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Abstract

This article deals with the problem of the recognition of human hand touch by a robot equipped with large area tactile

sensors covering its body. This problem is relevant in the domain of physical human–robot interaction for discriminating

between human and non-human contacts and to trigger and to drive cooperative tasks or robot motions, or to ensure a

safe interaction. The underlying assumption used in this article is that voluntary physical interaction tasks involve hand

touch over the robot body, and therefore the capability to recognize hand contacts is a key element to discriminate a pur-

posive human touch from other types of interaction. The proposed approach is based on a geometric transformation of

the tactile data, formed by pressure measurements associated to a non-uniform cloud of 3D points (taxels) spread over a

non-linear manifold corresponding to the robot body, into tactile images representing the contact pressure distribution in

two dimensions. Tactile images can be processed using deep learning algorithms to recognize human hands and to com-

pute the pressure distribution applied by the various hand segments: palm and single fingers. Experimental results, per-

formed on a real robot covered with robot skin, show the effectiveness of the proposed methodology. Moreover, to

evaluate its robustness, various types of failures have been simulated. A further analysis concerning the transferability of

the system has been performed, considering contacts occurring on a different sensorized robot part.
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1. Introduction

Human–robot interaction (HRI) has the goal of making

possible the cooperation between humans and robots, in

order to exploit the strengths of both players to accomplish

complex tasks, that are otherwise difficult to tackle, or

tedious and error prone. Towards this aim, and in order to

ensure safe interaction, robots are expected to embed

human-like sensing modalities such as vision, touch,

speech, etc.

In the literature HRI has been largely based on vision

systems, for example to recognize gestures (Li, 2012), to

cooperate with robots in assembly tasks (Kimura et al.,

1999), and to deal with collision detection problems (Ebert

and Henrich, 2002).

Of course, when contacts occur, interaction control of

the robot is required based on the capability of sensing the

contact phenomena. To achieve this, force/torque sensors

have been largely used in order to ensure safe physical HRI

(pHRI), by detecting collisions (Haddadin et al., 2008) and

ensuring robot compliant behavior in response to external

forces (Duchaine and Gosselin, 2007; Grunwald et al.,

2003).

Bicchi et al. (1993) have shown that for a given robot

geometry for contacts over small areas it is possible to

reconstruct the interaction forces and the contact centroid

location by processing lumped force/torque measurements.

Although this method has been proven effective for object

manipulation using robot hands, it can be hardly scaled in

case of multiple contacts, or complex interactions expressed

over large areas, which are phenomena expected to arise in

tasks involving tight HRI.

Humans perceive contacts mostly through the skin;

therefore, tactile sensors mimicking its functionality and

Department of Informatics, Bioengineering, Robotics and Systems

Engineering (DIBRIS), University of Genoa, Genoa, Italy

Corresponding author:

Alessandro Albini, Department of Informatics, Bioengineering, Robotics

and Systems Engineering (DIBRIS), University of Genoa, Via Opera Pia

13, 16145, Genoa, Italy.

Email: alessandro.albini@dibris.unige.it

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364920907688
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364920907688&domain=pdf&date_stamp=2020-03-10


integrated on the robot body are expected to provide addi-

tional information with respect to force/torque sensors.

Large-area tactile sensors composed of different transdu-

cers (pressure, vibration, temperature, proximity, etc.), also

referred to as robot skin, have been proposed in the past

years by several authors (Cannata et al., 2008; Cheung and

Lumelsky, 1989; Minato et al., 2007; Mittendorfer and

Cheng, 2011; Mizuuchi et al., 2006; Mukai et al., 2008;

Ohmura et al., 2006; Someya et al., 2004; Tawil et al.,

2011; Um et al., 1998). Typically, robot skin sensors should

make it possible to measure the contact pressure distribu-

tion applied on the robot body over an arbitrary area, thus

opening new scenarios in pHRI, for control and for cogni-

tive level processing, enabling the interpretation of physical

contacts.

