
.
= L+ T · f ′M .

Moreover, if u0 ∈ C[L,M ] ∩BV (R), then one has STu0 ∈ BV (R).

Proof. The monotonicity of the solution operator St yields [12, 16]:

(2.4)
∥∥Stu0

∥∥
L∞(R)

≤
∥∥u0

∥∥
L∞(R)

≤ M for all t ≥ 0 .

Next observe that, for any u0 ∈ C[L,M ], we can find a sequence {uν}ν , uν ∈ BV (R),
with Supp(uν) ⊂ Supp(u0), such that uν → u0 in L1. This, in turn, implies that

(2.5) Stu
ν L1

−→ Stu0 for all ν for all t > 0 .

Moreover, recalling that Stu
ν can be obtained as the limit of piecewise constant front

tracking approximations [9, Chapter 6], we deduce that
(2.6)
Supp(Stu

ν) ⊆
[
− l[L,M,t], l[L,M,t]

]
with l[L,M,t]

.
= L+ t ·f ′M for all ν for all t > 0

with f ′M as in (2.1). Thus, (2.4)–(2.6) together yield (2.2). The a priori bounds
on the total variation of the solution guarantee also that STu0 ∈ BV (R) whenever
u0 ∈ BV (R) (see [9, Theorem 6.1]).
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We next collect the uniform upper bounds on the total variation of the flux of an
entropy weak solution established in [8, Theorem 3.4, Theorem 4.9] (see also [10], [12,
section 11.2], [21, Theorem 2]).

Lemma 2.3. Assume that f : R→ R is a function satisfying either of the (C) or
(NC) conditions. Then, for any L,M, T > 0 and for every u0 ∈ C[L,M ], there holds

(2.7) TV
{
f ′ ◦ STu0 | R

}
≤ C1

(
1 +

L

T

)
for some constant C1 > 0 depending only on f and M .

Proof. For convenience of the reader we provide a sketch of the proof since the
constants in the right-hand side of (2.7) slightly differs form the ones in the cited
references.

1. Assume that f satisfies the (C) condition. Observe first that, because of the
nonintersection property of minimal and maximal backward characteristics [10], one
deduces a one-sided Lipschitz condition on the derivative of the flux [12, section 11.2]:

(2.8) f ′
(
STu0(y)

)
− f ′

(
STu0(x)

)
≤ y − x

T
for all x < y .

On the other hand, by Lemma 2.2 we have Supp(ST (u0)) ⊆ [−l[L,M,T ], l[L,M,T ]].

Thus, since (2.8) implies that x→ f ′
(
STu0(x)

)
− x

T is a nonincreasing map, we find

TV
{
f ′ ◦ STu0 | R

}
= lim

ε→0
TV
{
f ′ ◦ STu0 | (−l[L,M,T ] −ε, l[L,M,T ] + ε)

}
≤ lim

ε→0

[
TV
{
f ′ ◦ STu0 −

·
T

∣∣∣ (−l[L,M,T ] −ε, l[L,M,T ] + ε)
}

+ TV
{ ·
T
| (−l[L,M,T ] −ε, l[L,M,T ] + ε)

}]
≤

4l[L,M,T ]

T
,

which, by definition (2.3), yields (2.7).
2. Assume that f satisfies the (NC) condition. Since by Lemma 2.2 we have

‖STu0‖L∞(R) ≤ M , Supp(ST (u0)) ⊆ [−l[L,M,T ], l[L,M,T ]], invoking [8, Theorem 4.9]
(see also [21, Theorem 2]) we deduce that, for every ε > 0, there holds

(2.9) TV
{
f ′ ◦ STu0 | (−l[L,M,T ] − ε, l[L,M,T ] + ε)

}
≤

CM · 2(l[L,M,T ] + ε)

T
+ C̃M ,

where CM , C̃M > 0 are constants depending only on the flux f and on M . Hence,
relying on (2.3), (2.9) we derive

TV {f ′ ◦ ST (u0) | (−∞,+∞)} = lim
ε→0

TV {f ′ ◦ ST (u0) | (−l[L,M,T ] − ε, l[L,M,T ] + ε)}

≤ 8Cf,M1 L

T
+ 2 ·

(
CM · f ′M + C̃M

)
,

which yields (2.7).

Remark 2.4. In the nonconvex case a bound as in (2.7) in general does not hold
without the assumption of polynomial degeneracy in (1.4). In fact, in [21, section
8.1] an example of a flux f(u) was exhibited having one inflection point at zero, with
f j(0) = 0 for all j ∈ N , j ≥ 2, and of an initial datum u0 ∈ L∞(R) with compact
support, such that f ′ ◦ St(u0) /∈ BV (R) for almost every t in an interval of (0,∞).
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To complete this section, we recall now two results that provide an upper bound
on the ε-entropy for sets of functions with uniformly bounded total variation and a
lower bound for the ε-entropy of sets of functions having uniformly bounded one-sided
derivative.

Lemma 2.5 (see [6, Theorem 1]). Given L, V > 0, consider the set

(2.10) F[L,V ]
.
=
{
g : R→ [−V, V ]

∣∣ ∣∣ Supp(g) ⊆ [−L,L], TV {g} ≤ 2V
}
.

Then, for all ε ≤ V L
3 , there holds

Hε
(
F[L,V ] | L1(R)

)
≤ 48V L · 1

ε
.

Moreover, there exists a set of piecewise constant functions {g1, . . . , gp} ⊂ F[L,V ] with

p ≤

⌊
2

(
48V L
ε

)⌋
+ 1 ,

that satisfy

gi(x) = gi

(
− L+

2L

N
· ν
)

for all x ∈
[
− L+ 2L

N · ν, −L+ 2L
N · (ν+1)

)
, ν ∈ {0, 1, . . . , N−1} with

N ≥
⌊

8LV

ε

⌋
,

and such that

(2.11) F[L,V ] ⊂
p⋃
i=1

B
(
gi, ε

)
,

where B
(
gi, ε

)
denotes the L1(R)-ball centered at gi of radius ε.

Lemma 2.6 (see [3, Proposition 2.2]). Given L, h, b > 0, consider the sets

(2.12)

B[L,h,≤b]
.
=
{
v ∈ BV (R)

∣∣ Supp(v) ⊆ [−L,L], ‖v‖L∞(R) ≤ h, Dv ≤ b
}
,

B[L,h,≥−b]
.
=
{
v ∈ BV (R)

∣∣ Supp(v) ⊆ [−L,L], ‖v‖L∞(R) ≤ h, Dv ≥ −b
}
,

where the inequalities Dv ≤ b, Dv ≥ −b must be understood in the sense of measures,
i.e., the Radon measure Dv satisfies Dv(J) ≤ b · |J |, Dv(J) ≥ −b · |J |, respectively,
for every Borel set J ⊂ R, |J | being the Lebesgue measure of J . Then, for any
0 < ε ≤ Lh

6 , there holds

Hε
(
B[L,h,≥b]

∣∣ L1(R)
)
≥ 2bL2

27 ln 2
· 1

ε
,

Hε
(
B[L,h,≤−b]

∣∣ L1(R)
)
≥ 2bL2

27 ln 2
· 1

ε
.
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3. Upper compactness estimates. We derive in this section upper bounds
on the ε-entropy in L1 of ST (C[L,M ]) for the class of initial data C[L,M ] in (1.6),
when the flux function f satisfies either of the assumptions (C) or (NC) stated in the
introduction.

Towards a proof of (1.7), (1.13), we first establish an upper bound on the ε-entropy
in L1 of the set

(3.1) L[L,M,T ]
.
=
{
f ′ ◦ u

∣∣ u ∈ ST (C[L,M ])
}
.

