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a b s t r a c t 

Brain connectivity at the single neuron level can provide fundamental insights into how 

information is integrated and propagated within and between brain regions. However, it is 

almost impossible to adequately study this problem experimentally and, despite intense ef- 

forts in the field, no mathematical description has been obtained so far. Here, we present a 

mathematical framework based on a graph-theoretical approach that, starting from exper- 

imental data obtained from a few small subsets of neurons, can quantitatively explain and 

predict the corresponding full network properties. This model also changes the paradigm 

with which large-scale model networks can be built, from using probabilistic/empiric con- 

nections or limited data, to a process that can algorithmically generate neuronal networks 

connected as in the real system. 

© 2020 The Author(s). Published by Elsevier Inc. 
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1. Introduction 

The brain is a complex organ composed by neurons, fundamental units of this system; their connectivity has a crucial role

in determining the dynamics of both individual neurons and the whole network. The system can be considered a directed

graph with the neurons soma as nodes and synaptic connections among neurons as edges. The computational properties

of different neurons and subnetworks depend on their topological organization [1–3] , and numerous brain disorders can be

associated with abnormal topological structure [4,5] . Although several important results on the computational properties of

neurons can be investigated at the single cell level, e.g. to explain some chaotic behaviors [6] , or to suggest an empirical

explanation for the storage capacity of an individual neuron [7,39] , discovering the general rules underlying the connectivity

properties of their networks is a fundamental step to figure out how information is integrated and propagated within and

between brain regions. 

The need to find a rule explaining how brain cells are connected cannot be overemphasized. Any large initiative on brain

research dedicates quite significant efforts to this problem. Since it would have an enormous influence on our understand-

ing of how the brain works. It is well known that several electrophysiological properties of neurons and networks can be

modeled as a system of ordinary nonlinear differential equations, so it may be questioned why investigate brain networks
� This work has been supported by the EU Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement 785907 
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with graph theory. The rationale is that graph theory has been proven to be of a great help in understanding network prop-

erties and operations. Infection models such as the Susceptible Infected (-Recovered) (SI (R)) [8] , are typical examples. In

these cases, a model that takes adequately into account the heterogeneity of the degrees observed in various real networks

represents the underlying network topology. Furthermore, Aledo et al. in [9] highlight a network of attractors in which the

graphs allow a better understanding of the system dynamics. 

Since the central nervous system can be considered a complex network consisting of a large number of mutually in-

teracting excitatory and inhibitory neurons, it is appropriate to define a mathematical model capable of representing the

distribution of a large neuronal network [10–14] . Herculano-Houzel et al. estimated that the central nervous system net-

work involves more than 86 billion neurons [15] , this implies fourfold synaptic connections and an enormous equivalent

processing per second. Therefore, understanding neuronal distributions and their relative functioning is a challenge that has

fascinated researchers in recent decades. 

The different scientific areas of mathematics appear among those that can give insightful contributions for a better un-

derstanding of the neuronal distribution and related interconnections. Theoretical and applicative advances in the area of

graph theory provide a convenient framework for the study of brain structural connectivity, a problem that has not been

solved so far. In humans, the current state of the art relies on experimental data of macroscopic connectivity obtained from

diffusion tractography [16] , but its resolution and the problems with its validation makes it practically impossible to inves-

tigate the single cell connectome [17] . Anatomical tracers in non-human studies (reviewed in [18] ) give more information,

but they are still based on specialized labeling methods that also have shortcomings [19] . Therefore, it should be clear that

discovering the general rules underlying the connectivity properties of brain cells is a fundamental step to figure out how

information is integrated and propagated within and between brain regions. 

Here we suggest an innovative model, exploiting the properties of exponential and power-law models. We were able to

use the available, but necessarily sparse, experimental data to generalize the rules underlying brain connectivity. This will

provide the basis for a better interpretation of experimental data, for analyzing in more details how the brain processes

information and, ultimately, to build large-scale model networks reproducing the observed connectivity. The model is tested

against detailed experimental and large-scale modeling data on the hippocampus and neocortex. 

2. Materials and methods 

2.1. Principles of graph theory 

We start by defining: 

1. a graph as an entity G = (V, E) composed by a number of nodes N G = V (G ) , 

2. a set of edges E ( G ) ⊂ V ( G ) × V ( G ), 

3. D G ( i ) as the number of the edges, where i is the node number (also called a vertex), 

4. an adjacency matrix A = (a i j ) as 

a i j = 

{
1 , if (i, j) ∈ E(G ) 
0 , if (i, j) / ∈ E(G ) 

In this paper we will consider only directed graphs. In a directed graph the vertex have independent incoming and

outgoing connections. The adjacency matrix is thus asymmetrical, and we need to distinguish between the in- and out-

degree of a vertex i , i.e. the number of incoming and outgoing edges respectively. We will denote them as D 

I 
G 
(i ) and D 

O 
G 
(i ) ,

respectively. 

2.2. Exponential and power law models 

In order to illustrate how our algorithm is implemented, consider the two well-known classes of random graphs, called

exponential (introduced in [20] ) and power law (described in [21] ). In an exponential model, the probability that exist an

edge starting from node i and arriving at node j is exactly p , a constant, for any distinct i and j and the in- and out-degree

distribution are 

P 
(
D 

I 
G = k 

)
= P 

(
D 

O 
G = k 

)
= p k ( 1 − p ) 

N−1 −k 

(
N − 1 

k 

)
. 

