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Collective behavior in biological systems is one of the most fascinating phenomena
observed in nature. Many conspecifics form a large group together and behave col-
lectively in a highly synchronized fashion. Flocks of birds, schools of fish, swarms
of insects, bacterial colonies are some of the examples of such systems. Since the
last few years, researchers have studied collective behavior to address challenging
questions like how do animals synchronize their motion, how do they interact with
each other, how much information about their surroundings do they share, and if
there are any general laws that govern the collective behavior in animal groups,
etc. Many models have been proposed to address these questions but most of them
are still open for answers.

In this thesis, we take a brief overview of models proposed from statistical physics
to explain the observed collective in animals. We advocate for understanding the
collective behavior of animal groups by studying the decision making process of
individual animals within the group. In the first part of this thesis, we investigate
the optimal decision making process of individuals by implementing reinforcement
learning techniques. By encouraging congregation of the agents, we observe that
the agents learn to form a highly polar ordered state i.e. they all move in the same
direction as one unit. Such an ordered state is observed and quantified in a real
flock of birds. The optimal strategy that these agents discover is equivalent to the
well-known Vicsek model from statistical physics.

In the second part, we address the problem of collective search in a turbulent
environment using olfactory cues. The agents, far away from the odor source, are
tasked with locating the odor source by sensing local cues such as the local velocity
of the flow, odor plume etc. By optimally combining the private information (such
as local wind, presence/absence of odors, etc.) that the agent has with public
information regarding the decisions to navigate made by the other agents in the
system, a group of agents complete the given search task more efficiently than as
single individuals.



Acknowledgements
I would like to express my sincere thanks to my supervisor Prof. Antonio Celani.
He has always encouraged me to learn. I’m in debt to him for patiently guiding me
for the past 3 years. He has always encouraged me to discuss, form collaborations
with other researchers. He is a very kind, wise person with a passion for science.
He is the smartest person I know so far and I hope to continue to learn from him
in the future.
I thank my co-supervisor Prof. Milotti for all the encouragement and support.
I would like to thank Dr. Ahmed Sayeed. He has been mentoring me through-
out my scientific career. He has spent numerous hours training me for scientific
research and for critical thinking. I hope our scientific collaboration continues in
future.
I express my sincere thanks to Dr. Arnab saha, Dr. Fernando Peruani, Dr. Mas-
simo Cencini, Prof. Luca Biferale and Lorenzo Piro. I had a great opportunity to
work in collaboration with them.
I learnt a lot from my friends Alberto, Matteo, Andrea, Anjan, and Claudio. I
thank them all for the numerous discussions and many adventures together. I ex-
press my special thanks to Alberto and Matteo for the special bond of friendship
that we share.
I am thankful to my long-time friends, Abdul, Abhijeet, Deepesh, Kaustubh and
Varada. They were and still are my partners in many adventures, my unshakable
pillars of support, my inspiration, my family. As a person, I am greatly influenced
by them. My special thanks to Deepesh for all his help in preparing this thesis.
I would like to thank my kind landlord Mr. Sergio Santon, physics department
secretary Ms. Rosita Glavina and Q.L.S. group secretary Ms. Erica Sarnataro for
their immense help and support throughout the course of my Ph.D.
I thank ICTP and University of Trieste for graduate fellowship and kind hos-
pitality. I thank University of Rome Tor Vergata, Italy and Laboratoire J. A.
Dieudonné, Université Côte d’Azur, France for their kind hospitality and support
during my visits.
Last but not least, I’m in forever debt to my mother Neeta Durve, my late fa-
ther Suneel Durve and my wife Kalyani. Whatever my achievements are, they are
theirs too.

- Mihir Durve

iii



iv



Contents

Abstract i

Acknowledgements iii

1 Collective animal behavior - a brief overview 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Models for collective behavior . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Models with velocity alignment rule . . . . . . . . . . . . . . 4
1.2.1.1 Vicsek model . . . . . . . . . . . . . . . . . . . . . 4
1.2.1.2 Modified Vicsek models . . . . . . . . . . . . . . . 9

1.2.2 Models without velocity alignment rule . . . . . . . . . . . . 14
1.3 Inferring the rules of interaction . . . . . . . . . . . . . . . . . . . . 17
1.4 Olfactory search strategies in animals . . . . . . . . . . . . . . . . . 20
1.5 Introduction to reinforcement learning . . . . . . . . . . . . . . . . 22

2 Learning to flock with reinforcement learning 26
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Results: Single agent . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Results: Multi-agent . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Multi-agent olfactory search in turbulent environment 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 A model for collective olfactory search . . . . . . . . . . . . . . . . 38

3.2.1 Response to private cues . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Response to public cues . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Combining private and public information . . . . . . . . . . 41
3.2.4 Modeling the turbulent environment . . . . . . . . . . . . . 41

3.3 Results for the stochastic flow . . . . . . . . . . . . . . . . . . . . . 42
3.4 Results for a turbulent flow . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . 47

A Description of states and actions 49

v



Contents vi

A.1 Description of states . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Description of actions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B On behavior of ‘teacher agents’ 51
B.1 Noise-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.2 With noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Reward for alignment 54

D Reward for congregation 57
D.1 Single agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

D.1.1 With Ka = 32 actions . . . . . . . . . . . . . . . . . . . . . 58
D.2 Multi-agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D.2.1 With Ka = 7 actions . . . . . . . . . . . . . . . . . . . . . . 59
D.2.2 With Ka = 3, 5, 7, 9 actions . . . . . . . . . . . . . . . . . . 61
D.2.3 With Ka = 32 actions . . . . . . . . . . . . . . . . . . . . . 62

E MARL with limited field of view and noisy measurements 66
E.1 Learning to flock with a limited field of view . . . . . . . . . . . . . 66
E.2 Limited field of view and noisy observations . . . . . . . . . . . . . 68

F Implementation of the turbulent flow 72
F.1 Details on the implementation of the cast and surge algorithm . . . 72
F.2 Description of the flow environment . . . . . . . . . . . . . . . . . . 74

F.2.1 Stochastic flow . . . . . . . . . . . . . . . . . . . . . . . . . 74
F.2.2 Turbulent flow . . . . . . . . . . . . . . . . . . . . . . . . . 75

F.3 Table of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

G Simulation codes 79
G.1 Code : Simulation of multi-agent reinforcement learning . . . . . . 79
G.2 Code : Multi-agent olfactory serach . . . . . . . . . . . . . . . . . . 97

G.2.1 Main code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
G.2.2 Code to simulate turbulent flow . . . . . . . . . . . . . . . . 111

Bibliography 117



Chapter 1

Collective animal behavior - a
brief overview

1.1 Introduction

One of the important features of living beings is the ability to move in space. When
several individuals move in what appears to be a synchronized motion, that leads
to a spectacular and fascinating display of patterns and motions. Starling mur-
murations [1–4], schools of swimming fish [5–7], bacterial colonies [8–10] observed
under the microscope are few of the examples. The observed patterns formed
by these animals have an aesthetic appeal. The natural questions that arise are,
whether or not these patterns are similar in various groups? Can non-living sys-
tems show such mesmerizing patterns and have something in common with living
systems? It turns out that both living and non-living systems exhibit a rich variety
of patterns. Apart from the fact that many agents move together, there are many
other things that are common in these systems despite the fact that these systems
differ vastly in types and scales. The specific area of physics, called ‘active matter’,
includes the study of systems consisting of many ‘self-propelling’ units using tools
from statistical physics.

Although the large variety of systems studied in active matter physics, we focus
our attention on the study of collective behavior in animals. The questions that
arise can be categorized as ‘why’ and ‘how’ these animals behave collectively.

1



Collective animal behavior - a brief overview 2

Behavioral ecologists study animal groups to address questions like why these
animals behave collectively?, what are the motivations in staying together? What
are the costs and benefits for individuals to be a part of a group? It is observed
that the individuals in a group have better chances of avoiding predators compared
to when they are alone. Often, predators are hesitant in attacking larger groups.
Also, the predators are not able to fixate and pursue their prey in the background
of constantly moving animals. This effect is termed as ‘the confusion effect’ by
Milinski et al [11]. Not only animals are safer in large groups, but also there
are instances where a group of animals is more efficient in completing some tasks
compared with the lone individuals. One such instance is collective foraging. It is
observed that group of fish find random food patches in less time than an individual
fish does [12]. On the other hand, being in a group also means sharing the vital
resources such as oxygen in the school of fish. An enlightening book on the topic
of costs and benefits to an individual that is a part of a group is written by J.
Parrish [13].

Since the last few decades, researchers have addressed questions like how can so
many individuals synchronize their motion? How do they move? Are there any
general principles that individuals belonging to different species obey which lead
to the observed collective behavior?

To answer these questions, researchers have used a variety of methods such as
using models from statistical physics, using sophisticated technology to observe
individual animals to understand their behavior. We take a brief overview of
the models proposed and a few experimental studies to understand how animals
behave collectively.

1.2 Models for collective behavior

There are certain similarities between the physical systems studied in statistical
physics and animal groups. In both cases, a system consists of (a) many particles in
motion, (b) particles interacting with each other, (c) particles interacting with their
environment by exchanging energy etc, (d) particles affected by noise in the system.
Statistical physics taught us that since the animal group consists of interacting
units, their collective behavior might display some emergent universal features.
These universal features do not depend on the specific individual units but only
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on the nature of the interaction between them. This led to the development of
agent-based models. In these models, the nature of agent-agent interaction is
assumed and equations of motion for individuals are written. This nature of the
agent-agent interaction varies from model to model. However, in most recent
models, the nature of agent-agent interaction consists of three aspects of animal
congregation; (a) cohesion of a group, (b) direction consensus amongst the agents,
(c) avoidance of collisions between the agents. Agent-based models cannot be
solved exactly because they consists of large number of agents. The resulting
set of coupled dynamical equations becomes analytically intractable. Thus, it is
convenient to solve them using computer simulation methods.

The study of collective animal behavior using computer simulation techniques
dates back to 1980. Probably the first widely known simulation study of schools
of fish was carried out by Aoki [14] in 1982. The model that they studied had
the basic assumption that the direction and speed of an individual fish in the
school are stochastic variables. Also, the direction of movement of an individual
fish is related to its location within the school and common heading direction of
its neighbors. It was observed that schooling of fish can occur in spite of each
fish lacking the knowledge of the entire school. The individual fish interacts only
with its neighbors, and without an apparent leader, school of fish can move in
as a single unit. A few years later, C. Reynolds [15] carried out simulations to
reproduce the patterns and trajectories followed by birds flock. In this simulation
study, each bird was allowed to take its own trajectory, but at the same time, to
take measures to avoid collisions and to stay close to the center of mass of the
flock. In this study, many realistic considerations were taken into account such
as restricted vision of the birds, presence of obstacles in the flight path etc. With
this simulation study, many characteristics of real flocking were observed but it
was thought then that more work is needed to quantify the flocking phenomena
and check the results of this study with the data from real flocks.

Later, many biology inspired models were proposed to study motion of many inter-
acting non-living agents. Rods on a vibrating table [16, 17], Janus particles [18],
etc are examples of such non-living systems. Agents in such systems are moved
by a force that can be externally or internally generated. These ‘self-propelled’
particles interact and like biological systems, can also give rise to complex pattern
formation. The models to study self-propelled particles can broadly be classified
in two categories viz. models with velocity alignment rule and models without
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velocity alignment rule. This classification is based on the nature of agent-agent
interactions within the system.

1.2.1 Models with velocity alignment rule

In this class of models, the agents can perceive the velocity of their neighbors
(subset of agents in the system). Using this local information, equations of motions
dictate individual agents to align with their neighbors. One of the most prominent
models in this class is constructed by Vicsek et al [19].

1.2.1.1 Vicsek model

In 1995, Vicsek et al. [19] constructed a model for flocking with simple rules of
interaction. The model nowadays is widely studied and known as the ‘Vicsek
Model’ (VM). The model was inspired by observations of collective behavior in
far from equilibrium systems, such as flock of birds and growth process observed
in bacterial colonies. Their aim was to construct a model which can show collec-
tive behavior with minimal ingredients. Their model can be summarized in one
sentence as “Move as your neighbors are moving”.

For the implementation of the Vicsek model, simulations are carried out in a box
of size L × L. N agents are placed inside the box randomly and uniformly. An
agent in the Vicsek model is a point particle and it could mean any entity such
as a bird or a robot. Each agent is assigned with a random heading direction
v. The usual periodic boundary conditions are imposed in both directions of the
simulation box. The initial system set-up is shown in Fig. 1.1A. At a given time,
each agent computes the average velocity v̂ of its neighbors. Neighbors are defined
as the agents within a distance R from the agent. The neighbors of a randomly
chosen agent in the system are pictorially depicted in Fig 1.1B.

The velocities v and the positions r of the agents at time t+∆t are obtained from
the velocities and positions at time t using the following update rules. Firstly,
positions of all the agents are simultaneously updated according to

ri(t+ ∆t) = ri(t) + vi(t)∆t. (1.1)
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Figure 1.1: Ingredients of the Vicsek model. (A) N agents placed in a square
box. (B) Neighborhood of interaction (a circle of radius R centered on the
particle) of particle i(red). The agents shown by the green color fall within the
neighborhood of the agent i and average direction of neighbors is shown by the

blue arrow.

Here, ∆t = 1. Later, velocities of the agents are updated according to

vi(t+ 1) = v0R(θ)v̂(t). (1.2)

Here, v0 is the speed of the agents and is constant for all agents, R(θ) is the
rotation operator. It rotates the vector it acts upon ( i.e., v̂(t) ) by an angle θ.
The angle θ is a random variable uniformly distributed over the interval [−ηπ, ηπ],
where η is the level (i.e., amplitude) of the noise in the range 0 to 1. v̂(t) is the
unit velocity in the direction of the average velocity of the neighbors of the ith

agent (see Fig. 1.1B), and is given by

v̂(t) =

∑
j∈Si

vj(t)∣∣∣∣∣ ∑j∈Si
vj(t)

∣∣∣∣∣
. (1.3)

Here | . . . | denotes the norm of the vector.

This update scheme (i.e. updating positions first and later velocities of the agents)
followed by Vicsek et al. is known as the backward update rule (BUR) in literature
[20]. In recent studies, another update scheme is followed which is known as the
forward update rule (FUR scheme). In this update scheme, the velocities of the
agents are updated first and then the positions of agents are updated using the
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newly computed velocities. It was expected that the behavior of the system shall
qualitatively remains same for both update rules [21]. It was showed by Huepe et
al. [22] and Baglietto et al. [20] showed that the update rules led to qualitatively
similar but quantitatively different results. Fig. 1.2 shows the order parameter
vs noise plot for what they call SVM (Standard Vicsek Model) and OVM (Original
Vicsek Model) for two system sizes. The OVM uses the update rules originally
used by Vicsek et al.

Figure 1.2: Order parameter vs noise plot for two different update schemes.
‘N’ in the inset corresponds to Number of particles. OVA and SVA are the

update schemes discussed above.
Figure source : Huepe et al. [22], with kind permission from Elsevier.

To quantify the degree of order in the collective motion of agents, Vicsek et al.
defined a scalar order parameter Ψ(t). It is defined as;

Ψ(t) = 1
Nv0

∣∣∣∣∣
N∑
i=1

vi(t)
∣∣∣∣∣ . (1.4)

It can be easily seen that in the perfectly ordered state when all the agents are
moving in the same direction, Ψ(t) = 1 and in the completely disordered state
when the directions of motion are completely random, Ψ(t) = 0 (in the limit
N →∞). In this context, we use the phrase ‘ordered state’ to mean the stationary
state of the system for which Ψ(t) > 0.

With these minimal ingredients, Vicsek et al. observed that the agents can spon-
taneously form an ordered state from random initial conditions. Although the
agents interact locally, a global ordered state can be formed with the given set of
rules. Agents can collectively move in a common direction without any informed
leader. Moreover, they studied the system by increasing the noise in the system as
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well as by increasing density of agents. They observed that the system undergoes
a phase transition from ordered state to disordered state when the noise in the
system is increased or the density of agents is decreased. Fig. 1.3a shows the plot
of order parameter(Ψ) vs noise (η). In the numerical simulation of the model, as
the system size (i.e. number of agents N) is increased, the finite size effects are
suppressed and the behavior of the order parameter Ψ converges.

(a) (b)

Figure 1.3: (A)Order parameter vs Noise plot. ‘N’ in the legends corresponds
to Number of agents. (B)Order parameter vs Density plot.

Figure source :
Figure source: Vicsek et al. [19] https://doi.org/10.1103/PhysRevLett.
75.1226, with kind permission from American Physical Society (APS), c©APS.

That means, if the strength of the noise is low, then agents form an ordered state
in which they move in a common direction. However, above a certain critical value
of noise, the ordered state cannot be achieved and agents will essentially continue
to perform random walks. Also, below a critical density, the agents cannot achieve
an ordered state. Vicsek et al. established, through numerical simulations, that
in the critical region of noise and critical region of density, order parameter (Ψ)
behaves as;

Ψ ∼ [ηc(ρ)− η]β and Ψ ∼ [ρ(η)− ρc(η)]δ

They estimated the values of critical exponents β and δ to be β = 0.45± 0.07 and
δ = 0.35± 0.06. One of the important aspects of the results was that Vicsek et al.

https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
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showed phase-like transitions in the far from equilibrium system of self-propelled
agents.

In a numerical implementation of the Vicsek model, one can fix time-scales and
length-scales in the model by choosing ∆t = 1 and R = 1 respectively. Then, the
order parameter ψ of a system is governed by three parameters, viz. noise η, speed
of the agents v0, and density of agents ρ. It may be noted that in other variants
of the Vicsek model, the noise is implemented in different ways. For example,
Barberis et al. [23], in their model, used white noise defined by a Gaussian distri-
bution with zero mean and variance σ2. Chaté et al. [21] implemented a vectorial
noise that depends on the local alignment of the agents such that, influence of
the vectorial noise decreases with increasing local order. The main features of the
Vicsek model, that do not depend on the details of the implementation, are:
1) Spontaneous symmetry breaking: In the dynamics of the agents, given by
Eq. 1.1-1.2, there is no preferred direction of motion. However, due to a polar
alignment term in Eq. 1.2, agents move in a common direction if noise in the sys-
tem is sufficiently low. This common direction of motion is not chosen a priori.
It is rather chosen by fluctuations and initial conditions. In the disordered state
the direction of motion of the agents can change continuously in space while in
the transition to an ordered state a continuous symmetry is spontaneously broken
and agents move in a common direction.
2) Local interactions: The agents interact with their neighbors (other agents within
some distance from the reference agent) and they move according Eq. 1.1. The
neighbors of an agent change in a non-trivial way due to velocity fluctuations.
Thus, the connectivity matrix of the agents is not static and changes in non-
trivial way. This is where the non-equilibrium aspect manifests in to the Vicsek
model. The connectivity matrix will be non-stationary only if interactions are lo-
cal. In the singular limit R→∞, most of the interesting properties of the Vicsek
model are lost.
3) Conservation laws: The only conservation law in the Vicsek model is the num-
ber of agents. In particular, it should be noted that the momentum in the system
is not conserved.
It is important to note the similarities between the Vicsek model and known sta-
tistical physics models. Vicsek model can be seen as an off-lattice XY model in
which agents move along the ‘spin’ directions. In the limit of v0 → 0, and static
connectivity network of the agents, the dynamics of the Vicsek model would yield
equilibrium distribution of XY model. In this case, the noise in Vicsek model is a
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monotonic function of temperature T in XY model. In the limit of R→ 0, Vicsek
model dynamics converges to the persistent random walk of many agents. See
Ref. [24] for detailed discussion on the physics of the Vicsek model.

1.2.1.2 Modified Vicsek models

After the model was proposed by Vicsek et al, numerous modifications were intro-
duced in the model. During my Ph.D., we investigated effects of non-reciprocal
and delayed interactions among agents on collective behavior. This study albeit
interesting in itself, is not a main topic of this thesis. Inspired by the fact that
animals such as a bird or a fish usually will have a blind spot behind them [25, 26],
we restricted the percept of the agent to a ‘vision cone’ (see Fig. 1.4A). Agents
can only sense the velocities of other agents which are within its vision cone.

i

�
R

i

j
�

�

A B

Figure 1.4: (A) The neighborhood Si (blue shaded) of the i-th agent. The
i-th agent is shown at the center of a circle of radius R and the neighborhood Si
is the blue sector of the circle. The black dots with arrows as heading directions
indicate the agents lying within the neighborhood (including the particle at
the center of the circle), and the gray dots with arrows as heading directions
indicate agents outside it. The view-angle φ is the half opening angle of the
neighborhood at the center. (B) An example of non-reciprocal configuration of

agents i and j, where i interacts with j but not the other way round.
Figure source : Durve et al [27]. With kind permission of The European Physical

Journal (EPJ).

The interaction between the agents with a vision cone not only make interactions
anisotropic but also non-reciprocal depending on the orientation of the agents
(see Fig 1.4B). We simulated this model with two update schemes (BUR, FUR)
described above. From the previous studies [28, 29] we expected the qualitative
behavior of the system to be similar under both of these update schemes. However,
we observed that the order parameter ψ is qualitatively different in both the update
schemes. The results of our simulations are shown in the Fig. 1.5.
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Figure 1.5: Order parameter ψ vs view angle φ for two different up-
date schemes, the backward update scheme(red), and the forward update

scheme(black). Insets shows typical configuration of the system.

Fig.[1.5] shows steady-state average (over time and multiple configurations) of
Vicsek order parameter 〈ψ〉 as a function of the view-angle φ. Here we see the
most remarkable anomalous behavior of the system. The order parameter 〈ψ〉 dips
to a value close to zero around φ = 0.28, and then again recovers to higher value
at lower φ values. Within this anomalous range of φ (≈ 0.20 to 0.28), the value of
〈ψ〉 is slightly lower than what is expected for a completely disordered state (which
yields a small non-zero value due to finite system size). In this range of φ, the
system is indeed not in a disordered state, but in a remarkable new, ordered state
where the agents, starting from random initial conditions, spontaneously confine
themselves in a small, almost immobile clusters. Vicsek order parameter ψ for
this state is as close to zero as it is for completely disordered state of the agents.
Therefore, polar order parameter 〈ψ〉 is unable to capture the difference between
this drop state and a completely disordered state. Few snapshots of this process
are shown in Fig. 1.6.

We analyzed the spatial structure of the agents in this ‘drop state’ which is shown
in Fig. 1.6d. In Fig. 1.7 we show distribution of agents with distance from the
center of mass of the cluster. The distribution is obtained by counting the number
of agents within the distance r and r + dr from the center of mass in a single
realization of the system. We observed that the local density within the cluster
is not uniform. The local number density of agents at a certain radial distance
from the center of mass has a maximum value. The distance at which the agents
have highest local number density is about 0.25 which is half of the step-size of
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Figure 1.6: Snapshot of the system at various time instances (a) 0,(b) 168,
(c) 4500. Arrows indicate the directions of motion of the agents. Panel (d)
shows a zoomed view of the stable drop at t = 4500. The center of mass of the

drop is indicated by a red asterisk. The parameters are N = 576, η = 0.3.
Figure source : Durve et al [27]. With kind permission of The European Physical

Journal (EPJ).

the agents. In the inset of Fig. 1.7 we show local density in a color plot. We
conclude that the shape of the drop fluctuates in time, but the time-averaged
shape is circular with non-uniform density in steady state.