Lemma 3.1. In the same setting as Theorem 1.2 or 1.5, assume that f : R→ R is
a function satisfying either of the (C) or (NC) conditions and that (1.2) holds. Then,

given any L,M, T > 0, for all ε ≤ Γ+
1

288 , there holds

(3.2) Hε
(
L[L,M,T ] | L1(R)

)
≤ Γ+

1

2
· 1

ε

with Γ+
1 as in (1.9). Moreover, there exists a set of piecewise constant functions

{g1, . . . , gp} with

p ≤

⌊
2

(
Γ

+
1

2 ε

)⌋
+ 1 ,

that enjoy the following properties:
(i) For any i = 1, . . . , p, one has

Supp(gi) ⊆
[
− l[L,M,T ], l[L,M,T ]

]
,

Im(gi) ⊆
[
−f ′M , f ′M

]
if (C) holds, Im(gi) ⊆

[
0, f ′M

]
if (NC) holds ,

and

gi(x) = gi(xν) for all x ∈ [xν , xν+1) , ν ∈ {0, 1, . . . , N−1},

with

xν
.
= −l[L,M,T ]+

2 l[L,M,T ]

N
·ν , ν ∈ {0, 1, . . . , N} , N ≥

⌊
8 l[L,M,T ]V[L,M,T ]

ε

⌋
,

where f ′M , l[L,M,T ] are the constants defined in (2.1), (2.3), respectively, and

(3.3) V[L,M,T ]
.
= max

{
C1

2
·
(

1 +
L

T

)
, f ′M

}
,

C1 being the constants defined in (2.7).
(ii)

L[L,M,T ] ⊂
p⋃
i=1

B
(
gi, ε

)
.

Proof. Observe first that, relying on Lemmas 2.2–2.3, we have

(3.4) L[L,M,T ] ⊆ F[l[L,M,T ], V[L,M,T ]] ,
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where F[l[L,M,T ], V[L,M,T ]] is a set defined as in (2.10). Therefore, invoking Lemma 2.5,
we derive

(3.5) Hε
(
L[L,M,T ] | L1(R)

)
≤ Hε

(
F[l[L,M,T ], V[L,M,T ]] | L

1(R)
)

≤ 48 ·max

{
C1

(
L+ T · f ′M )

2
·
(

1 +
L

T

)
, f ′M

(
L+ T · f ′M )

}
· 1

ε

which yields (3.2), and we deduce the existence of a set of piecewise constant functions
{g1, . . . , gp} enjoying the properties (i)–(ii).

3.1. Strictly (not necessarily uniformly) convex fluxes. In this subsection,
we will study the case where f is a convex function satisfying the assumption (C) which
in particular implies that f ′ is strictly increasing and hence invertible on R.

In order to establish (1.7), we will use the following technical lemma providing
an estimate of the L1-distance of two elements u, v ∈ ST (C[L,M ]) in terms of the
L1-distance of f ′ ◦ u, f ′ ◦ v. To this end, consider the map

(3.6) ∆̂
f,M

(s)
.
= s · inf

|u|,|v|≤M
|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ for all s > 0 ,

which differs form the map in (1.5) for the fact that the infimum is taken also over

pairs u, v of opposite sign. Observe that the maps s 7→ ∆̂
f,M

(s), s 7→ ∆̂
f,M

(s)

s are
strictly increasing and thus invertible. Moreover, one has

(3.7) ∆̂
f,M

(
|u− v|

)
≤ |f ′(u)− f ′(v)| for all u, v ∈ R s.t. |u|, |v| ≤M .

Lemma 3.2. Let f : R → R be a differentiable map. Given any L,M > 0, for
every u, v ∈ L∞(R) with
(3.8)
‖u‖L∞ ≤ M, ‖v‖L∞ ≤ M, and Supp(u) ⊂ [−L,L], Supp(v) ⊂ [−L,L],

there holds

(3.9)
∥∥u− v∥∥

L1(R)
≤ (1 + 2L) · ∆̂

−1
f,M

(∥∥f ′ ◦ u− f ′ ◦ v∥∥
L1(R)

)
.

Proof.
1. We claim that, setting

(3.10) ρ
.
= ∆̂

−1
f,M

(∥∥f ′ ◦ u− f ′ ◦ v∥∥
L1(R)

)
,

one has

(3.11)
∣∣u(x)− v(x)

∣∣ ≤ ρ ·max

{
1,

∣∣f ′(u(x))− f ′(v(x))
∣∣∥∥f ′ ◦ u− f ′ ◦ v∥∥

L1(R)

}
for all x ∈ R .

Indeed, assume that |u(x) − v(x)| ≥ ρ. Then, relying on (3.7), (3.10), and on the
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monotonicity of s→ ∆̂
f,M

(s)

s , we estimate

(3.12)

∣∣u(x)− v(x)
∣∣ ≤ |u(x)− v(x)|

∆̂
f,M

(
|u(x)− v(x)|

) · ∣∣f ′(u(x))− f ′(v(x))
∣∣

≤ ρ

∆̂
f,M

(ρ)
·
∣∣f ′(u(x))− f ′(v(x))

∣∣
= ρ ·

∣∣f ′(u(x))− f ′(v(x))
∣∣∥∥f ′ ◦ u− f ′ ◦ v∥∥

L1(R)

which yields (3.11).
2. Thanks to (3.10), (3.11), and since by (3.8) one has u = v = 0 on R \ [−L,L],

we derive

(3.13)

∥∥u− v∥∥
L1(R)

≤
∫ L

−L

∣∣u(x)− v(x)
∣∣dx

≤
∫ L

−L
ρ ·

(
1 +

∣∣f ′(u(x))− f ′(v(x))
∣∣∥∥f ′ ◦ u− f ′ ◦ v∥∥

L1(R)

)
dx

≤ 2Lρ+ ρ ,

which proves (3.9).

Remark 3.3. As suggested by one of the referees, one could replace the expression
in (3.9) with

(3.14)
∥∥u− v∥∥

L1(R)
≤ 2Lω

(
1

2L

∥∥f ′(u)− f ′(v)
∥∥
L1(R)

)
,

where ω is the concave modulus of continuity of [f ′]−1, as follows from Jenssen’s
inequality. Following the rest of the proof, this gives another expression for the upper
estimates. This gives the same expression in the case of power nonlinearities.

The next lemma shows that ∆
f,M

, ∆̂
f,M

are comparable maps.

Lemma 3.4. Given a map f : R → R satisfying the assumption (C), let ∆
f,M

,

∆̂
f,M

be the maps defined in (1.5), (3.6), respectively. Then, one has

(3.15) ∆
f,M

(s/2) ≤ ∆̂
f,M

(s) ≤ ∆
f,M

(s).

Proof. The second inequality in (3.15) is an immediate consequence of the defi-
nitions (1.5), (3.6). Towards a proof of the first inequality in (3.15), given u ≤ 0 ≤ v,
relying on the monotonicity of f ′ we find

(3.16)

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ =
f ′(v)− f ′(0)

v − u
+
f ′(0)− f ′(u)

v − u

=

(
v

v − u

)
· f
′(v)− f ′(0)

v
+

(
−u
v − u

)
· f
′(0)− f ′(u)

−u
.

Therefore, observing that v−u ≥ s implies max{v,−u} ≥ s/2, we deduce from (3.16)
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that for all −M ≤ u ≤ 0 ≤ v ≤M , such that v − u ≥ s, there holds

(3.17)

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ ≥


1

2
· f
′(v)− f ′(0)

v
if v = max{v,−u} ,

1

2
· f
′(0)− f ′(u)

−u
if − u = max{v,−u} ,

≥ 1

2
·D(s/2) ,

where

(3.18) D(s)
.
= inf
|u|,|v|≤M,u·v≥0

|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ .
Taking the infimum in the left-hand side of (3.17) over all −M ≤ u ≤ 0 ≤ v ≤ M
with v − u ≥ s, we thus find

(3.19) D̂(s) ≥ 1

2
·D(s/2) for all s > 0 ,

where

(3.20) D̂(s)
.
= inf
|u|,|v|≤M
|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ .
Then, observing that by (1.5), (3.6), we have

(3.21) ∆
f,M

(s) = s ·D(s), ∆̂
f,M

(s) = s · D̂(s) for all s > 0 ,

we recover from (3.19) the first inequality in (3.15).

Proof of upper bound (1.7) of Theorem 1.2. By virtue of Lemma 3.1, given any

(3.22) 0 < ε <
(
1 + 2 l[L,M,T ]

)
· ∆̂
−1
f,M

( Γ+
1

124

)
with l[L,M,T ] as in (2.3), and setting

(3.23) ε′
.
= ∆̂

f,M

(
ε

1 + 2 l[L,M,T ]

)
,

there holds

(3.24) Nε′
(
L[L,M,T ] | L1(R)

)
≤ 2

(
Γ

+
1

2 ε′

)
.