The model is called exponential because the tail of the functions describing the indegree and outdegree decays faster than

any power law. In power law networks, called BA models (from Barabasi and Albert, who first described them in [22] ), the

underlying assumption is the existence of a preferential connection between nodes, and the probability for a node to have

k connections decreases as k −γ . The construction of a power law model is based on an integer positive random variable �,

with distribution σ k , and expected value c ( c = E (σk ) ). As previously demonstrated [21] , for degrees k much greater than

an arbitrary constant a , the indegree distribution can be approximated by 

p I k = 

B 

(
k + a, 2 + 

a 
c 

)
B 

(
a, 1 + 

a 
c 

) ≈ k −( 2+ a c ) , 
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where B ( x, y ) is the Beta function [23] . The outdegree will follow a � distribution with a spike at 0, 

P (D 

O 
PR = k ) = 

(
m 0 

N 

δ0 (k ) + 

N − m 0 

N 

σk 

)
, 

where δ0 ( k ) is the discrete Dirac’s delta distribution, and m 0 is a free parameter, calculated with a function described in

[21] . 

For the indegree of this model, a particularly important case is when a = c, 

p I k = 

B (k + a, 3) 

B (a, 2) 
= 

2(a + 1) a 

(a + k + 2)(a + k + 1)(a + k ) 
≈ k −3 , 

for k much higher than a . The value of -3 is the typical tail value assumed for a scale free model. 

3. Theory: Our model 

3.1. Initial considerations 

Networks rarely exhibit an exponential tail in their distributions, and biological networks often exhibit a tail behavior

that can be approximated by a power law [24–28] . The tails behavior is a very important property, because it gives a direct

estimation of the network hubs (which are correlated to the way in which information can propagate in the brain [29] ).

However, the tail alone it is not sufficient to completely describe the properties of a network, since the entire range of

connectivity should be considered. The major problem is that neither the exponential or power models can represent the

full range of connectivity exhibited by biological networks [24–28] . With respect to a biological network, exponential models

have too few highly connected nodes, and power law models have too many nodes with low connectivity. This situation is

schematically illustrated in Fig. 1 , where we plot a typical example of indegree distribution for an exponential model ( Fig. 1 ,

red curve), a power law model (see Fig. 1 , blue curve), and a stereotypical case of a brain network [27,28] . As can be seen, an

exponential model can reproduce the low-connectivity range of a biological network and a power law model can fit the tail,

i.e. the high-connectivity range. This is the reason why, in most cases, the common choice to analyze experimental findings

is to ignore the low connectivity range and fit only the tail of the distributions with a power low model, as schematically

shown in the inset of Fig. 1 (purple tail fitting line). In this work, instead, we propose a mathematical model based on a

convolutional approach in which a power law and exponential model are convolved to obtain a distribution exhibiting the

same properties observed experimentally for the entire range of connectivity. 

To explain how these models are convolved, we start from u k and v k , two probability distributions. 

Definition 1. We define the convolution distribution as 

[ u q ∗ v q ] k = 

+ ∞ ∑ 

q = −∞ 

u q v k −q 

in particular if u k and v k are zero for negative values of k , then it holds 

[ u q ∗ v q ] k = 

k ∑ 

q =0 

u q v k −q . 
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Fig. 1. Degree distribution for different type of networks. Typical Probability Density (PD) distribution of degrees for a power law model, an exponential 

model, and a biological network [30] . The inset shows the LogLog representation of the three models, and a line fitting the tail of the power law model. 
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Theorem 1. Let’s consider two directed graphs F and G with N F and N G nodes, with indegree distributions f I 
k 

and g I 
k 

and outde-

gree distributions f O 
k 

and g O 
k 

. Let’s create the directed graph TM starting from the disjoint union of F and G. We will then define

p FG and p GF in [0,1] as the probability that a node of F is connected to a node of G and the probability that a node of G is

connected to a node of F, respectively. 

The degree distributions of the TM graph are: 

P (D 

I 
T M 

= k ) = 

[ 
f I q ∗

(
N F 

N F + N G 

B 

N G 
p GF 

(q ) + 

N G 

N F + N G 

B 

N F 
p FG 

(q ) 
)] 

k 

, 

P (D 

O 
T M 

= k ) = 

[ 
f O q ∗

(
N F 

N F + N G 

B 

N G 
p FG 

(q ) + 

N G 

N F + N G 

B 

N F 
p GF 

(q ) 
)] 

k 

. 

Proof of Theorem 1. Let’s start observing that 

P (D 

I 
T M 

= k ) = P ((D 

I 
T M 

= k ) ∩ (V ∈ F )) + P ((D 

I 
T M 

= k ) ∩ (V ∈ G )) 

= P (D 

I 
T M 

= k | V ∈ F ) P (V ∈ F ) + P (D 

I 
T M 

= k | V ∈ G ) P (V ∈ G ) 

= P (D 

I 
T M 

= k | V ∈ F ) 
N F 

N F + N G 

+ P (D 

I 
T M 

= k | V ∈ G ) 
N G 

N F + N G 

, 

briefly 

P (D 

I 
T M 

= k ) = P (D 

I 
T M 

= k | V ∈ F ) 
N F 

N F + N G 

+ P (D 

I 
T M 

= k | V ∈ G ) 
N G 

N F + N G 

. (1)

We now introduce the notation P (D 

I 
T M 

= k | V ∈ F ) = P ((D 

I 
T M 

| V ∈ F ) = k ) , where the random variable (D 

I 
T M 

| V ∈ F ) is the sum

of two random variables (D 

I 
T M 

| V ∈ F ) = (D 

I 
F | V ∈ F ) + (D 

I 
G | V ∈ F ) . The first term represents the degree contribution of the

graph F in the degree of a node of F . The second term is the contribution of G . 

So we can write 

P (D 

I 
T M 

= k | V ∈ F ) = P 
((

(D 

I 
F | V ∈ F ) + (D 

I 
G | V ∈ F ) 

)
= k 

)
. 