Usually, humans physically interact with objects, or with

other people, hopefully in peaceful conditions, using their

hands. Similarly, in HRI it can be expected that if an operator

wants to physically interact with a robot, for example to teach

a movement (Billard et al., 2008), a natural way to begin the

cooperation would be touching or grasping one or more of

its links. In fact, various vision-based HRI methods are based

on the assumption that the hands are the main input for inter-

acting with robots. Indeed, they address the problem of com-

puting from images the placement of the fingers and of the

palm of the human player (Liang et al., 2012; Raheja et al.,

2011) in order to recognize gestures. In the pHRI domain, it

can then be argued that when a person interacts using the

hand, the contact distribution generated by each finger and

by the palm, in terms of positions, areas, and relative applied

pressures, could imply a specific type of interaction.

Therefore, according to what discussed so far, it is rea-

sonable to assume that if a human is interacting with a robot

using their hand, the contact could be interpreted as a vol-

untary touch, performed to start a cooperation. Then, in

order to engage an appropriate HRI task, the robot must be

capable of discriminating whether the applied contact has

been generated by a human and it should be capable of seg-

menting the measured pressure distribution associated with

the various parts of the hand.

In this work, we present a method based on robot skin

feedback measurements to:

� recognize a human voluntary touch performed

using a single hand, with respect to a generic con-

tact or collision;
� segment the hand contact shape, obtaining the

pressure distribution applied by each part of the

hand (fingers and palm) during the interaction.

As shown in Figure 1, the proposed approach consists

of creating a tactile image of the contact distribution by

performing a set of geometric transformations making it

possible to obtain a planar 2D representation of the robot

body. The main advantage of using this technique is that it

allows state-of-the-art image processing techniques to be

applied. As explained in detail in Section 4, the pressure

distribution will be classified and segmented using machine

learning techniques because the variabilities produced by a

human touching a robot skin make the definition of interac-

tion models hard. The novelty of the proposed approach is

that the tactile images are generated from robot skin mea-

surements, where pressure sensors are distributed in a non-

uniform way over a complex non-planar 2D manifold (i.e.,

the robot body). Indeed, whereas tactile images have been

used to process data in the case of small-scale planar tactile

Fig. 1. Proposed approach: (a) a human is touching the robot arm using the hand; (b) the 3D contact measurements are mapped onto

the mesh representing the robot body; (c) the robot skin measurements are transformed into an image and classified to recognize a

human hand; (d) if it is, the parts of the hand are segmented; (e) the segmentation is back-projected onto the original 3D space.
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sensors, to the best of the authors’ knowledge, tactile

images originated from a non-regular large-area distribution

of tactile sensors have been first proposed in Albini et al.

(2017b): this article completes and extends those results. In

particular, beyond the original problem of the human hand

contact recognition (Albini et al., 2017b), this article also

investigates the problem of the human hand contact seg-

mentation. Furthermore, because robot skin is prone to fail-

ure owing to its nature, a robustness analysis of the

performance of the classification and segmentation models

against different types of taxel failures has been performed.

Finally, an analysis of the transferability of the hand recog-

nition system has been experimentally performed by testing

the proposed method on tactile data originated from con-

tacts occurred on a completely different robot part.

This article is organized as follows. Section 2 provides a

review of the literature: first the use of tactile sensors in

pHRI is discussed; second the techniques related to contact

shape processing are analyzed, discussing the differences

and the improvements proposed in this article. Sections 3

and 4 describe the process of computing tactile images

from robot skin feedback and the specific problems related

to the processing of human hand contact shapes, respec-

tively. Sections 5 and 6 describe the machine learning-

based models employed for human hand recognition and

segmentation. In Section 7, the experimental setup and the

data collection procedure are detailed. The experimental

results to assess the performance of the proposed method

are discussed in Section 8. In Section 9, additional experi-

ments are presented to analyze: (i) the robustness of the

system with respect to hardware failures and changes in the

spatial resolution; (ii) the transferability of the system, by

testing it on a different sensorized robot part. Conclusions

follow in Section 10.