Figure 1.7: Distribution of agents from the center of mass of the cluster.
In the inset, density of agents within the cluster. Noise η = 0.3, view-angle

φ = 0.24.
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There are many questions that arising: Do agents form similar spatial config-
urations for some other choices of parameter ? What could be the mechanism
by which agents are trapped in a local high density cluster without explicit at-
tractive forces ? Are the results robust with parameters such as the density of
agents, interaction radius, view-angle, etc. With simulations we address some of
these questions, specifically, we studied robustness of our results and study the
mechanism by which the agents are trapped in a high density cluster.

We studied robustness of our results by varying noise η and view-angle φ in the
system. In Fig. 1.8 we show order parameter as a noise and view-angle is varied.
In a certain region of the parameter space, order parameter has a value which is
below the value for finite-size disordered system. In this region of the parameter
space we see emergence of the highly dense local immobile clusters.

Figure 1.8: Order parameter ψ as noise η and view-angle φ is varied. The
drop states form in the parameter space, in the valley region, marked by letter

V.

Now, we focus our attention on the possible mechanism by which the agents form
these immobile high-density clusters. In our model, there are two modifications
done to the Vicsek model. First modification being, implementation of limited
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field of view leading to the anisotropic and non-reciprocal interactions, and second
modification being, time-delayed response by the agents to their changing envi-
ronment. By reducing the field of view, we effectively reduce the area of neigh-
borhood. This might give a superficial impression that increasing the density of
agents would compensate for the reduced neighborhood area. However, reducing
the neighborhood area with a limited field of view and reducing the neighborhood
area isotropically by changing the radius of interaction has different effects on the
collective behavior of self-propelling units. In our previous work [30] we showed
that the system of self-propelling units undergoes a first-order phase transition
as view-angle is varied and it undergoes a second-order phase transition as the
interaction radius is varied. By reducing the view-angle, the interactions among
the agents become non-reciprocal and the interactions among the agents remain
reciprocal while reducing the neighborhood area isotropically. It is worthwhile to
note that non-reciprocal interactions do occur also in other models of collective
behavior. One such example is a model with topological interactions where agents
interact non-reciprocally in an inhomogeneous configuration. Non-reciprocal inter-
actions do affect the collective behavior of active systems. In one study Cavagna
et al. [31] showed that the relaxation time is significantly shorter for a system with
non-reciprocal interactions than with the reciprocal interactions. We attribute the
qualitative difference in the behavior of the agents with time-delayed response oc-
curring due to a specific update scheme. With the backward update rule (BUR),
agents first update their positions r and then update their velocities v. Thus, with
this scheme, agents inherently respond with a minimal delay of a single time step.
Such a delay is absent in the forward update rule where agents first update their
velocities v and then update their positions r using the recently computed velocity
v [27]. Thus, agents behave in different way when 2 groups of the agents face each
other with these 2 update schemes and with limited field of view. With forward
update rule, agents would turn in opposite directions and move away from each
other. However, with backward update rule, both group of agents would oscillate
around the mid-point of these two groups and thus forming a locally dense cluster
with approximate size.

In another similar study, Tian et al. [32] introduced anisotropic interactions among
the agents mediated with vision cone of the agent. They varied the view-angle
φ and measured the ‘consensus time’, that is the time taken for a system to
achieve a stationary value of the order parameter ψ, in the absence and presence
of noise. They made a counterintuitive observation that the consensus time can
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be shorter for φ < π, i.e. restricting the angular range of the agent can speed up
the establishment of the ordered collective motion.

In another variation of the Vicsek model, Gao et al. [33] considered restrictions
on the turning angle θ of an agent in a short time span. In their model, they
allowed an agent to turn by maximum angle θmax to align with its neighbors.
Therefore the agents have a maximum angular velocity ω. They observed that
there exists an optimal value of maximum turning angle θmax that maximizes the
direction consensus of the agents. i.e. maximize the polar order parameter ψ in
the presence of noise.

Combining the restricted vision of an agent with restriction on the angular velocity
ω of the agent, Costanzo et al. [34] identified the region in the parameter space
(Density ρ, speed v0, radius of interaction R, angular velocity ω, vision angle α)
where they observed milling-like patterns formed by the agents.

In 2002, Couzin et al. [35] proposed a model in which the nature of agent-agent
interaction depends on the distance between the agents. Each agent has 3 zones of
interactions as shown in Fig 1.9. The agent at the center interacts with a repulsive
force with its neighbors in the zone of repulsion (ZOR). This zone represents the
neighbors that are dangerously close to the agent and they must repel each other
to avoid collisions. An agent orients with its neighbors in the zone of orientation
(ZOO). This allows agents to move in a common direction. An agent interacts with
attractive force with its neighbors in the zone of attraction (ZOA). This helps in
forming a cohesive group. According to the model, an agent can ‘see’ other agents
in these three zones except in the blind spot behind the agent given by angle α.
The velocity of the agent is the weighted sum of the contribution of interactions
from the zone of orientation and the zone of attraction. If, however, there are
neighbors in the zone of repulsion of the agents then the priority of the agent is
to avoid collisions. With simulations in 3D space, Couzin et al. observed flocks
of different shapes with varying degrees of alignment. They observed milling-like
patterns, swarms, and highly polar flocks in these simulations.

1.2.2 Models without velocity alignment rule

The models described in previous section assume that agents align their velocities
according to the velocity of their neighbors. However in 2008, Grossman et al. [36]
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Figure 1.9: A 2D representation of the zones of repulsion (ZOR), orientation
(ZOO) and attraction (ZOA) with a blind spot (shaded region) spanned by
angle α behind the agent (black) in the model constructed by Couzin et al [35].

studied collective behavior of SPPs with a minimal model that does not include
velocity alignment rule explicitly. In this model, the self-propelled isotropic agents
are represented by round smooth inelastically colliding disks moving on a two-
dimensional (2D) frictionless flat surface. According to their model, if particles
come close to each other, they do not change their orientation by sensing the
direction of their neighbors. Instead, they undergo an inelastic collision. The
interaction among the disks are described by what is known as the spring-dashpot
model [37]. With this model, Grossman et al. observed various patterns such
as vortex-like pattern when the disks are placed in the circular arena and polar
ordered state when the disks are placed in periodic boundary conditions. They
showed that without any explicit velocity alignment rule, these soft, colliding
agents can form a polar ordered state.

In 2016, Barberis et al. [23] constructed another model without an explicit velocity
alignment rule. In this model, an agent interacts with its neighbors by a short-
ranged, position-based, attractive force. The neighbors of the agent are the other
agents within its field of view. An agent perceives the position of its neighbors
and at each time step , it updates its own position x and orientation θ as;

ẋi = v0V(θi); θ̇i = γ

ni

∑
j∈Ωi

sin(αij − θi) +
√

2Dθξi(t). (1.5)

Here, xi is the position of the agent and θi is its heading direction. v0 is the speed
of the agent, γ is the strength of interaction and ξi(t) is the delta correlated white
noise with amplitude Dθ. αij is the angle of the vector (xj − xi/|xj − xi|). Ωi
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represent the neighbors of the agent which are the agents in a sector of a circle
with radius R and opening angle β centered on the agent.

Figure 1.10: Phase diagram observed by Barberis et al. [23].
Figure source: Barberis et al. [23] https://doi.org/10.1103/PhysRevLett.
117.248001, with kind permission from American Physical Society (APS),

c©APS

With this model, they observed that depending on the parameter values, the agents
form a gaseous phase, an aggregate phase, a worm phase and a nematic phase.
The phase diagram is shown in Fig. 1.10

The spatial structures observed in different phases are shown in Fig. 1.11

Figure 1.11: Spatial patterns observed for various values of vision cone angle
β by Barberis et al. [23].

Figure source: Barberis et al. [23] https://doi.org/10.1103/PhysRevLett.
117.248001, with kind permission from American Physical Society (APS),

c©APS

https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.117.248001
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Thus, the authors observed various pattens that are similar to the patterns formed
by animal groups with a model that doesn’t assume the velocity alignment between
agents.

In another study, Cavagna et al. [38] constructed a model to account for the col-
lective turn observed in real flocks. They observed that in real flocks, when a bird
starts to turn, this information is propagated unattenuated in the whole group.
Therefore, the entire flock performs a collective turn. The model constructed by
Cavagna et al. is based on the conservation of internal momentum of the agent.
They called this internal momentum as ‘spin’. The equations of motion were writ-
ten down as;

d~vi
dt

= 1
χ
~si × ~vi

d~si
dt

= ~vi(t)×
 J
v2

0

∑
j

nij~vj −
η

v2
0

d~vi
dt

+
~ξi
v0

 (1.6)

d~ri
dt

= ~vi(t).

In these equations of motion, ~si is the internal spin of the agent, the parameter
χ is a generalized moment of inertia, ξ is the delta correlated noise term, η is a
friction coefficient, and J is the strength of alignment with neighbors of the agent.
With this inertial spin model, they showed that the model accurately accounts for
the collective turns observed in real flocks.

Apart from these approaches of constructing a model and testing its relevance with
collective behavior, researchers also considered the opposite approach to infer the
rules of collective behavior from observations of animal groups.

1.3 Inferring the rules of interaction

In another approach to study collective behavior in animals, researchers analyzed
data from experimental observations of animal groups and inferred rules that gov-
ern animal interactions. In 2008, Ballerini et al. [2] reported interesting obser-
vations of flocks of starlings. They used photographic techniques to track the
motion of the starling flocks. They measured the angular orientation of nearest
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neighbor of a reference bird with respect to the flock’s direction of motion. They
repeated this measurement by taking all individuals within a flock as reference
bird constructed the average angular position of nearest neighbors with respect
to the flock’s direction. They observed that in a flock, there is lack of nearest
neighbors flying along the motion of a reference bird. Thus they concluded that
the structure of individuals in a flock is strongly anisotropic. They suggested that
the possible reasons for this anisotropy could probably be related to the visual
range of the birds. This anisotropy in the spatial structure of a flock is crucial for
its cohesive motion. They quantified decay of the anisotropy as a function γ(n)
of n-th nearest neighbors. This function γ(n) measures to the extent to which
the spatial distribution of the n-th nearest neighbor around a reference bird is
anisotropic. From the observed data, they concluded that the threshold value of
anisotropy γ for a flock is reached when a bird interacts with 6-7 of its nearest
neighbors. Thus they suggested that the birds interact with a fixed number of
neighbors, typically 6 or 7 to maintain the flock. They called it ‘topological in-
teractions’. This hypothesis is in disagreement with the then previously thought
hypothesis that birds interact with all other birds which are in the neighborhood of
a certain fixed size (metric interactions). However, topological interactions makes
more sense due to the fact that biological agents are limited in their cognitive
capacities and thus, they can pay attention to few other agents [39]. Ballerini et
al. supported their observations by numerical simulations and showed that such
topological interactions can have better cohesion in a flock than that of the metric
interactions. They also developed photographic techniques to capture data from
the flock of few hundred birds. This work is highly significant as it demonstrates
the techniques to study large flocks moving in 3 dimensional space. Fig. 1.12below
is snapshot of a flock consisting of 1246 starling birds and construction of the 3
dimensional image reported by Ballerini et al.

In another study with schools of fish, Herbert-Read et al. [40] tracked trajectories of
mosquitofish schools placed in a square arena. They observed that a fish responded
to the position of its neighbors through short-range repulsive and longer-range
attractive forces. A fish responds by changing its speed and changing its direction
of motion. A fish is attracted towards its neighbors that are in the attraction
zone i.e. if they are farther than critical distance d from the fish. The critical
distance was observed to be 6 cm. The fish was observed to be accelerating
towards the position of its neighbors in front of them and decelerating in response
to neighbors behind it. If a fish is at a distance less than the critical distance d
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Figure 1.12: (a)-(b) Snapshot of a flock of 1, 246 starlings taken from two
different positions. Photo from left column is matched with photo from right
column to construct a 3D image. 5 such matching pairs are shown by the red

squares. (c)–(f) 3 dimensional reconstruction of the same flock.
Image source : Ballerini et al. [2]. With kind permission of PNAS.

from its neighbors then it was observed to be repelled by its neighbors. There was
no evidence of explicit orientation alignment between the fish in the attraction
zone. They observed that moving direction of a fish is maximally correlated with
the direction of a fish in front of it after a small time delay, suggesting that the fish
behind follows the fish in front, thereby coming into alignment with this neighbor.
Thus, with this mechanism a school of fish can move in a common direction.

In another observational study, Katz et al. [41] analyzed the trajectories of golden
shiners (Notemigonus crysoleucas) and they observed that a fish in a shoal re-
sponds to the change in speed of the other fish present in front of it. They also
concluded that the fish interact with each other via attractive and repulsive forces.
Similarly, Lukeman et al. [42] studied flocking surf scoters consisting of hundreds of
individuals on the water surface. They observed that these animals interact with
strong short-range repulsion, intermediate-range alignment, and longer-range at-
traction. They also found evidence that individuals are influenced significantly by
other animals in the front. However in these studies, the authors keep the question
about universality of their findings open to answer.
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All these studies aim to decipher complex collective behavior shown by animals
that accomplish non-trivial tasks. On the other hand, individual animals also
achieve remarkable feats. One such example is locating odor sources in turbulent
environment using ability to smell minute amounts of odors dispersed in the sur-
roundings. During my Ph.D. I studied two scientific problems, one concerned with
understanding collective animal behavior(Chapter 2) and second concerned with
improving performance of individuals in searching for odor source in turbulent
environment by taking advantage of collective behavior(Chapter 3).

1.4 Olfactory search strategies in animals

In Chapter 3, we study and present results of collective olfactory search strategies.
For many animals, searching for resources such as food, mates, sites for oviposition
is a recurrent task. Male moths searching for females, mosquitoes looking for a
human host are some of the examples. In such cases, the desired target, such as a
female moth, releases its specific odor chemicals in the environment. The search of
the locating animal is guided by this wind-born odor. However, due to turbulent
nature of the environment, the search task becomes highly non-trivial.

The dispersion of the odor in the turbulent environment is dominated by advecting
flow. The diffusion coefficient of molecules such as ethanol, hexadecanol (similar
in size with moth pheromones) is of the order of 10−5 m2 s−1 [43]. This small
rate of molecular diffusion indicates that the dispersion of odor is mainly due to
advecting flow than molecular diffusion. Thus, due to turbulence, odor plume
contains unevenly distributed patches of odor chemicals that persist for long dis-
tances downwind [44]. In such environments, strategies such as gradient ascent are
not effective to find source of the odor. Instead, animals have developed effective
search strategies using the environmental cues (wind direction, temp, humidity,
etc.) and intermittent odor detection to locate the source.

A female mosquito, depending on the species of the mosquito, has a preference
to feed blood from different regions of the human body. Female yellow fever
mosquito (Aedes aegypti) uses fluctuating concentration of carbon-dioxide exhaled
by human host to locate the host from longer distances [45]. However, close to the
host, she selects the landing site using other cues such as other body odors, visual
appearance of the host, and presumably elevated heat and humidity levels [46]. In
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1998, Geier et al. [47] showed experimentally that, in the controlled environment
of uniform concentration of carbon-dioxide, mosquitoes (Aedes aegypti) did not
travel upwind but rather the upwind travel of mosquitoes was observed only in
the non-uniform concentrations of the carbon-dioxide. The opposite effect was
observed with the other odors that are released by human skin. The upwind flight
of the mosquitoes was elicited only in the uniform concentration of these odors.
This suggests that the mosquitoes use fluctuating intensity of carbon-dioxide to
locate the host from the distance and use additional cues to identify the host and
to land.

Male gypsy moths find mates using the pheromones released by females. Male
moths are remarkably capable of locating the female from large distances, typi-
cally tens of meters [48]. To achieve this remarkable goal, male moths use their
capability to detect minute amount of pheromones dispersed in the air and capa-
bility to sense wind direction. Male moths of Cadra cautella do respond even to
single filament of its pheromone. Equipped with these sensing capabilities, the ob-
served behavioral response of the moths is as follows. Moths move upwind if they
detect pheromone signal intermittently but sufficiently frequently. It is observed
that, in wind tunnels the intermittency of the signal is important to elicit the
upwind flight response of the moth. Male moths did not fly upwind with contin-
uous pheromone stimulus. Instead, the upwind flight was elicited by intermittent
pheromone signal [49]. While navigating a moth can lose signal for 3 reasons;
(a) large gaps between two detections due to the turbulent environment, (b) the
upwind direction may not follow the odor plume, (c) moth’s own maneuvers take
it outside the odor plume. In the absence of the signal the moth showed ‘casting’
behavior. It performed flights in the transversal direction to the wind direction
with increasing lengths forming a zig-zag pattern, until it regained contact with
the odor plume [50–52]. In general, these counter-turns occur in quick succes-
sions, typically 3.5 to 4 turns per second. The frequencies of these turns were
observed to be characteristics of the moth species [53, 54]. Thus, typical strategy
adapted by male moths can be summarized as following. Male moths sustain up-
wind flight as long as they receive intermittent odor signal sufficiently frequently
and in absence of it, they search for the odor signal by traveling transversally.
This behavior has inspired us to construct collective olfactory search algorithm
described in Chapter 3.
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1.5 Introduction to reinforcement learning

As we have seen that our understanding of animal behavior is shaped by parallel
development of mathematical models and experimental studies. In some studies,
specific models were developed to account for the specific behavior observed in bio-
logical systems [10, 24, 55]. Other than these approaches, in Chapter 2, we present
a novel approach to study collective behavior in animals. We study decision mak-
ing process of individuals to achieve a certain goal. Our aim is to understand the
general laws that these animals might be obeying to exhibit collective behavior
by understanding their decision making process. To understand the decision mak-
ing process of the individuals in an animal group, we implemented reinforcement
learning techniques. Reinforcement learning is one subset of broad field of ma-
chine learning. The general scheme of reinforcement learning is presented in the
following section.

Biological agents learn to behave in a certain way that is shaped by prolonged
interactions with the surroundings. Reinforcement learning [56] is a broad scheme
that models this phenomenon. Reinforcement learning is based on the framework
of Markov decision processes. The goal of the agent is to maximize the total
gain by taking sequence of actions in the environment. The general scheme of
reinforcement learning is shown in Fig 1.13.

Figure 1.13: Broad scheme of reinforcement learning.

The key ingredients of the reinforcement learning are;

Agent : agent that can sense environmental cues and chooses to take action.
States S: a set of possible states S that represent the dynamic environment. The
agent perceives the state of environment s ∈ S at each time step.
Actions A: a set of possible actions A that the agent can select from at each time
step. After executing the selected action, the system is transformed to the next
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state and the agent receives a reward.

In this scheme, an agent senses the state of the environmentst and performs an
action at. As a consequence of the action just performed, the environment issues
a reward rt+1 and a new state st+1 of the environment to the agent. Thus by
repeating this process, the experience of the agent is given by the sequence of;

st, at, rt+1, st+1, at+1, rt+2 . . .

In this process, the new state of the environment s′ is determined by the tran-
sition probability P a

ss′ . The transition probability gives the probability that the
system goes to the new state s′ when action a is performed in the state s. If the
environment has the Markov property, then the effect of taking an action a in a
state s only depends on the current state-action pair and not on the prior history
i.e.

P a
ss′ = P (st+1 = s′, rt+1 = r|at, st),

P a
ss′ = P (st+1 = s′, rt+1 = r|st, at, rt . . . r1, s0, a0).

(1.7)

This property dictates that the current state st contains sufficient information for
the optimal future decisions. The goal of the agent is to maximize the total dis-
counted reward Rt given as;

Rt =
∞∑
k=0

γkrt+k+1. (1.8)

The discount factor 0 ≤ γ < 1 keeps the sum finite and it is a parameter that
sets how much future expected rewards are to be taken into account for optimal
decision making. The goal of the learning algorithm is to find the optimal policy
π∗(a|s) that maximizes the reward Rt. A policy maps the states with actions. i.e.
π(a|s) is a probability of selecting action a in the state s. To maximize the reward
Rt, it is desired to know the goodness of action a in state s. Thus, we define the
action-value function of an action a under a policy π as the expected return by
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selecting an action at in the state st and following policy π thereafter. It is written
as

Qπ(s, a) = Eπ[Rt|st = s, at = a], (1.9)

which can be written as;

Qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′
π(a′|s′)Qπ(s′, a′)]. (1.10)

It has been proven that the optimal policy consists in choosing the action a with
the greatest Q∗(s, a) i.e. a = argmax

a′
Q(s, a′) and the optimal values of states and

actions satisfy;

Q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + max
a′

Q(s, a′)]. (1.11)

Eq. 1.11 is known as the Bellman optimality equation. In many cases, the model
of the environment is not known, and in such cases the optimal Q-function can be
obtained with replacing model of the environment with experience gained through
prolonged interactions with the environment. To obtain optimal quality function
Q∗, we implemented algorithm known as Q-learning [56, 57]. In this algorithm
current estimate of the quality function is updated using what is know as the
temporal difference (T.D.) error. The T.D-error is a difference between expected
reward and reward actually received by the agent.

However, implementation of reinforcement learning techniques to multi-agent sys-
tems have some additional challenges [58, 59]. There are two ways to implement
reinforcement learning techniques to multi-agent systems and each way has some
challenges of its own. The first way is called ‘team learning’. In team learning,
there is a single learner involved: but this learner is discovering a set of behaviors
for a team of agents, rather than a single agent. This lacks the aspect of multiple
learners, but still poses challenges because as agents interact with one another,
the joint behavior can be unexpected. A major problem with team learning is
the large state space for the learning process. For example, if agent 1 can be in
any of 10 states and agent 2 can be in any of another 10 states, then the team of
agents can be in 10× 10 states. Although the reinforcement learning techniques,
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in principle, are still applicable to the system, they become overwhelming from
the computation point of view.

Another way to implement reinforcement learning techniques to multi agent sys-
tems is called concurrent learning. In concurrent learning, each agent is learning
individually. Concurrent learning may be preferable in those domains for which
some decomposition of learning process is possible and helpful. That is, if the
individual agent’s learning can be independent of others to some extent then the
concurrent learning is preferential. The problem with concurrent learning is that
as the agents learn, they modify their behaviors, which in turn can ruin other
agent’s learned behaviors and not yield the desired results.

Regardless of method chosen, one more challenge is to assign credit to every agent.
credit can be equally divided among agents such as a goal in a football match.
This scheme is called global reward scheme. However, this scheme does not provide
proper feedback to the agents on goodness of their actions and hamper the learning
process. On the other hand one may assign local reward scheme that assign credit
to individual agents but this scheme may develop greedy behavior among agents
which may not achieve the ultimate goal as a team.

We implemented the framework of multi-agent reinforcement learning to study the
decision making process of the agents in order to stay together as a flock. The
detailed description of our study is presented in the next chapter.