Now we observe that ((
(D 

I 
F | V ∈ F ) + (D 

I 
G | V ∈ F ) 

)
= k 

)
= 

+ ∞ ⋃ 

q = −∞ 

((
(D 

I 
F | V ∈ F ) = q 

)
∩ 

(
(D 

I 
G | V ∈ F ) = (k − q ) 

))
. 

since all events have empty intersections, it will be 

P 
((

(D 

I 
F | V ∈ F ) + (D 

I 
G | V ∈ F ) 

)
= k 

)
= 

+ ∞ ∑ 

q = −∞ 

P 
((

(D 

I 
F | V ∈ F ) = q 

)
∩ 

(
(D 

I 
G | V ∈ F ) = (k − q ) 

))

= 

+ ∞ ∑ 

q = −∞ 

P ((D 

I 
F | V ∈ F ) = q ) P ((D 

I 
G | V ∈ F ) = (k − q )) = [ P ((D 

I 
F | V ∈ F ) = q ) ∗ P ((D 

I 
G | V ∈ F ) = q )] k ;

the last passages were possible because of the independence of the random variables. 

Noting that the random variable represents the degree contribution of the nodes of F in a node of F seen inside TM ,

P ((D 

I 
F 
| V ∈ F ) = q ) = f I q is the degree D 

I 
F 

itself. For the variable (D 

I 
G 
| V ∈ F ) we observe that a node of F has a probability p GF

to be connected to a generic node of G . Thus, the probability to have q links is p 
q 
GF 

(1 − p GF ) 
N G −q multiplied by the number

of possible permutations 

(
N G 

q 

)
. We can then express P ((D 

I 
G 
| V ∈ F ) = q ) = p 

q 
GF 

(1 − p GF ) 
N G −q 

(
N G 

q 

)
= B 

N G 
p GF 

(q ) , and we write

P (D 

I 
T M 

= k | V ∈ F ) = [ f I q ∗ B 

N G 
p GF 

(q )] k . (2)

With the same method it can be proved that 

P (D 

O 
T M 

= k | V ∈ F ) = [ f O q ∗ B 

N G 
p FG 

(q )] k . (3)

In the same way for the graph G , P (D 

I 
T M 

= k | V ∈ G ) = P ((D 

I 
T M 

| V ∈ G ) = k ) . We write the random variable as (D 

I 
T M 

| V ∈ G ) =
(D 

I 
F | V ∈ G ) + (D 

I 
G | V ∈ G ) , and proceed to also prove that 

P (D 

I 
T M 

= k | V ∈ G ) = [ g I q ∗ B 

N F 
p FG 

(q )] k , (4)

and 

P (D 

O 
T M 

= k | V ∈ G ) = [ g O q ∗ B 

N F 
p GF 

(q )] k . (5)

In conclusion, for the indegree, the Eqs. 1 , 2 and 4 give 

P (D 

I 
T M 

= k ) = 

N F 

N + N 

[ f I q ∗ B 

N G 
p GF 

(q )] k + 

N G 

N + N 

[ g I q ∗ B 

N F 
p FG 

(q )] k , 

F G F G 
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and for the outdegree we have 

P (D 

O 
T M 

= k ) = 

N F 

N F + N G 

[ f O q ∗ B 

N G 
p FG 

(q )] k + 

N G 

N F + N G 

[ g O q ∗ B 

N F 
p GF 

(q )] k . 

If we assume that is always f I 
k 

= g I 
k 

and f O 
k 

= g O 
k 
, and given the bilinearity of convolution, then the indegree becomes 

P (D 

I 
T M 

= k ) = 

[ 
f I q ∗

(
N F 

N F + N G 

B 

N G 
p GF 

(q ) + 

N G 

N F + N G 

B 

N F 
p FG 

(q ) 
)] 

k 

, 

and the outdegree becomes 

P (D 

O 
T M 

= k ) = 

[ 
f O q ∗

(
N F 

N F + N G 

B 

N G 
p FG 

(q ) + 

N G 

N F + N G 

B 

N F 
p GF 

(q ) 
)] 

k 

�

The degree distributions will then be all of the form 

P (D 

I 
T M 

= k ) = 

[
f I q ∗ K 

I 
q 

]
k 

(6)

and 

P (D 

O 
T M 

= k ) = 

[
f O q ∗ K 

O 
q 

]
k 
. (7)

Definition 2. We will call the distributions K 

I 
q and K 

O 
q kernels of the convolutions, and f I 

k 
and f O 

k 
the starting models. A

model with the structure defined above will be defined as convolutional model. 

We now prove that this kind of model preserves a power law tail. 

Theorem 2. Consider two probability distributions, f k e g k , such that: 

• lim k → + ∞ 

f k −s 

f k 
= 1 , ∀ s ≥ 0 ;

• ∃ l ≥ 0 |∀ t > l ⇒ g t = 0 . 

If we define c k = [ f q ∗ g q ] k , then it holds: 

lim 

k → + ∞ 

c k 
f k 

= 1 . 

Proof of Theorem 2. Observe that 

c k 
f k 

= 

[ f q ∗ g q ] k 
f k 

= 

∑ k 
q =0 f q g k −q 

f k 
= 

k ∑ 

q = k −l 

f q 

f k 
g k −q = 

l ∑ 

j=0 

f k − j 

f k 
g j 

since lim k → + ∞ 

f k − j 

f k 
= 1 is true by the hypothesis, then 

lim 

k → + ∞ 

c k 
f k 

= lim 

k → + ∞ 

l ∑ 

j=0 

f k − j 

f k 
g j = 

l ∑ 

j=0 

(
lim 

k → + ∞ 

f k − j 

f k 

)
g j = 

l ∑ 

j=0 

g j = 1 

�

We used these conditions because they are satisfied by f k , for a power model, and by g k for a binomial distribution. This

result demonstrates that, if we consider models with f k as a power law and g k as a finite support, after the convolution we

will preserve the asymptotic behavior of f k . Thus, convolutive models are power law if the starting model is power law and

the kernel is finite. 