2. Related work

Within the scope of this article, the role of tactile sensors

has been studied with respect to two different domains of

application. The first is related to HRI and the second to

contact shape processing and classification.

2.1. Tactile sensors in pHRI

Tactile sensors measurements have been used in the context

of HRI in order to implement touch-based control

strategies.

Wosch and Feiten (2002) showed that patches of pres-

sure sensors integrated on a robot link allow human opera-

tors to guide a robot arm. The pressure readings are

translated into motion vectors used for controlling the arm

position. Similarly, Schmidt et al. (2006) used an array of

capacitive-based pressure sensors mounted on a robot grip-

per to implement a control strategy allowing the robot to

adapt its posture in response to the force applied by a

human operator.

Frigola et al. (2006) implemented a compliant behavior

in a robot arm exploiting the feedback of a force-sensitive

bumper skin. Leboutet et al. (2016) achieved whole-robot-

body compliance by using a technique based on hierarchi-

cal force propagation exploiting force feedback provided

by an artificial skin. Albini et al. (2017a) proposed a touch-

triggered task-based control method using robot skin tactile

feedback allowing a human operator to physically drive

robot motions in Cartesian or joint space.

Tactile sensors have been also used to recognize differ-

ent touch modalities, namely actions (e.g., pat, push, etc.)

performed by human subjects using the hand. The general

approach is similar in most of the techniques proposed in

the literature: a set of features is extracted and classified

using supervised machine learning algorithms (e.g.,

Silvera-Tawil et al., 2015), the main differences among the

various solutions being the number of modalities classified

and the training methodologies adopted. In particular, Naya

et al. (1999) used a k-neighbor algorithm to classify 5

touch modalities, based on data collected in experiments

involving 11 users. A neural network has been considered

by Stiehl and Breazeal (2005) in order to classify a set of

eight interactions performed by a single subject. Tawil

et al. (2012) used the LoogitBoost algorithm (Friedman

et al., 1998) to recognize 9 touch modalities acquired from

40 subjects. Finally, Kaboli et al. (2015) implemented a

support vector machine (SVM) to recognize nine touch

modalities using a multimodal robot skin providing pres-

sure, acceleration, and proximity measurements.

In all the works discussed above it is implicitly assumed

that a person is interacting with the robot: namely, all the

contacts used for the classification have been generated by

humans. Therefore, they all have not been addressing the

possibility of discriminating human touch from other possi-

ble types of contacts. We show in this article that such a dis-

crimination can be achieved by analyzing the shape of the

contact pressure distribution. A review of the methods and

techniques for contact shape processing is presented in the

following.

2.2. Contact shape processing and classification

with tactile images

In applications requiring the processing and classification

the contact shape, it is common to convert the pressure data

distribution into a tactile image, which is a representation

where the intensity of each pixel corresponds to a pressure

value. The advantage is obviously that tactile images can be

processed or classified using state-of-the-art image process-

ing techniques.

Schneider et al. (2009) used a small pressure array inte-

grated onto a robot fingertip to actively touch objects of

interest and the resulting tactile images were classified

using a bag of visual words (BoVW) model. Liu et al.

(2012b) showed that tactile images generated from a finger-

tip can be used to classify in real-time primitive shapes and

Albini and Cannata 3



poses of the contact. Liu et al. (2012a) covered a robot

hand with small planar tactile patches mapping the whole

pressure readings onto a single image. Finally, they trained

a neural network to classify a set of grasped objects. Cao

et al. (2016) used a stream of tactile images obtained during

a grasping task to classify 10 different objects using a con-

volutional neural network (CNN). Gandarias et al. (2018)

proposed an approach where a high-resolution patch of

pressure sensors integrated on a gripper is used to classify

the tactile images generated by objects, human limbs, and

fingers through a CNN.