Therefore, there exists a set of functions

(3.25)
{
g1, . . . , gp

}
⊂ L[L,M,T ]

with

(3.26) p ≤

⌊
2

(
Γ

+
1

2 ε′

)⌋
+ 1 ,
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such that

(3.27) L[L,M,T ] ⊆
p⋃
i=1

B
(
gi, ε

′) ,
where B

(
gi, ε

′) denotes the L1(R)-ball centered at gi of radius ε′. Notice that, by
Lemma 2.2 and because of (1.2), we have

L[L,M,T ] ⊆ C[l[L,M,T ],f
′
M ] .

Hence (3.27) yields

(3.28) L[L,M,T ] ⊆ C[l[L,M,T ],f
′
M ] ∩

p⋃
i=1

B
(
gi, ε

′) .
On the other hand, observing that by (1.2) one has

(3.29) g ∈ C[l[L,M,T ],f
′
M ] =⇒ (f ′)−1 ◦ g ∈ C[l[L,M,T ],M ] ,

and because of (3.23), invoking Lemma 3.2 we deduce that for all i = 1, . . . , p, there
holds
(3.30)
g ∈ C[l[L,M,T ],f

′
M ], ‖g− gi‖L1(R) < ε′ =⇒

∥∥(f ′)−1 ◦ g− (f ′)−1 ◦ gi
∥∥
L1(R)

< ε .

Hence, we deduce from (3.28), (3.30) that

(3.31)

ST (C[L,M ]) ⊆
p⋃
i=1

{
(f ′)−1 ◦ g

∣∣ g ∈ C[l[L,M,T ],f
′
M ] ∩B

(
gi, ε

′)}

⊆
p⋃
i=1

B
(
(f ′)−1 ◦ gi, ε

)
.

Thus, for all ε > 0 satisfying (3.22), we have produced an ε-cover of ST (C[L,M ]) in L1

of cardinality p which, thanks to (3.15), (3.26), is bounded by

(3.32) p ≤ 1 + 2

(
Γ

+
1

2 ε′

)
≤ 2

(
Γ

+
1

ε′

)
= 2

(
Γ

+
1

∆̂
f,M

(2ε/γ
+
1 )

)
≤ 2

(
Γ

+
1

∆
f,M

(ε/γ
+
1 )

)
with γ+

1
.
= 2(1 + 2 l[L,M,T ]) as in (1.9) because of (2.3). Taking the base-2 logarithm

in (3.32) we then derive the estimate (1.7).

3.2. Fluxes with one inflection point having polynomial degeneracy. In
this subsection we will assume that f is a nonconvex function satisfying the assump-
tion (NC) and (1.2). To fix the ideas we shall consider the case where f (m+1)(0) > 0,
the case with f (m+1)(0) < 0 being entirely similar. Therefore, throughout this sub-
section we shall assume that, for some even integer m ≥ 2, there holds

(3.33)
f (j)(0) = 0 for all j = 1, . . . ,m, f (m+1)(0) > 0 ,

f ′′(u) · u > 0 for all u ∈ R \ {0} .

This implies that the function f ′ is strictly decreasing on (−∞, 0] and strictly increas-
ing on [0,+∞). Moreover, f ′ is positive on R \ {0}.

Towards a proof of (1.13) we first establish some technical lemmas concerning the
flux f and the function ∆

f,M
defined in (1.5), and providing bounds on the L1-distance

of two elements u, v ∈ ST (C[L,M ]) in terms of the L1-distance of f ′ ◦ u, f ′ ◦ v.
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Lemma 3.5. Let f : R → R be a smooth map satisfying the assumption (3.33).
For any M > 0, there exist constants κM ∈ (0, 1), βM , σM > 0 depending only on f
and M , such that the following hold:

(3.34)

∣∣f ′(u)− f ′(u/2)
∣∣ ≥ κM · |f ′(u)| ,∣∣f ′(u/2)
∣∣ ≥ κM · |f ′(u)|

for all u ∈ [−M,M ] ,

(3.35) sup
u∈[−M,M ]\{0}

{∣∣∣∣f(u)− f(0)

uf ′(u)

∣∣∣∣} ≤ 1− κM
2

< 1 ,

(3.36)
sm

βM
≤ ∆

f,M
(s) ≤ βM · sm for all s ∈ (0, σM ] .

Proof.
1. Observe first that, by the monotonicity property of f ′ and since f ′ is always

nonnegative, the inequalities in (3.34) are equivalent to

(3.37)
f ′(u)− f ′(u/2) ≥ κM · f ′(u) ,

f ′(u/2) ≥ κM · f ′(u)
for all u ∈ [−M,M ] .

Next, by writing a Taylor approximation of the derivative of the flux in the origin and
relying on (1.2), we find

(3.38)

f ′(u)

2
− f ′(u/2) =

f (m+1)(0)

m!

(um
2
− (u/2)m

)
+ um · o(1)

= um ·

(
f (m+1)(0)

m!

(
(1/2)− (1/2)m

)
+ o(1)

)

and

(3.39)

f ′(u/2)− f ′(u)

2m+1
=
f (m+1)(0)

m!

(
(u/2)m − 1

2
(u/2)m

)
+ um · o(1)

= um ·

(
f (m+1)(0)

m!

1

2m+1
+ o(1)

)
,

where o(1) denotes a function converging to zero when u → 0. Since fm+1(0) > 0
and m is even, we deduce from (3.38) that there will be some constant u0 > 0 such
that

(3.40)

f ′(u)− f ′(u/2) ≥ 1

2
f ′(u) ,

f ′(u/2) ≥ 1

2m+1
f ′(u)

for all u ∈ [−u0, u0] .

On the other hand, setting
(3.41)
c0

.
= inf
u0≤|u|≤M

f ′(u)− f ′(u/2) , c′0
.
= inf
u0≤|u|≤M

f ′(u/2) , ĉ0
.
= sup
u0≤|u|≤M

f ′(u) ,
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we find

(3.42)

f ′(u)− f ′(u/2) ≥ c0
ĉ0
· f ′(u) ,

f ′(u/2) ≥ c′0
ĉ0
· f ′(u)

for all u ∈ [−M,M ] \ [−u0, u0] ,

where c0, c
′
0, ĉ0 are positive constants since in (3.41) we are taking the infimum and

the supremum of positive continuous functions on a compact subset of R. Hence,
(3.40), (3.42) together yield (3.37) taking

κM
.
= min

{
1

2m+1
,
c0
ĉ0
,
c′0
ĉ0

}
.

2. Notice that condition (3.37) implies

f ′(u/2) ≤ (1− κM ) · f ′(u) for all u ∈ [−M,M ] .

Hence, relying on the nonnegativity and monotonicity property of f ′, for any u ∈
[−M,M ] \ {0} we derive the estimate:

∣∣∣∣f(u)− f(0)

u

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫ u

0

f ′(s) ds

u

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣

∫ u/2

0

f ′(s) ds+

∫ u

u/2

f ′(s) ds

u

∣∣∣∣∣∣∣∣∣
≤ 1

2

(
f ′(u/2) + f ′(u)

)
≤
(

1− κM
2

)
· f ′(u) ,

which yields (3.35).
3. In order to establish (3.36), it will be sufficient to show that there exist con-

stants so, k0 > 0 such that there holds
(3.43)

1

k0
·
min

{
f ′(−s/2), f ′(s/2)

}
s/2

≤ D(s) ≤ k0·
min

{
f ′(−s), f ′(s)

}
s

for all s ∈ (0, s0],

with D as in (3.18), since then one recovers (3.36) from (3.43) recalling (3.21) and
taking the Taylor expansion of f ′ at zero.

Towards a proof of (3.43), observe first that by writing the Taylor expansion of
f (3) at zero we find

(3.44) f (3)(u) = um−2 ·

(
f (m+1)(0)

(m− 2)!
+ o(1)

)
,

where o(1) denotes a function converging to zero when u → 0. Since f (m+1)(0) > 0
and m is even, we deduce from (3.44) that there will be some constant u′0 ∈ (0,M)
such that

f (3)(u) ≥ 0 for all u ∈ [−u′0, u′0] ,

which in turn implies that f ′ is a convex map on [−u′0, u′0]. Therefore, recalling that
f ′(0) = 0, we deduce that
(3.45)

inf
|u|,|v|≤u′0, u·v≥0

|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ =
min

{
f ′(−s), f ′(s)

}
s

for all s ∈ (0, u′0] .