Chapter 2

Learning to flock with
reinforcement learning

2.1 Introduction

The spectacular collective behavior observed in insect swarms, birds flocks, and
ungulate herds have long fascinated and inspired researchers [2, 60–64]. There are
many long-standing and challenging questions about collective animal behavior:
How do so many animals achieve such a remarkably synchronized motion? What
do they perceive from their environment and how do they use and share this
information within the group in order to coordinate their motion? Are there any
general rules of motion that individuals obey while exhibiting collective behavior?
Since the last few decades, these questions have been addressed with systematic
field observations coupled with mathematical models of animal behavior. Data
from experimental observations have been analyzed in order to infer the rules
that individuals follow in a group [40–42, 65, 66] and numerous models have been
proposed to explain the observed flocking behavior [14, 19, 23, 38, 67–69]. Basic
models of flocking are essentially based on three rules: i) short-range avoidance,
ii) alignment, and iii) long-range attraction. In the following we will will ignore for
simplicity the separating force at short distances which may arise from collision
avoidance or the indirect cost of sharing of vital resources [13] and put at the center
of the stage the last of the previous three rules, that is the drive towards cohesion
of the group. In real flocks or schools this tendency guarantees an increased
safety from predators [11] as well as the benefits of collective foraging [12]. As for

26
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alignment, which is a key ingredient of many models of flocking, the main result of
this work is that it actually follows from the requirement of cohesion, rather than
being an independent rule to enforced. The great majority of flocking studies [2,
14, 19, 38, 40–42, 60–69], except for few exceptions (see [23] references therein), are
based on a velocity alignment mechanism that ensures that neighboring individuals
move in the same direction.

However, the origin of such a velocity alignment, from a cognitive point of view,
is not known, and neither its biological function.

The natural mathematical language that we will use here to discuss collective
motion is the framework of Multi Agent Reinforcement Learning (MARL) [58, 59].
In this scheme, the agents can perform actions in response to external cues that
they can sense from the environment as well as from other agents. The goal of
each agent is to achieve a given objective. In the case at hand, the agents are
individuals who can observe the behavior of their close neighbors and react by
steering according to some rule. Since it has been hypothesized that there exist
many benefits associated to group-living, such as predator avoidance [11] and
collective foraging [12], we assume that the objective of the agents is to increase
or maintain the cohesion of the group. The essence of Reinforcement Learning
(RL) is that, by repeated trial and error, the agents can learn how to behave in an
approximately optimal way so as to achieve their goals [56]. Here, we show that
velocity alignment emerges spontaneously in a RL process from the minimization
of the rate of neighbor loss, and represents a optimal strategy to keep group
cohesion.

2.2 Techniques

In the following we will consider individual agents that move at constant speed in
a two-dimensional box with periodic boundary conditions. The density of agents
is kept fixed to ρ = 2 agents/(unit length)2. Updates are performed at discrete
time steps as follows. For the i-th agent, the position update is:

rt+1
i = rti + v0vti∆t , (2.1)

where rti and vti, with ||vti|| = 1, are the position and moving direction, respectively,
of the agent at time t; the term v0 corresponds to the speed, which we fix to
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v0 = 0.5, and ∆t = 1. At each time step, each agents makes a decision on
whether keeping the current heading direction or performing a turn. The decision-
making process is based on the sensorial input of the agent, which corresponds
to the angular difference between the (normalized) average velocity defined by
Pi = (∑|rj−ri|<R vtj)/ni (with ni the number of neighbors of agent i within its
perception range R) and the moving direction of the agent vti. Below, we take
R = 1. We can express the state as

sti = arg(Pi,vti) , (2.2)

where the function arg(Pi,vti) is defined as arccos(Pi · vti/||Pi||) for Pi · (vti)⊥ > 0
with (vti)⊥ obtained by rotating π/2 counter clockwise the unit vector vti, and
minus this quantity otherwise. This means that sti ∈ [−π, π). For computational
simplicity, we discretize sti by dividing 2π into Ks equally spaced elements (see
appendix A). In the RL language, the relative angle sti is the contextual information
that defines the current state of the i-th agent. Knowing sti, the agent updates vti
by turning this vector an angle ati

vt+1 = R(ati)vt , (2.3)

where R(ati) is a rotation matrix. Note that there are Ka possible turning angles,
equally spaced in [−θmax , θmax ] (see appendix A). In the RL jargon, choosing the
turning angle ati represents an "action" performed by the agent. The association
of a given state sit with an action ait is called a policy.

Policy evaluation takes place at each time step as the agent receives a (negative)
reinforcement signal in the form of a cost ct+1

i for losing neighbors within its
perception range R

ct+1
i =

 1, if nt+1
i < nti

0, otherwise
(2.4)

where nti is the current number of neighbors. The goal of the learning agent is to
find a policy that minimizes the cost. To achieve this goal the agent makes use of
a simple learning rule [56, 57]. The i-th learning agent keeps in memory a table of
values Qi(s, a) for each state-action pair (here a matrix Ka×Ks) which is updated
at each step of the dynamics – only for the entry that corresponds to the state
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just visited and the action just taken – according to

Qi(sti, ati)← Qi(sti, ati) + α[ct+1
i −Qi(sti, ati)] . (2.5)

This update rule effectively constructs an estimator for the expected cost that will
be incurred by starting in a given state and performing a given action. The policy
at each time-step is based upon the current Qi according to so-called ε−greedy
exploration scheme:

ati =


argmin

a′
Qi(sti, a′) with prob. 1− ε

an action at random with prob. ε
. (2.6)

In the simulations we have used α = 0.005 and various different schedules for the
exploration probability [56]. We wrote code to carry out simulations in Fortran
programming language and the code is given in appendix G. 1. The results of
simulations are presented in next sections.

2.3 Results: Single agent

We start by considering the case when there is a single learning agent in a crowd
of N teachers (see Figure 2.1) who have a hard-wired policy:

ati(sti) =


sti if |sti| ≤ θmax

θmax if sti > θmax

−θmax if sti < −θmax

. (2.7)

This decision rule is nothing else but a version of the Vicsek model of flocking
with a discrete number of possible moving direction and limited angular speed.
Thus, teachers display robust collective motion. For more details on the behavior
of teacher agents see appendix B. The learning agent, on the contrary, does not
have a fixed policy, but one that evolves over time as it acquires experience, i.e. by
visiting a large number states, and evaluating the outcome of executing its actions.
In this case we find that for suitably chosen learning rates α and exploration
probability ε the algorithm approaches an approximately optimal solution to the
decision-making problem after some period of training.

1For any problems to use the code as it given, I request to you to write to me (mihir-
durve@gmail.com) for further support and source code files.
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Figure 2.1: Learning to flock within a group of teachers. (A) Scheme of
reinforcement learning. (B) Neighbors (black) within the perception range of

the learner (red).

Figure 2.2: Single learner results. (A) Performance of the learner as train-
ing progresses. The error bars indicate standard deviation in the values in 20
training sessions. In the inset, some short trajectories of the learning agent
(red) and teachers (black) at the stages indicated by the arrows. The number
of teachers is N = 200. The maximal turning angle is θmax = 3π/16. (B)
The Q-matrix, i.e the average cost incurred for a given state-action pair by the
teachers. White stars shows the action a taken by the teacher when in state s.
(C) Q-matrix of the learner at the end the training session. White stars denote

the best estimated action of the learner for each state.

In simulations, we break the training session into a number of training episodes
of equal prescribed duration of 104 time steps. In each episode the teachers start
with random initial positions and velocities. After a transient, they form an or-
dered flock and at this time we introduce the learner and implement the learning
algorithm. At the very beginning, the learner starts with a Q-matrix with all zero
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entries, which in a case of optimistic initialization (the naive learner expects to
incur no costs), a choice that is known to favor exploration [56]. From one episode
to the following, the learner keeps in memory the Q-matrix that it has learned so
far. During the training session, we measure the success of the learning process
with the average cost that a learner pays per time step, that is the rate at which it
is losing contact with the teachers (see Fig. 2.2A). As the training progresses, the
rate at which neighbors are lost starts from an initial value of 0.5, meaning that on
average the learner loses contact with some neighbor every other step, to decrease
and eventually saturate down to a value around 0.1 meaning that the contact is
kept for 90% of the time. In the insets of Fig 2.2A we show samples of short
trajectories of the learner and some teachers at the early and later phase of the
training process. We observe that in the early phase of the training, the learner
essentially moves at random (see movie1.mp4) and eventually it learns to stay
within the flock (see movie2.mp4). In Fig 2.2C we show that the policy discovered
by the learner is identical with the pre-defined policy of the teachers, see Eq. (2.7)
and Fig. 2.2B. It is important to remark that the one and only goal of the learner
is to keep contact with its neighboring teachers, not to imitate their behavior. It
simply turns out that the best strategy for the learner is in fact the underlying
rule that was assigned to teachers. See appendix C for additional results.

2.4 Results: Multi-agent

Now, let us move our focus to the situation where there are no teachers, but only N
independently learning agents (see Figure 2.3). A distinctive difficulty of applying
reinforcement learning to the multi-agent setting is that all individuals have to
concurrently discover the best way to behave and cannot rely upon knowledge
previously acquired by their peers. However, we find that N learning agents are
able to overcome this hurdle and are actually capable of learning to flock even in
the case when all of them start as absolute beginners (all Q-matrices initialized to
zero).

To characterize the performance of the learners, we measure the average rate of
loss of neighbors. In Fig 2.4A we show the average cost for various groups sizes and
state-action space discretizations {Ks, Ka}. The cost reaches a small and steady
value after few hundreds of episodes. As the group size grows, the performance
remains essentially the same. Conversely, refining the discretization allows to



Learning to flock with reinforcement learning 32

further reduce the costs: for 128 relative alignment angles and 28 turning angles
the agents do not lose neighbors for about 97% of the time.

The resulting Q-matrix at the end of the training, averaged over all learners, is
shown in Fig. 2.4B. The colors represent the numerical values in the Q-matrix and
the discovered policy is shown with white points. We observe that the discovered
policy is the same that the one learned by the single agent with N teachers.

It is worth stressing that all agents independently learn the same strategy. We
have collected the values of the Q-matrix for a given state (s = 0) and different
actions, for all agents, at the end of training. The histogram for the frequency of
Q values is shown in Fig. 2.5 where one can observe that there is a clear gap that
separates the estimated costs for the optimal turning angle, which lie around 0.1,
from the suboptimal actions that have significantly larger costs.

A customary measure of the degree of alignment is the polar order parameter:

ψ(t) = 1
N

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

vti

∣∣∣∣∣
∣∣∣∣∣ . (2.8)

If all the agents are oriented randomly then, as N → ∞, ψ → 0 whereas if all
the agents are oriented in the same direction then ψ = 1. In Fig 2.6 we show the
evolution of order parameter versus the average cost as the multi-agent learning
is advancing. We observe that in the early phases of training the rate of loss of
neighbors is comparatively high and the direction consensus among the agents is
low, in agreement with the notion that the agents are behaving randomly (see
movie3.mp4). As the learning progresses, the agents discover how to keep co-
hesion, and in doing so they achieve a highly ordered state (see movie4.mp4).

Figure 2.3: Multi-agent concurrent learning. (A) Multiple agents with their
perception range. (B) Agents interact with short-range, reciprocal interactions.
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Figure 2.4: Results for the multi-agent concurrent learning. (A) Average
performance of learners in groups of different sizes. Black, magenta and blue
colors corresponds to state-action spaces of size {Ks,Ka}={32, 7}, {64, 14},
{128, 28} respectively. Error bars indicate standard deviation in the average
values for each agent. (B) Average Q-matrix at the end of the training for
N = 200 agents with combination of {Ks,Ka}={32, 7}. White points indicate
actions with estimated minimum cost for given state. The colors represent

values in the Q-matrix.

We checked the robustness of our results by varing parameters such as density
of agents, agent-agent interaction radius, number of allowed actions, etc. We ob-
served that our results are robust with change in parameter values. See appendix D
for more details. In our study we assumed that the learners can make error-free
measurements. However, biological agents have limited capabilities to perceive
their environment. A natural question that arises here is if agents would learn to
flock with noisy observations and limited field of view, etc.? We addressed some
of these questions and the results are presented in appendix E.

2.5 Conclusions

We conclude that the obtained results proves that the velocity alignment mech-
anism of the Vicsek model (see Eq. (2.7)) – based on energy minimization of
spin-spin interaction of the XY model – can spontaneously emerge, counterintu-
itively, from the minimization of neighbor-loss rate, and furthermore represents an
optimal strategy to keep group cohesion when the perception is limited to velocity
of neighboring agents. In summary, if the agents want to stay together, they must
learn that they have to steer together.
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In more general terms, we have shown that Multi-Agent Reinforcement Learning
can provide an effective way to deal with questions about the emergence of col-
lective behaviors and the driving forces behind them. Our present contribution is
just an initial step in this direction and we feel that prospective applications of
this approach remain largely unexplored.

For instance, in the present work we have decided at the outset the structure of
the perceptual space of the agents, namely the choice of the radius of perception
as the relevant parameter and of the relative angle as the relevant state variable.
In doing so, we bypassed fundamental questions like: Is the metric distance the
most appropriate choice for ranking neighbors ? How should the information
given by other individuals be discounted depending on their ranking ? A more
ambitious approach would tackle these issues directly through MARL and try to

Figure 2.5: All agents independently learn the same optimal strategy. The
histogram shows the frequency of a give numerical value of Q(0, a) across all
learners, at the end of training. The best action a = 0 always performs better
than any other action. The same holds for other states (not shown). Data

obtained with N = 100 agents, Ks = 32, Ka = 7.
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Figure 2.6: Average polar order parameter 〈ψ〉 versus the rate of loss of
neighbors. In the insets we show a few short trajectories of naive and trained

agents.

learn from experience what are better choices of the state variable that allow to
achieve optimal cohesion.

As another example, here we have tasked our agents with the goal of keeping con-
tact with neighbors, which in itself is understood to be a secondary goal motivated
by the primary need of avoiding predators (safety by the numbers) or of increas-
ing the efficiency of foraging. Can one recapitulate the congregation behavior by
tasking agents with the primary goal itself ? More explicitly, would agents learn to
align themselves by rewarding behaviors that reduce their risk of being predated
or increase their chance of getting some food ?

Also, in this work we have considered a group of identical agents. When agents
differ for their perceptual abilities or their dexterity in taking the appropriate
actions, then competitive behaviors may arise within the group and the problem
acquires a new challenging dimension. How much heterogeneity and competition
can be tolerated before it starts impacting the benefit of staying in a group ?

These and many other questions lend themselves to be attacked by the techniques
of MARL and we believe that the approach that we have delineated here will show
its full potential in the near future.



Chapter 3

Multi-agent olfactory search in
turbulent environment

3.1 Introduction

Animals are often on the move to search for something: a food source, a potential
mate or a desirable site for laying their eggs. In many instances their navigation
is informed by airborne chemical cues. One of the best known, and most impres-
sive, olfactory search behavior is displayed by male moths [45, 48, 51, 70]. Males
are attracted by the scent of pheromones emitted in minute amounts by calling
females that might be at hundreds of meters away. The difficulty of olfactory
search can be appreciated by realizing that, due to air turbulence, the odor plume
downwind of the source breaks down into small, sparse patches interspersed by
clean air or other extraneous environmental odors [71, 72]. The absence of a
well-defined gradient in odor concentration at any given location and time greatly
limits the efficiency of conventional search strategies like gradient climbing. Exper-
imental studies have in fact shown that moths display a different search strategy
composed of two phases: surging, i.e. sustained upwind flight, and casting, i.e.
extended alternating crosswind motion. These phases occur depending on whether
the pheromone signal is detected or not. This strategy and others have inspired
the design of robotic systems for the identification of sources of gas leaks or other
harmful volatile compounds [73–77]. Albeit the effectiveness of individual search
is already remarkable in itself, the performance can be further boosted by coop-
eration among individuals, even in absence of a centralized control [12, 78–82].

36
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In recent years algorithms based on have been developed for individual search
processes [83]. These search processes involve searching for a target that emits
a signal at low rates in random directions. the challenge for the lone searcher
(agent) is to utilize the intermittent odor signal to locate the target as quickly
as possible. The infotaxis algorithm prescribes dynamical rules for the agent to
maximize the information it would get about the location of the target. At each
time t an agent constructs a probability map by computing probabilities P (r) of
finding the target at possible locations r. At each time an agent might 1) find
the target, 2) detect the signal emitted by the target, 3) detect nothing. An
agent updates its probability map based on these events. The agent’s decision to
move is based on the expected information it would gain from each possible move.
The expected gain in information is given by the expected change in entropy of
each of the possible events in that location (finding the source, detecting signal,
or detecting nothing), weighted by the probability of occurrence of each of these
events. This general idea of infotaxis is extended to multi-agent search strategies
to enhance performance [84–87]. i.e. to locate the target in minimum time. The
core challenge in the multi-agent infotaxis based search is how individual agents
utilize the information available with other agents (via social interactions) to make
its own infotaxis decisions. There are several models that define different methods
for the agents to integrate its own information and information available with
other agents. For example in one possible way, observations from all the agents are
integrated to construct a common probability map called joint probability map [88,
89]. New experiences gained by individual agents contribute to updating the map.
Individual agents base their decisions to move on this joint probability map. In
another possible way, an agent utilizes the difference in its own probability map and
probability map of its neighbors to make infotaxis decisions [84, 90]. Regardless
of the method to integrate private and public information in the infotaxis based
algorithms, the requirement of exchanging observations and probability maps add
to the overheads to computation and communication which is undesirable for real-
time applications [86].

In this work, we tackle the problem of collective olfactory search in a turbulent
environment. When the search takes place in a group, there are two classes of
informative cues available to the agents. First, there is private information, such as
the detection of external signals – odor, wind velocity, etc – by an individual. This
perception takes place at short distances and is not shared with other members
of the group. Second, there is public information, in the form of the decisions
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made by other individuals. These are accessible to (a subset of) the other peers,
usually relayed by visual cues, and therefore with a longer transmission range.
Since the action taken by another individual may be also informed by its own
private perception of external inputs, public cues indirectly convey information
about the odor distribution and the wind direction at a distance. However, the
spatial and temporal filtering that is induced by the sharing of public cues may
in principle destroy the relevant, hidden information about the external guiding
signals.

These considerations naturally lead to the question if the public information is
exploitable at all for the collective search process. And if it is, how should the
agents combine the information from private and public cues to improve the search
performances ? Below, we will address these questions by making use of a com-
bination of models for individual olfactory search and for flocking behavior, in a
turbulent flow.

3.2 A model for collective olfactory search

The setup for our model is illustrated in Fig 3.1A. Initially, N agents are randomly
and uniformly placed within a circle of radius Rb at a distance Lx from the source
S. The odor source S emits odor particles at a fixed rate of J particles per unit
time. The odor particles are transported in the surrounding environment by a
turbulent flow u with mean wind U (details are given below). to. Notice that the
odor particles are not to be understood as actual molecules, but rather represent
patches of odor with a concentration above the detection threshold of the agents.
The entire system is placed inside a larger square box of size bLx with reflecting
boundary conditions for the agents. A complete list of parameters with their
numerical values is given in the appendix F.

3.2.1 Response to private cues

The behavior elicited by private cues such as odor and wind speed is inspired by
the cast-and-surge strategy observed in moths. We adopted a modified version of
the “active search model" [91] that works as follows.
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Figure 3.1: Collective olfactory search. (A) Odor particles dispersed by
the turbulent environment are shown by semi-transparent blue dots emitted by
the source S. Agents (red) are initially placed far from the source in a packed
configuration. (B) Perception of an agent (red). Detected odor particles by the
agent are shown as darker blue dots and neighbors of the agent are shown in
green. Arrows indicate the instantaneous moving direction of agents. We set
Lx = 250Rd, Rb = 25Rd, Ra = 5Rd, Rd = 0.2 b = 2.5 (C) Trajectory of an
isolated agent performing the cast-and-surge program (see text). The locations
where the agent detects the presence of odor particles are shown as blue crosses.

We assume that the agents have access to an estimate of the mean velocity
of the wind as moths actually do via a mechanism named optomotor anemo-
taxis [92]. In the model this estimate û(t) is an exponentially discounted run-
ning average of the flow velocity u perceived by the agent along its trajectory:
û(t) = λ

∫ t
0 u(s) exp[−λ(t− s)]ds. The parameter λ is the inverse of the memory

time: for λ → 0 the estimate converges to the mean wind, while for λ → ∞ it
reduces to the instantaneous wind velocity at the current location of the agent.
In the following we have taken λ = 1 which is of the same order of magnitude
of the inverse correlation time of the flow. It is worth pointing out that the only
effect of the wind is to provide contextual information about the location of the
source. Indeed, in our model the agents are not carried away by the flow, an as-
sumption that is compatible with the fact that the typical airspeed of moths and
birds largely exceeds the wind velocity.

At each time interval ∆t, the agent checks if there are odor particles within its
olfactory range Rd (see Fig. 3.1B). If this is the case, then it moves against the
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direction of the current estimated mean wind at a prescribed speed v0. When the
agent loses contact with the odor cue, it starts the “casting" behavioral program:
it proceeds by moving in a zig-zag fashion, always transversally to the current
estimated mean wind, with turning times that increase linearly with the time
from the last odor detection (a sample trajectory is shown in Fig 3.1C, see the
appendix F for details about the implementation). We denote by vprivi (t) the
instantaneous velocity of agent i prescribed by this cast-and-surge program. This
is uniquely based on private cues and would indeed be the actual velocity adopted
by the agent if it were acting in isolation.

3.2.2 Response to public cues

To describe the interactions among agents we have drawn inspiration from flocking
and adopted the Vicsek model to describe the tendency of agents to align with
their neighbors (see [93, 94] and references therein). We assume that an individual
can perceive the presence of its peers within a visual range Ra (see Fig. 3.1B) and
actually measure their mean velocity. According to this model, the behavioral
response elicited in agent i by its neighbors is

vpubi (t) = v0
∑
j∈Di

vj(t)
/∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈Di

vj(t)

∣∣∣∣∣∣
∣∣∣∣∣∣ , (3.1)

where Di is the disk of radius Ra centered around the position of the i−th individ-
ual. In order to account for errors in the sensing of the velocities of the neighbors
we have added, as is customarily done, a noise term in the form of a rotation by
a random angle vpubi (t) ← R(θ)vpubi (t). Here θ is independently sampled for each
agent and at each decision time from a uniform distribution in [−ηπ, ηπ]. The
strength of the noise η may range from zero (no noise) to unity (only noise): in
the following we set η = 0.1.

In the absence of external cues, and for small enough noise, the group of agents
described by this dynamics displays collective flocking and moves coherently in a
given direction – totally unrelated with the source location, however.
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3.2.3 Combining private and public information

To study collective olfactory search we then merged the two models above as fol-
lows. The velocity of the i−th agent is a linear combination of the two prescriptions
arising from private and public cues, resulting in the update rule

vi(t) = (1− β)vprivi (t) + βvpubi (t),

ri(t+ ∆t) = ri(t) + v0
vi(t)
||vi(t)||

∆t.
(3.2)

The parameter β, that we have dubbed “trust”, measures the balance between
private and public information. For β = 0 the agents have no confidence in their
peers, they ignore the suggestion to align and behave independently by acting on
the basis of the cast-and-surge program only. Conversely, for β = 1 agents entirely
follow the public cues and discard the private information.