In addition to the use of robot hands, other approaches

employ a rectangular patch of tactile sensors mounted on

the robot end-effector. Pezzementi et al. (2011) proposed to

obtain a set of tactile images generated from a sequence of

contacts and used a BoVW model for object recognition. A

similar approach has been considered by Luo et al. (2015b)

in order to classify a set of objects using an innovative tac-

tile SIFT descriptor (a specialization of the scale-invariant

feature transform (SIFT) algorithm originally developed for

image data processing). The extracted features are then

classified using the visual bag of words algorithm produc-

ing very good classification results. Taking advantage of

the similarity between tactile and visual images, the same

authors proposed algorithms to merge tactile and visual

feedback for object localization and classification (Liu

et al., 2017; Luo et al., 2015a). The combination of tactile

and visual feedback has also been exploited by Yang and

Lepora (2017) to implement an object exploration strategy.

Therefore, it appears clear from the previous discussions

that tactile images have been proved to be a powerful tool

for classifying tactile data, although in most of the cases

they have been generated from planar tactile patches con-

taining sensors distributed on a regular grid with uniform

spatial resolution and generally covering a small area.

3. Tactile image formation from distributed

tactile sensors measurements

In this section, the problem of generating a tactile image

from a contact distributed on the robot body is addressed.

The proposed technique makes possible to create a picture

of the contact with minimal distortion with respect to the

original 3D shape.

3.1. Map the robot body onto a flat

representation

It is assumed to have a robot link covered with robot skin

(see Figure 2(a) as an example). The robot skin is here

intended as a set of N distributed pressure transducers

called taxels.

The position and the response of each taxel to a given

pressure stimulus on the robot body are assumed to be

known, possibly as the outcome of a calibration procedure.

Then it is possible to define the set T = ft1, . . . , tNg, where

the element ti 2 R
3 represents the 3D position of the ith

taxel; the set T can be intended as a sort of point cloud where

each taxel position ti is referred with respect to the reference

frame of the sensorized robot link (see Figure 2(b)).

A Delaunay triangulation (Fortune, 1997) applied to T ,

allows to us define a list of topological relations F between

adjacent taxels, thus creating a 3D mesh S�= (T ,F), repre-

senting a piecewise linear approximation of the robot link

shape S (see Figure 2(c)).

As proposed by Cannata et al. (2010), the idea is to

exploit the surface parameterization theory (Desbrun et al.,

2002) to transform the mesh S� into a 2D flattened repre-

sentation of the robot body, thus allowing to preserve sensor

locations, displacements, density, and proximity relation-

ships among the sensors. Formally, the flattening allows us

to define a piecewise linear mapping C : S ! M between

the robot body surface S and an isomorphic 2D (flat) sur-

face M , also called a tactile map in the following, defined

by a mesh of points M�= (fm1, . . . ,mNg,F) where the

elements mi 2 R
2 best preserve the properties of the mesh

S� minimizing the distortions from three to two dimensions.

Therefore, for each ti, a corresponding mi exists such that

ti = C�1 mið Þ. An example of the flattening transformation

applied to the mesh in Figure 2(c) is shown in Figure 3(a).

The method described above refers to a class of robot

skin systems composed of discrete taxels rigidly attached

to the robot links. There are several examples of technolo-

gies corresponding to this assumption (e.g., Cheung and

Lumelsky, 1989; Minato et al., 2007; Mittendorfer and

Cheng, 2011; Mizuuchi et al., 2006; Mukai et al., 2008;

Ohmura et al., 2006; Schmitz et al., 2011).