3.2. Random variables 

Definition 3. We define δd (k ) = δdk , where d is a non negative integer and δij is the Kronecker’s delta (1 if the indices are

equal and 0 otherwise). 

This distribution is the discrete equivalent of the Dirac’s delta in the theory of continuum distributions and its funda-

mental property is equivalent to the continuum case. 

Theorem 3. If f k is a distribution, then: 

[ f q ∗ δd (q )] k = f k −d . 
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Proof of Theorem 3. 

[ f q ∗ δd (q )] k = 

+ ∞ ∑ 

q = −∞ 

f k −q δd (q ) = f k −d δd (d) = f k −d 

�

We note that 

[ f q ∗ δ0 (q )] k = f k 

then convolving with δ0 has no effects on f k . We now define two random variable that will be used later: 

Definition 4. The variable �d is a random variable with distribution δd ( k ), which represents a random variable with a

certain outcome d , 

Definition 5. A Bernoulli random variable, that we will denote with X p , is a random variable with distribution 

χp (k ) = 

{ 

(1 − p) , if k = 0 

p, if k = 1 

0 , otherwise 

this implements a binary random variable with a probability p to assume the value 1 (for details see [31] ). 

These random variables have the following properties 

• if Y 1 , . . . , Y n ∼ X p , then 

∑ n 
i =1 Y 

i = B (n, p) which is a binomial random variable; 
•

∑ n 
i =1 �d i 

= �∑ n 
i =1 d i 

; 

• for every distribution Z , Z �a = aZ . 

3.3. Analysis of the model 

To derive the degree distribution of our model, consider a graph F of N F nodes, with indegree distribution f I 
k 

and out-

degree distribution f O 
k 

. We initialize the graph B with the disjoint union of two copies of F , which we will call A 1 and A 2 .

Then V (B ) = V (A 1 ) ∪ V (A 2 ) . Because it is a convolutive model, we must obtain 

P (D 

I 
B = k ) = 

[
f I q ∗ K 

I 
q 

]
k 

for the indegree and, analougously, for the outdegree, 

P (D 

O 
B = k ) = 

[
f O q ∗ K 

O 
q 

]
k 
, 

where K 

I 
k 

and K 

O 
k 

depend only from the connectivity between A 1 and A 2 . 

Theorem 4. Defining the graph B as the disjoint union of two copies (A 1 and A 2 ) of a random model F and subdividing A 1 and

A 2 in partions of cardinality l and connecting every partition of A 1 with a partition of A 2 with a connection pattern dependent

from the assigned probabilities p, φU and φD , it is possible to obtain a graph B such as the degree distributions are: 

P (D 

I 
B = k ) = 

[ 
f I q ∗

((
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

))∗M 

] 
k 

(8) 

and 

P (D 

O 
B = k ) = 

[ 
f O q ∗

((
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

))∗M 

] 
k 
. (9) 

Proof of Theorem 4. In order to find K 

I 
k 
, we choose a positive integer l , which divides N F , and we calculate M = 

N F 
l 

. Then

we subdivide A 1 in M random sets of cardinality l , obtaining A 

1 
1 
, . . . , A 

M 

1 
partitions of A 1 . We proceed in the same way for A 2 

obtaining A 

1 
2 , . . . , A 

M 

2 partitions of A 2 . We now define M 

2 independent random variables β ij and β ′ 
i j 

∼ X p , for i, j = 1 , . . . , M,

with a fixed p ∈ [0, 1]. They represent connections starting from A 

i 
1 

and arriving in A 

j 
2 

and from A 

i 
2 

and arriving in A 

j 
1 
,

respectively. Now we define two groups of N 

2 
F 

random variables: ηst ∼ X φU and νst ∼ X φD , for s ∈ V ( A 1 ) and t ∈ V ( A 2 ), and

where φU , φD ∈ [0, 1] are two real numbers. In the same way we define η′ 
st ∼ X φU and ν′ 

st ∼ X φD , for s ∈ V ( A 2 ) and t ∈ V ( A 1 ).

If the node s in A 1 belongs to A 

i 
1 

and the node t in A 2 belongs to A 

j 
2 
, the random variable representing the number of

edges starting from s and arriving at t is 

V st = (ηst βi j + νst (1 − βi j )) . 

In the same way, 

V ts = (η′ 
ts β

′ 
ji + ν ′ 

ts (1 − β ′ 
ji )) . 

Let’s calculate D 

I 
A 

| V (A 1 ) ; consider a generic s ∈ A 

i 
1 
2 
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(D 

I 
A 2 

| V (A 1 )) = 

∑ 

t∈ V (A 2 ) 

V ts = 

M ∑ 

j=1 

∑ 

w ∈ A j 
2 

(η′ 
ws β

′ 
ji + ν ′ 

ws (1 − β ′ 
ji )) = 

M ∑ 

j=1 

⎛ 

⎝ β ′ 
ji 

∑ 

w ∈ B j 
η′ 

ws + 

(
1 − β ′ 

ji 

) ∑ 

w ∈ A j 
2 

ν ′ 
ws 

⎞ 

⎠ . 