16 FABIO ANCONA, OLIVIER GLASS, AND KHAI T. NGUYEN

Since by definition (3.18) we have

(3.46) D(s) ≤ inf
|u|,|v| ≤ u′0, u·v ≥ 0

|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ for all s ,

we obtain from (3.45) the upper bound in (3.43) with s0 = u′0, k0 = 1.
Concerning the lower bound in (3.43), applying the mean-value theorem to f ′ we

find

(3.47) inf
u′0≤|u|,|v|≤M

u·v≥0

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ ≥ c′′0 ,

where

(3.48) c′′0
.
= inf

u′0≤|u|≤M

∣∣f ′′(u)
∣∣ .

Here, c′′0 is a positive constant since in (3.48) we are taking the infimum of a continuous
function on a compact subset of R\{0}, which is positive on R\{0} because of (3.33).

On the other hand, observing that by (3.33) we have lims→0
f ′(|s|)
s = f ′′(0) = 0, it

follows that

(3.49)
max

{
f ′(−s), f ′(s)

}
s

< c′′0 for all s ∈ (0, u′′0 ]

for some constant u′′0 ∈ (0, u′0). Therefore, by virtue of (3.45), (3.47), (3.49), we derive
(3.50)

D(s) = min

f
′(−s)
s

,
f ′(s)

s
, inf
|u|≤u′0≤|v|≤M
u·v≥0, |v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣
 for all s ∈ (0, u′′0 ] .

In order to provide a lower bound for

inf
|u|≤u′0≤|v|≤M
u·v≥0, |v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣
we shall consider the case where 0 ≤ u ≤ u′0 ≤ v ≤ M . Relying on the monotonicity
of f ′ on [0,+∞), on convexity of f ′ on [−u′0, u′0], and on (3.48), we find

(3.51)

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ =
f ′(v)− f ′(u′0)

v − u
+
f ′(u′0)− f ′(u)

v − u

≥
(
v − u′0
v − u

)
· c′′0 +

(
u′0 − u
v − u

)
· f
′(u′0 − u)

u′0 − u
.

We now distinguish two cases:
(i) If u′0 − u > s

2 , then it follows from (3.51) that

(3.52)

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ ≥ min

{
c′′0 ,

f ′(u′0 − u)

u′0 − u

}
≥ min

{
c′′0 ,

f ′(s/2)

s/2

}
.
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(ii) If u′0 − u ≤ s
2 , then one has u′0 − u ≤ v−u

2 which implies
v−u′0
v−u ≥

1
2 . Hence,

we deduce from (3.51) that

(3.53)

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ ≥ c′′0
2
.

Therefore, by virtue of (3.49), (3.52), (3.53), and relying again on the convexity of f ′

on [−u′0, u′0], we find

(3.54) inf
0≤u≤u′0≤v≤M
|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ ≥ 1

2
· f
′(s/2)

s/2
for all s ∈ (0, u′′0 ] .

The case where −M ≤ v ≤ −u′0 ≤ u ≤ 0 can be treated in an entirely similar way.
Hence, (3.50), (3.54) together yield the lower bound in (3.43) with s0 = u′′0 , k0 = 2,
thus completing the proof of the lemma.

Remark 3.6. If we consider a smooth, convex flux satisfying the assumption (1.11),
with the same arguments of the proof of Lemma 3.5 one can show that the same type
of lower bound in (3.36) holds. In fact, assume to fix the idea that f (m+1)(0) > 0.
Then, given M > 0, relying on (1.11), (3.44) one deduces that there exist constants
ũ′0 > ũ′′0 > 0 such that:

(i) f ′ is a convex map on [0, ũ′0] and a concave map on [−ũ′0, 0];
(ii)

(3.55) inf
ũ′0≤|u|,|v|≤M

u·v≥0

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ ≥ c̃′′0
.
= inf

ũ′0≤|u|≤M

∣∣f ′′(u)
∣∣ > 0 ;

(iii)

(3.56)
max

{
|f ′(−s)|, |f ′(s)|

}
s

< c̃′′0 for all s ∈ (0, ũ′′0 ] .

By virtue of (i), (ii), (iii), one then finds that
(3.57)

D(s) = min

 |f
′(−s)|
s

,
|f ′(s)|
s

, inf
|u|≤ũ′0≤|v|≤M
u·v≥0, |v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣
 for all s ∈ (0, ũ′′0 ] ,

where D(s) is defined as in (3.18). On the other hand, relying on the monotonicity
of f ′ and on (i), (ii), (iii), we derive as in the proof of of Lemma 3.5 that

(3.58) inf
0≤u≤ũ′0≤v≤M
|v−u|≥s

∣∣∣∣f ′(v)− f ′(u)

v − u

∣∣∣∣ ≥ 1

2
· |f
′(s/2)|
s/2

for all s ∈ (0, ũ′′0 ] .

Thus, (3.57), (3.58) together yield the lower bound

(3.59) ∆
f,M

(s) ≥ sm

αM
for all s ∈ (0, ũ′′0 ]

for some constant αM > 0.
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Lemma 3.7. Let f : R → R be a smooth map satisfying the assumption (3.33).
Given any L,M, T > 0, for every u ∈ ST (C[L,M ]), and for any x < y such that

(3.60) sign(u(x)) 6= sign(u(y)),

there holds

(3.61) TV
{
f ′ ◦ u

∣∣ [x, y]
}
≥ κ̃M ·max

{
f ′(u(x)), f ′(u(y))

}
for some constant κ̃M ∈ (0, 1) depending only on f and M .

Proof. Recalling that by Lemma 2.2 we have
∥∥STu0

∥∥
L∞(R)

≤ M , we shall rely

on (3.34), (3.35) to show first that, for any x < y such that (3.60) holds, one has

(3.62) TV
{
f ′ ◦ u

∣∣ [x, y]
}
≥ κ2

M

2
· f ′(u(x)) ,

κM ∈ (0, 1) being the constant provided by Lemma 3.5. We will consider only the
case where

(3.63) u(y) < 0 < u(x),

the other case with u(x) < 0 < u(y) being entirely similar. We distinguish two
subcases:

(i) If there exists z ∈ (x, y] with u(z−) ∈
[
0, u(x)

2

]
, by virtue of (3.34) and since

f ′ is increasing on [0,+∞), we find

(3.64)

TV
{
f ′ ◦ u

∣∣ [x, y]
}
≥
∣∣f ′(u(x)

)
− f ′(u(z−))

∣∣
= f ′(u(x))− f ′(u(z−))

≥ f ′(u(x))− f ′(u(x/2)) ≥ κM · f ′(u(x))

proving (3.62).
(ii) Otherwise, because of (3.63), STu0 must admit an admissible discontinuity

located at some point z ∈ [x, y], such that the left state u(z−) ∈
[u(x)

2 , M
]

and the right state u(z+) < 0. In the particular cases where z = x or z = y,
it must be u(x) = u(z−) and u(y) = u(z+), respectively. Thus, one has

(3.65) TV
{
f ′ ◦ u

∣∣ [x, y]
}
≥
∣∣f ′(u(z−)

)
− f ′(u(z+))

∣∣ .
Notice that the Oleinik E-condition (1.3) implies

(3.66) f ′(u(z−)) ≥ f ′(u(z+)) .

Since f ′ is decreasing on (−∞, 0], we then obtain

f(u(z−))− f(0) =

∫ u(z−)

0

f ′(s) ds

≥ f ′(u(z−)) · u(z−) ≥ f ′(u(z+)) · u(z−) ,

which yields
f(u(z−))− f(0)

u(z−)
≥ f ′(u(z+)) .



COMPACTNESS ESTIMATES FOR SCALAR CONSERVATION LAWS 19

Thanks to (3.35), we thus deduce

f ′(u(z+)) ≤ f(u(z−))− f(0)

u(z−)
≤
(

1− κM
2

)
· f ′(u(z−)) ,

which, relying on (3.34), implies

(3.67)

∣∣f ′(u(z+))− f ′(u(z−))
∣∣ = f ′(u(z−))− f ′(u(z+))

≥ κM
2− κM

· f ′(u(z−))

≥ κM
2
· f ′(u(x)/2)

≥ κ2
M

2
· f ′(u(x))

since u(z−) ≥ u(x)/2, and because f ′ is increasing on [0,+∞). Hence, (3.65),
(3.67) together yield (3.62).