Remark 1. Conceptually the method could also be applied

to other robot skin technologies not based on discrete taxel

sensing, provided that the geometry of the sensor surface

is known and that the pressure at discrete points can be

Fig. 2. Steps for constructing the 3D mesh S�. (a) Real robot

link covered with robot skin. (b) Placement of the taxels obtained

from the spatial calibration of the skin. (c) The mesh S�

approximating the robot body shape S.
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computed or estimated. One example of these types of tac-

tile systems is that based on EIT technology (Tawil et al.,

2011).

Remark 2. It is also worth noting that the computation of

the map C can be performed off-line for contacts

expressed on a single link. Then, it does not pose signifi-

cant problems for real-time computations because, in prac-

tice, the map C is implemented as a look-up table. In the

case of more complex type of contacts involving more than

one link, the flattening should be computed, in principle, at

each given robot posture. These computational aspects are

beyond the scope of this article; however, suboptimal flat-

tening procedures addressing the problem of the relative

displacement of the taxels caused by robot motion has

been preliminary addressed in Albini and Cannata (2018).

3.2. Tactile image creation

The tactile map M� is a 2D entity representing the non-

uniform planar displacement of the taxels. In order to gen-

erate a tactile image, M� must be re-sampled. This is done

by superimposing a regular grid with R rows and C col-

umns on the tactile map M�, as shown in Figure 3(b). The

position of the grid point corresponding to row r and col-

umn c is defined as xrc.

During a contact, the robot skin senses the applied

pressure generating a set of measurements P = fp1, p2,
. . . , pNg, where pi 2 R is the measurement of the ith taxel.

Figure 4(b) represents the discrete pressure distribution of

the contact at a given time instant, obtained by associating

the tactile measurements P to the mesh S�. Similarly, P can

be mapped on M� generating a discrete pressure map (see

Figure 4(c)).

Remark 3. In Figure 4(b) and (c) all the taxels involved in

the contact are marked as red dots for clarity of visualiza-

tion. The actual sensor taxel response is assumed to be

continuous and not binary (as better detailed in

Section 7.1).

In order to compute the tactile image (see Figure 4(d)),

for each point of the grid xrc that lies in the triangle defined

by (mj,mk ,mh), a pressure value Krc is computed, using the

barycentric interpolation:

Krc =
Akjph + Ahjpk + Ahkpj

� �
A

where pj, pk , and ph are the pressure values of the taxels

associated with mj,mk ,mh, whereas A, Akj, Ahj, and Ahk

are the areas of the triangles defined by the vertices

(mj,mk ,mh), (mj,mk , xrc), (mh,mj, xrc), and (mh,mk , xrc),
respectively (see Figure 5).

Here Krc are the elements of a matrix K that can be

converted into a classical grayscale image, by scaling

each Krc value into a grayscale level Irc, with the follow-

ing formula:

Irc = 255
Krc

max (pi)

� �

Fig. 3. Steps for constructing the tactile image from a 2D mesh with a non-uniform placement of the taxels. (a) Robot tactile map

M�, obtained by flattening the 3D mesh S�. (b) A regular grid superimposed on M�. Barycentric interpolation allows the computation

of the pressure values corresponding to the nodes of the grid.

Fig. 4. Steps to obtain a tactile image. (a) Example of a physical

contact of a hand on the robot forearm. (b) Pressure

measurements mapped onto the mesh S� (actual intensity values

not shown for clarity). (c) Pressure measurements applied on the

tactile map M� (actual intensity values not shown for clarity).

(d) Resulting tactile image of the contact obtained with a grid of

247× 362 pixels.

Albini and Cannata 5



where b�c is the floor function and i = f1, 2, . . . ,Ng.
The conversion described previously generates a tactile

image normalized with respect to the maximum value mea-

sured in the current contact. This is motivated by the fact

that in this work we focus only on the shape profile gener-

ated during the contact. The normalization of K allows to

highlight the contact shape, making the classification and

segmentation of the pressure distribution independent from

the magnitude of the applied contact pressure. However, it

is worth noting that the normalization above is used for the

tactile image generation only, while the actual pressure

exerted is known from P (or in the interpolated form K).

