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The present paper discusses technical aspects of the vortex-induced vibrations (VIVs) of structures excited by the
wind in the framework of the spectral model, which is applied by many codes and guidelines for civil engineering
verifications. Quantitative thresholds related to Scruton number domains, where the structural response can be
considered in “forced vibration” or “lock-in” regime, are proposed. In this way, the type of VIV response and its

evaluation can be assessed with simple calculations that use the parameters already present in codes and
guidelines. An analytical solution of the original model allows straightforward evaluations inclusive of operative
criteria to properly consider structural and flow conditions concerning the coefficients governing the VIV response
in the spectral description, leaving out some assumptions that are commonly adopted. Extensive numerical ap-
plications, limited here to circular cylinders and including a real full-scale chimney, allow to identify the most
significant parameters of the model and the criticalities connected with their choice.

1. Introduction

Vortex-Induced Vibrations (VIVs) represent one of the most important
issues concerning wind excited slender structures and elements as well as
bluff bodies in air and water (e.g., Solari, 2019). Although its great sig-
nificance, the engineering description of this phenomenon mainly comes
from the experimental evidence and uses empirical models.

Key parameters for VIVs are the Strouhal number, St =b n/ U and the
Scruton number, Sc = 47m,.£/pb?, being U the mean flow velocity, n the
vortex shedding frequency (set equal to a structural frequency in critical
conditions), p the density of the air, b the crosswind characteristic
dimension of the bluff body, & the structural damping ratio, m, the mass
per unit length (more in general the equivalent mass per unit length
related to a critical mode). The Strouhal number determines the fre-
quency of vortex shedding from the structure and, therefore, rules the
critical velocity at resonant conditions. It is related to the cross-section
shape and, in the case of structures with rounded surfaces, it is Rey-
nolds number dependent, since the Reynolds number directly rules the
vortex shedding topology. The Scruton number governs the synchroni-
zation region at lock-in. At high Sc values, a structure undergoes low
amplitude linear vibrations in random forcing regime. Conversely, at low
Sc, non-linear resonant vibrations arise in lock-in conditions. When
dealing with structural verifications this is the discriminating quantity
that allows either to exclude or to highlight possible critical VIVs.
However, the scientific literature on this topic does not supply specific
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quantitative limits in terms of Scruton number; technical applications
refer to high enough values for excluding synchronous vibrations (e.g.,
Sc > 30 for circular cross-sections according to CNR, 2008).

According to Paidoussis et al. (2011), the description of crosswind
VIVs comes from three families of phenomenological models of
increasing complexity. Forced system models consider a cylinder excited
by a force independent from its motion, therefore only depending on time
(e.g., Ruscheweyh, 1994; Blevins, 2001). In fluid-elastic system models, the
vortex-induced force also depends on the cylinder motion through an
equivalent fluid-structure interactive term (e.g., Vickery and Basu,
1983a; Goswami et al., 1993). Coupled system models are a further evo-
lution that considers explicitly the interaction with the wake dynamics;
in case of crosswind VIV they are described by two degree of freedom
systems, including the dependence on both the cylinder motion and the
wake oscillation (e.g., Hartlen and Currie, 1970; Skop and Griffin, 1973;
Tamura and Matsui, 1979; Facchinetti et al., 2004). At present, coupled
system models are quite diffused in hydrodynamics whereas they have
limited technical applications in aerodynamics (e.g., Farshidianfar and
Zanganeh, 2010; Violette et al., 2010).

Dealing with wind engineering verifications, two calculation proced-
ures are commonly used, respectively of forced and fluid-elastic type (e.g.,
EN, 1991-1-4, 2005). The first method, referred to as the harmonic model,
was proposed by Ruscheweyh (1994) who supplied a heuristic
vortex-induced force based on the correlation length parameter, which
increases with increasing vibration amplitude. The second method,
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referred to as the spectral model, was proposed by Vickery and Basu
(1983a) who supplied an analytical expression for the equivalent aero-
dynamic damping, derived from a modified van der Pol oscillator, ac-
counting for the intrinsic non-linearity of the problem and its self-limiting
features. The method proposed by ESDU 96030 (1998) can be considered
as a hybrid of the two previously described approaches (Holmes, 1998). It
adopts a random excitation model, similar to the spectral model, at low
amplitudes and assumes a harmonic model at large amplitude. All these
formulations lead to evaluations that may involve considerable un-
certainties compared to measured data (e.g., ESDU 96030; Hansen, 1999;
Kawecki and Zuranski, 2007). The spectral formulation is commonly
considered more sound and more prudential. Moreover, it is considered
more reliable at sufficiently high Scruton numbers, when the response
tends to be in the so-called “forced vibration” regime.

Within the fluid-elastic system framework, the Vickery and Basu
model marked a turning point in engineering evaluations, providing a
bridge between technical needs, such as considering spectral density
models of excitation and a fluctuating lift coefficient, and analytical re-
quirements, such as modelling a linearized aerodynamic damping
deriving from a van der Pol approach. In its original formulation, the
problem was derived in the context of linear random dynamics, involving
a challenging numerical solution. Dyrbye and Hansen (1997) supplied
technical developments that allow dealing with line integrals rather than
with double integrals of the spectrum function. The complete analytical
solution still remains not easy to use and, for this reason, it is seldom
applied (e.g., Verboom and van Koten, 2010; Pagnini and Piccardo,
2017). The reworking of the spectral model in terms of simplified
analytical coefficients (e.g., Hansen, 1999, 2007) makes it possible
including this procedure into codes and guidelines.

However, engineering applications often adopt extreme simplifica-
tions, the reliability of which has not been adequately explored yet.
Contradictory outcomes can be found compared to the experimental re-
sults (e.g., Hansen, 1999; Ruscheweyh and Sedlaceck, 1988). Moreover,
at the best of the authors’ knowledge, there are no extended comparisons
between complete and approximate solutions. Especially, there are no
broad-range analyses of the sensitivity to the model parameters whose
uncertainties are the greatest hindrance to the analytical prediction of
VIVs. At this purpose, Pagnini and Piccardo (2017) highlighted the
fundamental role of the limiting amplitude, in both transition and lock-in
regime, in order to find realistic value of the VIV maximum amplitude.
On the other hand, Basu and Vickery (1983) explicitly stated that the
proposed “response calculations for realistic, stable structures are likely
to be fairly insensitive” to this quantity, as they presume that large am-
plitudes “would almost certainly be unacceptable in working conditions”.
These sentences highlight that, at very small Scruton numbers, the model
can lead to unreliable response estimates, since it has not been thought
nor has it never been calibrated (at least until today) for such conditions.