Observing that

TV
{
f ′ ◦ u

∣∣ [x, y]
}
≥
∣∣f ′(u(y))− f ′(u(x))

∣∣
we derive from (3.62) that

(3.68)

(
1 +

2

κ2
M

)
· TV

{
f ′ ◦ u

∣∣ [x, y]
}
≥
∣∣f ′(u(y))− f ′(u(x))

∣∣+
∣∣f ′(u(x))

∣∣
≥ f ′(u(y)) .

Therefore, (3.68) implies

TV
{
f ′ ◦ u

∣∣ [x, y]
}
≥ κ2

M

κ2
M + 2

· f ′(u(y)) ,

which, together with (3.62), yields (3.61) with

κ̃M
.
=

κ2
M

κ2
M + 2

.

Lemma 3.8. Let f : R → R be a differentiable map. Given any L,M > 0, for
every u, v ∈ L∞(R) with

(3.69)
‖u‖L∞ ≤ M, ‖v‖L∞ ≤ M, u(x) · v(x) ≥ 0 for all x ∈ R ,

Supp(u) ⊂ [−L,L], Supp(v) ⊂ [−L,L],

there holds

(3.70)
∥∥u− v∥∥

L1(R)
≤ (1 + 2L) ·∆

−1
f,M

(∥∥f ′ ◦ u− f ′ ◦ v∥∥
L1(R)

)
,

where ∆
f,M

is the map defined in (1.5).

Proof. Observe that s 7→ ∆
f,M

(s), s 7→ ∆
f,M

(s)

s are strictly increasing maps and
that there holds
(3.71)
∆
f,M

(
|u−v|

)
≤ |f ′(u)−f ′(v)| for all u, v ∈ R s.t. |u|, |v| ≤M, u ·v ≥ 0 .



20 FABIO ANCONA, OLIVIER GLASS, AND KHAI T. NGUYEN

Then, the estimate (3.70) can be obtained with the same arguments as the proof of

Lemma 3.2 replacing ∆̂
f,M

with ∆
f,M

since, by assumption, u(x) and v(x) have the
same sign for all x ∈ R.

The next lemma provides an estimate of the L1-distance between a given element
u ∈ ST (C[L,M ]) and its projection on the space of piecewise constant functions defined
as follows. Fix N ∈ N , letting l[L,M,T ] be the constant in (2.3), set

(3.72) xν
.
= − l[L,M,T ] +

2 l[L,M,T ]

N
· ν , ν ∈ {0, 1, . . . , N} ,

and define (recalling from Remark 2.1 that u admits one-sided limits at each point x)
(3.73)

PN (u)(x)
.
=

{
u(x+

ν ) for all x ∈ [xν , xν+1) if x ∈
[
−l[L,M,T ], l[L,M,T ]

)
,

0 otherwise.

We shall express the L1-distance between u ∈ ST (C[L,M ]) and PN (u) in terms of

TV
{
f ′ ◦ u

}
which, in turn, admits an a priori bound provided by Lemma 2.3.

Lemma 3.9. Let f : R → R be a smooth map satisfying the assumption (3.33).
Given any L,M, T > 0, for every u ∈ ST (C[L,M ]), and for any N ∈ N , there holds

∥∥∥f ′ ◦ u− f ′ ◦ PN (u)
∥∥∥
L1(R)

≤
2 l[L,M,T ] · TV

{
f ′ ◦ u

}
N

,(3.74)

∥∥∥u− PN (u)
∥∥∥
L1(R)

≤ 4 l[L,M,T ] ·

(
2 +

TV
{
f ′ ◦ u

}
κ̃M

)
·∆
−1
f,M

( 1

N

)
,(3.75)

where κ̃M is the constant provided by Lemma 3.7.

Proof.
1. Observe first that by definition (3.73) there holds

(3.76)∣∣∣f ′(u(x)
)
− f ′

(
PN (u)(x)

)∣∣∣ ≤ TV
{
f ′ ◦ u

∣∣ [xν , xν+1)
}

for all x ∈ [xν , xν+1)

for all ν ∈ {0, 1, . . . , N − 1}. Hence, since by (2.2), (3.73) one has u = PN (u) = 0 on
R \ [−l[L,M,T ], l[L,M,T ]], we derive

(3.77)

∥∥∥f ′ ◦ u− f ′ ◦ PN (u)
∥∥∥
L1(R)

=

∫ −l[L,M,T ]

−l[L,M,T ]

∣∣∣f ′(u(x)
)
− f ′

(
PN (u)(x)

)∣∣∣|dx
≤

2 l[L,M,T ]

N
·
N−1∑
ν=0

TV
{
f ′ ◦ u

∣∣ [xν , xν+1)
}

=
2 l[L,M,T ]

N
· TV

{
f ′ ◦ u

}
,

proving (3.74).
2. Towards a proof of (3.75), we first show that, setting

(3.78) ρ
.
= ∆

−1
f,M

( 1

N

)
,
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one has

(3.79)
∣∣u(x)− PN (u)(x)

∣∣ ≤ 2 ρ ·max

{
2,

N · TV
{
f ′ ◦ u

∣∣ [xν , xν+1)
}

κ̃M

}

for all x ∈ [xν , xν+1) and ν ∈ {0, 1, . . . , N − 1}.
Indeed, in the case where u(x) and PN (u)(x) = u(xν), x ∈ [xν , xν+1), have

the same sign, relying on (3.71), and recalling that by (2.2), (3.73) we have that
|u(x)|, |PN (u)(x)| ≤M with the same arguments as the proof of Lemma 3.2, replacing
the definition of ρ in (3.10) with (3.78), one obtains the estimate
(3.80)∣∣u(x)−PN (u)(x)

∣∣ ≤ ρ ·max

{
1, N ·

∣∣∣f ′(u(x)
)
− f ′

(
PN (u)(x)

)∣∣∣} for all x ∈ R .

From (3.80) we immediately recover (3.79) because of (3.76) and since κ̃M < 1.
On the other hand, if u(x) and PN (u)(x) have different signs and we assume that

(3.81)

∣∣f ′(u(x))− f ′(u(xν))
∣∣∣∣u(x)− u(xν)

∣∣ ≥ κ̃M
2 ρ ·N

,

it follows that

(3.82)

∣∣u(x)− u(xν)
∣∣ ≤ 2 ρ ·N

∣∣f ′(u(x))− f ′(u(xν))
∣∣

κ̃M

≤
2 ρ ·N · TV

{
f ′ ◦ u

∣∣ [xν , xν+1)
}

κ̃M

which proves (3.79).
Therefore, it remains to consider the case where u(x) and PN (u)(x) = u(xν),

x ∈ [xν , xν+1), have different signs and there holds

(3.83)

∣∣f ′(u(x))− f ′(u(xν))
∣∣∣∣u(x)− u(xν)

∣∣ <
κ̃M

2 ρ ·N
.

Since u(x), u(xν) have opposite signs, one has

(3.84)
∣∣u(x)− PN (u)(x)

∣∣ =
∣∣u(x)− u(xν)

∣∣ =
∣∣u(x)

∣∣+
∣∣u(xν)

∣∣ .
Moreover, by Lemma 3.7 there holds

(3.85) TV
{
f ′ ◦ u

∣∣ [xν , xν+1)
}
≥ κ̃M ·max

{
f ′(u(x)), f(u(xν))

}
.

We now denote by π(u), u ∈ R \ {0}, the unique point in R such that

(3.86) f ′(u) = f ′(π(u)) and π(u) 6= u ,

while we set π(0)
.
= 0, and we distinguish two subcases:

(i) Assume that

(3.87) max
{
|u(x)|, |π(u(x))|

}
≥ ρ, max

{
|u(xν)|, |π(u(xν))|

}
≥ ρ.
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Then, recalling definition (1.5) and that f ′(0) = 0, and relying on the mono-

tonicity of the map s→ ∆
f,M

(s)

s , we derive

(3.88)

f ′(u(x))

max
{
|u(x)|, |π(u(x))|

} ≥ ∆
f,M

(
max

{
|u(x)|, |π(u(x))|

})
max

{
|u(x)|, |π(u(x))|

}
≥

∆
f,M

(ρ)

ρ
,

f ′(u(xν))

max
{
|u(xν)|, |π(u(xν))|

} ≥ ∆
f,M

(
max

{
|u(xν)|, |π(u(xν))|

})
max

{
|u(xν)|, |π(u(xν))|

}
≥

∆
f,M

(ρ)

ρ
.