We observe that if we have a random variable Z ~ X π , for some π ∈ [0, 1] and a random variable W with distribution

w k we have, for the probability of the product, 

P (ZW = k ) = 

{
P (Z = 0) + P (Z = 1) P (W = 0) = (1 − π) + πP (W = 0) , if k = 0 

P (Z = 1) P (W = k ) = πP (W = k ) , else 

so we can write P (W Z = k ) = (1 − π) δ0 (k ) + πw k . Under this condition, it will be 

P ((D 

I 
A 2 

| V ∈ V (A 1 )) = k ) = 

[(
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 ( q ) + (1 − p) B 

l 
φD (q ) 

)]∗M 

k 
, 

where ∗M at exponent is the M -th power convolution. With an analogous procedure we obtain 

K 

I 
k = K 

O 
k = P ((D 

O 
A 2 

| V ∈ V (A 1 )) = k ) = P ((D 

I 
A 1 

| V ∈ V (A 2 )) = k ) = P ((D 

O 
A 1 

| V ∈ V (A 2 )) = k ) = 

= 

[(
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

)]∗M 

k 
. 

Finally, we have 

P (D 

I 
B = k ) = 

[ 
f I q ∗

((
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

))∗M 

] 
k 

(10)

and 

P (D 

O 
B = k ) = 

[ 
f O q ∗

((
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

))∗M 

] 
k 

� (11)
A power law exponential our model

B

A

A

A

1

2

B

1
N

N/2

1

N/2

N

Fig. 2. Schematic representation of the model. A) (top) schematic representation of the convolution process; (bottom) the equations describing the result 

of the convolution between the two original models to obtain the in- and out-degrees of the new model (see Suppl. Material for their derivation). B) 

Graphical illustration of the convolution process, which starts from the connectivity matrix of a network B and its blocks A 1 and A 2 . The final connectivity 

matrix B is calculated by considering the two power law blocks on the main diagonal and two exponential blocks in the antidiagonal of B as indicated in 

the diagram. Each subblock is a N 
2 

× N 
2 

matrix. 
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These are the equations to use to analyze and reproduce a network with the same connectivity observed in brain net-

works. Of course they can also be used to create new networks with the desired connectivity properties. The procedure is

synthetically depicted in Fig. 2 . 

3.4. Implementation of the model 

We will generate a graph B from A 1 and A 2 , where the graph A 1 and A 2 are BA model graphs with initial configuration a

ER graph with m 0 nodes and probability ρ with N nodes and �, a, l, p, φU and φD are other parameters. A pseudocode to

generate the graph B is shown in Figure Algorithm 1 . 

Algorithm 1 Generate a new graph from two BA model graphs. 

1: function GraphGen ( �, a, m 0 , ρ, l, N, p, φU , φD ) 
2: A 1 = BA (�, a, m 0 , ρ) 
3: A 2 = BA (�, a, m 0 , ρ) 
4: B = A 1 ∪ A 2 
5: M = N/l 
6: create { A 1 1 , . . . , A 

M 
1 } partition of A 1 

7: create { A 1 2 , . . . , A 
M 
2 } partition of A 2 

8: for i ∈ { 1 , . . . , M} do 
9: for j ∈ { 1 , . . . , M} do 

10: r 1 = random number between [0,1] with uniform distribution 
11: if r 1 < p then 
12: s 1 = random number between [0,1] with uniform distribution 
13: if s 1 < φU then 

14: Add an edge from every node of A i 1 to every node of A j 
2 

inside B 

15: end if 
16: else 
17: s 1 = random number between [0,1] with uniform distribution 
18: if s 1 < φD then 

19: Add an edge from every node of A i 1 to every node of A j 
2 

inside B 

20: end if 
21: end if 
22: r 2 = random number between [0,1] with uniform distribution 
23: if r 2 < p then 
24: s 2 = random number between [0,1] with uniform distribution 
25: if s 2 < φU then 

26: Add an edge from every node of A j 
2 

to every node of A i 1 inside B 

27: end if 
28: else 
29: s 2 = random number between [0,1] with uniform distribution 
30: if s 2 < φD then 

31: Add an edge from every node of A j 
2 

to every node of A i 1 inside B 

32: end if 
33: end if 
34: end for 
35: end for 
36: end function 

3.5. Convolutive equations 

Suppose that f k and h k are two probability distributions (zero for negative k ). We would like to know if exist a succession

g k (zero for negative k ) such as 

[ f q ∗ g q ] k = h k , ∀ k ≥ 0 

and if this g k , which is the solution of a convolutional equation, is unique. As a starting point we will suppose a weak

equation, i.e. 

[ f q ∗ g q ] k = h k , 0 ≤ k ≤ k s 

where k s is a positive integer. 

Theorem 5. If f 0 � = 0 then the solution of the equation exists and it is unique: 

[ f q ∗ g q ] k = h k , 0 ≤ k ≤ k s , 

for any positive integer k s . 
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Proof of Theorem 5. Rearranging this equation we observe that is equivalent to the linear system ⎧ ⎪ ⎨ 

⎪ ⎩ 

f 0 g 0 = h 0 

f 1 g 0 + f 0 g 1 = h 1 

. . . 

f k s g 0 + . . . + f 0 g k s = h k s 

(12)

and we observe that if f 0 � = 0 then the system is Kramerian and it admits only one solution. Also the infinite equation have

only one solution, because if we suppose two distinct solutions then they must differ in at least one k ; let it k̄ the minimum

k for which it happens, then the problem 

[ f q ∗ g q ] k = h k , 0 ≤ k ≤ k̄ 

has two distinct solutions, which is a contradiction �

Following this result we write the deconvolution as 

g k = [ h q ∗−1 f q ] k 

meaning that g k is the only solution of the equation 

[ f q ∗ g q ] k = h k . 

Theorem 6. The equation [ g q ∗ δd (q )] k = h k (with d > 0 ) has solution if only if h 0 = . . . = h d−1 = 0 . 

Proof of Theorem 6. The deconvolution system takes the form ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 = δd (0) g 0 = h 0 

. . . 