Starting from these premises, and working in the frame of the Vickery
and Basu model in its original spirit, the present paper intends to provide
calculation developments suitable for engineering applications, main-
taining the rigor of the initial formulation, as well as the explicit depen-
dence on the different parameters. In this context, the paper aims to define
an analytical method for assessing the thresholds of VIV structural sensi-
tivity (e.g., forced or lock-in conditions), which are usually chosen in a
heuristic way by researchers, practitioners and codes. Section 2 recalls the
classic model by Vickery and Basu, highlighting its main terms and their
derivation. With respect to the original model, a more general expression
of the limiting amplitude is used including the modal deformation. Section
3 investigates the conditions where the structural response can be
considered belonging to “forced vibration” or “lock-in” regime. Suitable
domains for direct use in calculations are defined, as well as approximated
closed-form solutions, suitable to distinguish the two behavior regimes.
Section 4 derives closed form solutions of the wake excitation parameters
for the VIV estimate. Recalling well established simplified procedures for
the evaluation of the wind response of slender structures, the original
formulation is developed according to different approximation levels.
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Section 5 develops numerical evaluations in line with European code
provisions, investigating the main quantities on which the solution de-
pends with reference to circular cylinders; comparisons with in-field
measures are carried out over a full-scale chimney. Section 6 draws the
main conclusions and provides some prospects.

2. VIV response

Let us consider a slender structural element of length L and cross
section size b immersed in a wind field of direction X and mean flow
intensity U (Fig. 1). It is inclined ¢ with respect to the vertical axis Z and
variously supported at its end. Let x, y, z be a Cartesian local reference
system with origin in O at height h above the ground; z coincides with the
structural axis, x is aligned with the mean wind direction. The element is
subjected to a vortex-induced force f (z,t) varying over time t and space z.
The continuum equation of motion in the cross-wind direction is:

Py(z,1)
or?

1 P20 18 iy (e ) + (e 0] =1 W
where y (z,t) is the cross-wind displacement, u(z) is the beam mass per
unit length, & , % are the damping and stiffness operators, respectively.
Assuming a lack of correlation between the vortex-shedding forces
induced on the stationary cylinder and the motion-induced actions (e.g.,
Vickery and Basu, 1983a), the force f (z,t) can be expressed as the sum of
two distinct terms, respectively related to the “stationary” vortex shed-
ding and to the motion-induced forces:

J(@) =3 PP @b(R)aulz ) + F(a).Rel (a1 @

The former term is governed by a space- and time-dependent lift
coefficient c; (e.g., Vickery and Basu, 1983a; Dyrbye and Hansen, 1997).
The latter identifies the motion-induced forces through a suitable force
operator %, which is a nonlinear function of parameters of both the fluid
(e.g., the Reynold number Re) and the structure (e.g., the structural
displacement y and its derivatives). The influence of turbulence is im-
plicit in the formulation (e.g., it influences the values of aerodynamic and
aeroelastic coefficients) but it does not appear explicitly in the equations,
as usual in the literature (e.g., Blevins, 2001). Scruton and co-workers
(e.g., Scruton and Flint, 1964) proposed expressing the aerodynamic
lift force per unit length as the sum of a displacement-dependent term
and a velocity-dependent term. The former, which is representative of
the aerodynamic force in phase with the motion (and, therefore, modifies
the structural stiffness) is usually negligible compared with the structure
elastic force (Vickery and Basu, 1983a).

Applying the modal transformation, y(z,t) = >,y (2)ax(t), ax being
the principal k-th modal amplitude related to the cross-wind motion and
vy the corresponding k-th modal shape, under the hypothesis of classical
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Fig. 1. Structural model (X entering direction).
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damping, Eq. (1) becomes:

(1) + 2 (2an;) & d;(r) + (27m,»)2 a;(t) = ﬁ / U*(2)cis(z, 1)b(2)y;(z)de+

zk: / Fi(z,1,Re) y,(2) y;(2)dz | dulr)

3

where n; is the j-th modal frequency, & is the j-th modal mechanical
damping ratio, m; = fé u(z)y/j2 (2) dzis the modal mass of mode j, 7k is
the k-th modal counterpart of the continuous force operator #.

Using the spectral model developed in the framework of linear
random dynamics, following Basu and Vickery (1983) and Vickery and
Basu (1983a), three assumptions are made: a) the forcing “stationary”
term is described in the frequency domain by the r.m.s. lift coefficient,
ci™, through the power spectral density function of s (2,t) in the classic
form proposed by Vickery and Clark (1972); (b) the motion-induced
excitation concerns a single mode at a time, i.e. Z; = 0 for k#j in Eq.
(3), then the model is able to include fluid-structure interaction for
(sufficiently) well-separated modes only; (c) the physical nonlinearity of
the motion-induced term Fj is considered in a statistical form only,
through a suitable ratio of r.m.s. cross-wind displacements. Therefore,
the j-th modal force operator can be expressed as:

F;(z,Re) =2(2zn;)p b*(z) Kuo(z,Re) {1 - (wf} 4

OjL

where ¢; is the r.m.s. Displacement related to the mode j and oj; is the
limiting r.m.s. amplitude of VIV displacements, being the phenomenon
self-limited in nature. Ky is the aerodynamic damping parameter for
small oscillation amplitudes (i.e., when ¢; — 0); its values and shape are
strongly influenced by the longitudinal turbulence intensity I, (e.g.,
Verboom and van Koten, 2010). On the other hand, the dependence on
the turbulence integral length scale is not included; this parameter seems
to have a modest influence on VIV-induced r.m.s. displacements in both
low-amplitude and high-amplitude regimes (Acebedo et al., 2016; Dan-
iels et al., 2016; Vickery and Basu, 1983a).

Basu and Vickery (1983) express the limiting amplitude of the full
scale element as a function of the characteristic size (e.g., the diameter of
a circular cross-section), 6 (z) = b(z)/k, 1/k being a suitable fraction of
b. This choice appears, however, more suitable for a bi-dimensional
description, rather than for a full-scale modelling, because it does not
account for the geometric boundary conditions of the element (for
instance, it does not provide any variation along z in the case of a
structure with a constant diameter). In the spirit of a real full-scale
description, the limiting amplitude is herein modulated through the
Jj-th modal shape under consideration, thus enhancing the model with the
correct kinematic conditions:

0j.(z) = W/((?) b:f

)

where Z identifies the position of the maximum modal displacement
(e.g., the tip of a cantilever or the mid-span of a simply-supported beam,
concerning their first modes) and by is a reference size. The reference
size can be assumed equal to b(2) or to any other value representative for
VIV calculations (e.g., the top one-third diameter for chimneys excited in
the first mode, Vickery and Basu, 1983b).