While it is reasonable to expect that for β = 1 the unchecked trust in public
cues leads to poor performances in olfactory search, the nontrivial question here
is rather if there is any value at all in public information; that is, in other words,
if the best results are obtained for a finite β strictly larger than zero.

3.2.4 Modeling the turbulent environment

To complete the description of our model, we have to specify the underlying flow
and the ensuing transport of odor particles. In our simulations the flow is given by
an incompressible, two-dimensional velocity field, u(x, t) with a constant, uniform
mean wind U and statistically stationary, homogeneous and isotropic velocity fluc-
tuations. The odor particles are considered as tracers whose position, x, evolves
according to ẋ = u(x, t). For the velocity fluctuations we first considered a
stochastic flow and then moved to a more realistic dynamics where the flow obeys
the Navier-Stokes equations. We wrote code to carry out simulations in Fortran
programming language and the code is given in appendix G. 1. The results of
simulations are presented in next sections.

1For any problems to use the code as it given, I request to you to write to me (mihir-
durve@gmail.com) for further support and source code files.
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3.3 Results for the stochastic flow

This model flow is characterized by a single length and time scale and is ob-
tained by superimposing a few Fourier modes whose Gaussian amplitudes evolve
according to an Ornstein-Uhlenbeck process with a specified correlation time. The
resulting flow is spatially smooth, exponentially correlated in time and approxi-
mately isotropic (see appendix F for details).

We studied the performance of collective search as a function of the trust parameter
β while keeping the other parameters fixed to the values detailed in the appendix F.
Initially, the agents are waiting in place without any prescribed heading direction
until one of the agents detects the odor particles carried by the flow. After this
event, agents move as per the equations of motion Eq. (3.2). Since the search task
is a stochastic process, we run many episodes for each value of β to compute the
average values of several observables of interest. A given episode is terminated
when at least one of the agents is within a distance Ra from the source. At this
stage we say that the search task is accomplished and agents have (collectively)
found the odor source.

We focused our attention on four key observables: (i) the mean time needed to
complete the task which measures the effectiveness of the search; (ii) the average
fraction of agents that, at the time of completion, are close to the source; (iii)
the order parameter which measures the consensus among members of the group
about their heading direction; (iv) the degree of alignment of the agents against
the mean wind.

In Fig. 3.2A we show the average time T for the search completion in units of the
shortest path time Ts = Lx/v0, which corresponds to a straight trajectory joining
the target with the center of mass of the flock at the initial time. We observe that
there exists an optimal value of the trust parameter β ≈ 0.85 for which agents
find the odor source in the quickest way. Remarkably, for this value we obtain
T ' 1.03Ts: this means that the agent which arrives first is actually behaving
almost as if it had perfect information about the location of the source and were
able to move along the shortest path (see movie Beta=0.85.mp4).

This result has to be contrasted with the singular case of independent agents who
act only on the basis of private cues (β = 0) which display a significantly worse
performance (the time to complete the task is more than threefold longer) and
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Figure 3.2: Collective olfactory search in a stochastic flow. (A) Average search
time T for the first agent that reaches the target normalized to the straight-path
time, Ts = Lx/v0. The inset shows a blow-up of region close to the minimum.
(B) Fraction of agents within a region of size Rb around the source at the time
of arrival of the first agent reaching the target. (C) Averaged order parameter
ψ (D) Average alignment against the mean windM . For all data, the error bars
denote the upper and lower standard deviation with respect to the mean value.
Statistics is over 103 episodes. The parameters were set as λ = 1, N = 100,

J = 1, η = 0.1, v0 = 0.5, ∆t = 1, Lx = 50.

move in a zig-zagging fashion (see movie Beta=0.00.mp4). It is also important
to remark that the average time grows very rapidly as β increases above the
optimum. As β approaches unity, agents are dominated by the interactions with
their neighbors and pay little attention to odor and wind cues. As a result, they
form a flock which moves coherently in a direction that is essentially taken at
random. If by chance this direction is aligned against the wind, the task will be
completed in a short time. However, in most instances the flock will miss the target
and either turn because of the noise η or bounce on the boundaries until, again
by sheer chance, some agent will hit the target (see movie Beta=0.95.mp4). This
behavior results in a very long average time accompanied by very large fluctuations.
As the outer reflecting boundaries are moved away by increasing b, this effect
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Figure 3.3: Collective olfactory search in a turbulent flow. A: Search time
T for the first agent reaching the target normalized by the shortest-path time
Ts. B: An enlargement of A that highlights the region close to the minimum.
C: Mutual alignment order parameter ψ averaged over time and episodes. D:

Average wind alignment M .

becomes more and more prominent.

Since we focused on the time of arrival for the first agent that reaches the source,
it is natural to ask what has happened to the other members of the group that
have been trailing behind. In Fig. 3.2B we show the average fraction of agents
that are within a distance Rb (the initial size of the group) when the first agent
reaches the target and the task is completed. This quantity is an indicator of the
coherence of the group at the time of arrival. It turns out that this fraction has
a maximum value ≈ 0.3 at about the same value of β ≈ 0.85 that gives the best
performance in terms of time. This means that on average about one third of the
group has been moving coherently along the straight path that connects the initial
center of mass of the flock to the target.
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Figure 3.4: Collective olfactory search in a turbulent flow. Snapshots of the
velocity field (grey arrows) at four different times t. The agents (red arrows)
navigate in the turbulent flow with the optimal trust parameter β = 0.8. Blue
dots represent odor particles dispersed by the flow, while the large blue circle

corresponds to the source.

To quantify the consensus among agents about which direction they have to take,
it is customary to introduce the order parameter

ψ(t) = 1
Nv0

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

vi(t)
∣∣∣∣∣
∣∣∣∣∣ . (3.3)

When all the agents move in the same direction, whichever it may be, then ψ = 1.
Conversely, if the agents are randomly oriented then ψ ' N−1/2 � 1. In Fig. 3.2C
we show the order parameter averaged over all agents and all times along the
trajectories. As in the previous case we observe a maximum around the range of
values of β where performance is optimal.

Another parameter of interest is the upwind alignment of the agents

M(t) = 1− 1
N

N∑
i=1
||Û + v̂i(t)|| . (3.4)

When all the agents move upwind one has M = 1 whereas if they all move down-
wind M = −1. As shown in Fig. 3.2D the upwind alignment, averaged over time,
has a maximum around β = 0.85 which again confirms that a large fraction of
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the group is heading against the mean wind even if it has access only to a local
running time average (the memory time is λ−1 = 1, much shorter than Ts = 100).

The previous results point to the conclusion that there is a relatively narrow range
of the trust parameter β, around 0.85, for which the collective olfactory search
process is nearly optimal, i.e. the time to reach the target is close to the shortest
possible one, and takes place with a remarkable coherence of the group.

3.4 Results for a turbulent flow

To test the robustness of our findings in a somewhat more realistic situation we also
considered the case where the wind velocity is obtained from a direct numerical
simulation (DNS) of 2D Navier-Stokes equations

∂tω + u ·∇ω = ν∆ω − αω + f , (3.5)

where ω = ∇×u, the forcing f acts at small scales so to generate an inverse kinetic
energy cascade, that is stopped at large scales by the Ekman friction term with
intensity α. In order to attain a statistically steady state, the viscous term with
viscosity ν dissipates enstrophy at small scales. In this way we obtain a multiscale
flow which is non-smooth above the forcing scale and smooth below it (see [95–97]
for phenomenological and statistical flow properties). DNS have been carried out
using a standard 2/3 dealiased pseudo-spectral solver over a bi-periodic 2π × 2π
box with 2562 collocation points and 2nd order Runge-Kutta time stepping, see
appendix F for technical details. fields. In this flow the large scale of the velocity
field is about half the size of the simulation box. The numerically obtained velocity
field, for a duration of about 10 eddy turnover times, was then used to integrate
the motion of odor particles in the whole plane exploiting the periodicity of the
velocity field. Finally, the mean wind is then superimposed. Further details about
the simulations are available in the appendix F.

Fig. 3.3 summarizes the main results obtained with the turbulent flow. As shown
in the left panel, the average time taken by the first agent to reach the source is
very similar to the one obtained for the stochastic flow. It displays a minimum
time close to the shortest-path time Ts = Lx/v0 at values of the trust parameter
β ≈ 0.8. The other observables display very similar features as the ones observed
with the stochastic flow.
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In Fig. 3.4 we show four snapshots of the agents at different times during the
search process, for β = 0.8, i.e. close to optimality. The flock appears to be
moving coherently in the upwind direction and the task is completed in a time
1.04Ts just a few percent in excess of the nominal minimal time.

3.5 Conclusions and discussion

We have shown that there is an optimal way of blending private and public in-
formation to obtain nearly perfect performances in the olfactory search task. The
first agent that reaches the target completes the task by essentially moving in
a straight line to the target. This behavior is striking, since in isolation agents
move in a zig-zagging fashion (see Fig.3.1C). Interestingly, the information about
odor and wind is essential to achieve this behavior, but its weight in the decision
making is numerically rather small, about 20%. Although we do not expect that
this number stays exactly the same upon changing the various parameters of the
model, we suspect that there is a common trend for having optimal values of the
trust parameter β at the higher end of its spectrum, that is, closer to unity. This
may reflect the existence of a general principle of a “temperate wisdom of the
crowds" by which public information must be exploited – but only to a point. In
the present case, one way of summarizing our findings would be the following rule:
follow the advice of your neighbors but once every four or five times ignore them
and act based on your own sensations.

With reference to the remarkable similarity between searching in stochastic and
turbulent flows shown by Figs. 3.2 and 3.3, we stress that this is likely due to
the specific sensing mechanisms that we have chosen, which is essentially based on
single-point single-time measurements. If private cues included consecutive inputs
along the agent’s trajectory and/or on spatially coarse-grained signals we expect
that the results could have been more sensitive to the structure of small-scale and
high-frequency turbulent fluctuations.

Our results suggest how to build efficient algorithms for distributed search in
strongly fluctuating environments. It is important to point out, however, that our
construction is inherently heuristic. Our model heavily draws inspiration from
animal behavior, combining features of individual olfactory search in moths and
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collective navigation in bird flocks. A more principled way of attacking the col-
lective search problem would be to cast it in the framework of Multi Agent Re-
inforcement Learning [59] and seek for approximate optimal strategies under the
same set of constraints on the accessible set of actions and on the available private
and public information. It would then be very interesting to see if the strategy
discovered by the learning algorithms actually resembles the one proposed here,
or points to other known behavior displayed by animal groups, or perhaps unveil
some yet unknown way of optimizing the integration of public and private cues
for collective search.



Appendix A

Description of states and actions

A.1 Description of states

Each agent has a fixed frame of reference attached to it. (see Fig A.1) For a purpose
of implementing reinforcement learning algorithms, we discretized directions that
an agent can perceive. In practice, we divided the full angular range of 2π in Ks

number of bins. We labeled these bins from -16 to 15 covering the angular range
[−π to +π). In this frame of reference, velocity v of the agent always falls in
the bin labelled as ‘0’ (see Fig. A.1). The agent perceives average direction of its
neighbors as seen within its frame of reference. Thus, the state perceived by the
agent has also falls in any of the bins lebeled from -16 to 15.

Figure A.1: Illustration of frame of reference attached to the agent and the
way we lebeled the states as perceived by the agent. Red arrow indicates the

velocity v of the agent.
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A.2 Description of actions

A set of allowed actions A consists of turning and aligning with Ka directions.
As before, the total angular range of 2π has been discretized. Fig A.2 shows
the possible directions that the agent can take (black,red arrows) when Ka = 32.
Fig A.3 shows the set of actions for Ka = 7 with maximum turning angle allowed
θmax.

Figure A.2: Set of actions A for Ka = 32. Velocity v of the agent is shown
by the red arrow.

Figure A.3: Set of actions A for Ka = 7. Velocity v of the agent is shown by
the red arrow.



Appendix B

On behavior of ‘teacher agents’

B.1 Noise-free

In Sec. 2.3 we described a policy followed by the teacher agents in order to form
a flock. The policy can crudely be summarized as each teacher agent must align
with average direction of its neighbors if a required change in heading direction
to do so is within a prescribed limit. If however, the required change in heading
direction is more than the permissible limit then the agent must turn by maximum
permissible angle. We implemented this policy with discrete turning angles to
obtain results reported in chapter 2. We observed that for our choice of parameters
in the noise-free case, the teacher agents formed highly polar ordered states (ψ >
0.995). To rule out any artifacts of the discrete nature of directions and as a check
that indeed agents form ordered state with maximum turning angle θR < π, we
studied a model with restriction on the maximum turn allowed for the agents in a
continuous description of directions. For simplicity, we shall refer to this model as
‘Restricted angle self-propelling particle (RASPP)’ model. The RASPP model is
identical to the Vicsek model except for the constraints on the angular velocity of
an agent. The rules to update velocity of an agent in RASPP model are depicted
in Fig. B.1. Gao et al. [33] studied identical model and other operational details
of our simulations are identical to the work of Gao et al.

In Fig. B.2 we show that for any positive value of θR, the agents starting from ran-
dom initial conditions form highly ordered states. Counter-intuitively, we observed
emergence of highly ordered states even for very small values of θR. However with
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Figure B.1: Model with maximum turning angle θR in continuous space. (A)
Depiction of the update rule when average direction of neighbors v̂ is within
permitted turning angle θR. (B) Depiction of the update rule when average

direction of neighbors v̂ is not within permitted turning angle θR.

smaller values of θR the transient time is larger (see Fig. B.2B). With this exer-
cise we conclude that there are no undesired artifacts due to discrete nature of
directions in formation of an ordered state. Also, it is clear that in the noise-free
case, agents form highly ordered states for any non-zero value of maximum turn-
ing angle θR. For the implementation of the single agent reinforcement learning it
is sufficient to have a flock of teacher agents moving synchronously. The details
of the model used for simulating the flock are irrelevant. Therefore, we used the
model with discrete directions to simulate a flock with teacher agents.

Figure B.2: Evolution of order parameter with time in noise-free case. Number
of agents N = 400, Density of agents ρ = 1.0, Radius of interaction R = 0.3,

speed of agents v0 = 0.1.
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B.2 With noise

Since the RASPP model that we used to simulate flocks of teachers is a variant
of a well-known Vicsek model, it is imperative to make few comments about the
similarities of RASPP model with the Vicsek model. We studied the effect of noise
in the RASPP model. To implement noise in the system, we used the customary
definition of noise that is used in studies of self-propelled particles [30]. We ob-
served that similar to the Vicsek model, a system undergoes a phase transition
from ordered state to disordered state as noise in the system is increased. We show
the average value of order parameter ψ as noise ηπ is varied for various values of
θR in Fig. B.3. It is worthwhile to note that the RASPP model reduces to the
Vicsek model for θR = π. In Fig. B.3 we observed that the behavior of a system
with RASPP model is identical to the behavior of a system with Vicsek model
above a certain value of θR. However, for very small values of θR the behavior of
a system with RASPP model deviates significantly form the behavior of a system
with Vicsek model. It is observed that for larger values of θR, system undergoes
a phase transition form ordered to disordered state. For very small values of θR,
the system does not undergo a phase transition as noise is varied. Instead, the
synchronization in the system is improved and the improvement is more and more
significant as noise in the system is increased. This note-worthy observations of
the RASPP model constitute for our ongoing work and we limit our comments on
the RASPP model to the present state in this thesis.

Figure B.3: Order parameter ψ as a function of noise ηπ for various values of
maximum turning angle θR. N = 200, ρ = 1.0, R = 0.6, v0 = 0.1.



Appendix C

Reward for alignment

In this appendix, we present results of a single agent learning to flock with teachers
with a reward scheme that encourage alignment. Such a reward scheme is a natural
choice, since many prominent models for flocking, such as the Vicsek model focus
on velocity alignment rules. Interestingly, reward for alignment is also obtained by
the methods of inverse reinforcement learning (IRL). IRL techniques can be used
to learn local reward function from observed global dynamics of expert systems.
In one study [98], researchers implemented the IRL techniques to swarm of agents
navigating as per the Vicsek model. They showed that the IRL techniques lead to
high reward for high local alignment. Later, by training agents with this reward
scheme, they showed that the agents perform as good as the agents with Vicsek
model.

We carried out simulations with 200 agents flocking together by following the noise-
free Vicsek model. A single naive learner with a goal to maximize the reward R
was introduced in the flock. The perception of the learner is described in detail in
appendix A. The local reward scheme for the agent is given by;

R(t) = ||vi(t)|| ||v̂(t)|| cos(θ). (C.1)

Here, vi is velocity vector of the agent i, v̂ is average velocity vector of neighbors
of the agent i and θ is the angle between the two vectors. We implemented
RL techniques (see Chapter 2) for various densities of teachers ρ and radius of
interaction Ra of the agents.
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Fig. C.1 shows the average reward 〈R〉 earned by the learner as the training pro-
gresses. We observe that the learner earns near optimal reward irrespective of the
chosen density of teachers ρ and interaction radius Ra. At the end of the training,
we observe that the learner learns to align with the teachers and it behaves as the
teachers do.

Figure C.1: Average reward for alignment earned by the learner. Insets show
representative snapshots of the system in different phases of the training.

Fig C.2 shows the plot of Q-matrix of the learner at the end of the training. We
observe that policy discovered by the learner is to align with the average direction
of its neighbors to maximize the total reward.

With this exercise we show that a single learner can be trained with a reward
scheme that encourages alignment with its neighbors to flock with them.
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Figure C.2: Q-matrix of the learner at the end of the training. The colorbar
shows the values in the Q-matrix. The black points indicate the best estimated
action to perform in the given state. Red line (a*=s) is a guideline to the eye.



Appendix D

Reward for congregation

In this appendix, we present additional results (not presented in Chapter 2) for
single as well as for multi-agent reinforcement learning systems. Here we set a
reward scheme to encourage congregation of agents. Another equivalent point of
view, which is presented in Chapter 2, is to encourage agents to lose minimum
number of neighbors. The reward scheme implemented for results presented in
this appendix is as follows.

Rt+1
i =

 0, if nt+1
i < nti,

1, otherwise
(D.1)

where nti is current number of neighbors.

We study and present results with this reward scheme for various choices of pa-
rameters and various choices of allowed actions.

D.1 Single agent

We carried out simulations with a flock consisting of 200 teacher agents that
follow the Vicsek-like model for flocking. A single naive learner is introduced in
the flock. Goal of the learner is to maximize the reward for congregation. The
learner perceives a state s as the discretized average direction of its neighbors as
described in appendix A. In the following section, we present results of simulations
for the full set of actions i.e. Ka = 32.
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D.1.1 With Ka = 32 actions

In this section, we present results of simulations with all possible actions allowed
to the agent. Set of actions (32 in number) is shown in appendix. A. Fig D.1 shows
average reward accumulated by the learner as training progresses for various initial
densities ρ of the teachers and radius of interaction Ra of the agents. The error
bars show standard deviation in values of the accumulated reward in 20 simulation
experiments.

Figure D.1: Average reward for congregation earned by the learner for various
system parameters. The error bars indicate standard deviation in the values in
20 independent simulations. Black line indicates value of policy evaluation of a

model implemented for the teachers to flock.

We observe that, as the training progresses, average reward accumulated by the
learner increases from low values and saturates to a higher value. The trained
learner performs almost optimally. Optimal reward that the learner could accu-
mulate is shown by the black line. This value is < 1 due to discrete nature of
directions used in the percept of the agent and execution of actions. We also
observe that the learner performs a random walk in the early phases of training
(earning less reward) and learns to align with its neighbors to earn higher rewards.
Fig D.2 shows Q-matrix of the agent at the end of the training process. White
points indicate best estimated actions to perform in a given state s. It can be
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easily seen that the best estimated action is to align with average direction of its
neighbors (which is same as the state s perceived by the agent).

Figure D.2: Q-matrix at the end of one of the simulations. The white points
show the best estimated action to perform in the given state.

D.2 Multi-agent

D.2.1 With Ka = 7 actions

In this section, we present results of simulations with 7 allowed actions with other
choices of the parameters other than those chosen in Chapter 2. Fig. D.3 shows
average reward earned by the agents for various choices of density ρ and radius of
interaction Ra. In inset we show average Q-matrix computed over all Q-matrices
of the agents at the end of the training in one of the systems. We observe that
the average Q-matrix in other systems is same qualitatively. Policy learned by the
agents dictates the agent to minimize the angle between its current velocity and
average velocity of its neighbors by turning at an angle ≤ θmax.

As the training progresses, we measured direction consensus among the agents by
computing polar order parameter ψ. The evolution of the polar order parameter
is shown in Fig. D.4. We observe that, in all systems, the agents forms a highly
polar order states in a later phase of the training.
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Figure D.3: Evolution of the order parameter ψ as the training progresses.

Figure D.4: Evolution of the order parameter ψ as the training progresses.
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D.2.2 With Ka = 3, 5, 7, 9 actions

In Chapter 2, we presented results for Ka = 7 allowed actions with θmax as the
maximum turn allowed. Here we show results for various choices of the parame-
ters. First, we present results with a variable number of actions allowed. Fig D.5
compares average reward earn by the agents as training progresses with various
number of allowed actions. A set of actions consists of Ka elements. By increasing
a number of elements in the set of actions, we essentially increased the maximum
turning angle θmax allowed to an agent. The other possibility to increase a number
of actions by fixing θmax is explored in Chapter 2.

Figure D.5: Average reward for congregation earned by the learner for various
system parameters. Error bars indicate standard deviation in reward earned by
each agent. Black line indicates the maximum reward possible by following the

discretized Vicsek model.

There seems to be no strong dependence on average reward that the agents earn
with the number of actions. In Fig. D.7, we plot policy discovered by the agents.
In this plot, we show best estimated action a∗ in the state s. The best estimated
action is an action with highest Q-value in the Q-matrix for a given state s. We
observe that, regardless of a number of actions allowed to the agents, the policy
discovered by the agents is identical. This policy dictates the agent to execute
the action that minimizes the angle between velocity of the agent v and average
direction of its neighbors v̂.
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Figure D.6: Best estimated action to perform in a given state. The points
correspond to the action with highest Q-value for a given state in the Q-matrix.

As the training progresses, we measured direction consensus among the agents by
computing polar order parameter ψ. The evolution of the polar order parameter
is shown in Fig. D.7. For all these cases, we observed, that the agents form highly
ordered states. It might appear counterintuitive to see that the agents could form
a polar ordered states even when they can turn only by a few discrete angles.
However, Gao et al. [33] showed that such a restrictions on the angular velocity of
agents in fact increase the direction consensus.