4. Tactile images from human hand contacts

Some examples of human hand tactile images generated

with the discussed procedure are shown in Figure 6. As it

can be seen, in some images it is possible to identify the

shape of the human hand, while other pictures (e.g., Figure

6(b), (d), (f), and (g)), can be easily confused with the non-

hand contacts in Figure 7. However, it is quite evident that

the contact shape can vary significantly even in the images

where the hand is visible. For example, Figure 6(l) clearly

shows the human hand shape, whereas others just show a

portion of the hand or possibly only the fingertips. This is

due to various factors linked to the geometry of the robot

skin and to the characteristic of the interaction.

Aspects related to robot skin

� Unlike cameras, the spatial resolution of the tactile

elements composing the skin can be non-uniform.

Therefore, there could be areas poorly or even not

sensorized at all that could produce holes (loss of

information) in the resulting tactile image.
� The flattening operation introduces distortions depen-

dent on the ‘‘complexity’’ of the robot body shape.

This implies that the similar contacts applied in dif-

ferent positions can produce slightly different 2D tac-

tile images. Examples of this fact are given in Figure

6(h) and (k) where the fingers appear to be bent, or

in Figure 6(a) and (f) where the distortions are more

evident.

Aspects related to human interaction

� The tactile images are characterized by the type of

interaction: for example, while pushing away the

robot arm requires the whole hand, pulling the same

part mainly involves the fingertips; moreover, in

Fig. 6. Examples of tactile images generated by human subjects during different interactions with the robot. Some fingertips seem to

be cut (e.g., Figure 6(h)) because the person did not fully touch the sensorized area.

Fig. 5. Interpolation with the pressure values of nearby vertices.
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some actions not all the fingers or the palm are

involved (see Figure 6(e) and (k)).
� Depending on the human operator physical charac-

teristics (e.g., height, size of the hands, strength,

etc.) and their relative posture with respect to the

robot, each subject will interact with the robot body

with different intensities or configurations of the

hand; for example, Figure 6(i) and (j) represent a

similar contact geometry expressed with different

pressure distributions.

Owing to these variabilities, it is hard if not impossible

to define a general model of a human hand in contact with

a robot body.

For this reason, because our goal is to classify and seg-

ment the pressure distribution, it appears reasonable to use

machine-learning-based techniques. In particular, super-

vised methods have been considered.

5. Hand classification

In order to recognize whether the contact distribution is

generated by a human hand, the corresponding tactile image

is classified using machine learning techniques.

CNNs for image classification outperformed previous

approaches (Krizhevsky et al., 2012), proving their

robustness against image variations such as scale and

rotation (Farfade et al., 2015). Moreover, they have been

successfully employed to recognize hand gestures in real

time (Kim et al., 2008; Lin et al., 2014; Nagi et al., 2011)

and in tasks of tactile objects classification (Cao et al.,

2016).

In this work a CNN classifier trained from scratch for

recognizing the human hand touch, referred in the following

as HandsNet, is proposed. Then, because this CNN archi-

tecture is not specific for tactile measurements, but it works

on images, its performance will be compared with a pre-

trained model (Yosinski et al., 2014). Furthermore, because

several works discussed in Section 2.2 rely on the BoVW

model for classifying tactile images, also the performance

of this model is tested.

Table 1 shows the layers of the HandsNet model. The

first part is composed of four stacked convolutional

blocks, each containing three layers: a convolutional layer

with padding and stride equal to one, a batch normaliza-

tion layer, and, finally, a threshold operation performed

through a rectified linear unit (ReLU) layer (Goodfellow

et al., 2016). Then the output is downsampled with a

2× 2 MaxPool filter with stride 2 before being further

processed.