0 = h d−1 

g 0 = h d 

. . . 

g k −d = h k 

and we observe that it has a solution only if h 0 = . . . = h d−1 = 0 �

This trivial result derives from the fact that δd (0) = 0 , negating the condition guaranteeing that the deconvolution exists

and is unique. The other equations suggest that g k = h k + d . We observe that if h k is positive for k < d this equations doesn’t

admit any solution. 

If we assume that g k = h k + d is an approximate solution, it will be: 

[ g q ∗ δd (q )] k = 

+ ∞ ∑ 

q = −∞ 

g k −q δd (q ) = 

+ ∞ ∑ 

q = −∞ 

h k −q + d δd (q ) = 

{
0 , if 0 ≤ k ≤ d − 1 

h k , if k > d − 1 

we observe that we have lost the values of h k before d . In other words, by ignoring the first d equations we have lost

information. We suppose now to fix a ε ∈ ]0, 1[ and, in order to obtain a convex linear combination, we try to solve the

new equation 

[ g q ∗ (εδ0 (q ) + (1 − ε) δd (q ))] k = h k (13)

this equation is a perturbation of the previous one, and it respects the hypothesis that εδ0 (0) + (1 − ε) δd (0) = ε � = 0 . Then

a solution exists and is unique for every h k . In particular, calling the solution g ε 
k 
, following Eqs. 13 and 12 , we have 

g ε k = [ h q ∗−1 (εδ0 (q ) + (1 − ε) δd (q ))] k = 

{
h k 
ε , if 0 ≤ k ≤ d − 1 

h k 
ε − (1 −ε) h k −d 

ε 2 
, if k > d − 1 

and we observe that for ε → 0 then g ε 
k 

goes to infinity. This example explain how a little perturbations of the kernel can

lead to large changes in the deconvolution. 

3.6. Fitting a distribution 

To calculate the degrees of the new graph, we start by declaring m 0 , ρ and l as independent parameters; we also intro-

duce a shape parameter of the model, E K . 

Theorem 7. By fixing the parameters m 0 , ρ and l and a shape parameter E K , it is possible to find a combination of parameters

of the model such as 

P (D 

I 
B = k ) ≈ v I k . 

Proof of Theorem 7. The idea is to approximate the indegree equation (see Eqs. 6 and 7 ) [ (
N − m 0 

N 

σq + 

m 0 

N 

B 

m 0 −1 
ρ (q ) 

)
∗ K 

I 
q 

] 
= v I k , 
k 
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with an equation of this form [ (
N − m 0 

N 

σq + 

m 0 

N 

B 

m 0 −1 
ρ (q ) 

)
∗ δd (q ) 

] 
k 

= v I k . 

The problem is to find the parameters σ k , d, a and p . In order to find d , we first rewrite the equation in the form 

[ αq ∗ δd (q ) ] k = v I k , 

and we impose that E (αk ) = E (v I 
k 
) − E K = E V − E K , because E ( 

[
αq ∗ K 

I 
q 

]
) k = E (αk ) + E (K 

I 
k 
) = E V − E K + E K = E V = E (v I 

k 
) . 

We also note that, since the equation 

[ αq ∗ δd (q ) ] k = v I k , 
can not be solved under certain conditions (see previous subsection), we will define αk as an approximation of a solution. 

Note that αk = 

v I 
k + d ∑ + ∞ 

s = d v 
I 
s 

is a distribution. Then we can calculate the expected value as follows 

E ( αk ) = 

+ ∞ ∑ 

k =0 

kαk = 

+ ∞ ∑ 

k =0 

k 
v I 

k + d ∑ + ∞ 

s = d v I s 
= 

∑ + ∞ 

k =0 k v I k + d ∑ + ∞ 

s = d v I s 
= 

∑ + ∞ 

s = d ( s − d ) v I s ∑ + ∞ 

s = d v I s 
= 

∑ + ∞ 

s = d s v I s − d 
∑ + ∞ 

s = d v I s ∑ + ∞ 

s = d v I s 

= 

E V −
∑ d−1 

j=0 j v I 
j 
− d 

(
1 − ∑ d−1 

j=0 v I j 
)

1 − ∑ d−1 
j=0 v I j 

. 

Remembering that αk is still dependent from d , which is a free variable, we can impose the condition on the expected value

creating the system ⎧ ⎨ 

⎩ 

E ( αk ) = 

E V −
∑ d−1 

j=0 j v I 
j 
− d 

(
1 − ∑ d−1 

j=0 v I j 
)

1 − ∑ d−1 
j=0 v I j 

= ϕ 

(
d, v I k 

)
E ( αk ) = E V − E K . 

From the above system, defining ˆ k as the biggest integer such as v I 
ˆ k 

> 0 , we find 

d = arg min 

d∈{ 0 , ... , ̂ k } | (E V − E K ) − ϕ(d, v I k ) | . 
From d we also find αk , as 

αk = 

N − m 0 

N 

σk + 

m 0 

N 

B 

m 0 −1 
ρ (k ) 

and then we have 

σk = 

N 

N − m 0 

αk −
m 0 

N − m 0 

B 

m 0 −1 
ρ (k ) . 

From this equation it also follows that a = E (�) = 

N 
N−m 0 

(E V − E K ) − m 0 
N−m 0 

ρ(m 0 − 1) . The reason why a = E (�) lays in the

fact that the decay has exponent 2 + 

a 
E (�) 

. 

In order to find p , we observe that 

E K = E 

([ ((
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

))∗M 

] 
k 

)
= M E 

([(
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

)]
k 

)
= M 

(
E 

([(
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)]
k 

)
+ E 

([(
pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

)]
k 

))
= M ( plφU + (1 − p) lφD ) = N ( pφU + (1 − p) φD ) . 