D.2.3 With Ka = 32 actions

We increased number of actions systematically till we reached the full set of actions
i.e. Ka = 32. This choice restores the rotational symmetry in the set of actions
and we observed that, the policy discovered by the agents is not unique in differ-
ent simulation experiments with random initial conditions. We carried out many
independent simulations with Ka = 32 with random initial conditions. The other
parameters such as number of agents N , density ρ, radius of interaction Ra were
held constant. In Fig. D.8, we show results of 4 such representative simulations.
We observed that, the agents accumulate roughly the same reward in different
simulation experiments but the average Q-matrix at the end of the training is not
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Figure D.7: Evolution of the order parameter ψ as the training progresses.

qualitatively same in each of the simulations thereby leading to different policies.
One of the policies discovered by the agents is the Vicsek model like policy in which
an agent aligns with its neighbors. However, the other discovered policies dictate
an agent to move in a direction separated by angle ω′ from average direction of
its neighbors. We observed that, with these policies, all the agents are aligned in
a common direction at a given time but all of them turn by an angle ω′ in the
next step. Thus, the ensuing state of the agents results in highly polar ordered
states as captured by the polar order parameter ψ shown in Fig. D.9. (see movie
Appendix1.mp4)

We carried out 1000 simulation experiments and cannot conclude if any particular
value of ω is favored by the agents. In Fig. D.10, we show number of times the
policy with angular velocity ω was discovered by the agents. To draw a conclu-
sion with high confidence, we shall need to carry out more simulations which is,
unfortunately, not possible at this time.
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Figure D.8: Average reward earned by agents in 4 representative simulations.
Agents earn the same reward by discovering different policies shown in the

insets.

Figure D.9: Evolution of order parameter ψ in various simulation experiments.
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Figure D.10: Frequency of a discovered policy with a given angular velocity.
The total number of independent simulations carried out were 1000.



Appendix E

MARL with limited field of view
and noisy measurements

E.1 Learning to flock with a limited field of view

Biological agents such as bird or fish usually have a limited perception of their
surroundings. For example, if one considers visual cues then most of the animals
have an anisotropic perception due to their limited field of view. For example,
the cyclopean field of view (i.e., the combined field of view of both eyes [25])
of the grey-headed Albatross is about 270◦ in the horizontal plane [26] and for
humans it is 180◦. We have then introduced this limited vision for the agents in
our simulations by implementing a restricted field of view.

In practice, we define the neighborhood of an agent spanned by its field of view
as a sector of a circle with radius R and half opening angle, or “view angle”, φ
(see Fig E.1). For φ < π, the agents interact with anisotropic and non-reciprocal
interactions [23]. An agent i can perceive the velocity of other agents which are
within its neighborhood.

We have varied the view-angle φ in our simulations while keeping the neighbor-
hood area constant by scaling up the radius of interaction R appropriately. As in
the case of full view discussed in the main text, agents start from random initial
conditions with an optimistic Q-matrix (i.e. all values in the Q-matrix are set to
0). Each agent has its own Q-matrix. At each time-step, each agent processes its
sensorial input and computes the perceived state st of the environment according
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Figure E.1: Neighborhood Nbi(shown by blue shaded region) of an agent i
placed at the center of a circle of radius R.

to Eq. (2) of the main text, that is the average velocity of agents in its neighbor-
hood Nbi. Given the state st, an agent performs an action at, i.e. it changes its
velocity, given by Eq. (3), according to the policy π. An agent updates its policy
π according to a (negative) reinforcement signal in the form of a cost ct+1

i for
decreasing the number of neighbors. The cost is computed according to Eq. (4).
It is important to note here that while calculating the cost for an agent, only the
agents in its field of view are taken into consideration as neighbors. To update
policy π, an agent modifies values in its Q-matrix for the state-action pair just
visited (i.e. Q(st, at)) according to Eq. (5). The updated policy is based upon the
modified Q-matrix according to the ε-greedy exploration scheme given by Eq. (6).
According to this scheme an agent performs the best estimated action (the one
that minimizes the total expected cost) with probability 1− ε or a random action
with probability ε. In our simulations, we used the following scheduling scheme
for the exploration rate ε.

ε(E) =

 1− 0.002(E − 1), if E < 500
0, otherwise

(E.1)

Here, E is the index number of an episode. The training phase starts with an
initial value of ε = 1 which is then linearly reduced to zero. With ε = 0 agents
always perform the action that is estimated to minimize the expected cost.

In Fig. E.2A we show the average cost, i.e. the rate of loss of neighbors, for N
independently learning agents with limited field of view. Agents starting from
higher cost learn to reduce the rate of loss of neighbors in few hundred training
episodes. The resulting Q-matrix, at the end of the training, averaged over all the
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agents is shown in Fig. E.2B. The performance of the agents and the discovered
policy are very close to the respective ones for agents with full field of view (i.e.
φ = π) as described in the main text.

Figure E.2: Result for limited angle of view. Each training episode consists of
10000 time-steps. Number of agents N = 200, density of agents ρ = 2 agents/u-
nit area, area of neighborhood A = π, {Ks,Ka} = {32, 7}. (A)Performance
of multi-agent system as training progresses. Error bars indicate standard de-
viation in the average values for each agent. (B) Average Q-matrix at the end
of the training with φ = 0.50π. White points indicate actions with estimated
minimum cost for given state. The colors represent values in the Q-matrix.

E.2 Limited field of view and noisy observations

In the main text we considered a simplified model whereby an agent can precisely
measure the mean velocity of its neighbors and also their distances in order to
define its state. Here we relax these assumptions to account for imperfect mea-
surements by adding an observational noise on the measurement of distance and
mean velocity of neighbors.

To begin with, we investigate the effects of observational noise in the measurement
of distance between two agents for agents with limited field of view φ.

We defined noise in the measurement of distance between the agents as follows.
An agent i perceives a distance d′ij to another agent j as; d′ij = |dij + ηR(0, σ)|
where dij is the true distance between agents i and j and ηR(0, σ) is a random
number chosen from Gaussian distribution of random numbers with 0 mean and
standard deviation σ. An agent i “sees” agent j if it is within the field of view of
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an agent i and the perceived distance |d′ij| is less than R. In Fig. E.3A we show
the performance of agents as the training progresses which is similar to the one
for perfect observations. The discovered policy that minimizes the rate of loss
of neighbors is shown in Fig. E.3B and is identical to the one obtained in the
noise-free case and with full vision.

Figure E.3: Learning with a limited angle of view and noisy measurements of
distance. Each training episode consists of 10000 time-steps. Number of agents
N = 200, density of agents ρ = 2 agents/unit area, radius of interaction R =
1.41, view-angle φ = 0.50π {Ks,Ka} = {32, 7}. (A)Performance of multi-agent
system as training progresses. Error bars indicate standard deviation in the
average values for each agent. (B) Average Q-matrix at the end of the training
with σ = 0.15R. White points indicate actions with estimated minimum cost

for given state. The colors represent values in the Q-matrix.

Now, in addition to the limited field of view and observational noise in the mea-
surements of the distances we add another noise on the measurements of the mean
velocity of neighbors. The perceived average velocity of neighbors P′i by an agent
i is given as P′i = R(θ)Pi. Here, R is an rotational operator that rotates the
vector it acts upon by an angle θ. An angle θ is chosen randomly and uniformly
within the range [−ηaπ,+ηaπ]. ηa is strength of the observational noise in the
range [0, 1]. Pi = (∑j∈Nbi vtj)/ni (ni is a number of neighbors of an agent i). This
definition of noise is essentially equivalent to the noise customarily used in the
Vicsek model.

In Fig. E.4A, we show the performance of the multi-agent system with a limited
field of view and observational noise bit in position and velocity. We observed that
up-to certain strength of the mean velocity noise ηa, the discovered policy by the
agents to minimize the cost is identical to the policies discovered in the noise-free
and full vision case as described in the main article. However, above a certain level
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the agents appear to discover policies which are different than the one obtained
with small or no error in velocity. This interesting observation probably deserves
further analysis, that we do not pursue here, in order to ascertain the causes of
this behavior.

Figure E.4: Result for limited angle of view and observational noise on posi-
tions and velocity. Each training episode consists of 10000 time-steps. Number
of agents N = 200, density of agents ρ = 2 agents/unit area, radius of inter-
action R = 1.41, noise in the measurement of distance with σ = 0.15R, noise
strength ηa = 0.01, view-angle φ = 0.50π {Ks,Ka} = {32, 7}. (A)Performance
of multi-agent system as training progresses. Error bars indicate the standard
deviation in the average values for each agent. (B) Average Q-matrix at the end
of the training. White points indicate actions with estimated minimum cost for

given state. The colors represent values in the Q-matrix.

So far we have measured performance of the multi-agent system with the cost
incurred by agents for losing their neighbors. We observed that with a limited
view-angle and up to a certain level of observational noise the agents learn how
to minimize the cost. It is then natural to ask about the structure of the swarms
that form under the discovered policies. As is customarily done, we have computed
polar order parameter ψ to measure alignment in the group. In Fig. E.5 we plot the
polar order parameter ψ against the cost during the learning process. We have
observed that even with limited vision and noisy observations, the agents form
highly polar ordered states in which agents move in a common heading direction
at any given instance.
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Figure E.5: Average polar order parameter 〈ψ〉 versus the rate of loss of
neighbors. Number of agents N = 200, density of agents ρ = 2 agents/unit area,
radius of interaction R = 1.41. Asterisk: (φ = 0.5π, σ = 0.0, ηa = 0.0), circle:
(φ = 0.5π, σ = 0.15R, ηa = 0.0), triangle: (φ = 0.5π, σ = 0.15R, ηa = 0.01). In

the insets we show a snapshot of a subset of naive and trained agents.



Appendix F

Implementation of the turbulent
flow

F.1 Details on the implementation of the cast
and surge algorithm

The cast-and-surge strategy describes the motion of an agent elicited by the private
information acquired. In the following, we provide its algorithmic implementation.
As discussed in the main text, the strategy consists of two components: the es-
timate of the mean wind velocity û(t) and a behavioral response to the presence
or absence of an odor within its olfactory range (circle with radius Rd) at a given
time. In particular, we assume that the agent can measure the instantaneous local
wind at every discrete times δt, which is the integration step used to advance the
odor particles. Using such measurements, the agent can construct the estimate
of the mean wind velocity û(t) by taking an exponentially discounted running
average of the perceived flow velocity u, as described in the main text.

Without loss of generality, for the purpose of describing the algorithm, we take
a simple case where the agent perfectly estimates the mean wind direction at all
times (i.e. û(t) = U). As explained in the main text, this corresponds to the
choice λ = 0 in the memory kernel. Further, we assume that the agent moves
every discrete time t separated by the interval ∆t � δt, called the decision time.
During the time ∆t, apart from estimating the mean wind direction every δt, the
agent can detect the odor particles within its olfactory range. From a practical

72
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perspective, ∆t corresponds to the time taken by the agent to make the decision
to move by processing the acquired information about the mean wind and the
odor detection. Following an extension to continuous space of the cast-and-surge
on-lattice algorithm described by Balkovsky et al. [91], we define the behavioral
response of the agent as follows (see Fig F.1A):

Figure F.1: (A) A short trajectory of an agent navigating according to the
cast-and-surge algorithm with λ → 0. (B) A complete sample trajectory. The
black circle is the location of the source (S), while the blue × correspond to the

points where it detected an odor particle within its olfactory range.

step I: If the agent has detected at least one odor particle in the time interval
∆t, it moves upwind by v0∆t units. v0 being the speed of the agent. This phase
is called ‘surging’. The agent remains in such phase as long as it detects odor
particles within every ∆t time. After moving the agent sets t′ = 0, a number that
the agent keeps track of.
step II: In absence of any odors, the agent moves by v0∆t units in a direction that
forms an angle of +45◦ with respect to the locally estimated upwind direction.
step III: The agent updates the t′ as t′ ← t′+2∆t and then moves in the crosswind
direction for time t′ with speed v0.
step IV: The agent moves by v0∆t units in the direction that forms an angle of
−45◦ with respect to the locally estimated upwind direction.
step V: The agent updates the t′ as t′ ← t′ + 2∆t and then moves with speed v0

in the crosswind direction (opposite to the one taken in step III) for time t′, and
resumes further from step II.

The steps II-V describe the ‘casting’ phase. During this phase, if at any time the
agent detects the odor, then it terminates the casting phase, sets t′ = 0 and starts
the surging phase (step I) from the next decision time.
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In Fig F.1B, we plot a complete sample trajectory of the agent following the
cast-and-surge algorithm described above. The ensuing trajectory displays the
characteristic zig-zag pattern. Two observations are in order. First, the crosswind
excursions increase linearly with time. Second, the length traveled in the upwind
direction decreases as the inverse square root of time since the last detection. This
reflects the fact that the upwind progression is discouraged in the absence of any
cues. In the case presented in the main text (for which λ = 1) the estimate of the
mean wind direction û(t) computed by the agent changes with time, as λ > 0.
Thus, in the turbulent environment, where the local wind direction fluctuates, the
trajectory of the agent deviates from the one depicted in Fig. F.1B as can be see
in Fig. 1C of the main text.

F.2 Description of the flow environment

In our simulations, the flow environment is given by an incompressible, two-
dimensional velocity field, u(x, t) = U + v(x, t), with a constant mean U , rep-
resenting the mean wind and superimposed isotropic fluctuations, v(x, t). Odor
particles, representing patches of odor with concentration above the threshold
value for being detected by the searching agents, are evolved as tracers according
to the dynamics ẋ = u(x, t). In the following we discuss in detail the two models
we considered for the fluctuating component of the velocity field.

F.2.1 Stochastic flow

As a first simplified setting, we model velocity fluctuations by considering a stochas-
tic flow obtained by superimposing a few Fourier modes, each one of them having
Gaussian amplitudes, whose real and imaginary part evolve according to inde-
pendent Ornstein-Uhlenbeck (OU) processes with a specified correlation time τf .
In this way the resulting flow is spatially smooth and exponentially correlated in
time.

Specifically, we consider a flow characterized by a single scale L, obtained by
superimposing 8 Fourier modes: k = (kx, ky) ∈ K = K1 ∪K2 = {(ks, 0), (0, ks)} ∪
{(ks,±ks), where ks = 2π/L (notice that we listed only four modes as the other
fours are obtained from k → −k, i.e. complex conjugation for maintaining the
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fields real). The fluctuating velocity is obtained as v(x, t) = ∇⊥ψ(x, t) with
∇⊥ = (−∂y, ∂x), and the stream function ψ is computed at each odor particle
position by means of the following formula:

ψ(x, t) =
∑
k∈K

(A(k, t)eik·x + c.c.) , (F.1)

where c.c. stands for the complex conjugate. The amplitudes of the Fourier modes
A(k, t) are Gaussian random complex variables evolving with the following OU
process

∂tAγ(k, t) = − 1
τf
Aγ(k, t)+

(
2σ2(k)
τf

) 1
2

ηγ(k, t) , (F.2)

where γ labels the real and imaginary part, ηγ(k, t) are zero mean Gaussian vari-
ables with correlation 〈ηγ(k, t)ηγ′k′, t′)〉 = δγ,γ′δk,k′δ(t− t′) and so that

〈Aγ(k, t)Aγ′(k′, t′)〉 = σ2(k)δγ,γ′δk,k′ exp(−|t− t′|/τf ) .

The standard deviations σ(k) have been chosen to have an approximately isotropic
velocity field with full control on the fluctuations intensity urms =

√
〈(v2

x + v2
y)/2〉.

In particular, we take σ(k) = curms/(
√

3ks) with c = 1 for k ∈ K1 and c = 1/2
for k ∈ K2 so that 〈v2

x〉 = 〈v2
y〉 = u2

rms.
Similar flows have been used for studying, e.g., the statistical dynamics of inertial
particles (see, e.g. [99, 100]).
In our simulations, the constant mean wind is fixed to U = 1, and the fluctuations
intensity to urms = 0.42U . For what concerns the fluctuating component, it has
one single characteristic scale set to L = 10 and correlation time of the amplitudes
of the Fourier modes equal to τf = 5.

Tests about the search conducted by one single agent have been done considering
different values of the flow parameters, also introducing more than one scale. Such
tests have shown the same qualitative behaviors reported here, provided that urms
remains smaller than U .

F.2.2 Turbulent flow

As said in the main text, in order to test the robustness of the collective odor
search algorithm, we also considered the more realistic and more complex case in
which the velocity fluctuations are obtained from a direct numerical simulation
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(DNS) of the 2D Navier-Stokes equations (NSE) in the inverse cascade regime. In
particular, we considered the NSE written for the vorticity field, ω = ∇×u, reads

∂tω + v ·∇ω = ν∆ω − αω + f , (F.3)

where v = ∇⊥ψ(x, t) and the stream function is obtained by inverting ω = −∆ψ.
DNS of Eq. (F.3) have been carried out using a standard 2/3 dealiased pseudo-
spectral solver over a bi-periodic 2π×2π box with 2nd order Runge-Kutta time step-
ping. Energy and enstrophy are injected at rates ε and ζ, respectively by the forc-
ing term f which is a zero mean, Gaussian field with correlation 〈f(x, t)f(0, t′)〉 =
δ(t − t′)F (r/`f ) acting at small scales, `f � 2π, with F (x) = F0`

2
f exp(−x2/2).

With this forcing, an inverse energy cascade sets in at scales r � `f . In order
to establish a statistically steady state the Ekman friction term, −αω, extracts
energy at the large scales, Lα ≈ ε1/2α−3/2, while the viscous term removes enstro-
phy at small scales. As a result, we have a velocity field which is non-smooth in
the inertial range of scales, `f � r � Lα, and smooth below `f . In Fig. F.2 we
show the mean energy spectrum, E(k), displaying the Kolmogorov, k−5/3, scaling
behavior, which means that in the inertial range velocity differences over a scale
r are approximately Hölder continuous with exponent 1/3.
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Figure F.2: Eneergy spectrum obtained by direct numerical simulations of
Eq. (F.3) with 2562 grid points. Hyperviscous dissipation of order 8 has been
used with viscosity ν8 = 1.3 10−29, Ekman friction coefficient α = 0.02 and time
step dt = 10−3. The large scale of the flow is about half of the simulation box.

Owing to the necessity to store the entire history of the full velocity field (see
below for details), we used a relatively small resolution of 2562 grid points. Thus
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to reduce as much as possible the enstrophy cascade range we used an hyperviscous
term of order 8 which remove enstrophy very close to the injection scale, this is
a customary procedure when interested in simulating the inverse cascade in low
resolution DNS (see Refs. [95, 96]).

In order to evolve the odor particles and perform statistics over many episodes of
the collective search, we stored the whole evolution of the velocity field for about
10 large-scale time scales, TLα ≈ 5. The velocity field history is then cycled in
time, so the flow is effectively periodic in time with a period of about 10TLα . For
each episode we place the source in a different position within the simulation box
and define the mean wind direction to be either along the horizontal or vertical
direction (this is done to average over different flow regions). We let the source
emit the particles at exponentially distributed times with average τ = 5, which
corresponds to the time scale associated to the forcing scale, and advect them in
the full plane (making use of the spatial periodicity), with a velocity obtained
by interpolating the velocity field at the particle position and superimposing the
mean wind U . We wait until the statistics of the odor particles becomes stationary
in the region of interest and then let the searching agents look for the source.

Then the agents are initially placed at distance Lx downwind from the source (see
Fig.1A of main text) and wait for the first detection to start the search. The
episode ends when one of the agents reaches the source as described in main text.

F.3 Table of parameters
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Description Symbol Numerical Value
Initial distance between the source and

the center of mass of the agents Lx 250Rd

Simulation box size factor b 2.5
Number of agents N 100

Emission rate of odors from the source J 1.0 particle/∆t
Initial cluster size of agents Rb 25Rd

Range of agent-agent interaction Ra 5.0Rd

Speed of the agents v0 2.5Rd/∆t
Strength of the noise η 0.1

Inverse of the memory time λ 1.0/∆t
Mean wind intensity U 1.0

Description Stochastic Flow Turbulent flow
Decision time ∆t 1.0 0.2

Olfactory range of the agent Rd 0.2 0.04
Fluctuations intensity urms 0.42U 0.42U

Characteristic length 10.0 2.0
Characteristic time 5.0 5.0

Table F.1: Top table shows the values used for the parameters. Apart from
the dimensionless quantities, they are written in terms of the radius of detection
of one agent Rd and its decision time ∆t. Bottom table shows the values used for
the latter quantities in each flow configuration as well as the flow parameters.
It is worth pointing out that the difference between the first two numerical
values comes from the fact that the two flows implemented in our simulations
have different characteristic length and time scales. Therefore, in order to study
the olfactory search in comparable regimes, we had to rescale all the quantities

accordingly, maintaining at the same time identical ratios among them.



Appendix G

Simulation codes

For both studies presented in Chapter 2 and 3, we developed in-house simulation
codes written in Fortran. In this appendix, we provide codes that we developed
to carry out simulations.