With the previous assumptions, the equation of motion for the generic
Jj-th mode can be expressed as:

L
(1) + 2(2mn;) Ed; + (27m,)2aj(t):mi / fi (z,1) wi(z)dz (6)
j Jo

Journal of Wind Engineering & Industrial Aerodynamics 198 (2020) 104100
where
1 o »
fi(z,0) =5 pU" (2)b(2)ess (2:1) @)

& is the damping coefficient accounting for both the mechanical ¢" and
the aerodynamic &' contribution:

=y (B)o,N\>
G=grgg = - Ltafi - () ®

being ¢{ a dimensionless quantity related to possible variations of the
aerodynamic damping along the element span:

L
[ 70 Kalerowi @)
o= . "L 7(2) =b(2) /bref )]
INGEE
JO
and m,; is the j-th equivalent mass per unit length:
my = LL (10)
/0 i (2)dz

The coefficient ¢; can be considered as an equivalent damping ratio
able to approximate the nonlinearity induced by the aerodynamic
interaction; the expression of the equivalent aerodynamic contribution,
Eq. (8)3, can also be obtained using statistical linearization techniques
(e.g., Chen, 2014).

In the frequency domain, the standard deviation of the principal co-
ordinate, o, is obtained by:

7= [ B S0 0.2) dn an

where H;(n) is the j-th frequency response function and Sg; is the cross-
power spectral density function of the wake excitation related to mode j:

S (n) = /0 /0 £ O ()55 (22 (< )dlads 12)

S; being the cross-power spectral density function (CPSDF):

S, (z,2,n) =1/ 8. (z,n)S,, (2, n) Cohyy (2,2, 1) 13)
and Cohg the coherence function.

Neglecting the quasi-static response and introducing the dimension-
less quantity a; = 64j1/brf, the dimensionless response standard devia-
tion 64 = 04j/bres can be expressed as:

04 = 14)

N2
Se __pal] — (%
i Cl {l (aL) }
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where c, c)‘}, y: are suitable dimensionless quantities, ¢ is the r.m.s.
value of ¢;; and cgf;‘ef is its reference value; the Scruton number is then
evaluated as Sc = 47r§]f"mej / pbfef. Eq. (14) is formally coincident with the
expression provided by Vickery and Basu (1983a, Eq. (31)), generalized
with the new, more consistent definition of limiting amplitude.

The implicit expression (14) can be solved in terms of 64; (e.g., Dyrbye
and Hansen, 1997):

Gy =1\/C1r + £/ Cp + Cor (18)

where c;r and cyr are the dimensionless quantities:

2
a; Sc
=-L(1- 1
ar=5 ( 4;:&;) (19)
c,
CZF:?]“L (20)

3. Quantitative characterization of the VIV domains

The wake-excited response model supplied by Vickery and Basu for a
cylinder in two-dimensional conditions (Vickery and Basu, 1983a, Eq.
(31)) can be expressed in approximate form for two different domains,
depending on the VIV regime. The former applies in the low-amplitude
case of a linear system subjected to random forcing, when the struc-
tural damping parameter is much higher than the aerodynamic damping
one (Eq. (32a) of the cited paper). The latter applies for nonlinear
large-amplitude or in lock-in situation, when the structural damping
parameter is much smaller than the aerodynamic one and the amplitude
is virtually independent of external forcing (Eq. (32b) of the cited paper).
Working in the same spirit, the implicit full-scale solution, Eq. (14), is
reduced to the following approximate expressions in terms of Scruton
number:

&= ;, Sc > 4ncf 21
] S _ o
4n 1
Sc
~nl __
G =ary[1— prer Sc < 4nc! (22)
where &Zj, ngjl- are, respectively, the dimensionless response in the “forced

vibration” and in the “lock-in” regime.

In line with Fig. 9 by Vickery and Basu (1983a), Fig. 2 represents the
wake-excited response of the world-renowned wind-tunnel tests per-
formed by Wootton (1969) on a circular chimney model. The diagram
shows the exact solution (gray line) given by Eq. (14), assuming the same
values of the parameters used by Vickery and Basu for this case study. It
also reports the approximate solution in forced (dotted line) and lock-in
(dashed line) conditions, supplied by Equations (21) and (22),
respectively.

Fig. 2 highlights the accuracy of the approximate solutions that cover
almost the whole domain in terms of Scruton number. In particular, Eq.
(21) approaches Eq. (14) from upward, by providing conservative values,
whereas Eq. (22) approaches Eq. (14) from downward. At present,
however, no criterion is available to quantify the domain of validity of
such simplified relationships.

This aspect represents a major shortcoming from the scientific and
technical viewpoint. Many researchers, practitioners and code provisions
frequently refer to heuristic thresholds in terms of Scruton number,
below which structures are highly vulnerable to lock-in conditions.
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Fig. 2. Reworking of Fig. 9 by Vickery and Basu (1983a) setting ¢ = 0.0043,
a;, = 0.23 and ¢14 = K4 = 0.54 as in the cited paper.

However, there is no robust framework that may justify such thresholds.
A reliable method would be extremely useful (especially in the pre-design
phase) to recognize the behavior of structures with regard to vortex
shedding and lock-in phenomena. This is exactly the goal of the present
Section.

To identify the thresholds, Egs. (21) and (22) may be expressed in
terms of the coefficients c1r and cyr appearing in the explicit form solu-
tion, Eq. (18). It follows (see also Verboom and van Koten, 2010):

1c

& == p <0 (23)
Y 2 cF

&"I-: 26‘][:7 cip>0 (24)

aj

It should be noted that cap, Eq. (20), always has a positive sign since
the aerodynamic coefficient c{ is ruled by the aerodynamic damping
parameter Ky, which assumes positive values in the critical range (e.g.,
Pagnini and Piccardo, 2017). For the same case study, Fig. 3 clarifies the
accuracy of Egs. (23) and (24), giving the representation of the previous
diagram in terms of c;r (which is a function of the Scruton number) and
cor (which is fixed by the parameter assumptions). The approximate so-
lution &flj matches the exact one for small enough values of c;r, providing
conservative results; it grows suddenly in the vicinity of c¢;r =

0 approaching infinity. The approximate solution &Zjl. matches the exact

0.2 T T T .
y
complete sol. Y
""""" approx. small ampl. /
= = -approx. lock-in /
0.151 / 4
/
/
/
& 01} ,/ ]
/
/
/
0.05 i J
i
""" ,
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0 . 1 .
-0.02 -0.015 -0.01 -0.005 0 0.005 0.0 0.015 0.02

1F

CF
Wootton case

Fig. 3. Exact and approximated solutions for the

study (cor =~ 1.81-107°).
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one for large enough values of c;r; it approaches zero as c;r approaches
zero. The “transition” regime arises around c;r = 0.

Fig. 3 highlights that, for cyr little greater than 0, the approximated
lock-in solution 62} holds, whereas, for cir little smaller than 0, the
approximated small amplitude solution (}Zj takes validity. From Eq. (18) it
comes the possibility of expressing the response based on a single
parameter; cor, which is always positive, seems the suitable choice. In a
purely empirical manner, a quantification of the validity domain for the
“forced vibration” regime can be obtained considering the negative value
cir = — 24/czr. In this specific case, the exact (18) and the approximate
(23) solutions lead to, respectively:

1
Gy =\V5-2 Jor G,=3or (25)

where &’;j approximates 64 with a positive error of about 3%. Therefore,
if ciF < — 2,/Cor, Eq. (23) supplies the solution with a (positive) error
less than 3% with respect to Eq. (18). In terms of Scruton number, from
Eq. (19), the approximation holds for Sc > 4xc$[1 + 4./cor /a?], which
corresponds to the threshold Sc > 7.5 for the Wootton case study.