Then we have the linear equation 

E K = N ( pφU + (1 − p) φD ) 

which solved in p returns p = 

E K 
N 

−φD 

φU −φD ≈ E K 
N (for φU ≈ 1 and φD ≈ 0). 

In conclusion, substituting in Eqs. 8 and 9 the values f I 
k 

= αk and f O 
k 

= 

B ( k + a, 2+ a c ) 
B ( a, 1+ a c ) 

, we have 

P (D 

I 
B = k ) = 

[ 
αk ∗

((
(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

))∗M 

] 
k 

≈ v I k 

and 

P (D 

O 
B = k ) = 

[ 

B 

(
k + a, 2 + 

a 
c 

)
B 

(
a, 1 + 

a 
c 

) ∗
((

(1 − p) δ0 (q ) + pB 

l 
φU (q ) 

)
∗
(

pδ0 (q ) + (1 − p) B 

l 
φD (q ) 

))∗M 

] 

k 
�
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4. Results and discussion 

We tested our model with two quite different sets of data on cell-to-cell connectivity, to validate the results under two

extreme conditions: three network instances of a large-scale, highly validated and biologically realistic, neocortical column

model [33] , downloaded from the neocortical portal (https://bbp.epfl.ch/nmc-portal/downloads), and seven small (approxi-

mately 100 neurons) subnetworks of GABAergic hippocampal neurons, recorded in vitro from different slices [32] . 

For the neocortical column model, we separately analyzed the relatively large excitatory and inhibitory networks (com-

posed by approximately 26,0 0 0 and 5,0 0 0 neurons, respectively); the probability distributions (see Fig. 3 A) show a low

variability among the different network instances. They follow the general shape expected for a brain network, with no dis-

connected neurons, a decreasing number of highly connected neurons, and no fully connected neurons. A direct comparison

of the survival function for these networks with that obtained from a pure exponential or a power law model (see black

and orange lines in Fig. 3 B), demonstrates the peculiar properties of brain networks’ connectivity, and illustrates why it

has been impossible to describe it by a theoretical model so far. In striking contrast with the neocortical column networks,

the survival function for the in- and out-degrees calculated from the hippocampal slices, exhibited a rather large variability

( Fig. 3 C). This is somewhat expected, since just a few hundred neurons belonging to a much larger network were sampled

(there are many thousands of GABAergic neurons in a rat hippocampus). Very interestingly, a network of a similar number

of neurons but composing the entire nervous system of a C. elegans ( Fig. 3 C dotted line) shows a relatively similar connec-

tivity. A deeper look at the shape of these plots also reveals the possible consequence of the slicing process. By cutting many

existing connections, this procedure can artificially increase the observed number of poorly connected neurons. The effect

can be inferred by the large negative values of the survival function for low degrees, which is more evident for incoming

connections (see orange and dark blue plots in Fig. 3 C). This is clearer in the typical distributions shown in Fig. 3 D for two

typical slices, in which the lowest degree has the highest probability to occur. 
AA
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Fig. 3. in- and out-degree from brain networks. A) Probability density of in- and out-degree for the excitatory (blue plots) and inhibitory (orange plots) 

neurons in three instances of the NC model network. Raw data were downloaded from (https://bbp.epfl.ch/nmc-portal/downloads) B) survival functions 

calculated from the plots in A); for comparison, the lines representing a power law (with degree distribution f k = 

B ( a + k, 2+ a c ) 
B ( a, 1+ a c ) 

with c = 17 and a = 100 c) and 

an exponential (with degree distribution g k = 

(
N − 1 

k 

)
p k (1 − p) 

N−1 −k 
with p = . 0033 and N = 5180 ) model are also shown. C) survival functions calculated 

from the data obtained in vitro in 7 slices (different line color) from neurons in the GABAergic CA3 region (from [32] ). For comparison, the survival function 

obtained from the C. elegans network composed by all neurons connected through chemical synapses is also plotted (C.e., black dotted line, data taken and 

redrawn from [30] ); the function for three slices are (sl4, sl6, and sl6) are explicitly indicated D) The in- and out-degree distribution for slice 4 and 6. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 



12 G. Giacopelli, M. Migliore and D. Tegolo / Applied Mathematics and Computation 377 (2020) 125150 

1.5 2 2.5 3 3.5 4 4.5
log10(number of nodes)

-4.5

-4

-3.5

-3

-2.5

-2

-1.5
in

GABA exp
GABA our model
NC model nets
NC subnetwork
NC our model

1.5 2 2.5 3 3.5 4 4.5
log10(number of nodes)

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

ou
t

GABA exp
GABA our model
NC model nets
NC subnetwork
NC our model

Fig. 4. Large-scale network connectivity can be extrapolated by sampling a set of subnetworks. (Left) γ for the indegree distribution as a function of 

network size, in terms of number of nodes (log10 scale); Blue symbols represent the γ values calculated from the experimental data recorded from CA1 

interneurons in 7 hippocampal slices; Red symbols represent the γ values for networks composed by different number of nodes, obtained by randomly 

sampling a 5,0 0 0-neurons network built with our model using parameters that best fit the experimental distributions. Black symbols are the γ values 

calculated from 7 instances of the approximately 50 0 0 neurons composing the NC inhibitory network. Green symbols represent the γ values obtained 

from smaller networks, randomly sampled from the 5,0 0 0-neuron network from [33] . Purple symbols represent our models projection for larger networks. 

(Right) same as in the left panel but for outdegrees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taken together, these results suggest that there might be a lower limit to the number of neurons that should be in-

vestigated to effectively characterize the network to which they belong, and also point to the need of finding a method to

extrapolate the full network behavior from a sparse set of data. To better illustrate the results that can be obtained with

our model, and to make an easier comparison with the analyses carried out in the field so far, we used the γ value best

fitting the tail of the distributions as a reference parameter. Let’s first consider the relatively large inhibitory network of

the neocortical column model. From the 7 network instances downloaded from (https://bbp.epfl.ch/nmc-portal/downloads) 

we calculated the γ for the in- and out-degree distributions (black symbols in Fig. 4 ). We then sampled, from the original

network, many other smaller networks by changing only the number of neurons (green symbols in Fig. 4 ). 