G.1 Code : Simulation of multi-agent reinforce-
ment learning

Mihir Durve and Fernando Peruani

1 ! Input parameters are imported from input . in f i l e .
2 ! Sample o f input f i l e " input . in " :
3

4 ! seed n t s t a r t tend rho v0 r eta phi
5 ! 10551 200 0 10000 2 .0 5 .0 1 .0 0 . 0 1 . 0
6 ! n con f i g t s k i p l b i r d Read_flag Action_max
7 ! 1000 500 1 0 7
8

9

10 ! Seed : Seed f o r random number genera tor
11 ! n : number o f t eacher agents
12 ! t s t a r t : S ta r t time o f s imu la t i on ( t y p i c a l l y = 0)
13 ! tend : Number o f time s t ep s in s i n g l e ep i sode
14 ! rho : Density o f agents ( t ea che r s + l e a r n e r s )
15 ! v0 : Speed o f the agents
16 ! r : Agent−agent i n t e r a c t i o n rad iu s

79
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17 ! e ta : Noise s t r ength ( range : 0 to 1)
18 ! phi : View−ang le o f agents ( range 0 to 1)
19 ! n con f i g : Number o f t r a i n i n g ep i s ode s
20 ! t s k i p : Number o f time s t ep s to d i s ca rd be f o r e system reach steady s t a t e
21 ! l b i r d : Number o f l e a r n e r s ( l s tands f o r l e r an e r )
22 ! Read_flag : Flag to enable po l i c y eva luat ion , by read ing Q−va lue s from another
23 ! input f i l e
24 ! Action_max : Number o f a l lowed ac t i on s
25

26 ! Flow o f the code :
27

28 ! I n i t i a l i s a t i o n o f parameters , v a r i a b l e s
29 ! Read input
30 ! Ca l cu la t e r equ i r ed parameters , i n i t i a l i z e r equ i r ed parameters
31

32 ! DO loop : from ep i sode=1, to ncon f i g
33

34 ! Do loop : from time=t s t a r t to tend
35

36 ! Do loop : from agent 1 , nr
37 ! Compute s t a t e o f an agent
38 ! Compute ac t i on o f the agent
39 ! Execute ac t i on
40 ! update po s i t i o n and v e l o c i t y o f agent , with PBCs
41 ! Compute reward based on cur rent and prev ious ne ighbors
42 ! For l e a rn e r s , update t h e i r Q−matrix
43 ! Do loop f o r agents end
44

45 ! Compute and save quan t i t i e s o f i n t e r e s t
46 ! Do loop f o r time end
47

48 ! Compute and save quan t i t i e s o f i n t e r e s
49 ! Do loop f o r ep i s ode s end
50

51 ! Saving data f i l e s . Stop .
52

53

54 program l ea rn
55

56 imp l i c i t none
57 cha rac t e r ( l en=100) : : fn , fn1 , fn2 , fn3 , fn4 , fn5
58

59 r e a l ∗8 , parameter : : ze ro = 0 .0_8 , h a l f = 0 .5_8 , one = 1 .0_8
60 r e a l ∗8 , parameter : : p i = 2 .0_8∗ as in ( one )
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61

62 i n t e g e r ∗8 : : n , ln , t s t a r t , tend , t sk ip , state_max=32,action_max , nconf ig , p
63 i n t e g e r ∗8 : : l theta_old_int , index_Q1 , lnbi_temp , a_pointer , s_pointer , nr
64 i n t e g e r ∗8 : : sd ( 1 ) , nbi , state_ln , hor izon ,E,T, rnd_int , d1 , d , flag_md=0
65

66 i n t e g e r ∗8 , a l l o c a t ab l e , dimension ( : , : ) : : l nb i
67 i n t e g e r ∗8 , a l l o c a t ab l e , dimension ( : ) : : s , a , s_record , a_record , same , choose
68

69

70 r e a l ∗8 : : box , v0 , phi , cosphi , hal fbox , r , twopi , r2 , rnd_gauss , eps=0.09
71 r e a l ∗8 : : rho , eta , ps i , rnd , delTheta , gamma_b=1.0 ,gamma_lb=1.0 , ps i_teacher
72 r e a l ∗8 : : beta , reward_temp , eps_old , eps_fix , a lpha_f ix
73 r e a l ∗8 : : t1 , t2 , sum_op , s ine_ i j , theta_dot ,mod_new, theta_mean
74 r e a l ∗8 : : dt=0.1_8 , eta1 =0.3 , alpha =0.02 , prob=0.0
75 r e a l ∗8 : : meanVx ,meanVy , reward_theta , angle , theta
76 r e a l ∗8 : : cosdth , s indth , newvx , newvy , vx , vy , sumvx
77 r e a l ∗8 : : sumvy , theta_max , del_theta , temp_angle
78

79

80 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : x , y , x_new , y_new , theta_old , theta_new
81 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : lx , ly , lx_new , ly_new ,
82 ltheta_new , l theta_old
83 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : mean_angle , vx_theta , vy_theta , psi_avg
84 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : avg_reward , psi_avg_teacher
85 r e a l ∗8 , a l l o c a t ab l e , dimension ( : , : ) : : reward
86

87 r e a l ∗8 , a l l o c a t ab l e , dimension ( : , : , : ) : : Q, Q_old
88 I n t eg e r ∗8 , a l l o c a t ab l e , dimension ( : , : , : ) : : n_sa
89

90 i n t e g e r ∗8 : : i , j , k , d i f f_ in t ,max_temp , temp_int , read_flag , a_noise
91 r e a l ∗8 : : d i f f , d i s t , x j i , y j i , temp , z0 , z1 , u1 , u2 , reward_factor =1.0 ,dummy
92 l o g i c a l : : t e s tx , te s ty , t e s txy
93

94 open ( un i t=1, f i l e=’ input . in ’ , s t a tu s=’ o ld ’ , a c t i on=’ read ’ )
95

96 c a l l cpu_time ( t1 )
97

98 read ( un i t = 1 , fmt = ∗)
99 read ( un i t = 1 , fmt = ∗) sd ( 1 ) , n , t s t a r t , tend , rho , v0 , r , eta , phi

100 read ( un i t = 1 , fmt = ∗)
101 read ( un i t = 1 , fmt = ∗) nconf ig , t sk ip , ln , read_flag , action_max
102 c l o s e ( un i t=1)
103

104 nr = n + ln ! #Total agents = #Learning + #teache r s
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105 alpha_f ix = alpha
106 eps_f ix = eps
107

108

109 i f (n>0) A l l o ca t e ( x (n ) , y (n ) , x_new(n ) , y_new(n ) , theta_old (n ) , theta_new (n) )
110 Al l o ca t e ( lx ( nr ) , l y ( nr ) , lx_new ( nr ) , ly_new ( nr ) , l theta_old ( nr ) )
111 a l l o c a t e ( ltheta_new ( nr ) , mean_angle ( nr ) )
112 Al l o ca t e (Q( nr , 0 : state_max , 0 : action_max ) , n_sa ( nr , 0 : state_max , 0 : action_max ) )
113 a l l o c a t e ( l nb i ( 0 : tend+1,nr ) , reward ( nr , 0 : tend ) )
114 a l l o c a t e ( s ( 0 : state_max+1) ,a ( 0 : action_max+1))
115 a l l o c a t e ( s_record ( nr ) , a_record ( nr ) , avg_reward ( nr ) , choose ( 0 : action_max−2))
116 a l l o c a t e ( vx_theta ( nr ) , vy_theta ( nr ) , psi_avg ( 0 : tend ) )
117 a l l o c a t e ( same ( 0 : action_max ) , psi_avg_teacher ( 0 : tend ) )
118

119 open ( un i t=3, f i l e=’ spp . s t a t ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
120

121 open ( un i t=5, f i l e=’ formovie . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
122 open ( un i t =55, f i l e=’ l nb i . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
123 open ( un i t =555 , f i l e=’ l f o rmov i e . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
124 open ( un i t =11, f i l e=’ l s t a t e . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
125 open ( un i t =12, f i l e=’Q. txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
126

127 open ( un i t =14, f i l e=’ Q_final . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
128 open ( un i t =16, f i l e=’ Q_in i t i a l . txt ’ , s t a tu s=’ o ld ’ , a c t i on=’ read ’ )
129 open ( un i t =17, f i l e=’ op_avg . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
130

131 open ( un i t =21, f i l e=’SA. txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
132 open ( un i t =22, f i l e=’ Plot . gnu ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
133 open ( un i t =23, f i l e=’Reward_Episode . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
134

135

136 open ( un i t =24, f i l e=’ Or i entat i on . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
137 open ( un i t =200 , f i l e=’OP_progress . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
138 open ( un i t =201 , f i l e=’ OP_progress_teacher . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
139

140 box = sq r t ( dble (n+ln )/ rho )
141

142 wr i t e ( un i t = 3 , fmt = ∗) " Input Values ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "
143 wr i t e ( un i t = 3 , fmt = ∗) " seed : " , sd (1 )
144 wr i t e ( un i t = 3 , fmt = ∗) "n : " , n
145 wr i t e ( un i t = 3 , fmt = ∗) " t s t a r t : " , t s t a r t
146 wr i t e ( un i t = 3 , fmt = ∗) " tend : " , tend
147 wr i t e ( un i t = 3 , fmt = ∗) " rho : " , rho
148 wr i t e ( un i t = 3 , fmt = ∗) " v0 : " , v0
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149 wr i t e ( un i t = 3 , fmt = ∗) " r : " , r
150 wr i t e ( un i t = 3 , fmt = ∗) " eta : " , e ta
151 wr i t e ( un i t = 3 , fmt = ∗) " phi : " , phi
152 wr i t e ( un i t = 3 , fmt = ∗) " ncon f i g : " , n con f i g
153 wr i t e ( un i t = 3 , fmt = ∗) " t s k i p : " , t s k i p
154 wr i t e ( un i t = 3 , fmt = ∗) " Learning b i rd s : " , ln
155 wr i t e ( un i t = 3 , fmt = ∗) " Read_flag : " , read_f lag
156 wr i t e ( un i t = 3 , fmt = ∗) " box : " , box
157 wr i t e ( un i t = 3 , fmt = ∗) " ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "
158

159 c a l l random_seed ( put = sd )
160

161 twopi = 2 .0_8∗ pi
162

163 ha l fbox = ha l f ∗box
164 r2 = r ∗∗2
165 psi_avg = 0 .0_8
166 psi_avg_teacher = 0 .0_8
167 eps_old = eps
168

169 i f ( action_max>1) then
170 del_theta = 2.0∗ pi / r e a l ( state_max )
171 e l s e
172 del_theta = 0 ; theta_max=0.0
173 end i f
174

175 theta_max = del_theta ∗ ( 0 . 5 ) ∗ ( r e a l ( action_max−1))
176 theta_max = abs ( theta_max )
177

178 pr in t ∗ , theta_max ∗ ( 180 . 0/3 . 1415 ) , de l_theta ∗ ( 180 . 0/3 . 1415 )
179

180 i f ( ln >9999) then
181 pr in t ∗ , " More than 9999 Birds . Need to modify f i l e un i t s . STOPPING"
182 stop
183 end i f
184

185 do i =1, ln
186 ! bu i ld f i l ename −− i . dat
187 wr i t e ( fn2 , fmt=’ ( i0 , a ) ’ ) , i , ’RE. txt ’
188

189 ! open i t with a f i x ed un i t number
190 open ( un i t=20000+i , f i l e=fn2 , form=’ formatted ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
191

192 enddo
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193

194

195

196 pr in t ∗ , " S imulat ion Star t . "
197

198 n_sa =0
199

200 open ( un i t =101 , f i l e=’ cur rent . txt ’ , s t a tu s=’unknown ’ , a c t i on=’ wr i t e ’ )
201

202

203 do E=0,action_max−1
204

205 i f (mod( ( action_max ) ,2)==0) then
206 beta = −theta_max + E∗del_theta − ( del_theta /2 . 0 )
207 e l s e
208 beta = −theta_max + E∗del_theta
209 end i f
210 pr in t ∗ ,E, beta ∗ (180 .0/ p i )
211 enddo
212

213 eps_f ix=eps
214

215 open ( un i t =876 , f i l e=’op_1 . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
216

217 do E=1, ncon f i g ! ncon f i g i s max number o f ep i s ode s .
218

219 avg_reward = 0 .0_8
220 psi_avg = 0 .0_8 ! Attention , Ps i i s avg in a l l ep i s ode s .
221 psi_avg_teacher = 0 .0_8
222 open ( un i t =18, f i l e=’ op . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
223

224 do i =1, nr ! Loading random po s i t i o n and v e l o c i t y f o r l e a rn i ng b i rd .
225

226 c a l l random_number ( rnd )
227 l x ( i ) = box∗ rnd
228 c a l l random_number ( rnd )
229 l y ( i ) = box∗ rnd
230 c a l l random_number ( rnd )
231 l theta_old ( i ) = ( rnd−ha l f )∗ twopi
232 end do
233 ! Loading done ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
234

235

236
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237 ! Loading Q−value f o r f i r s t l e a rn i ng ep i s ode s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
238 i f (E==1) then
239 i f (n>0) then
240 do i=ln+1, ln+1
241 do j =0,state_max−1
242 do k=0,action_max−1
243 read (16 ,∗ ) ,dummy,dummy,dummy,Q( i , j , k )
244 enddo
245 enddo
246 enddo
247

248 i f (n>1) then
249 do i=ln+2,nr
250 do j =0,state_max−1
251 do k=0,action_max−1
252 Q( i , j , k ) = Q( ln+1, j , k )
253 enddo
254 enddo
255 enddo
256 end i f
257

258 do i =1, ln
259 do j =0,state_max−1
260 do k=0,action_max−1
261 Q( i , j , k ) = reward_factor
262 enddo
263 enddo
264 enddo
265 e l s e
266 do i =1, ln
267 do j =0,state_max−1
268 do k=0,action_max−1
269 Q( i , j , k ) = reward_factor
270 ! i f ( i==bird_index ) wr i t e (∗ , 887) i , j , k ,Q( i , j , k )
271 enddo
272 enddo
273 enddo
274

275 end i f
276 end i f
277 ! Loading Qvalue done ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
278

279

280 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Saving the i n i t i a l c on f i g u r a t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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281 888 Format (4F10 . 5 )
282 i f (E==ncon f i g ) then
283

284 do i =1, ln ! Saving data f o r movie
285 wr i t e (555 ,888) lx ( i ) , l y ( i ) , v0∗ cos ( l theta_old ( i ) ) , v0∗ s i n ( l theta_old ( i ) )
286 enddo
287

288 do i=ln+1,nr ! Saving data f o r movie
289 wr i t e (5 ,888) lx ( i ) , l y ( i ) , v0∗ cos ( l theta_old ( i ) ) , v0∗ s i n ( l theta_old ( i ) )
290 enddo
291

292

293 end i f
294 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
295

296 do T=1, tend
297

298 ! Computing order parameters f o r l e a r n e s and t eache r s .
299 sumvx = 0 .0 ; sumvy=0.0
300 do j =1, ln
301 vx_theta ( j ) = cos ( l theta_old ( j ) ) ; vy_theta ( j ) = s i n ( l theta_old ( j ) )
302 sumvx = sumvx + ( vx_theta ( j ) ) ; sumvy = sumvy + ( vy_theta ( j ) )
303 enddo
304 p s i = sq r t ( sumvx∗∗2 + sumvy∗∗2)/( v0∗dble ( ln ) )
305 psi_avg (T) = psi_avg (T) + ps i
306

307 sumvx = 0 .0 ; sumvy=0.0
308 i f (n>0) then
309 do j=ln+1,nr
310 vx_theta ( j ) = v0∗ cos ( l theta_old ( j ) )
311 vy_theta ( j ) = v0∗ s i n ( l theta_old ( j ) )
312 sumvx = sumvx + ( vx_theta ( j ) ) ; sumvy = sumvy + ( vy_theta ( j ) )
313 enddo
314

315 ps i_teacher = sq r t ( sumvx∗∗2 + sumvy∗∗2)/( v0∗dble ( nr−ln ) )
316 psi_avg_teacher (T) = psi_avg_teacher (T) + ps i_teacher
317 i f (E==1) wr i t e (876 ,∗ ) t , ps i_teacher
318 end i f
319 ! Order parameters computed .
320

321 i f (T>=0) then
322

323 do i =1,nr ! For Learning b i rd
324
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325 ! Ca l cu l a t ing s t a t e in which the b i rd i i s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
326 ! For s tate , f i r s t we compute average d i r e c t i o n o f ne ighbors o f the b i rd i
327 meanvx = 0 .0 ; meanvy =0.0
328

329 l n b i (T, i ) = 0
330

331 do j = 1 , nr
332

333 x j i = lx ( j ) − l x ( i )
334 y j i = ly ( j ) − l y ( i )
335

336 ! Apply minimum image s epa ra t i on cond i t i on
337 i f ( x j i > ha l fbox ) then
338 x j i = x j i − box
339 e l s e i f ( x j i <= −ha l fbox ) then
340 x j i = x j i + box
341 end i f
342 i f ( y j i > ha l fbox ) then
343 y j i = y j i − box
344 e l s e i f ( y j i <= −ha l fbox ) then
345 y j i = y j i + box
346 end i f
347

348 ! Check neighbourhood
349 d i s t = sq r t ( x j i ∗∗2 + y j i ∗∗2)
350 i f ( d i s t > r ) cy c l e
351

352 l n b i (T, i ) = lnb i (T, i ) + 1
353

354 meanvx = meanvx + cos ( l theta_old ( j )− l theta_old ( i ) )
355 meanvy = meanvy + s in ( l theta_old ( j )− l theta_old ( i ) )
356 end do
357

358 i f ( l nb i (T, i )>0) then
359 ! Ca l cu l a t ing mean average d i r e c t i o n o f ne ighbours
360 mean_angle ( i ) = atan2 (meanvy , meanvx)
361 temp_angle = mean_angle ( i )
362 end i f
363 ! Average d i r e c t i o n o f ne ighbors i s c a l c u l a t ed
364

365

366 ! Ca l cu l a t ing s t a t e l a b e l o f b i rd i us ing average d i r e c t i o n o f ne ighbors
367

368 i f ( l nb i (T, i )>0) then
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369

370 theta = −pi + pi / r e a l ( state_max )
371

372 do j =0,state_max
373 i f (mean_angle ( i ) < ( theta ) ) then
374 i f ( j<=state_max−1) then
375 s_pointer =j
376 e x i t
377 e l s e
378 s_pointer = 0
379 e x i t
380 end i f
381 end i f
382

383 i f ( j<=state_max−2) then
384 theta = theta + 2.0∗ pi / r e a l ( state_max )
385 e l s e
386 theta = theta + pi / r e a l ( state_max )
387 end i f
388

389 enddo
390

391 s_record ( i ) = s_pointer ! This i s a s t a t e l a b e l o f the b i rd
392 end i f
393

394 i f ( l nb i (T, i )>0) then
395

396 ! S e l e c t bes t ac t i on f o r t h i s s t a t e with Eps i lon greedy ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
397

398 c a l l random_number ( rnd )
399

400 i f ( i>ln ) then
401 eps=0.0
402 e l s e
403 eps=eps_f ix
404 end i f
405

406 ! Check i f arg max Q i s to be executed
407 ! or any random act i on i s to be executed
408

409 i f ( rnd>eps ) then
410 ! Ca l cu l a t ing arg max Q( s , a ’ )
411

412 k=0
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413

414 temp = Q( i , s_record ( i ) , 0 ) ; max_temp = 0
415 do j =1,action_max−1
416

417 i f (Q( i , s_record ( i ) , j )>temp) then
418 temp = Q( i , s_record ( i ) , j )
419 max_temp = j
420

421 end i f
422

423 enddo
424 k=0 ; same(1)= max_temp
425 do j =0,action_max−1
426 i f (Q( i , s_record ( i ) , j )==temp) then
427 k=k+1
428 same (k ) = j
429 ! Act ions with same Q va lue s are s to r ed in t h i s array
430 end i f
431 enddo
432

433 i f (k>1) then
434 ! I f the re i s a degeneracy then execute random act i on amonst them
435 c a l l random_number ( rnd )
436 rnd_int = rnd∗ r e a l ( k ) ! Action i s randomly chosen from th i s array .
437 max_temp = same ( rnd_int+1)
438 end i f
439

440 e l s e
441 ! Executing a random act i on
442 c a l l random_number ( rnd )
443 rnd_int = rnd∗ r e a l ( action_max )
444 max_temp = rnd_int
445

446 end i f
447

448 a_record ( i ) = max_temp ! Action l a b e l to be executed
449

450 ! Computing and execut ing turn with the chosen ac t i on l a b e l
451 i f (mod( ( action_max ) ,2)==0) then
452 beta = −theta_max + a_record ( i )∗ del_theta − ( del_theta /2 . 0 )
453 e l s e
454 beta = −theta_max + a_record ( i )∗ del_theta
455 end i f
456
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457

458 ltheta_new ( i ) = beta + ltheta_old ( i )
459

460 n_sa ( i , s_record ( i ) , a_record ( i ) ) = n_sa ( i , s_record ( i ) , a_record ( i ) ) + 1
461

462 e l s e
463

464 ! For teachers , t h e i r heading d i r e c t i o n i s modi f i ed by no i s e
465 c a l l random_number ( u1 )
466 c a l l random_number ( u2 )
467

468 z0 = sq r t (−2.0∗ l og ( u1 ) )∗ cos ( 2 . 0∗ twopi∗u2 )
469 z1 = sq r t (−2.0∗ l og ( u1 ) )∗ s i n ( 2 . 0∗ twopi∗u2 )
470

471 rnd_gauss = z0
472

473 ltheta_new ( i ) = l theta_old ( i ) + ( eta1 ∗ s q r t ( dt )∗ rnd_gauss )
474

475 end i f
476 enddo ! b i rd s loop ended
477 end i f ! IF (T >Tskip )
478

479 i f (mod(T,100)==0) then
480 wr i t e (∗ , 9 00 ) ,T, "Of " , tend ,E, " o f " , n con f i g
481 wr i t e (101 ,∗ ) T, "Of " , tend ,E, " o f " , n con f i g
482

483 end i f
484

485 900 Format ( I10 ,A6 , I10 , I6 ,A6 , I6 )
486

487 ! Overr id ing the prev ious va lue s t i l l t s k i p
488 i f ( t<=t sk i p ) then
489 do i =1, ln
490 c a l l random_number ( u1 )
491 c a l l random_number ( u2 )
492

493 z0 = sq r t (−2.0∗ l og ( u1 ) )∗ cos ( 2 . 0∗ twopi∗u2 )
494 z1 = sq r t (−2.0∗ l og ( u1 ) )∗ s i n ( 2 . 0∗ twopi∗u2 )
495

496 rnd_gauss = z0
497

498 ltheta_new ( i ) = l theta_old ( i ) + ( eta1 ∗ s q r t ( dt )∗ rnd_gauss )
499 enddo
500 end i f
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501

502 ! updating agents p o s i t i o n s
503

504 do i =1,nr
505 l x ( i ) = lx ( i ) + v0∗ cos ( ltheta_new ( i ) )∗ dt ! Updating po s t i on s o f
506 l y ( i ) = ly ( i ) + v0∗ s i n ( ltheta_new ( i ) )∗ dt ! Learning b i rd s
507 enddo
508

509

510 ! ! Applying PBC f o r b i rd s
511 i f (T>=0) then
512 do i = 1 , nr
513 i f ( l x ( i ) < zero ) then
514 l x ( i ) = lx ( i ) + box
515 e l s e i f ( l x ( i ) > box ) then
516 l x ( i ) = lx ( i ) − box
517 end i f
518

519 i f ( l y ( i ) < zero ) then
520 l y ( i ) = ly ( i ) + box
521 e l s e i f ( l y ( i ) > box ) then
522 l y ( i ) = ly ( i ) − box
523 end i f
524

525 t e s t x = ( lx ( i ) < zero ) . or . ( l x ( i ) > box )
526 t e s t y = ( ly ( i ) < zero ) . or . ( l y ( i ) > box )
527 t e s txy = te s t x . or . t e s t y
528 i f ( t e s txy ) then
529 wr i t e ( un i t=3, fmt = ∗) " Learning p a r t i c l e ou t s id e the box ; s topping . "
530 stop
531 end i f
532

533 end do
534 end i f
535 ! ! Applying PBC f o r b i rd s done .
536

537 do i =1, ln
538

539 l n b i (T+1, i ) = 0
540

541

542 do j = 1 , nr
543

544 x j i = lx ( j ) − l x ( i )
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545 y j i = ly ( j ) − l y ( i )
546

547 ! Apply minimum image s epa ra t i on cond i t i on
548 i f ( x j i > ha l fbox ) then
549 x j i = x j i − box
550 e l s e i f ( x j i <= −ha l fbox ) then
551 x j i = x j i + box
552 end i f
553 i f ( y j i > ha l fbox ) then
554 y j i = y j i − box
555 e l s e i f ( y j i <= −ha l fbox ) then
556 y j i = y j i + box
557 end i f
558

559 ! Check neighbourhood
560 d i s t = sq r t ( x j i ∗∗2 + y j i ∗∗2)
561 i f ( d i s t > r ) cy c l e
562

563 l n b i (T+1, i ) = lnb i (T+1, i ) + 1
564

565

566 end do
567

568

569 ! Switching on Q−l e a rn i ng a f t e r the f l o c k has reached steady s t a t e
570 i f (T>t sk i p ) then
571

572 i f ( l nb i (T, i )>1) then
573

574 d i f f_ i n t = lnb i (T+1, i ) − l n b i (T, i )
575 s_pointer = s_record ( i ) ; a_pointer = a_record ( i )
576