The differences among the four blocks are in the number

of filters of the convolutional layers and in the size of the

kernels. According to Goodfellow et al. (2016), the depth

of the network has been selected by increasing the number

of layers and evaluating the accuracy on the training set,

until a satisfactory performance has been obtained. The

output of the last max pooling operator is sent as an input

to a fully connected layer composed of 64 neurons (fc_1 in

Table 1). Two further fully connected layers containing 32

and 2 neurons, respectively, follow. Finally, the output is a

Fig. 7. Examples of tactile images not generated by hand contacts.
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two-way softmax unit computing a probability distribution

over two classes: hand and non-hand. In order to reduce

the overfitting, dropout layers have been inserted, by choos-

ing their probabilities according to Park and Kwak (2017)

who suggested applying a low drop rate in the initial layers

(usually less than 0:5).

The classification performance of HandsNet has been

compared with other state-of-the-art models used in image

classification. Focusing on pre-trained CNNs, there are

mainly two ways to adapt a model to a particular problem.

As the initial layers of the network are able to extract gen-

eric features (Yosinski et al., 2014), one possible solution is

to remove the classification layers and to use the network

as a feature extractor. Once the features are computed for

the new dataset, they can be used to train a new classifier

(e.g., a SVM).

The other approach is the fine-tuning, consisting of

replacing the classification layer with a new one having

the appropriate number of classes and then retraining

the network. During this phase, the strategy is to use a

very small learning rate to update the weights of the

initial layers. In contrast, a higher learning rate is

applied to train the final layers, by adapting them to

the new data.

Both methods have been considered in this study applied

to the VGG16 model presented in Simonyan and Zisserman

(2014). This model is pre-trained on the ImageNet dataset

(Deng et al., 2009), and it has been proved to be a very

good choice to initialize a classifier or to be used as a fea-

ture extractor (Guo et al., 2016).

Finally, the last model considered is the BoVW model,

already exploited for tactile image classification.

To summarize, the four following models will be evalu-

ated and compared.

� HandsNet: the model having the structure described

in Table 1.
� VGG16 + SVM: the features are extracted with the

pre-trained VGG16 and classified using a linear

SVM.
� VGG16 + ft: fine tuning on the VGG16 pre-trained

model.
� BoVW: BoVW model trained with SIFT features

(Lowe, 2004).

The loss function and the hyper-parameters used during

the training phase are detailed in the Appendix.

6. Hand segmentation

The goal of this section is to describe how to segment the

pressure distribution applied by a human hand, in order to

identify the fingers and the palm area. As tactile images are

used, this task can be seen as a problem of semantic seg-

mentation. In addition in this case, an approach using deep

learning has been considered. Indeed, the segmentation of

tactile images is specific, because the number of classes

could vary depending on the type of contact (e.g., the num-

ber of fingers touching the robot body could change).

Furthermore, the regions composing a part of the hand

could be not connected, as for the case of the palm contact

in Figure 6(l). Therefore, the classical techniques often

referred in the literature (such as k-means, watershed,

thresholds, etc.) do not appear to be suitable in this context

(Dhanachandra et al., 2015; Grau et al., 2004; Morar et al.,

2012).

Modern approaches presented in the past few years,

dealing with the problem of semantic segmentation, rely on

deep networks performing classification tasks (Guo et al.,

2018), where a label is associated with each pixel instead

of the whole image. In this article, two models have been

considered: the SegNet (Badrinarayanan et al., 2017) and

FCN (Long et al., 2015). Both are widely applied in the lit-

erature, representing the state of the art in semantic seg-

mentation (Garcia-Garcia et al., 2018).

Deep networks performing a pixel-wise classification

require a large amount of data to be trained from scratch.

Although we collected a dataset of human hand contacts

(as detailed in the next section), the pixel-wise classifica-

tion of the whole dataset is a time-consuming operation.

For this reason the convolutional layers of both models are

initialized with the weights of a VGG16 model trained on

ImageNet. In this way, the network can be trained using

less data, thus requiring just a portion of the whole dataset

to be labeled.