Similarly, a quantification of the validity domain for the “lock-in”
regime can be obtained considering the positive value ¢;r = +/5cor. In
this specific case, it reads:

Gy =\ 11 +2V30 e Gl =2 V5 e (26)

where ?;gjl approximates 6,; with a negative error of about 3%. Therefore,
if c1r > /5 car, Eq. (24) supplies the solution with a (negative) error less
than 3% with respect to Eq. (18). In terms of Scruton number, the
approximation holds for Sc < 4zc$[1 — 2v/5,/cor /a?], which corre-
sponds to the threshold Sc < 6 for the Wootton case study.

By virtue of these findings, the validity domain of the approximated
solutions, that was given in qualitative terms by Egs. (21)-(23), (24), can
be supplied in quantitative terms. Moreover, for sake of simplicity, the
two limits can easily be made symmetrical in a conservative way taking
the largest value with respect to 4zc{. It derives:

V5

: Tec 2
P S— 1422 CH} 27)
ar,

aj CiF

[ s 25
= a1 - 4ﬂca =\/2c1r, Sc < 4nct [1 ——‘{J‘m} (28)
Cj ai

with the transition domain lying in between the values:

Sc > 4nc

L L

2v5 2v5
47zc‘1'<1 - ;f_\/czp> < Sc < 4nc] <1 + ;f_\/czp> (29)

Expressed in these terms, the qualitative rules suggested by Vickery
and Basu (1983a) and by Verboom and van Koten (2010) for the appli-
cation of the approximate solutions (i.e., “much smaller than” or “much
greater than”) become quantitative with an estimate check of the
maximum error that is committed in their application. Still referring to
the vibrating cylinder investigated by Wootton (1969), Fig. 4 a, b illus-
trate and clarify this issue, showing the solution behavior in the two
regimes and the limit values specified by Egs. (27)-(29). In this case, the
transition domain lies in the range 6 <Sc < 7.6, being the quantity
4rcix~ 6.8.

The evaluation of the domain limits depends on the parameters c§,ay,
cor. As highlighted by Pagnini and Piccardo (2017), the limiting ampli-
tude a; is the most uncertain parameter in these calculations. Recalling
Eq. (20) that expresses car, Eq. (29) points out that the limits are inversely
proportional to a;. Therefore, higher values of a; lower the boundaries
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Fig. 4. Domain of validity of the approximate solutions in the forced (a) and
lock-in (b) regime for the Wootton case study.

that delimit the two regimes, enlarging the domain of the forced vibra-
tion onset and stretching the transition domain. On the other hand, the
correct evaluation of cop is a burdensome task, requiring the computation
of the double integral in Eq. (16). In all cases, the domain of the
approximate solutions is governed by turbulence intensity I, and in
general by Reynolds number Re, which rule the quantity Ky and there-
fore c{. Approximate expressions for the coefficients involved will be
discussed in the next Section 4. Extensive qualitative and numerical
evaluations of VIV domain limits will be developed in Section 5.

It is worth-noting that, whereas the domain limits depends on a;, the
approximate solution for the “forced vibration” regime, given by Eq.
(27), is independent from it (since the ratio car/c1r does not depend on
ap) and, therefore, it is not affected by the uncertainties in its estimate. Its
use is perfectly in the spirit of the Vickery and Basu formulation, as the
authors claim that “response calculations for realistic, stable structures
are likely to be fairly insensitive to the value assumed for” the limiting
amplitude, as mentioned in the Introduction of the paper. On the con-
trary, the approximate solution for the “lock-in” regime, Eq. (28), is
completely governed by the value assumed for ay.

4. Closed-form expressions for VIV coefficients

With a view to providing operational procedures, it is necessary to
obtain straightforward analytical expressions of ¢y, coF, directly derived
from the general formulation of the problem (Section 2). In the philos-
ophy of the generalized Equivalent Spectrum Technique (EST; Piccardo
and Solari, 1996, 1998, 2000), the following assumptions are adopted:
(a) the variation of the aerodynamic and geometrical properties along the
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structural axis is neglected, i.e. y(z) =1, Eq. (9), and y;(z) = 1, Eq. (17);
(b) the mean wind velocity in Eq. (16) is set at a suitable reference co-
ordinate 2z, where the VIV phenomenon is supposed to occur; (c) the
structural frequency is set equal to the vortex-shedding frequency, i.e.
n; = ng (d) consistently with the previous assumptions, the power
spectral density functions S} are evaluated at z = 2 = z; with n = n;.
The VIV reference coordinate z; depends on the modal shape under
consideration (Fig. 5, Piccardo and Solari, 2000). It can be taken as 0.8 L
for modal shapes that reach a maximum at one end (e.g., vertical canti-
levers). This choice takes into account that the maximum response occurs
at a VIV resonance arising in a position lower than the structural top (e.g.,
Verboom and van Koten, 2010). It is usually taken at the antinode po-
sition in other cases. When the antinodes are more than one (i.e.
skew-symmetric or higher modes), the procedure may need to be applied
multiple times, considering the resonant phenomenon arising at each
antinode.

By virtue of hypotheses (a)-(c), the parameter c{, Eq. (9), simplifies as:

C{; = KaO (Z:s7 Res:) (30)

Regs being the Reynolds number evaluated in critical VIV conditions.
Therefore, c15, Eq. (19), becomes:

2
a; Sc

/) O 31
2 47[Ka0 (Z.\S7 Re.m ) ( )

CilF=

which formally coincides with the expression supplied by European
codes and guidelines, where K,y appears as a function of Reynolds
number only.

As regards co, Eq. (20) involves the evaluation of c}l and, therefore, of
the double integral in Eq. (16). By virtue of the previous assumptions (a)-
(d), the c)‘i coefficient becomes:

e 0\ _
¢ = (W’&/) S (aim) L 5 (k) (32)
J
with:
* 1
S” ssil) = —F=h o~ (33)
(zsi) VB (255
1 1 i , ,
%(x) = / / W, () v, (C) expl — ¢ — ¢ [YC de 34)

where the spectral density function is herein described by the Vickery
and Clark expression (Vickery and Clark, 1972), B being the bandwidth

spectral parameter, e.g., B(z) = 1/0.082 + 2I2(z). The coherence func-
tion has been expressed by an exponential function, which is often used
in the literature (e.g., ESDU 96030, 1998; Piccardo and Solari, 2000); ¢ =
z /L is a dimensionless coordinate, ks = 1/ with ¥ the correlation
length (in brep) and 1 = L/bys the structural slenderness.