Hence, by virtue of (3.78), (3.85), (3.88), we deduce

(3.89)

|u(x)| ≤ ρ ·N · f ′(u(x)) ≤
ρ ·N · TV

{
f ′ ◦ u

∣∣ [xν , xν+1)
}

κ̃M
,

|u(xν)| ≤ ρ ·N · f ′(u(xν)) ≤
ρ ·N · TV

{
f ′ ◦ u

∣∣ [xν , xν+1)
}

κ̃M
,

which, together with (3.84), yield (3.79).
(ii) If (3.87) is not verified and (3.83) holds, we claim that

(3.90) |u(x)| ≤ 2ρ, |u(xν)| ≤ 2ρ,

which, because of (3.84), imply

|u(x)− u(xν)| ≤ 4 ρ ,

proving (3.79). In fact, if (3.87), (3.90) are not verified, then it must be

(3.91)
min

{
max

{
|u(x)|, |π(u(x))|

}
, max

{
|u(xν)|, |π(u(xν))|

}}
< ρ ,

max
{
|u(x)|, |u(xν)|

}
> 2ρ .

Let us assume that

(3.92) max
{
|u(x)|, |π(u(x))|

}
< ρ , |u(xν)| > 2ρ

(the other case max
{
|u(xν)|, |π(u(xν))|

}
< ρ, |u(x)| > 2ρ being entirely

similar). In this case, by (3.84) and since f ′ is decreasing on (−∞, 0] and
increasing on [0,+∞), we have
(3.93)

|u(x)− u(xν)| ≤ 2|u(xν)| , f ′(u(xν)) > f ′
(
u(xν)

2

)
≥ f ′(u(x)) .
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Thus, relying on (3.78), (3.83), (3.93), we find

(3.94)

∆
f,M

(ρ)

ρ
=

1

N · ρ

>
2 ·
∣∣f ′(u(x))− f ′(u(xν))

∣∣
κ̃M ·

∣∣u(x)− u(xν)
∣∣ =

2 ·
(
f ′(u(xν))− f ′(u(x))

)
κ̃M ·

∣∣u(x)− u(xν)
∣∣

≥
2 ·
(
f ′(u(xν))− f ′(u(xν)/2)

)
κ̃M ·

∣∣u(x)− u(xν)
∣∣ ≥ f ′(u(xν))

|u(xν)|

≥
∆
f,M

(|u(xν)|)
|u(xν)|

.

The increasing property of s → ∆
f,M

(s)

s together with (3.94) then implies
|u(xν)| ≤ ρ which yields a contradiction with (3.92). Thus, the bounds
in (3.90) hold and the proof of (3.79) is complete.

3. Since by (2.2), (3.73) one has u = PN (u) = 0 on R \ [−l[L,M,T ], l[L,M,T ]],
relying on (3.79) we find
(3.95)∥∥∥u− PN (u)

∥∥∥
L1(R)

≤
N−1∑
ν=0

∥∥∥u− PN (u)
∥∥∥
L1([xν , xν+1])

≤
2 l[L,M,T ]

N
·
N−1∑
ν=0

sup
x∈[xν , xν+1)

∣∣u(x)− PN (u)(x)
∣∣

≤ 8 l[L,M,T ] · ρ +
4 l[L,M,T ] · ρ

κ̃M
·
N−1∑
ν=0

TV
{
f ′ ◦ u

∣∣ [xν , xν+1)
}
,

which yields (3.75).

We are now ready to provide the following proof.

Proof of upper bound (1.13) of Theorem 1.5. By virtue of Lemma 3.1, given any

(3.96) 0 < ε <
(
2 + 4 l[L,M,T ]

)
·∆
−1
f,M

( Γ+
1

144

)
with l[L,M,T ] as in (2.3), and setting

(3.97) ε′
.
=

1

2
·∆

f,M

(
ε

2 + 4 l[L,M,T ]

)
,

there exists a set of piecewise constant functions

(3.98) G .
= {g1, . . . , gp}

with

(3.99) p ≤

⌊
2

(
Γ

+
1

2 ε′

)⌋
+ 1 ,

that enjoy the following properties:
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(i) For any i = 1, . . . , p, one has

Supp(gi) ⊆
[
− l[L,M,T ], l[L,M,T ]

]
, Im(gi) ⊆

[
0, f ′M

]
,

and

gi(x) = gi(xν) for all x ∈ [xν , xν+1) , ν ∈ {0, 1, . . . , N−1},

with
(3.100)

xν
.
= −l[L,M,T ]+

2 l[L,M,T ]

N
·ν , ν ∈ {0, 1, . . . , N} , N ≥

⌊
8 l[L,M,T ] · V[L,M,T ]

ε′

⌋
,

where f ′M , l[L,M,T ], V[L,M,T ] are the constants defined in (2.1), (2.3), (3.3),
respectively.

(ii)

(3.101) L[L,M,T ] ⊂
p⋃
i=1

B
(
gi, ε

′ ) .
For every gi, i = 1, . . . , p, and in connection with any N -tuple ι = (ι0, . . . , ιN−1) ∈
{−1, 1}N , we now define a piecewise constant map T Nι (gi) as follows. Let f ′−1, f

′
1

denote the restrictions of f ′ to the semilines (−∞, 0] and [0,+∞), respectively. Then,
set
(3.102)

T Nι (gi)(x)
.
=


(
f ′ιν
)−1(

gi(xν)
)

for all x ∈ [xν , xν+1) if x ∈
[
−l[L,M,T ], l[L,M,T ]

)
,

0 otherwise.

Next, given any u ∈ ST (C[L,M ]), by (3.4) and (3.101) let gi be a map satisfying
property (i) such that

(3.103)
∥∥f ′ ◦ u− gi∥∥L1(R)

< ε′ .

Observe that, applying Lemmas 2.3 and 3.9, and choosing

(3.104) N ≥

2 l[L,M,T ] · C1

(
1 + L

T

)
ε′

+ 1 ,

we find

(3.105)
∥∥∥f ′ ◦ u− f ′ ◦ PN (u)

∥∥∥
L1(R)

≤
2 l[L,M,T ] · C1

(
1 + L

T

)
N

≤ ε′ .

Hence, (3.103), (3.105) imply that, for any

(3.106) N ≥ max


⌊

8 l[L,M,T ] · V[L,M,T ]

ε′

⌋
,

4 l[L,M,T ] · C1

(
1 + L

T

)
ε′

 ,

and ε′ ≤ 2 l[L,M,T ] · C1, one has

(3.107)
∥∥∥f ′ ◦ PN (u)− gi

∥∥∥
L1(R)

< 2 ε′ .
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Let ι ∈ {−1, 1}N be the N -tuple defined by

(3.108) ιν = sign
(
u(xν)

)
, ν ∈ {0, 1, . . . , N} .

Notice that, by definitions (3.73), (3.102), by Lemma 2.2, and since f ′(0) = 0 and gi
satisfies the property (i), one has

(3.109)

∥∥PN (u)
∥∥
L∞
≤ M,

∥∥T Nι (gi)
∥∥
L∞
≤ M,

sign
(
PN (u)(x)

)
= sign

(
T Nι (gi)(x)

)
for all x ∈ R ,

Supp
(
PN (u)

)
, Supp

(
T Nι (gi)

)
⊂
[
− l[L,M,T ], l[L,M,T ]

]
.

Therefore, observing that f ′ ◦ T Nι (gi) = gi, applying Lemmas 2.3, 3.8, and 3.9 and
relying on (3.97), (3.107), we find that, for all

(3.110) N ≥ max


 1

∆
f,M

(
κ̃M ε

8 l[L,M,T ]·
(

2κ̃M+C1(1+L
T )
))
,

16 l[L,M,T ] · V[L,M,T ]

∆
f,M

(
ε

2+4 l[L,M,T ]

)
,
8 l[L,M,T ] · C1

(
1+ L

T

)
∆
f,M

(
ε

2+4 l[L,M,T ]

)

 ,

there holds
(3.111)∥∥∥PN (u)− T Nι (gi)

∥∥∥
L1(R)

≤
(
1 + 2l[L,M,T ]

)
·∆
−1
f,M (2ε′) ≤ ε/2 ,

∥∥∥u− PN (u)
∥∥∥
L1(R)

≤
4 l[L,M,T ]

κ̃M

(
2κ̃M + C1

(
1 +

L

T

))
·∆
−1
f,M

( 1

N

)
≤ ε/2 .