In other words, we made a series of in silico experiments, in which we sampled subnetworks of different size composed

by neurons randomly chosen from the 5,0 0 0-neuron network. Instead, to extrapolate the results to a larger network, we

fitted one of the 50 0 0-neuron networks with our model and used the same parameters to build a 30,0 0 0-neuron network

by just upscaling the degree distributions by a factor of. Again, we then made a series of in silico experiments, in which we

sampled subnetworks of different size composed by neurons randomly chosen from the full 30,0 0 0-neuron network. These

networks had γ values that approached those obtained from the 7 original networks (purple symbols in Fig. 4 ). However,

the γ values systematically decreased for smaller and smaller subnetworks, with a sudden more dramatic spread of values

for networks composed by only a few hundred neurons. These results indicate that the connectivity properties of a network

may not be properly assessed by subsampling, because the resulting connectivity can be quite different. One way to resolve

this problem is to always sample a number of neurons more representative of the full network size. 

Unfortunately, this is not always technically possible, and a much lower number can be usually tested, as for the

hippocampal gabaergic network in this work. To find out whether we could extrapolate the full network properties from

these data, we calculated the γ from the seven slices (blue symbols in Fig. 4 ) by fitting each of them with our model.

The average value was then used to build a network of 50 0 0 neurons. We hypothesized that if this large network (roughly

one-third of the real hippocampal CA3 GABAergic network) was a plausible representation of the real network, in silico

experiments sampling smaller subnetworks should end up with values of γ consistent with those found experimentally

for the seven slices. The results (red symbols in Fig. 4 ) confirmed our hypothesis: the cloud of γ values obtained for the

outdegrees of networks composed by a few hundred neurons were consistent with those found experimentally ( Fig. 4 ,

right, compares blue and red symbols). Those obtained for the indegree ( Fig. 4 , left plot) showed some discrepancy, with
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Fig. 5. The new approach results in a quantitative agreement between model and data. A) Comparison between the survival functions of one of the NC 

datasets (solid lines) and our model (dotted lines) ( p < . 025 for both the populations, with the Exc-Inh and Inh-Exc terms calculated from Kolmogorov- 

Smirnov distance). B) three representative experimental slices (solid lines) and three similar networks (dotted lines) extracted from the 50 0 0 nodes net- 

work generated with our algorithm ( p < . 1 for orange, blue, and green traces calculated comparing γ distributions of best fits). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the experimental findings exhibiting less connectivity (i.e. higher γ ). This result suggests a bias in the number of observed

incoming connections caused by the slicing process. 

Furthermore, it suggests that to fully and correctly characterize a network’s connectivity, it can be sufficient to analyze

(with our model) several instances of a relatively smaller network, and then extrapolate these to a network size more

representative of the real system. This approach should be applied whenever the real network size is much larger than the

measured sample. Very large networks, such as an entire brain region, may not be sufficiently described by sampling only

once even thousands of neurons. This is suggested by the gamma values obtained for inhibitory cortical networks larger

than 50 0 0 neurons (cyan symbols in Fig. 4 ). In this case, the values keep increasing with the network size, in striking

contrast with the hippocampal slices, which are relatively constant for networks larger than several hundreds of neurons.

This suggests that the cortical column model may not represent the full connectivity properties of the corresponding entire

cortical region. 

A more detailed comparison between data and model is shown in Fig. 5 , here our model can quantitatively reproduce all

in- and out-degree cumulative distributions for both the neocortical column model ( Fig. 5 A) and the experimental findings

from hippocampal slices ( Fig. 5 B). The results for the hippocampal slices are particularly interesting because they show how

the model can quantitatively capture the physiological variability observed experimentally by sparsely sampling a much big-

ger network. It is important to note that the distributions best reproducing the experimental data ( Fig. 5B , dotted lines) were

just found by sampling, from the full network, subnetworks with the same number of neurons recorded in the experiments.

Although (by considering the γ distributions of the best fits) they are all statistically indistinguishable from their experi-

mental counterpart, it should be stressed that these networks do not have the slicing effect observed for the indegrees. This

can be explained by the fact that they were sampled from an intact network. In other words, the model is able to predict

the real distribution that may be expected for a small subnetwork. 

5. Conclusions 

Several fundamental conclusions can be drawn from this work. First of all, it introduces a mathematical framework to

quantitatively reproduce the entire range of a brain network’s connectivity, a vital step to better understand information

processing in the brain. Also, the proposed model is the only way available so far to extract the full network connectivity

from a few sets of experimental recordings of small subnetworks, and it is able to provide an indication on whether ex-

perimentally tested subnetworks are a reasonable representation of the full system’s connectivity. Furthermore, the model

changes the paradigm with which large-scale model networks can be built, from probabilistic/empiric connections or lim-

ited (and most likely also misleading) data, to a process based on a rigorous theoretical background that can algorithmically

generate networks composed by neurons connected as in the real systems. This is important because, as previously noted

[34] , the degrees distribution is the only information necessary to fully characterize the general properties of a large net-

work. Finally, this new theoretical framework gives the intriguing possibility to investigate in more details both functional

and dysfunctional network connectivity properties. This aspect can have a paramount role in finding innovative methods

or indicators to identify the most influential nodes within a network [35] , opening the way to design innovative molecular

targets. From a more general point of view, the same framework described here for brain networks can also be applied to

social networks [36] and real-world complex networks [37,38] . 
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