Including the developments described above and picking out the
terms with the purpose of comparing the relevant formulae with those in
codes and guidelines, cor can be re-written in the form:

z, =0.8L Zy =12
z

L

o< v¥,(2) 0< v, (2)

Fig. 5. Examples of estimation criterion for the VIV reference coordinate z.
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where C. is the so-called aerodynamic coefficient and g, is a structural
correction factor accounting for partial correlation in space and
depending on slenderness and modal shape.

The closed-form solution of the function %, then of u, for various
modal shapes of structural interest is now investigated. Appendix A re-
ports the exact solution, together with the value of I;. Table 1 summarizes
the results reporting the correction factor y. for different slenderness
values, considering x; = 4, i.e. ¥ =1 (i.e., correlation length equal to
one diameter, value commonly used in generic situations). Besides a
slight dependence on 4, that becomes evanescent as A grows enough,
Table 1 highlights large differences between the y. values related to
different mode shapes. In the following Section, 4 = 30 is chosen as the
basic case for comparative studies.

Hansen (2007) proposed a similar formulation of the aerodynamic
coefficient C, that is modulated by a correction factor y.. Comparing it
with Eq. (36), it is possible to verify that y. and y. are linked through the
relationship y, = yu./+/2. However, y. accounts for the modal shape only
and its calculation involves line integrals of the spectral function and
mode shape. The solution is provided by the author for five common
modal shapes (i.e, y;({) =1, ¢, &2, sin(al), 2¢— 1; see Table 1 in
Hansen, 2007). For 4>20, the estimates of y. for the cited five modal
shapes lead to values that differ of about +5% from the corresponding
structural correction factor y. provided here. Differences can be higher at
smaller 4.

The solution becomes even simpler for the class of the common modal
shapes that do not change sign. In this case, the EST allows expressing the
function 7 in closed form (Piccardo and Solari, 1998):

2
"l
Gy= € (k- ky) { /0 w,(é)dé} (39)
being
0.55
1 1 !
k=35 m/o w;(0)|d¢ (40)
J
if{w}:é—ziwz(l—e%) for ©>0; Z{0}=1 (41)

The following closed-form solution for y, is also derived:

(42)

1
1 _howi(Qdl (43)

T wA©)de

In order to check the accuracy of this approximate solution, symbols
in Fig. 6 represent the quantity £; obtained by the closed-form expres-
sion, combining Egs. (37) and (42), for a selection of common mode
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Table 1
Values of yc for different slenderness and modal shapes ('=1).
7 V/j(C)
1 sin(7¢) S [1 — cos(27¢)] ¢ I< (2¢-1) sin(27¢) . + I
sm( 3 ) — s (ﬂg 2)
10 1.342 1.925 1.879 2.191 2.262 2.798 2.067 1.741 1.726
20 1.378 1.978 1.944 2.274 2.356 2.972 2.260 1.917 1.877
30 1.390 1.990 1.964 2.293 2.388 3.034 2.324 1.960 1.922
40 1.396 1.994 1.973 2.300 2.403 3.065 2.356 1.977 1.944
50 1.400 1.996 1.979 2.303 2.412 3.084 2.375 1.985 1.956
! I 0.45
=1
= sin(m() 0.4
I = sin(n(/2) |
0.8
=[1 - cos(2m()]/2 0.35
0.3
0.6
- 0.25
SY o
0.2
0.4
0.15 [,
02 0.1
0.05

15
Ks

25 30

Fig. 6. Approximate closed-form (symbols) and exact (lines) solution of Z; for a selection of common mode shapes without change of sign: constant and sinusoidal (a),

cantilever (b).

shapes; solid lines represent the exact solution of the integral (34) (see
Appendix A). The agreement is excellent confirming the validity of the
proposed approach. Table 2 reports the quantities kg and I;.

Table 3 summarizes the sequential steps necessary to determine the
VIV coefficients according to the procedures proposed in this paper. A
crucial step is represented by the evaluation of the correction factor y,,
which can be estimated for any modal form (Step 6a) or in closed form for
modal shapes not changing in sign (Step 6b). Therefore, the reader can
derive simple calculation schemes for any case of specific interest.

5. Numerical discussion

This Section discusses the application of the proposed solutions
investigating the relevant quantities involved and the possible errors
committed concerning circular cross-section cylinders. The comparison
with European guidelines shows possible criticisms in code provisions and
highlights the effectiveness of the proposed developments. The incom-
pleteness of data precludes in-depth analyses for non-circular cylinders.

Section 5.1 carries out parametrical analyses, investigating the role of
structural properties and flow conditions. Starting from the parameters
previously defined, Section 5.2 investigates the VIV domain limits from
both the qualitative and quantitative point of view. Section 5.3 studies a
real chimney that was the object of extensive full-scale experiments.
Using the outcomes of the proposed solution, the estimate of VIV
amplitude is carried out at different approximation levels. It is

emphasized that the greatest interest of the work is on the “forced vi-
bration” regime since a revision of the limiting amplitude a; (which
govern the “lock-in” regime) is not addressed in this context.

5.1. Discussion on model parameters

This Section considers a circular cylinder characterized by a reference
choice of the model parameters. The objective is to investigate from a
quantitative point of view, through suitable ranges of Scruton number,
the regime domains characterizing VIV response (Section 3).

The slenderness is set as 4 = 30, that represents the average value of
most chimneys investigated in the literature (e.g., the data survey re-
ported by Lupi et al., 2017), and of the measures gathered by CNR (2008)
for the peak coefficient assessment (see Pagnini and Piccardo, 2017).
According to a prudential choice usually assumed by codes, the analysis
first considers smooth flow conditions, i.e. I, = 0. The r.m.s. lift coeffi-
cient is described according to ESDU 96030 (1998); it depends on Re and
on the surface roughness ¢ (Fig. 7).

Considering a selection of non-changing sign modal shapes that are
representative of common structural typologies, diagrams in Fig. 8 show
the quantity C. provided by Eq. (36) for dimensionless surface roughness
e/b = 0.1 1073 (Fig. 8a), which is representative of a steel painted sur-
face, and for /b = 0.5 1073 (Fig. 8b), representative of rusty surface. It is
apparent that the surface roughness greatly affects the numerical value of
C. that maintains the trend of the r.m.s. lift coefficient. Therefore, at high

Table 2

Values of kg, I;j useful for closed-form calculations for different modal shapes without change of sign.
wi(¢) 1 sin(7¢) sin(7¢ /2) [1 — cos(2x¢)]/2 £05 4 L1 I
kg 0.5 0.390 0.390 0.342 0.400 0.342 0.302 0.273
I 1 4/n 4/ 4/3 4/3 3/2 8/5 5/3
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Table 3
Sequential steps to determine VIV coefficients.
Step Operations
1 Assign L, bref,
2 Assign p, n;,&j, u(2), wj(2); calculate my, m,;, Eq. (10), and Sc
3 Assume 2z (e.g., Fig. 5); at 2, calculate St and Re,; (if
necessary, in iterative manner; e.g., CNR, 2008)
4 Assign I,(2s,) and calculate K, (from I, and Reg; e.g.,

Hansen, 2007; Pagnini and Piccardo, 2017), then ¢ = Kqo

5 Determine y;(Z), assign , calculate a;, = 1/xy;(2) and s,
Eq. (31)
6a for any modal shape Calculate 4 = L/br,, assign -, calculate ks = 1/, I; (Eq.