Hence, by (3.111), for any given u ∈ ST (C[L,M ]) and for every N satisfying (3.110),
we can find an element gi of the set G in (3.98) and an N -tuple ι ∈ {−1, 1}N such
that ∥∥∥u− T Nι (gi)

∥∥∥
L1(R)

≤ ε ,

showing that

(3.112)
⋃

ι∈{−1,1}N

p⋃
i=1

B
(
T Nι (gi), ε

)
provides an ε-cover of ST (C[L,M ]) in L1 of cardnality p·2N By virtue of (3.99), (3.110),
for ε > 0 sufficiently small one has

(3.113) p · 2N ≤ 2

(
Γ+

∆
f,M

(ε/γ+)

)
with

(3.114)

Γ+ .
= 2Γ+

1 + max
{

2, 32 l[L,M,T ] ·V[L,M,T ], 16 l[L,M,T ] ·C1

(
1 + L/T

)}
,

γ+ .
= max

{
8 l[L,M,T ]

κ̃M

(
2κ̃M + C1

(
1 +

L

T

))
, 2 + 4 l[L,M,T ]

}
.
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Recalling definitions (1.9), (2.3), (3.3) we deduce that there exists some constant c > 1
such that

(3.115) Γ+ ≤ η , γ+ ≤ η , η
.
= c

(
1 + L+ T +

L2

T

)
.

Thus, relying on (3.36), (3.113), (3.115), it follows that there holds

(3.116) Nε
(
ST (C[L,M ]) | L1(R)

)
≤ 2

( η

∆
f,M

(ε/η)

)
≤ 2

(
Γ

+
2
εm

)

with

(3.117) Γ+
2
.
= βM · ηm+1 .

Taking the base-2 logarithm in (3.117) we then derive the estimate (1.13).

4. Lower compactness estimates. In this section we derive lower bounds on
the ε-entropy in L1 of ST (C[L,M ]) for the class of initial data C[L,M ] in (1.6), when the
flux function f satisfies the following assumption:

(A) f : R→ R is a twice continuously differentiable map such that

f ′(0) = 0, f ′′(x) 6= 0 for all x ∈ R\{0} ,

which is fulfilled by fluxes satisfying (1.2) and either of the assumptions (C) or (NC)
stated in the introduction. Notice that (A) in particular implies that f ′′ does not
change sign on each of the two semilines (−∞, 0) and (0,∞).

Following the same approach introduced in [3], we shall derive a proof of (1.8),
(1.14) relying on a controllability results for BV functions with one-side bounds on
their spatial distributional derivative. Namely, given any L, h, T > 0, setting

(4.1) b+h
.
=

1

2T · max
z∈[0,h]

|f ′′(z)|
, b−h

.
=

1

2T · max
z∈[−h,0]

|f ′′(z)|
,

consider the sets
(4.2)

A+
[L, h]

.
=


{
v ∈ C[L/2, h] ∩BV (R)

∣∣ v ≥ 0, Dv ≤ b+h
}

if f ′′(h) > 0,

{
v ∈ C[L/2, h] ∩BV (R)

∣∣ v ≥ 0, Dv ≥ −b+h
}

if f ′′(h) < 0,

A−[L, h]

.
=


{
v ∈ C[L/2, h] ∩BV (R)

∣∣ v ≤ 0, Dv ≤ b−h
}

if f ′′(−h) > 0,

{
v ∈ C[L/2, h] ∩BV (R)

∣∣ ≤ 0, Dv ≥ −b−h
}

if f ′′(−h) < 0 .

Here and throughout the following, the inequalities of the form Du ≥ b for a function
u ∈ BV (R), must be understood in the sense of measures, i.e., the Radon measure
Du satisfies Du(J) ≥ b · |J | for every Borel set J ⊂ R, |J | being the Lebesgue measure
of J . We will show that any element of A±[L,h] can be obtained as the value at time

T of a solution of (1.1) with initial data in the set C[L,h] in (1.6). To this end, the
following lemma provides a priori bounds on the spatial distributional derivative of
entropy solutions of (1.1).
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Lemma 4.1. Let f : R → R be a map satisfying the assumption (A) and, given
L, h, T > 0, let u0 ∈ C[L,h] ∩BV (R) be any function satisfying either of the following
conditions:

(4.3) u0(x) ≥ 0 for all x ∈ R , sign
(
f ′′(u0(h))

)
·Du0 ≥ −b+h ,

(4.4) u0(x) ≤ 0 for all x ∈ R , sign
(
f ′′(u0(−h))

)
·Du0 ≥ −b−h ,

where b±h are the constants defined in (4.1). Then, for every t ∈ (0, T ], the entropy
solution u(t, ·) .

= Stu0 is continuous on R and one has

(4.5)

sign
(
f ′′(u0(h))

)
·Du(t, ·) ≥ − 2b+h if (4.3) holds ,

sign
(
f ′′(u0(−h))

)
·Du(t, ·) ≥ − 2b−h if (4.4) holds .

Proof. We shall consider only the case where u0 satisfies condition (4.3) and
f ′′(u0(h)) ≥ 0. The cases where f ′′(u0(h)) ≤ 0 or where condition (4.4) holds can be
treated in an entirely similar way.

1. Assume that (4.3) holds and that f ′ is increasing on [0,+∞). Observe first
that, by Lemma 2.2, we have u(t, ·) ∈ C[l[L,h,t],h] ∩BV (R), u(t, x) ≥ 0, for any x ∈ R,
t > 0, and that (4.5) in particular implies

(4.6) u(t, x+)− u(t, x−) = Du(t, ·)
(
{x}
)
≥ 0 for all x ∈ R .

On the other hand, by the Oleinik E-condition [22] we have

f ′
(
u(t, x−)

)
≥ f ′

(
u(t, x+)

)
for all x ∈ R , t > 0 ,

which, in turn, by the monotonicity of f ′ on [0,+∞), implies

(4.7) u(t, x−) ≥ u(t, x+) for all x ∈ R , t > 0 .

Then, (4.6)–(4.7) together yield

(4.8) u(t, x−) = u(t, x+) for all x ∈ R , t ∈ (0, T ] ,

proving the continuity of Stu0 at any x ∈ R and for any t ∈ (0, T ]. Therefore, to
complete the proof of the lemma we only have to show that, if the initial datum u0

satisfies the assumption (4.3), then the corresponding entropy solution satisfies the
inequality in (4.5) which, in this case, is equivalent to

(4.9) u(t, x2+)− u(t, x1−) ≥ − x2 − x1

T · max
z∈[0,h]

|f ′′(z)|
for all x1 < x2 .

Clearly, it will be sufficient to prove that the inequality in (4.9) holds for any pair of
continuity points x1 < x2 of u(t, ·) such that

(4.10) u(t, x2)− u(t, x1) < 0 .

2. Because of (4.3), and since we are assuming that f ′′(u0(h)) ≥ 0, the initial
datum u0 satisfies the inequality

(4.11) u0(z2+)− u0(z1−) ≥ − z2 − z1

2T · max
z∈[0,h]

|f ′′(z)|
for all z1 < z2 .
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Notice that, since u(t, ·) takes values in the semiline [0,+∞) for all t > 0, we may
always view u(t, x) as the entropy solution of a conservation law with convex flux. In
fact, if f satisfies the assumption (NC), u(t, x) turns out to be the entropy solution
of

(4.12) ut + f̃(u)x = 0

with

f̃(u)
.
=

f(u) if u ≥ 0 ,

2f(0)− f(u) if u ≤ 0 ,

where f̃ is a twice continuously differentiable convex map. Therefore, we may employ
the theory of generalized characteristics of Dafermos [10, 12] and, for every given point
x of continuity of u(t, ·), we may trace a unique backward characteristic starting at
(t, x) that is a genuine characteristic.

Then, fix t ∈ (0, T ] and consider two continuity points x1 < x2 of u(t, ·) such
that (4.10) holds. Let ξi(·) be the unique backward characteristics emanating from
(t, xi) for i = 1, 2. Since the solution u(t, ·) is constant along genuine characteristics,
we have

(4.13) xi = yi + t · f ′(u0(yi)) with yi = ξi(0)

and

(4.14) u(t, xi) = u0(yi) for i = 1, 2 .