577 i f ( i>ln ) then
578 alpha=0.0
579

580 e l s e
581 alpha=alpha_f ix
582 ! Updating Q−matr i ce s o f l e a r n e r s
583 i f ( d i f f_ i n t >=0) then
584 reward ( i ,T) = 1.0∗ reward_factor
585 Q( i , s_pointer , a_pointer ) = (1.0− alpha )∗Q( i , s_pointer , a_pointer ) +
586 ( alpha )∗ reward ( i ,T)
587 e l s e
588 reward ( i ,T) = −1.0∗ reward_factor
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589 Q( i , s_pointer , a_pointer ) = (1.0− alpha )∗Q( i , s_pointer , a_pointer)+
590 ( alpha )∗ reward ( i ,T)
591 end i f
592 end i f
593 end i f
594 avg_reward ( i ) = avg_reward ( i ) + ( reward ( i ,T) )
595

596 end i f
597 enddo
598

599

600 l theta_old = ltheta_new ! Updating theta f o r l e a rn i ng b i rd s
601

602 i f (E==ncon f i g ) then
603

604 wr i t e (55 ,∗ ) T, l nb i (T, 1 )
605 i f ( t>t sk i p ) then
606 i f (mod(T,1)==0) then
607 do i =1, ln ! Saving data f o r movie
608 wr i t e (555 ,888) lx ( i ) , l y ( i ) , v0∗ cos ( l theta_old ( i ) ) , v0∗ s i n ( l theta_old ( i ) )
609 enddo
610

611 do i=ln+1,nr ! Saving data f o r movie
612 wr i t e (5 ,888) lx ( i ) , l y ( i ) , v0∗ cos ( l theta_old ( i ) ) , v0∗ s i n ( l theta_old ( i ) )
613 enddo
614

615

616 end i f
617 end i f
618 end i f
619

620

621 enddo !T=1, tend loop
622

623 p s i =0.0_8
624 ps i_teacher =0.0_8
625 do i=t sk i p +1, tend
626 p s i = ps i + psi_avg ( i )
627 ps i_teacher = ps i_teacher + psi_avg_teacher ( i )
628 enddo
629

630

631 avg_reward = avg_reward /( r e a l ( tend−t s k i p ) )
632
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633

634 do i =1, ln
635 wr i t e (20000+ i , ∗ ) E, (1 .0 − ( avg_reward ( i )/ reward_factor ) ) / 2 . 0 ,
636 ( avg_reward ( i )/ reward_factor )
637 enddo
638

639

640 wr i t e (200 ,∗ )E, p s i /( r e a l ( tend−t s k i p ) )
641 wr i t e (201 ,∗ )E, ps i_teacher /( r e a l ( tend−t s k i p ) )
642

643

644

645 do i =1, ln
646 ! bu i ld f i l ename −− i . dat
647 wr i t e ( fn1 , fmt=’ ( i0 , a ) ’ ) i , ’Q. txt ’
648

649 ! open i t with a f i x ed un i t number
650 open ( un i t=10000+i , f i l e=fn1 , form=’ formatted ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
651

652 enddo
653

654 do i =1, ln
655 do j =0,state_max−1
656

657 do k=0,action_max−1
658 wr i t e (10000+ i , 887 ) i , j , k ,Q( i , j , k )/ reward_factor
659 enddo
660 wr i t e (10000+ i , ∗ ) " "
661 enddo
662 enddo
663

664 do i =1, ln
665 c l o s e ( un i t=i +10000)
666 enddo
667

668

669 do i =1, ln
670 ! bu i ld f i l ename −− i . dat
671 wr i t e ( fn4 , fmt=’ ( i0 , a ) ’ ) i , ’SA. txt ’
672

673 ! open i t with a f i x ed un i t number
674 open ( un i t=40000+i , f i l e=fn4 , form=’ formatted ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
675

676 enddo
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677

678 do i =1, ln
679 do j =0,state_max−1
680

681 do k=0,action_max−1
682 wr i t e (40000+ i , 865 ) j , k , n_sa ( i , j , k )
683 enddo
684 wr i t e (40000+ i , ∗ ) " "
685 enddo
686 enddo
687

688 do i =1, ln
689 c l o s e ( un i t=i +40000)
690 enddo
691

692

693 865 Format (2 I10 , I20 )
694

695

696 do i =1, ln
697 ! bu i ld f i l ename −− i . dat
698 wr i t e ( fn3 , fmt=’ ( i0 , a ) ’ ) i , ’maximum_Q. txt ’
699

700 ! open i t with a f i x ed un i t number
701 open ( un i t=30000+i , f i l e=fn3 , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
702

703 enddo
704

705 do i =1, ln
706 do j =0,state_max−1
707 temp = Q( i , j , 0 ) ; temp_int=0
708 do k=0,action_max−1
709 i f (Q( i , j , k)>temp) then
710 temp=Q( i , j , k )
711 temp_int = k
712 end i f
713 enddo
714 wr i t e (30000+ i , ∗ ) j , temp_int
715 enddo
716 enddo
717

718 c l o s e ( un i t=18)
719

720 do i =1, ln
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721 c l o s e ( un i t=10000+ i )
722 c l o s e ( un i t=30000+ i )
723 enddo
724

725 vx_theta = cos ( l theta_old ) ; vy_theta = s i n ( l theta_old )
726 sumvx = sum( vx_theta ) ; sumvy = sum( vy_theta )
727 wr i t e (24 ,∗ ) E, atan2 ( sumvy/ r e a l ( ln ) , sumvx/ r e a l ( ln ) )
728

729 enddo !E=1, ncon f i g loop ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
730

731 c l o s e ( un i t=24)
732

733 887 Format (3 I10 , F10 . 5 )
734 883 format (2 I6 , I12 )
735

736

737 psi_avg = psi_avg ! /( r e a l ( ncon f i g ) )
738

739 p s i = 0 .0_8
740

741 do i=tsk ip , tend
742 p s i = ps i + psi_avg ( i )
743 enddo
744

745 wr i t e (17 ,∗ ) p s i /( r e a l ( tend−t s k i p ) )
746

747

748

749 do i =1, ln
750 c l o s e ( un i t=10000+ i )
751 c l o s e ( un i t=20000+ i )
752 c l o s e ( un i t=30000+ i )
753 enddo
754

755 c a l l cpu_time ( t2 )
756 wr i t e ( un i t = 3 , fmt = ∗) " Computation Time =" , ( t2−t1 )
757 wr i t e ( un i t = 3 , fmt = ∗) " Job completed "
758

759 c l o s e ( un i t=1)
760 c l o s e ( un i t=5)
761 c l o s e ( un i t =555)
762 c l o s e ( un i t=55)
763 c l o s e ( un i t=11)
764 c l o s e ( un i t=3)
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765 c l o s e ( un i t=14)
766 c l o s e ( un i t=15)
767 c l o s e ( un i t=16)
768 c l o s e ( un i t=17)
769 c l o s e ( un i t =200)
770

771 c l o s e ( un i t=21)
772 pr in t ∗ , " S imulat ion End . "
773

774 STOP
775 END PROGRAM
776

777 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

G.2 Code : Multi-agent olfactory serach

Lorenzo Piro and Mihir Durve

G.2.1 Main code

1 ! Ref BC + Noise in VM + stop at 1 s t a r r i v a l .
2 ! Seems f i n e
3 ! 28 June 2019
4 ! Odor p a r t i c l e s d i f f u s i n g with d i f f u s i o n constant ‘ ed ’
5 ! Def ine ed , i n i t i a l_ r , mean_wind , d_t
6 ! Odor p a r t i c l e are not r e s e t t e d once detec ted by an agent .
7

8

9 program aroma
10 use flow_mod
11 use inout
12 imp l i c i t none
13

14 cha rac t e r ( l en=50) : : fn1
15

16 i n t e g e r : : i , j , k , t s t a r t , tend , t , n , detect_flag_temp=0, r e f l e c t , i s
17 i n t e g e r : : l o renzo , inverse_dt , int_dt , f a i l s , p i r o
18 i n t e g e r : : de tec ted =0,odd_count=0, global_detect_flag_temp=0



Simulation codes 98

19 i n t e g e r : : g l oba l_detec t_f lag=0, detect_time=1
20 i n t e g e r : : sd ( 1 ) , nconf ig ,E, E_count=1, reach_count=0, total_reach_count=0
21 i n t e g e r : : f i r s t_r ea ch_ f l a g =0, f i r s t_detec t_t ime
22 i n t ege r , a l l o c a t ab l e , dimension ( : ) : : detect , reach_flag , agent_count , de t e c t_f l ag
23 i n t ege r , a l l o c a t ab l e , dimension ( : ) : : c lock , turn_time , s ign_f lag , odor_f lag
24 i n t ege r , a l l o c a t ab l e , dimension ( : , : ) : : num_detect
25 r e a l ∗8 : : pxy ,D, p i =3.1415 , h a l f =0.5_8 , rnd , theta_i , beta , two=2.0
26 r e a l ∗8 : : pL ,pR, theta , Lx , rho , ra , rd , v0 , vo , t_rea l
27 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : x , y , vx , vy , x_odor , y_odor , vx_odor
28 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : vy_odor , vx_old , vy_old
29 r e a l ∗8 : : vx_temp_j , vy_temp_j , d i s t , vx_temp_i , vy_temp_i
30 r e a l ∗8 : : p_detect , norm , y_temp , vx_odor_avg , vy_odor_avg
31 r e a l ∗8 : : vx_cs , vy_cs , vx_vicsek , vy_vicsek , cpu1 , cpu2
32 r e a l ∗8 : : x_low ,x_max, y_low ,y_max, rb
33 r e a l ∗8 : : delTheta , cosdth , s indth , temp_vx , temp_vy , eta , box_factor
34 r e a l ∗8 : : ed=0.2 ,d_t=0.010 ,u1 , u2 , z0 , i n i t i a l_ r , d_t_v=1.0
35 r e a l ∗8 : : vx_mean_wind=1.0 ,vy_mean_wind=0.0 , i n i t a l_ r
36 r e a l ∗8 : : gauss1 , gauss2 , r1 , r2 , box_size , lambda , f low_rate2
37

38 r e a l ∗8 : : f low_rate=5 ! emis s ion ra t e i s i nv e r s e o f f l owra t e .
39

40 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : vx_last , vy_last , vx_last_firm , vy_last_firm
41 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : vy_current , vx_current , theta_est imate
42 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : x_new , y_new , vx_new , vy_new , vx_re f l e c t
43 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : vy_re f l ec t , vy_estimate , vx_estimate
44 r e a l ∗8 , a l l o c a t ab l e , dimension ( : , : ) : : x_dump,y_dump
45

46 i n t e g e r : : winner_index , winner_detect ion , rb_cnt
47 r e a l ∗8 : : average_detect ion , ps i , psi_avg , sumvx , sumvy , omega_avg , omega , rg
48

49

50

51 c a l l cpu_time ( cpu1 )
52 open ( un i t=1, f i l e=’ input . in ’ , s t a tu s=’ o ld ’ , a c t i on=’ read ’ )
53 open ( un i t=2, f i l e=’ data . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
54 open ( un i t=4, f i l e=’ odor . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
55 open ( un i t=5, f i l e=’ odor_count . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
56 open ( un i t=6, f i l e=’ fo r_t ime_di s t r ibut ion . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
57 open ( un i t=7, f i l e=’ reach_count . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
58 open ( un i t=8, f i l e=’ reach_time . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
59

60 open ( un i t =10, f i l e=’ run_stat . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
61 open ( un i t =12, f i l e=’ formovie . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
62 open ( un i t =14, f i l e=’NP_t . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
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63 open ( un i t =15, f i l e=’ Posit ion_detected_odor . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
64 open ( un i t =16, f i l e=’ Estimate . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
65 open ( un i t =17, f i l e=’ Detec t ions . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
66 open ( un i t =18, f i l e=’Less_than_Rb . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
67 open ( un i t =19, f i l e=’ Vicsek_order_parameter . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
68 open ( un i t =20, f i l e=’Massimo_order_parameter . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
69 open ( un i t =21, f i l e=’ Distance_square . txt ’ , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
70 read (1 ,∗ )
71 read (1 ,∗ ) sd ( 1 ) , n , t s t a r t , tend , Lx , ra , rd
72 read (1 ,∗ )
73 read (1 ,∗ ) nconf ig , beta , eta , v0 , box_factor , lambda
74

75 Lx = Lx∗ rd
76

77

78 x_low=(−box_factor ∗Lx) ; x_max=(box_factor ∗Lx)
79 y_low=(−box_factor ∗Lx) ; y_max=(box_factor ∗Lx)
80

81 box_size = box_factor ∗Lx
82

83 NP = 2.0∗ box_size /(vx_mean_wind∗ f low_rate )
84

85 pr in t ∗ , "NP =" ,NP
86

87 c a l l input ( )
88

89 a l l o c a t e ( x (n ) , y (n ) , vx (n ) , vy (n ) , de t e c t (n ) , x_odor (NP) , y_odor (NP) , s i gn_f l ag (n ) )
90 a l l o c a t e ( vx_odor ( 0 : tend+1) ,vy_odor ( 0 : tend+1) , vx_old (n ) , vy_old (n ) )
91 a l l o c a t e ( reach_f lag (n ) , c l o ck (n ) , turn_time (n ) , vx_last (n ) )
92 a l l o c a t e ( vy_last (n ) , agent_count ( 0 : tend ) )
93 a l l o c a t e (x_new(n ) ,y_new(n ) , vx_new(n ) , vy_new(n ) , de t e c t_ f l ag (n ) )
94 a l l o c a t e ( vx_last_firm (n ) , vy_last_firm (n ) )
95 a l l o c a t e ( vx_re f l e c t (n ) , vy_re f l e c t (n ) , num_detect ( 1 : n , 1 : ncon f i g ) )
96 a l l o c a t e ( odor_f lag (NP) , vy_current (n ) , vx_current (n)
97 a l l o c a t e ( vx_estimate (n ) , vy_estimate (n ) , theta_est imate (n ) )
98 a l l o c a t e (x_dump(n , 0 : tend ) ,y_dump(n , 0 : tend ) )
99

100 f a i l s =0
101 vy_current=0.0_8
102 vx_current=0.0_8
103

104 vx_estimate=0.0
105 vy_estimate=0.0
106
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107

108 c a l l random_seed ( put = sd )
109

110 do i =1 ,5000
111 c a l l random_number ( rnd )
112 enddo
113

114 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Lorenzo
115 a l l o c a t e (Ak_im(NS,NK) ,Ak_re(NS,NK) , kx (NS,NK) , ky (NS,NK) , s i g (NS,NK) )
116

117 ! I n i t i a l i s e modes and ampl itudes
118 c a l l i n i t f l u i d_1 ( uf , L)
119

120 do i s = 1 ,NS
121 do k = 1 ,NK
122 c a l l random_number ( r1 )
123 c a l l random_number ( r2 )
124 gauss1=sq r t (−2.d0∗ l og ( r1 ) )∗ cos ( 2 . d0∗ pi ∗ r2 )
125 gauss2=sq r t (−2.d0∗ l og ( r1 ) )∗ s i n ( 2 . d0∗ pi ∗ r2 )
126 Ak_im( i s , k ) = s i g ( i s , k )∗ gauss1
127 Ak_re( i s , k ) = s i g ( i s , k )∗ gauss2
128 end do
129 end do
130 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
131

132

133

134

135 inverse_dt = 1.0/d_t
136 pr in t ∗ , " i n v e r s e dt=" , inverse_dt
137

138 do i =1,n
139 ! bu i ld f i l ename −− i . dat
140 wr i t e ( fn1 , fmt=’ ( i0 , a ) ’ ) i , ’ data . txt ’
141

142 ! open i t with a f i x ed un i t number
143 open ( un i t=i +100 , f i l e=fn1 , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
144 enddo
145

146 ! odd_count=0
147 num_detect=0.0
148

149

150 odor_f lag=0
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151

152 do i =1,NP
153 c a l l random_number ( u1 )
154 c a l l random_number ( u2 )
155 x_odor ( i )=0.2∗u1−0.1 ; y_odor ( i )=0.2∗u2−0.1
156 enddo
157

158 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
159 do i =1 ,60000
160

161 i f (mod( i , i n t ( f low_rate ∗ inverse_dt ))==0) then
162 ! every ’ f low_rate ’ time s t ep s we generate a odor p a r t i c l e
163 ! odd_count = odd_count + 1 ! count o f odor p a r t i c l e s at time t
164 do l o r enzo=1,NP
165 i f ( odor_f lag ( l o r enzo )==0) then
166 odor_f lag ( l o r enzo )=1
167 e x i t
168 end i f
169 enddo
170 end i f
171

172 t_rea l = r e a l ( i )
173 Cal l rk2_1 ( t_real , x_odor , y_odor , d_t ,NP, Ak_re ,Ak_im, tau_f , box_size , odor_f lag )
174

175 enddo
176

177

178

179 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
180

181

182 ra = ra ∗ rd
183 rb = (25 . 0 )∗ rd
184 v0 = v0∗ rd
185 vo =v0
186 Do E=1, ncon f i g
187

188 pr in t ∗ , " Episode =" ,E
189

190 g loba l_detec t_f lag=0
191 global_detect_flag_temp=0
192 reach_count=0
193

194 de tec t = 0
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195 turn_time=2
196 ! x_odor =0.0
197 ! y_odor=0.0
198 c l o ck=0
199 reach_f lag=0
200 de tec t_f l ag=0
201 s i gn_f l ag=1
202 f i r s t_r ea ch_ f l a g=0
203 f i r s t_detec t_t ime=0
204 psi_avg = 0 .0_8
205 ! vo=1.1∗v0
206 omega_avg = 0 .0_8
207

208 vy_current=0.0_8
209 vx_current=0.0_8
210

211 vx_estimate=1.0
212 vy_estimate=0.0
213

214

215 ! ∗∗∗∗∗∗∗ i n i t i a l c ond i t i on agents ∗∗∗∗∗∗∗∗∗∗∗∗
216 do i =1,n
217 c a l l random_number ( rnd )
218 rho=rnd∗ rb
219 c a l l random_number ( rnd )
220 rnd=two ∗( rnd−ha l f )∗ pi
221 x ( i ) = Lx + rho∗ cos ( rnd )
222 y ( i ) = rho∗ s i n ( rnd )
223

224 c a l l random_number ( rnd )
225 rnd = two ∗( rnd−ha l f )∗ pi
226 vx ( i ) = cos ( rnd ) ; vy ( i )= s i n ( rnd )
227

228 ! p r i n t ∗ , i , vx ( i ) , vy ( i )
229 enddo
230

231 ! do i =1,n
232 ! wr i t e (12 ,999) x ( i ) , y ( i ) , vx ( i ) , vy ( i )
233 ! enddo
234 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
235

236

237 do t=t s t a r t , tend
238
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239 i f (mod( t ,1000)==0) p r in t ∗ , " Episode =" ,E, "Time =" , t
240

241

242 i f ( f low_rate >=1.0) then
243

244 i f (mod( t , i n t ( f low_rate ))==0) then
245 ! every ’ f low_rate ’ time s t ep s we generate a odor p a r t i c l e
246 ! odd_count = odd_count + 1 ! count o f odor p a r t i c l e s at time t
247 do l o r enzo=1,NP
248 i f ( odor_f lag ( l o r enzo )==0) then
249 odor_f lag ( l o r enzo )=1
250 e x i t
251 end i f
252 enddo
253

254 end i f
255

256 end i f
257

258

259 f low_rate2 = f low_rate − i n t ( f low_rate )
260

261 ! wr i t e ( 5 ,∗ ) t , odd_count ! Writing number o f odor p a r t i c l e s with time .
262 do l o r enzo=1, inverse_dt
263 t_rea l = r e a l ( t )
264 i f ( f low_rate2 >0.0_8) then
265 i f (mod( lorenzo , i n t ( f low_rate2 ∗ inverse_dt ))==0) then
266 do p i ro=1,NP
267 i f ( odor_f lag ( p i r o )==0) then
268 odor_f lag ( p i r o )=1
269 e x i t
270 end i f
271 enddo
272 end i f
273 end i f
274

275 Cal l
276 rk2_1 ( t_real , x_odor , y_odor , d_t ,NP,Ak_re ,Ak_im, tau_f , box_size , odor_f lag )
277

278 int_dt = t_rea l
279 g loba l_detec t_f lag = global_detect_flag_temp
280

281 do i =1,n
282 c a l l
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283 deriv_agent_1 (x ( i ) , y ( i ) ,Ak_re ,Ak_im, theta , vx_current ( i ) , vy_current ( i ) )
284 vx_estimate ( i ) = vx_estimate ( i ) +
285 lambda ∗( vx_current ( i )−vx_estimate ( i ) )∗d_t
286 vy_estimate ( i ) = vy_estimate ( i ) +
287 lambda ∗( vy_current ( i )−vy_estimate ( i ) )∗d_t
288 theta_est imate ( i ) = atan2 ( vy_estimate ( i ) , vx_estimate ( i ) )
289

290 887 format (2F20 . 5 )
291 i f ( de t e c t ( i )==1) cy c l e
292

293 de tec t ( i )=0
294 i f (mod( lorenzo , detect_time)==0) then
295

296 do j =1,NP
297 ! This loop f i n d s the odor p a r t i c l e s that are at
298 ! d i s t ance l e s s than rd from the s e ra che r
299 ! r i s the rad iu s o f the searcher ’ s zone o f d e t e c t i on o f odor
300 p a r t i c l e s
301 i f ( odor_f lag ( j )==1) then
302 d i s t = sq r t ( ( x ( i )−x_odor ( j ))∗∗2+(y ( i )−y_odor ( j ) )∗∗2)
303

304

305 i f ( d i s t<=rd ) then
306 ! count ing number o f d e t e c t i on s made
307 num_detect ( i ,E) = num_detect ( i ,E)+1
308 i f (E==ncon f i g ) then
309 wr i t e (15 ,9986) i , x ( i ) , y ( i )
310 end i f
311 9986 format ( I5 , 2 F15 . 5 )
312

313 de tec t ( i ) =1 ; de t e c t_f l ag ( i )=1
314 i f ( global_detect_flag_temp==0) f i r s t_detec t_t ime = t
315 ! p r i n t ∗ , " f i r s t_detec t_t ime =" , f i r s t_detec t_t ime
316 global_detect_flag_temp=1
317 g loba l_detec t_f lag=1
318 vx_odor_avg = 1 .0 ! vx_odor_avg + vx_odor ( j )
319 vy_odor_avg = 0 .0 ! vy_odor_avg + vy_odor ( j )
320

321 end i f
322 end i f
323 enddo
324 end i f
325 enddo ! ( i =1,n)
326
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327 enddo
328

329 do i =1,n
330 i f ( reach_f lag ( i )==0.and . g loba l_detec t_f lag==1) then
331 ! p r i n t ∗ , i , d e t e c t ( i )
332 ! ∗∗∗∗∗∗∗∗ F i r s t compute v i c s ek model ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
333 vx_vicsek = 0 .0 ; vy_vicsek=0.0
334

335 do j =1,n
336 ! i f ( j==i ) cy c l e
337 i f ( reach_f lag ( j )==0) then
338 d i s t = sq r t ( ( x ( i )−x ( j ) )∗∗2 + (y ( i )−y ( j ) )∗∗2 )
339 i f ( d i s t<ra ) then
340 vx_vicsek = vx_vicsek + vx ( j )
341 vy_vicsek = vy_vicsek + vy ( j )
342

343 end i f
344 end i f
345 ! p r i n t ∗ , g loba l_detect_f lag , vx_vicsek , vy_vicsek
346 enddo
347