(38)) and the function 7 from Eq. (34) or Appendix A
(for a selection of modal shapes of common use); finally
determine . from Eq. (37)

Calculate ky; from Eq. (40) or from Table 2, calculate 1 =
L/byey, assign 7, calculate # (kg -4 /<) from Eq. (41) and
Ij from Eq. (43) or Table 2; finally determine y. from Eq.

6b for modal shapes not
changing in sign

(42)
7 Assign the surface roughness ¢, estimate ¢, (e.g., ESDU
96030, 1998 or next Fig. 7, from Regs and e/by.s), assign B

(25) (e.g., B = 1/0.082 + 2I%(z)), calculate C,, Eq. (36)

8 Calculate cp, Eq. (35)

9 Compare Sc with the domain limits
4rcd(1+2V/5,/cor /a?) as in Egs. (27), (28) and
determine the VIV regime. Accordingly, calculate 64
either by Eq. (27), (28), or Eq. (18)

e/b-10° = 0.01
—_—c/b10° = 0.1
- ==e/b:108=10.2
10 = 0.5

0 = )
10* 10° 10° '
Re

Fig. 7. R.m.s. lift coefficient, reworking by ESDU 96030 (1998).

Reynolds number, an inaccurate assessment of the surface finishing may
result in significant errors in its estimation. These figures also reveal the
large influence of the mode shape. Estimates provided by the codes, re-
ported by grayscale lines, only depend on Re; they lie quite below the
results of Eq. (36) at low Reynolds numbers (i.e., Re < 5-105), while, at
high Reynolds numbers, they supply an average upper bound at low
roughness conditions, i.e. for well-maintained painted steel structures,
and an average lower bound at high roughness conditions. Then, in
smooth flow conditions, code prescriptions seem rather inaccurate and
appear conservative for smooth surfaces at sufficiently high Reynolds
number only.

Referring to e/b < 0.1 1073, Fig. 9 investigates the role of turbulence
intensity, showing that the information given by code prescriptions is now
completely different. Even for small values of I, (e.g., I, = 0.1), the codes
considered provide large overestimates for Re > 5 10°, whereas they are in
line with average values of C. for low Re values. Neglecting the dependence
on the mode shape and the turbulence intensity in the evaluation of the
aerodynamic constant C, seems to be a serious lack of code prescriptions.
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The mass ratio acts in the opposite way of A. Its growth slightly in-
creases the forced domain lower bound and enlarges the transition range.
It is assumed pbfef/mej = 0.01, which represents an average value of
chimney collections found in the literature (e.g., Lupi et al., 2017).

The value of the limiting amplitude a; needs to be set for estimating
the VIV domain limits, Eq. (29). According to the mentioned codes, a;, =
0.4, that corresponds to a maximum dimensionless displacement greater
than 0.57. To the authors’ knowledge, however, there are no measure-
ment reports that justify this choice. Consistently with the values
measured on chimneys and other circular cylinders excited by the wind
(e.g., Clobes et al., 2012; Lupi et al., 2017) a;, = 0.2 seems a suitable
choice (consistent with the maximum measured amplitudes) and it is
assumed as a reference value in the following. In-depth studies on this
parameter are outside the scope of this work.

Within the approximate framework of Section 4, the parameter c{ is
completely defined by Ky, Eq. (30). In the following, St and Ky are
deduced by EN 1991-1-4 (2005): the former is set to 0.18, the latter is
assigned as a function of the Reynolds number, i.e., Kqo = 2 for Re < 10°,
Kao = 0.5 for Re = 5-10°, K49 = 1 for Re > 105, assuming a linear variation
with log;o(Re) for intermediate values. Such Ky values are referred to I,
=0, leading to conservative predictions of VIV response. The influence of
turbulence will be considered in the sequel.

5.2. Evaluation of VIV domain limits

With the assumptions previously discussed, VIV regimes are
completely defined according to Section 3. A qualitative study of the limit
domains is possible at least in the ideal case of laminar, uniform free-
stream conditions, i.e. I, = 0. Through Egs. (20) and (35), the VIV
domain limits (29) can be expressed as:

2v5 |1 pbl, C2 1 2v5 [1 pbl C* 1
det | 1222 = Ze_ | <Se<dnct |1+~ — -
e ap \ ¢f my St* A c<ame | 1+ ap \ ¢f my St* A

(44)

It is therefore clear, in analogy to C, values, that the domain limits are
governed by Reynolds number. Using reference values discussed in the
previous Section 5.1 and noting that the largest C. values occur for
w;(¢) = 2%, i.e. C. = 0.046 for Re < 2.10° and C, = 0.0092 for Re >
2.10° and /b = 0.1 10’3, Eq. (44) can be rewritten as:

0.0820 0.0820
871(1— )<Sc<8n'<1+ . ) for Re<2-10°

ar L

(45)

0.0232 0.0232
477:(1— )<Sc<8ﬂ<1+ ) for Re>5-10°

ar ar

Therefore, the largest possible extension of the “transition” regime
obtainable for a;, = 0.2 can be roughly quantified in:

Sc € [8z(1£0.41)] for Re<2-10°

Sc € [4n(1£0.12)] for Re>5-10° (46)

Using a;, = 0.4, as suggested by codes and literature (e.g., EN 1991-1-4,
2005; Verboom and van Koten, 2010), the values in Eq. (44) are halved,
i.e. (1 £0.205) and (1 & 0.06). Therefore, the use of the value a; = 0.2 also
appears to be more conservative (as well as more realistic, as previously
discussed) postponing the onset of the “forced vibration” regime.

Eq. (46) provides a first qualitative estimate, strongly conservative, of

the application validity of the VIV approximate solutions &Zj and &le-.

Focusing in particular on &Zj, it allows setting the following conditions for
the forced VIVs: Sc > 35, if Re < 2-10° and Sc > 14, if Re > 2.10°
(assuming a;, = 0.2). With respect to the Scruton numbers suggested by
codes, these values greatly expand the forced domain; moreover, they
can be further reduced considering the effect of longitudinal turbulence

and different modal shapes, as will be highlighted by the following
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Fig. 9. Parametric diagrams of the aerodynamic constant C.; 1 = 30, ¢/b = 0.1 1073, 1, = 0.1 (a), I, = 0.2 (b).

numerical examples. The surface finish can influence these results lead-
ing to a reduction of the validity domain of the forced solution in the
presence of high roughness (e.g., rusty surface).