Notice that (4.10), (4.13), (4.14), and the monotonicity of f ′ on [0,+∞), together
imply

(4.15)
y2 − y1 = x2 − x1 − t ·

(
f ′(u(t, x2))− f ′(u(t, x1))

)
> 0 ,

f ′(u0(y2)) < f ′(u0(y1)) .

Thus, relying on (4.11), (4.13), (4.14), (4.15) we find

(4.16) u(t, x2)− u(t, x1) = u0(y2)− u0(y1) ≥ − y2 − y1

2T · max
z∈[0,h]

|f ′′(z)|

and

x2 − x1 = y2 − y1 + t ·
(
f ′(u0(y2))− f ′(u0(y1))

)
≥ y2 − y1 + t ·

(
max
z∈[0,h]

|f ′′(z)|
)
·
(
u0(y2)− u0(y1)

)
≥ y2 − y1 − t ·

(
max
z∈[0,h]

|f ′′(z)|
)
· y2 − y1

2T · max
z∈[0,h]

f ′′(z)

≥ y2 − y1

2
.(4.17)

Combining (4.16), (4.17), we obtain

u(t, x2)− u(t, x1) ≥ − x2 − x1

T · max
z∈[0,h]

|f ′′(z)|
,
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completing the proof of (4.9) for any pair of continuity points x1 < x2 of u(t, ·) and
thus concluding the proof of the lemma.

Remark 4.2. An alternative proof, as suggested by one of the referees, would be
to regularize u0 and to rely on classical characteristics to infer (4.9).

Relying on Lemma 4.1, we obtain the following controllability result.

Lemma 4.3. Let f : R → R be a map satisfying the assumption (A) and, given
L, h, T > 0, let C[L,h], A±[L,h] be the sets defined in (1.6), (4.2), respectively. Then,

there holds

(4.18) A+
[L, h]

⋃
A−[L, h] ⊆ ST (C[L,h])

for all h > 0 such that

(4.19) f ′h
.
= max
|z|≤h

|f ′(z)| ≤ L

2T
.

Proof. We will only show that, for h satisfying (4.19), assuming f ′′(h) > 0 one
has

(4.20) A+
[L, h] ⊆ ST (C[L,h]).

The proof of (4.20) when f ′′(h) < 0 and the proof of A−[L, h] ⊆ ST (C[L,h]) are entirely

similar. Then, given an arbitrary function

(4.21) v ∈ A+
[L, h],

we will determine an element u0 ∈ C[L,h] such that

(4.22) STu0 = v ,

thus proving (4.20). The function u0 will be obtained by an entropy admissible
solution of (1.1) backward constructed in time, which starts at time T with the value
v. Namely, set

(4.23) w0(x)
.
= v(−x) for all x ∈ R ,

and consider the entropy weak solution w(t, x)
.
= Stw0 of (1.1) with initial datum w0.

Notice that, letting l[L/2,h,t] be the constant defined in (2.3), because of (4.19) there
holds

(4.24) l[L/2,h,t] = L/2 + t · f ′h ≤ L for all t ∈ [0, T ] .

Moreover, observe that, by (4.2), (4.21), (4.23), and since we are assuming that
f ′′(h) > 0, we have

w0 ∈ C[L/2,h] ∩BV (R) ,(4.25)

v(x) ≥ 0 for all x ∈ R, Dw0 = − Dv ≥ − b+h .(4.26)

Therefore, by virtue of Lemma 2.2 we find

(4.27)
∥∥w(t, ·)

∥∥
L∞(R)

≤ h , Supp(w(t, ·)) ⊆
[
−L,L

]
for all t ∈ [0, T ] ,
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and invoking Lemma 4.1 we deduce that w(t, ·) is a continuous map on R for all
t ∈ (0, T ]. Next, observe that the map u defined by

(4.28) u(t, x)
.
= w(T − t,−x) , (t, x) ∈ [0, T ]× R ,

provides a weak distributional solution of (1.1) which is entropy admissible since it is
continuous with respect to the space variable x at any time t < T (see [11, 15]). On
the other hand, by (4.23), (4.27), (4.28), we have

(4.29) u0
.
= u(0, ·) ∈ C[L,h] , STu0 = u(T, ·) = v ,

which completes the proof of the lemma.

The next lemma shows that, for fluxes with polynomial degeneracy at zero, the
constants b±h in (4.1) are of order ≈ 1

T ·sm−1 .

Lemma 4.4. Assume that f : R→ R is a function satisfying condition (1.2) and
either of (1.4) or (1.11) conditions. Then, there exist constants α, σ > 0 such that

(4.30) max
{

max
z∈[0,s]

|f ′′(z)|, max
z∈[−s,0]

|f ′′(z)|
}
≤ α · sm−1 for all s ∈ [0, σ] .

Proof. By writing the Taylor expansion of f ′′ at zero we find

(4.31) f ′′(u) = um−1 ·

(
f (m+1)(0)

(m− 1)!
+ o(1)

)
,

where o(1) denotes a function converging to zero when u→ 0. Since we are assuming
that f (m+1)(0) 6= 0, the estimate (4.30) immediately follows from (4.31) taking σ > 0
sufficiently small.

Proof of lower bounds (1.8), (1.14) of Theorems 1.2–1.5. Given any constant
L, h > 0, recalling definitions (2.12), (4.2), we have

(4.32)

A+
[L, h] ⊇ B[L

2 ,
h
2 ,≤b

+
h

] +
h

2
· χ[
−L2 ,

L
2

] if f ′′(h) > 0 ,

A+
[L, h] ⊇ B[L

2 ,
h
2 ,≥−b

+
h

] +
h

2
· χ[
−L2 ,

L
2

] if f ′′(h) < 0 ,

A−[L, h] ⊇ B[L
2 ,

h
2 ,≤b

+
h

] − h

2
· χ[
−L2 ,

L
2

] if f ′′(−h) > 0 ,

A−[L, h] ⊇ B[L
2 ,

h
2 ,≥−b

+
h

] − h

2
· χ[
−L2 ,

L
2

] if f ′′(−h) < 0 .

To fix the ideas, assume now that

f ′′(h) > 0, f ′′(−h) < 0.

The cases where f ′′(h) > 0, f ′′(−h) > 0; f ′′(h) < 0, f ′′(−h) > 0; or f ′′(h) < 0,
f ′′(−h) < 0, can be treated in an entirely similar way. Then, by virtue of Lemma 4.3
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and relying on (4.32), we find
(4.33)

Hε
(
ST (C[L,M ]) | L1(R)

)
≥ max

{
Hε
(
A+

[L, h] | L
1(R)

)
, Hε

(
A−[L, h] | L

1(R)
)}

≥ max

{
Hε
(
B[L

2 ,
h
2 ,≤b

+
h

] +
h

2
·χ[
−L2 ,

L
2

] | L1(R)
)
,

Hε
(
B[L

2 ,
h
2 ,≥−b

+
h

] − h

2
·χ[
−L2 ,

L
2

] | L1(R)
)}

= max

{
Hε
(
B[L

2 ,
h
2 ,≤b

+
h

] | L1(R)
)
, Hε

(
B[L

2 ,
h
2 ,≥−b

+
h

] | L1(R)
)}

for all h > 0 satisfying (4.19). Hence, invoking Lemma 2.6 and because of (4.1), we
derive from (4.33) the estimate
(4.34)

Hε
(
ST (C[L,M ]) | L1(R)

)
≥ L2

108 ln 2 · T
· 1

min
{

max
z∈[0,h]

|f ′′(z)|, max
z∈[−h,0]

|f ′′(z)|
} · 1

ε

for any h ≥ 6ε
L such that (4.19) holds. Choosing h = 6ε

L , we recover from (4.34) the
estimate (1.8) for all ε > 0 such that

(4.35) max
|z|≤ 6ε

L

|f ′(z)| ≤ L

2T
.

On the other hand, in the case where f is a nonconvex flux satisfying conditions (1.2),
(1.4), applying Lemma 4.4 and taking h = 6ε

L , we derive from (4.34) the estimate

(4.36) Hε
(
ST (C[L,M ]) | L1(R)

)
≥ Lm+1

108 ln 2 · 6m−1 · α · T
· 1

εm

which proves (1.14).
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