348 c a l l random_number ( rnd )
349 delTheta = ( rnd−ha l f )∗ two∗ pi ∗ eta
350 cosdth = cos ( delTheta )
351 s indth = s i n ( delTheta )
352 temp_vx = ( vx_vicsek∗ cosdth − vy_vicsek∗ s indth )
353 temp_vy = ( vx_vicsek∗ s indth + vy_vicsek∗ cosdth )
354 ! p r i n t ∗ , vy_vicsek , temp_vy
355 vx_vicsek = temp_vx ; vy_vicsek= temp_vy
356

357 ! ∗∗∗∗∗∗∗∗∗Vicsek model complete ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
358

359

360

361

362 ! ∗∗∗∗∗∗∗∗∗Compute ca s t and surge ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
363

364

365 ! p r i n t ∗ , " c l o ck =" , c l o ck ( i )
366 i f ( de t e c t ( i )==1) then
367 vx_temp_i = −vx_mean_wind ; vy_temp_i = −vy_mean_wind
368 ! I t takes oppos i t e d i r e c t i o n o f mean wind v e l o c i t y
369 c l o ck ( i )=0 ; turn_time ( i )=0; vx_last ( i ) = −vx_mean_wind
370 vy_last ( i )=−vy_mean_wind
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371 vx_last_firm ( i )=vx_last ( i ) ; vy_last_firm ( i ) =vy_last ( i ) ; d e t e c t ( i )=0
372

373 ! c l o ck o f the s ea r che r i s r e s e t
374

375 e l s e
376

377 i f ( de t e c t_ f l ag ( i )<1) then ! p o s s i b i l i t y 1
378 vx_temp_i = 0 .0 ; vy_temp_i= 0 .0
379 end i f
380

381

382 i f ( de t e c t_ f l ag ( i )==1) then
383

384 i f ( c l o ck ( i )>0.and . c l o ck ( i )<turn_time ( i ) ) then
385 vx_temp_i = 0 .0_8 ; vy_temp_i= vy_last ( i )
386 ! p r i n t ∗ , i , vx_temp_i , vy_temp_i , " 2 "
387 end i f
388

389 i f ( c l o ck ( i )==turn_time ( i ) ) then
390 vy_last ( i ) = s i gn_f l ag ( i )∗ cos ( 3 . 1 415/4 . 0 )
391 s i gn_f l ag ( i ) = −1∗ s i gn_f l ag ( i )
392 vx_temp_i= vx_last_firm ( i ) ; vy_temp_i = −vy_last ( i )
393 ! p r i n t ∗ , i , vx_temp_i , vy_temp_i , " 3 "
394

395 end i f
396

397

398 i f ( c l o ck ( i )>turn_time ( i ) ) then
399

400 vy_temp_i = vy_last ( i )
401 vx_temp_i = 0 .0_8
402 c l o ck ( i ) = 0
403 turn_time ( i ) = turn_time ( i ) + 2
404 ! p r i n t ∗ , i , vx_temp_i , vy_temp_i , " 4 "
405 end i f
406 c l o ck ( i )=c l o ck ( i ) + 1
407

408 end i f
409 end i f ! i f ( de t e c t ( i )==1) then
410

411 ! vx_cs = vx_temp_i ; vy_cs = vy_temp_i
412 vx_cs = (vx_temp_i∗ cos ( theta_est imate ( i ) ) −
413 vy_temp_i∗ s i n ( theta_est imate ( i ) ) )
414 vy_cs = (vx_temp_i∗ s i n ( theta_est imate ( i ) ) +
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415 vy_temp_i∗ cos ( theta_est imate ( i ) ) )
416

417

418 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
419

420 norm = sqr t ( vx_cs∗∗2 + vy_cs ∗∗2)
421 i f (norm/=0) then
422 vx_cs = vx_cs/ norm
423 vy_cs = vy_cs / norm
424 e l s e
425 vx_cs = 0 .0
426 vy_cs = 0 .0
427 end i f
428

429 norm = sqr t ( vx_vicsek ∗∗2 + vy_vicsek ∗∗2)
430 i f (norm/=0) then
431 vx_vicsek = vx_vicsek / norm
432 vy_vicsek = vy_vicsek / norm
433 e l s e
434 vx_vicsek = 0 .0
435 vy_vicsek = 0 .0
436 end i f
437

438 vx_new( i ) = beta ∗( vx_cs ) + (1.0− beta )∗ ( vx_vicsek )
439 vy_new( i ) = beta ∗( vy_cs ) + (1.0− beta )∗ ( vy_vicsek )
440

441 norm = sqr t (vx_new( i )∗∗2 + vy_new( i )∗∗2)
442 i f (norm/=0) then
443 vx_new( i ) = vx_new( i ) / norm
444 vy_new( i ) = vy_new( i ) / norm
445 e l s e
446 vx_new( i ) = 0 .0
447 vy_new( i ) = 0 .0
448 end i f
449

450 x_new( i ) = x( i ) + vx_new( i )∗ v0∗d_t_v
451 y_new( i ) = y( i ) + vy_new( i )∗ v0∗d_t_v
452

453 r e f l e c t=0
454 ! ∗∗∗∗∗∗∗∗∗∗ Implementing Re f l e c t i n g boundary ∗∗∗∗∗∗∗∗∗∗∗∗∗
455 i f (x_new( i ) >= x_max) then
456 vx_new( i ) = −vx ( i ) ; r e f l e c t=1
457 end i f
458
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459 i f (x_new( i ) <= x_low) then
460 vx_new( i ) = −vx ( i ) ; r e f l e c t=1
461 end i f
462

463 i f (y_new( i ) >= y_max) then
464 vy_new( i ) = −vy ( i ) ; r e f l e c t=1
465 end i f
466

467 i f (y_new( i ) <= y_low) then
468 vy_new( i ) = −vy ( i ) ; r e f l e c t=1
469 end i f
470

471 i f ( r e f l e c t ==1) then
472 vx_last_firm ( i ) = −vx_last_firm ( i )
473 x_new( i ) = x( i ) + vx_new( i )∗ v0∗d_t_v
474 y_new( i ) = y( i ) + vy_new( i )∗ v0∗d_t_v
475 end i f
476 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Re f l e c t i n g BC Done ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
477 999 format (4F15 . 5 )
478

479

480 x ( i ) = x_new( i ) ; y ( i )=y_new( i )
481 vx ( i ) = vx_new( i ) ; vy=vy_new( i )
482

483

484

485 e l s e
486 ! Do nothing
487 end i f ! i f ( reach_f lag ( i )==0.and . g loba l_detec t_f lag==1)) then
488

489 i f ( t >0) then
490 norm = sqr t ( vx ( i )∗∗2 + vy ( i )∗∗2)
491 i f (norm/=0) then
492 vx ( i ) = vx ( i ) / norm
493 vy ( i ) = vy ( i ) / norm
494 e l s e
495 vx ( i ) = 0 .0
496 vy ( i ) = 0 .0
497 end i f
498 end i f
499

500 i f (E==ncon f i g ) then
501 wr i t e ( i +100 ,999) x ( i ) , y ( i ) , vx ( i ) , vy ( i )
502 end i f
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503

504 x_dump( i , t ) = x (1) ; y_dump( i , t ) = y (1)
505

506 9991 format ( I5 , 4 F15 . 4 )
507

508

509 enddo ! do i =1,n
510

511 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Computing the Vicsek order parameter ∗∗∗∗∗∗∗∗∗∗
512 i f ( g l oba l_detec t_f lag==1) then
513 sumvx = sum(vx_new ) ; sumvy = sum(vy_new)
514 p s i = sq r t ( sumvx∗∗2 + sumvy∗∗2)/( r e a l (n ) )
515 psi_avg = psi_avg + ps i
516 end i f
517 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
518

519 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Computing the Massimo order parameter ∗∗∗∗∗∗∗∗∗
520 sumvx = 0 .0_8 ; sumvy=0.0_8 ; omega=0.0_8
521 i f ( g l oba l_detec t_f lag==1) then
522 do j =1,n
523 omega = omega + sq r t ( ( ( vx_new( j ) + vx_mean_wind))∗∗2 + ( (vy_new( j ) +
524 vy_mean_wind))∗∗2 )
525 enddo
526 omega = omega/( r e a l (n ) )
527 omega_avg = omega_avg + omega
528 end i f
529 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
530

531 do j =1,n
532 i f ( reach_f lag ( j )==0) then
533 d i s t = sq r t ( x ( j )∗∗2 + y( j )∗∗2)
534 i f ( d i s t <= ra ) then
535 reach_count = reach_count+1
536 reach_f lag ( j ) = 1
537 total_reach_count = total_reach_count +1
538

539 i f ( f i r s t_reach_f l ag <1) then
540 winner_index =j
541 winner_detect ion = num_detect ( j ,E)
542 average_detect ion = 0
543 rb_cnt = 0
544 rg=0.0_8
545 do k=1,n
546 i f ( k/=j ) average_detect ion = average_detect ion + num_detect (k ,E)
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547 d i s t = sq r t ( x (k )∗∗2 + y(k )∗∗2)
548 rg = rg + d i s t
549 i f ( d i s t<=rb ) rb_cnt = rb_cnt + 1 ! Finding agents with in Rb
550 enddo
551 average_detect ion = average_detect ion / r e a l (n−1)
552

553 9777 format (3 I10 , F15 . 5 )
554 wr i t e (17 ,9777) E, winner_index , winner_detect ion , average_detect ion
555 wr i t e (18 ,∗ ) E, rb_cnt ! Less_than_Rb . txt
556 wr i t e (21 ,∗ ) E, rg / r e a l (n)
557 end i f
558 f i r s t_r ea ch_ f l a g =1
559 wr i t e (8 ,∗ ) j , abs ( t−f i r s t_detec t_t ime ) ! reach_time . txt
560

561 end i f
562 end i f
563 enddo
564

565 g loba l_detec t_f lag = global_detect_flag_temp
566 i f ( f i r s t_r ea ch_ f l a g==1) e x i t
567 enddo ! t=t s t a r t , tend
568

569 i f ( f i r s t_reach_f l ag <1.and . f a i l s <2) then
570 do j =1,n
571 ! bu i ld f i l ename −− i . dat
572 wr i t e ( fn1 , fmt=’ ( i0 , a ) ’ ) j , ’ f a i l_data . txt ’
573 open ( un i t =20, f i l e=fn1 , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
574

575 do i=t s t a r t , tend
576 wr i t e (20 ,∗ ) x_dump( j , i ) ,y_dump( j , i )
577 enddo
578

579 c l o s e ( un i t=20)
580 enddo
581 f a i l s = f a i l s +1
582

583 ! i f ( f a i l s >5) e x i t
584 end i f
585

586 wr i t e (7 ,998) E, reach_count
587 998 format (2 I10 , F10 . 5 )
588 ! i f ( f i r s t_r ea ch_ f l a g==1) e x i t
589

590
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591 open ( un i t =13, f i l e=" number_of_detections . txt " , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
592 do i =1,n
593 do j =1,E
594 wr i t e (13 ,∗ ) i , num_detect ( i , j )
595

596 enddo
597 enddo
598 c l o s e ( un i t=13)
599

600 wr i t e (19 ,∗ ) E, psi_avg/ r e a l ( t−f i r s t_detec t_t ime )
601 wr i t e (20 ,∗ ) E, omega_avg/ r e a l ( t−f i r s t_detec t_t ime )
602

603 enddo !E=1, ncon f i g
604

605 open ( un i t=9, f i l e=" total_reach_count . txt " , s t a tu s=’ r ep l a c e ’ , a c t i on=’ wr i t e ’ )
606 wr i t e (9 ,∗ ) r e a l ( total_reach_count )/ r e a l ( ncon f i g )
607 c l o s e ( un i t=9)
608

609 c a l l cpu_time ( cpu2 )
610

611 wr i t e (10 ,∗ ) " Job complete , Run Time=" , abs ( cpu2−cpu1 )
612 do i =1 ,20
613 c l o s e ( un i t=i )
614 enddo
615 END

G.2.2 Code to simulate turbulent flow

1 module flow_mod
2 use inout
3 imp l i c i t none
4

5 ! Number o f p a r t i c l e s r e l e a s e d and f l ux l a b e l
6 i n t ege r , save : : NP
7 ! S t o cha s t i c f low parameters and va r i a b l e s
8 i n t ege r , parameter : : NK=8
9 r e a l ∗8 , save : : u0x=1.d0

10 r e a l ∗8 , a l l o c a t ab l e , dimension ( : , : ) , save : : Ak_im, Ak_re
11 r e a l ∗8 , a l l o c a t ab l e , dimension ( : , : ) , save : : kx , ky , s i g
12 r e a l ∗8 : : d i f f
13
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14 conta in s
15

16 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
17 ! ! ! I n i t i a l i s e ampl itudes and modes ! ! !
18 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
19 subrout ine i n i t f l u i d_1 ( uf , L)
20 imp l i c i t none
21 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : ks
22 r e a l ∗8 , dimension ( : ) , i n t en t ( in ) : : uf , L
23 r e a l ∗8 : : p i2 =6.283185d0 , s c ra
24 i n t e g e r : : k , i s
25

26 a l l o c a t e ( ks (NS) )
27

28 do i s = 1 ,NS
29 ks ( i s )=pi2 /L( i s )
30

31 kx ( i s , 1 ) = 1 . d0∗ks ( i s ) ; kx ( i s , 2 ) = 1 . d0∗ks ( i s )
32 kx ( i s , 3 ) = 0 . d0∗ks ( i s ) ; kx ( i s , 4 ) = −1.d0∗ks ( i s )
33 kx ( i s , 5 ) = −1.d0∗ks ( i s ) ; kx ( i s , 6 ) = −1.d0∗ks ( i s )
34 kx ( i s , 7 ) = 0 . d0∗ks ( i s ) ; kx ( i s , 8 ) = 1 . d0∗ks ( i s )
35

36 ky ( i s , 1 ) = 0 . d0∗ks ( i s ) ; ky ( i s , 2 ) = 1 . d0∗ks ( i s )
37 ky ( i s , 3 ) = 1 . d0∗ks ( i s ) ; ky ( i s , 4 ) = 1 . d0∗ks ( i s )
38 ky ( i s , 5 ) = 0 . d0∗ks ( i s ) ; ky ( i s , 6 ) = −1.d0∗ks ( i s )
39 ky ( i s , 7 ) = −1.d0∗ks ( i s ) ; ky ( i s , 8 ) = −1.d0∗ks ( i s )
40

41 s i g ( i s ,1 )=1.0 d0 ; s i g ( i s ,2 )=0.5 d0
42 s i g ( i s ,3 )=1.0 d0 ; s i g ( i s ,4 )=0.5 d0
43 s i g ( i s ,5 )=1.0 d0 ; s i g ( i s ,6 )=0.5 d0
44 s i g ( i s ,7 )=1.0 d0 ; s i g ( i s ,8 )=0.5 d0
45

46 s c ra =0.d0
47 do k=1,NK
48 s c ra=sc ra+s i g ( i s , k )
49 end do
50

51 do k=1,NK
52 s i g ( i s , k)=uf ( i s )∗ s i g ( i s , k )∗ s q r t ( 2 . d0 )/ sq r t ( s c ra )/ ks ( i s )
53 end do
54 end do
55

56 end subrout ine i n i t f l u i d_1
57
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58 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
59 ! ! ! Compute v e l o c i t y at g iven po s i t i o n / time ! ! !
60 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
61 subrout ine deriv_1 (xp , yp , uxp , uyp , ip , odor_f lag )
62 imp l i c i t none
63 i n t ege r , i n t en t ( in ) : : ip
64 Real ∗8 , dimension ( : ) , i n t en t ( inout ) : : xp , yp
65 Real ∗8 , dimension ( : ) , i n t en t ( inout ) : : uxp , uyp
66 Real ∗8 : : xx , yy , arg
67 i n t e g e r : : i , k , i s
68 i n t ege r , dimension ( : ) , i n t en t ( in ) : : odor_f lag
69

70 do i = 1 , ip
71 i f ( odor_f lag ( i )==1) then
72 uxp ( i )=u0x ; uyp ( i )=0.d0
73 xx=xp ( i ) ; yy=yp ( i )
74 do i s =1,NS
75 do k=1,NK
76 arg=kx ( i s , k )∗xx+ky ( i s , k )∗yy
77 uxp ( i )= uxp ( i ) −
78 Ak_im( i s , k )∗ky ( i s , k )∗ cos ( arg)−Ak_re( i s , k )∗ky ( i s , k )∗ s i n ( arg )
79 uyp ( i )= uyp ( i ) +
80 Ak_re( i s , k )∗kx ( i s , k )∗ s i n ( arg)+Ak_im( i s , k )∗kx ( i s , k )∗ cos ( arg )
81 end do
82 end do
83 end i f
84 end do
85

86 end subrout ine deriv_1
87

88 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
89 ! ! ! I n t e g r a t o r RK2 ! ! !
90 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
91 subrout ine rk2_1 ( t , xp , yp , dt , ip , Ak_re ,Ak_im, tau_f , box_size , odor_f lag )
92 imp l i c i t none
93 i n t ege r , i n t en t ( inout ) : : ip
94 r e a l ∗8 , dimension ( : ) , i n t en t ( inout ) : : xp , yp , tau_f
95 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : xp1 , dxp , dxp1 , invtau_f
96 r e a l ∗8 , a l l o c a t ab l e , dimension ( : ) : : yp1 , dyp , dyp1
97 r e a l ∗8 , a l l o c a t ab l e , dimension ( : , : ) , i n t en t ( inout ) : : Ak_re ,Ak_im
98 r e a l ∗8 : : dt2 , r1 , r2 , gauss1 , gauss2 , p i =3.14159265358979323844d0 , u1 , u2
99 r e a l ∗8 , i n t en t ( in ) : : dt , t , box_size

100 i n t e g e r : : k , i , j , i s
101 i n t ege r , dimension ( : ) , i n t en t ( inout ) : : odor_f lag
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102

103 a l l o c a t e ( invtau_f (NS) )
104 a l l o c a t e ( xp1 ( ip ) , dxp ( ip ) )
105 a l l o c a t e ( yp1 ( ip ) , dyp ( ip ) )
106 a l l o c a t e ( dxp1 ( ip ) , dyp1 ( ip ) )
107

108 dt2=0.5d0∗dt
109 do i s =1,NS
110 invtau_f ( i s )=1.d0/ tau_f ( i s )
111 end do
112

113 do i s =1,NS
114 do k=1,NK
115 c a l l random_number ( r1 )
116 c a l l random_number ( r2 )
117 gauss1=sq r t (−2.d0∗ l og ( r1 ) )∗ cos ( 2 . d0∗ pi ∗ r2 )
118 gauss2=sq r t (−2.d0∗ l og ( r1 ) )∗ s i n ( 2 . d0∗ pi ∗ r2 )
119 Ak_re( i s , k ) = Ak_re( i s , k ) − invtau_f ( i s )∗Ak_re( i s , k )∗ dt +
120 s i g ( i s , k )∗ s q r t ( 2 . d0∗dt∗ invtau_f ( i s ) )∗ gauss1
121 Ak_im( i s , k ) = Ak_im( i s , k ) − invtau_f ( i s )∗Ak_im( i s , k )∗ dt +
122 s i g ( i s , k )∗ s q r t ( 2 . d0∗dt∗ invtau_f ( i s ) )∗ gauss2
123 end do
124 end do
125

126 do i =1, ip
127 i f ( xp ( i )>box_size ) then
128 odor_f lag ( i )=0
129 c a l l random_number ( u1 )
130 c a l l random_number ( u2 )
131 xp ( i )=0.2∗u1−0.1 ; yp ( i )=0.2∗u2−0.1
132 end i f
133 enddo
134

135

136 c a l l deriv_1 (xp , yp , dxp , dyp , ip , odor_f lag )
137

138 do k=1, ip
139 i f ( odor_f lag (k)==1) then
140 xp1 (k)=xp (k)+dt2∗dxp (k )
141 yp1 (k)=yp (k)+dt2∗dyp (k )
142 end i f
143 end do
144

145 c a l l deriv_1 (xp1 , yp1 , dxp1 , dyp1 , ip , odor_f lag )
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146

147 do k=1, ip
148 i f ( odor_f lag (k)==1) then
149 xp (k)=xp (k)+dt∗dxp1 (k )
150 yp (k)=yp (k)+dt∗dyp1 (k )
151 end i f
152 end do
153

154 d e a l l o c a t e ( xp1 , dxp )
155 d e a l l o c a t e ( yp1 , dyp )
156 d e a l l o c a t e ( dxp1 , dyp1 )
157 d e a l l o c a t e ( invtau_f )
158 re turn
159 end subrout ine rk2_1
160

161 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
162 ! ! ! Subrout ine f o r the agent to know the l o c a l wind d i r e c t i o n ( theta ) ! ! !
163 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
164 subrout ine deriv_agent_1 (x , y , Ak_re ,Ak_im, theta , vx , vy )
165 imp l i c i t none
166

167 r e a l ∗8 , i n t en t ( inout ) : : theta , vx , vy
168 r e a l ∗8 , dimension ( : , : ) , i n t en t ( inout ) : : Ak_re ,Ak_im
169 r e a l ∗8 , i n t en t ( in ) : : x , y
170 r e a l ∗8 : : arg , r1 , r2 , gauss1 , gauss2 , p i =3.1415926535d0 , invtau_f , xnew , ynew
171 i n t e g e r : : k , i s
172

173 ! dt2=0.5d0∗dt
174

175 vx=u0x ; vy=0.d0
176 do i s =1,NS
177 do k=1,NK
178 arg=kx ( i s , k )∗x+ky ( i s , k )∗y
179 vx = vx − Ak_im( i s , k )∗ky ( i s , k )∗ cos ( arg)−Ak_re( i s , k )∗ky ( i s , k )∗ s i n ( arg )
180 vy = vy + Ak_re( i s , k )∗kx ( i s , k )∗ s i n ( arg)+Ak_im( i s , k )∗kx ( i s , k )∗ cos ( arg )
181 end do
182 end do
183

184 theta=atan ( vy/vx )
185

186 end subrout ine deriv_agent_1
187

188 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
189 ! ! ! D i f f u s i v e term ! ! !
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190 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
191 subrout ine d i f f u s i o n (xp , yp , ip )
192 imp l i c i t none
193 Real ∗8 , dimension ( : ) : : xp , yp
194 Real ∗8 : : r1 , r2 , gauss1 , gauss2 , p i =3.14159265358979323844d0
195 i n t ege r , i n t en t ( in ) : : ip
196 i n t e g e r : : k
197 ! c a l l init_random_seed ( )
198

199 do k=1, ip
200 c a l l random_number ( r1 )
201 c a l l random_number ( r2 )
202 gauss1=sq r t (−2.d0∗ l og ( r1 ) )∗ cos ( 2 . d0∗ pi ∗ r2 )
203 gauss2=sq r t (−2.d0∗ l og ( r1 ) )∗ s i n ( 2 . d0∗ pi ∗ r2 )
204 xp (k)=xp (k)+ d i f f ∗ gauss1
205 yp (k)=yp (k)+ d i f f ∗ gauss2
206 end do
207 re turn
208 end subrout ine d i f f u s i o n
209

210 end module flow_mod
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