Fig. 10 a-d show the limit values of Sc for the application of the
approximate forced and lock-in solution, Egs. (27), (28), depicted by thin
and thick solid line, respectively, for various modal shapes, concerning
laminar, uniform free-stream conditions. The dashed line in the diagrams
reports the reference value Sc = 4nKg. It represents the usual discrimi-
nating value between the two different regimes.

Major evidences concern the large variations with Re of the limit
boundaries, their change similar to 41K, behavior and the narrowing of
the transition domain around 4nKgo. Such trend is mainly related to the
variation of K4 with Re and involves the activation of the lock-in regime
at lower Sc values as Re increases. This behavior suggests that the “forced
vibration” and “lock-in” regimes are not defined by fixed values of Sc. In
particular, in the absence of turbulence, the limit value Sc = 30, that
some codes suggest to reduce the risk of synchronized oscillations (e.g.,
CNR, 2008), is suited for low Re (less than 105), whereas it is largely
overestimated for Re > 5 x 10°, where a Scruton number threshold of
about 15 is enough to lie in the “forced vibration” regime. A constant
limit value is hard to be established in the intermediate domain;
following the r.m.s. lift coefficient, it is very sensitive to Re variation;
however, for trans-critical and super-critical Reynolds number, the
forced regime is always associated with lower (or much lower) values of
Sc compared to the sub-critical case.

The presence of turbulent conditions is then investigated modulating
the aerodynamic damping parameter Ky by the correction factor K,
proposed by Hansen (2007), i.e. K, = 1-3-I,, for I, < 0.25 and K, = 0.25
for I, > 0.25. Assuming y(¢) = ¢2, that is the typical first mode of many
chimneys (and provides the highest Sc values for the occurrence of the
“forced vibration” regime), Fig. 11 considers I, = 10% (Fig. 11 a) and I,
= 20% (Fig. 11 b). The application in turbulent regime leads to a marked
reduction of the reference value 47K, and, then, of the Sc limits. Similar
trends can be observed for other modal shapes. In particular, the limit
curve that describes the forced domain in terms of Sc undergoes notable
decrease up to be less than Sc = 30 for any Reynolds number; in
particular, it becomes less than 10 for turbulence intensity equal to 0.1
and less than 6 for I, = 0.2 at Re > 3-4 x 10%, i.e. in trans-critical and
super-critical regime.

Moreover, for the investigated circular cylinders, in the range Re > 5
x 10°, typical of real structures, independently from turbulence condi-
tions, the boundaries of the transition domain are quite narrow, due to
the small values of the coefficient cor that, in turn, is related to the
decrease of C, (as highlighted in Figs. 8 and 9). In this case, the limit
values of the Sc defining the “forced vibration” and “lock-in” regimes are
very close to the reference value 471Ky, in disagreement with the con-
ditions “much smaller than”, “much greater than” usually reported in the
literature (e.g., Vickery and Basu, 1983a).
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Fig. 10. Domain limits for the proposed simplified solution in forced and lock-in regime; test case assuming 1 = 30, a;, = 0.2, pb,zef /mg =0.01,I,=0,e/b<0.1 1073
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Fig. 11. Domain limits for the proposed simplified solution in forced and lock-in regime; test case assuming 4 = 30, a;, = 0.2, pbfef /mg =0.01,y(l) = ¢% e/b<0.1

1073, I, = 0.1 (a), I, = 0.2 (b).
5.3. Full-scale case study

The illustrated procedure is applied to a full-scale steel chimney in
Brovst (Denmark) that was instrumented and tested within a field
experiment concerning cross-wind excitation of circular cylinders. The
main description and results of such measurements are given by Chris-
tensen and Frandsen (1978), Frandsen (1979) and are also reported by
Dyrbye and Hansen (1997) and Clobes et al. (2012). It should be noted
that, in full-scale measurements, the evaluation of the maximum oscil-
lation amplitudes presents a certain degree of uncertainty. On the other
hand, accurate theoretical predictions of VIV response require a precise
estimate of turbulence intensity and structural damping, which is un-
certain by its nature. For all these reasons, the choice fell on an
adequately documented case-study to try to limit the uncertainties
inherent in the VIV prediction of actual structures, that is particularly
challenging.

10

The structure is 54 m high with constant diameter b = 2.2 m, n; =
0.61 Hz, &M = 1%, Sc = 15.9, S = 0.17, Reg; = 9.83 x 10°. The funda-
mental mode shape is assumed y(¢) = ¢2. The terrain roughness length is
zp = 0.05 m, as indicated in the reference papers. Turbulence intensity is
estimated by I, = m ~15%. The wind profile is represented by a
logarithmic law. Being characterized by rusty surface, it is supposed ¢ =
1 mm, therefore ¢/b = 0.4 x 103, The source paper supplies St = 0.2; on
the other hand, St = 0.18 and St = 0.26, according to Eurocode and CNR,
respectively, with obvious consequences on the estimate of the critical
wind velocity. In the face of such discrepancy, and with the purpose of
comparing results based on the same choice of parameters, the calcula-
tions have been carried out using St = 0.2. Then, the critical condition in
terms of reduced wind velocity U/n;b can be expressed as 1/St = 5.

The information on the VIV regime are supplied by the domains given
by Egs. (27) and (28) in terms of Scruton number. Using a; = 0.2,
applying either Eurocode or CNR, the forced domain is described by



L.C. Pagnini et al.

Sc>~14. The lower bound becomes less restrictive when it accounts for
turbulence in the estimate of Ky (using the correction factor proposed in
Hansen, 2007) and even more using Egs. (35), (36) and (42). In this case,
the forced domain applies for Sc>~8. Therefore, the structural behavior

is of forced type and the approximate solution &flj can be applied.

The proposed solution is investigated, first, in terms of the quantity c
that rules the VIV response, Eq. (15), that depends on c}‘, Eq. (32), and
that, therefore, can be calculated through the analytical procedure pro-
posed in Section 4. Fig. 12 shows the value obtained with the full integral
solution supplied by Eq. (16), versus the reduced wind velocity at the top,
and by the proposed closed-form solution. Since the simplified solution
assumes the critical VIV onset at zg, the corresponding reduced wind
velocity at the top is slightly higher than 1/St. It is also observed that the
full integral solution has its maximum value for a little higher wind
speed; evidently, in this case the critical velocity of maximum VIV occurs
at a position z <0.8L, so that the wake excitation is spread over a larger
portion around zg (e.g., Verboom and van Koten, 2010). Such maximum
value is a little lower than the proposed closed-form solution, that pro-
vides a prudential overestimate of about 5%.

The comparison with experimental measures, that are supplied in
terms of maximum response, requires the evaluation of the peak factor. It
is about v/2 for deterministic harmonic oscillations at very small Scruton
numbers. It is about 4 at large Scruton numbers, when the response is
random Gaussian and narrow banded. Available formulations are very
uncertain elsewhere. It is assumed about 2.9 for the following case study,
in agreement with CNR (2008), which proposes an improvement over the
common assessments (Pagnini and Piccardo, 2017). Further investiga-
tion on this topic, which goes beyond the interest of this paper, are
addressed by Chen (2014).

The solid line in Fig. 13 shows the standard deviation of the structural
response obtained by the full numerical solution, Eq. (18), on varying the
reduced wind velocity; the dashed line represents the value derived from
the measured maximum (the measured wind speed is not reported in the
reference document) that reveals a sound agreement with the estimate.
Gray filled symbols represent the values obtained by CNR and Eurocode
evaluations, that consider the critical VIV onset at the top, i.e., zg = L
(maximum point of the eigenvector). At this step, the reported estimates
do not account for turbulence intensity, nor consider corrective factors in
this regard. These outcomes result in heavy overestimates that can be
mitigated with the following developments.

The estimate of the aerodynamic damping parameter K,o can be
reduced accounting for turbulence effect on the vortex shedding phe-
nomenon. The CNR guideline supplies a specific relationship that leads to
a slight improvement of the previous estimate (white circle in Fig. 13),

%107

—— numerical sol

35 ¢ o

closed-form sol| |
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Fig. 12. Aerodynamic coefficient ¢ of the Brovst chimney.
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of the Brovst chimney (CFS =

but seems still unsuitable to adequately reproduce the actual behavior.
Eurocode does not supply any procedure for this purpose and refers to the
National Annexes for possible corrections. Using the correction factor
proposed in Hansen (2007), the new estimate (white square in Fig. 13)
comes closer to the measured value, although it is about 30% higher.

The code provisions are then applied using the expression of the
aerodynamic coefficient derived in the framework of the proposed
closed-form solution, Egs. (36) and (42), maintaining the turbulence
correction of Kgo used in the previous step. The solution further ap-
proaches the measure (black filled symbols in Fig. 13). In particular, for
this case study, the evaluation by Eurocode is very close to the full so-
lution and to the experimental measure. This last result highlights the
potential of the proposed procedure, which can easily be embedded in a
technical context.

6. Concluding remarks and prospects

Most of the technical regulations on wind-excited structures adopt the
spectral phenomenological model for the calculation of vortex-induced
response. However, the expressions supplied at this regard are usually
poorly detailed; for instance, current European Codes are lacking in
prescriptions for a correct evaluation of the aerodynamic coefficient
governing VIV also for the circular cross-section. They take into account
the dependence on Reynolds number but ignore a number of factors that
can greatly modified its evaluation.

The outcomes of the spectral model can be considered reliable in the
“forced vibration” regime, when the structural damping is sufficiently
greater than the aerodynamic damping. They turn out to be quite or very
uncertain both in the “lock-in” regime, when the structure can exhibit
large crosswind vibrations, and in the “transition” regime, where the
situation is intermediate between the two border cases. The spectral
model is not specifically calibrated to work in these domains, as expressly
stated by Basu and Vickery (1983), even though it has often been used
precisely for estimates of lock-in vibrations. In these conditions, its
application can lead to very conservative results, often quite far from the
real behavior of the structure. On the other hand, to the best of authors’
knowledge, the boundaries of the various regimes have never been
defined quantitatively in the scientific literature. For this reason, using a
simple and expressive parameter such as the Scruton number, it is not
easy to define a priori the actual sensitivity of a structure towards the VIV
phenomenon.

The present paper fills this gap proposing the quantitative assessment
of the domains where the VIV assumes different characteristics as a
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function of the same parameters governing the response amplitude. In
this way, it is possible either to exclude the “lock-in” and “transition”
regime or to consider their onset. Within the limit domains of “forced
vibration” and “lock-in” regime, simplified formulations for VIV calcu-
lations can be used. The a priori knowledge of the response domain ap-
pears extremely important during both the design and the verification
phase. From one hand, it is possible to use this information to evaluate
the possibilities of designing a structure in “forced vibration” regime. On
the other hand, the knowledge of the behavior regime provides sensi-
tivity to the uncertainty of the VIV calculations.

It seems appropriate to clarify that the “forced vibration” regime is at
present identified according to qualitative empirical criteria. For
example, regarding the circular section, CNR (2008) writes that “if the
Scruton number is greater than 30, the risk of synchronization is very
reduced”. In light of the results of this paper, this limit is reasonable for
small Reynolds numbers only, i.e. Re < 1-2:10°, in a sub-critical regime
and in complete absence of turbulence. Outside these values, the “forced
vibration” regime onset broadens greatly and the “transition” regime
becomes extremely narrow. At Re > 5-10°, that represents a very com-
mon case in engineering practice, a Scruton number greater than 14
ensures forced conditions in the absence of turbulence, decreasing to less
than 10 with I, = 10%.

Moreover, with regard to the “forced vibration” regime, this paper
discusses the choice of the model parameters and the uncertainties
connected, supplying new analytical developments aimed at the engi-
neering application of the procedure. With the support of numerical re-
sults, the remarkable importance of the mode shape (neglected by the
main European codes) on the calculation of the VIV response is high-
lighted; also the surface roughness can significantly influence the
response in the super-critical regime of Reynolds numbers. Concerning
mode shapes without change of sign, a closed-form derivation of the
force coefficient is proposed fully coherent with main national and Eu-
ropean regulations. This relationship is therefore perfectly suitable for
use in structural calculations carried out in compliance with the current
standards.

Within a spectral approach for the evaluation of the VIV response, the
considerations made in this paper can also be used for the “transition”
and “lock-in” regimes and the for calculation of the maximum response
(e.g., Pagnini, 2017). However, as previously mentioned and widely
discussed in Pagnini and Piccardo (2017), a reliable calculation in these
regimes cannot leave out of consideration an adequate discussion of the
limiting amplitude. As far as the maximum response is concerned, a
technical review of the peak coefficient in the “transition” regime seems
to be appropriate.

The proposed formulation is suitable for cylinders with any cross-
section. All the applications dealt with in this paper, however, are
restricted to circular cylinders. The incompleteness of data (e.g., con-
cerning the Ky coefficient) precludes similar in-depth analyses for non-
circular cylinders, such as square and rectangular shaped structures.
The analyses developed in this paper may represent a useful pattern and
reference point, when such data become available.

Finally, it is worth noting that the matter discussed in this paper is
classically implicitly addressed to synoptic wind conditions producing
stationary VIVs. The advanced procedure proposed herein in terms of
simplifications and clarifications of this complex phenomena represent a
fundamental starting point to generalize their treatment to the transient
conditions involved by the sudden gust fronts due to thunderstorm out-
flows (e.g., Solari et al., 2015a; Solari et al., 2015b; Le and Caracoglia,
2016; Solari, 2016).
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