The two models have been trained in order to segment

and recognize the following six classes: Thumb, Index,

Middle, Ring, Pinkie, and Palm. The training details are

reported in the Appendix.

Table 1. Structure of HandsNet. The nomenclature conv_i

refers to a computational block formed by a convolutional layer

followed by a batch normalization and, finally, by ReLu.

Layer Shape

conv_1 32× 7× 7
max_pool_1 2× 2
dropout_1 (10%) —
conv_2 64× 5× 5
max_pool_2 2× 2
dropout_2 (20%) —
conv_3 128× 3× 3
max_pool_3 2× 2
conv_4 256× 3× 3
max_pool_4 2× 2
fc_1 64
dropout (60%) —
fc_2 32
dropout (50%) —
fc_3 2
softmax 2
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7. Dataset

In this section, the robot skin technology and the procedure

used to collect a dataset for training the machine learning

models are described.

7.1. Experimental setup

The robot skin used in this work is an engineered version

of the technology presented in Schmitz et al. (2011). In this

new version the thickness of the dielectric has been reduced

to 0.5 mm in order to improve the sensitivity of the sensor.

The skin is composed of interconnected modules forming a

network of sensors. Each single module (shown in Figure

8(a)) is implemented with a flexible PCB and contains 11

capacitive pressure transducers. A capacitance to digital

converter embedded on each module provides, for each

taxel, a response in the range 0–65,535.

As shown in Figure 2(a), the skin has been integrated

on a Baxter robot, covering the upper part of the forearm

with 768 pressure sensors. The final experimental setup is

shown in Figure 8(b), where the forearm is mounted on the

Baxter and covered with a black conductive fabric used as

a ground plane.

7.2. Data collection

The dataset has been collected performing an experiment

which involved voluntary human subjects.
1

The experiment

has been designed in order to capture the variabilities dis-

cussed in Section 4. The people were asked to interact with

the robot arm performing the following actions:

1. grasp the forearm;

2. grasp and torque the forearm clockwise (i.e., a twist

with respect to the forearm axis);

3. grasp and torque the forearm counter-clockwise;

4. push the forearm to the left;

5. push the forearm to the right;

6. push away the forearm;

7. pull the forearm.

Each action has been repeated twice in two different posi-

tions of the robot arm (see Figure 9). Each person inter-

acted with the robot without any constraint related to the

hand posture and intensity of the touch. After that, for five

repetitions, the user moved the robot arm to a different con-

figuration, performing one interaction of the list. In this

phase, the arm position, the relative posture with respect to

the robot, and the interaction type have been chosen by the

user.

Throughout the whole experiment, the robot is com-

manded to maintain its pose and the entire interaction has

been recorded. Each interaction produced a sequence of

samples consisting of sensors measurements collected with

a sampling time of 0:1 seconds. From this sequence, the

sample with the highest number of taxels activated by the

contact is selected to generate a single tactile image as

described in Section 3. The tactile images have been gener-

ated using a regular grid with a step size of 1 mm.

The robot tactile map (see Figure 3(a)) has a dimension of

247 mm × 362 mm, so the corresponding tactile image is

composed of 247× 362 pixels. Finally, in order to reduce

the noise and further highlight the contact shape, an ero-

sion followed by a dilatation of the image have been per-

formed (Beyerer et al., 2016), using a circular structural

element with two and four pixels of radius, respectively.

The experimental procedure discussed previously is the

same followed in Albini et al. (2017b). The difference is

that the number of people involved in the experiment has

been increased from 43 to 90. The subjects have different

gender (66:67% male, 33:33% female), handedness

(77:78% right, 22:22% left), and biometric characteristics

(Table 2). At the end of the data collection, 1,710 tactile

images of hands have been acquired.

In order to train the models described in Section 5, the

dataset has been completed by adding 1,820 non-hand

images produced from contacts with other human limbs or

generic objects. Contacts with objects have been collected

by the authors over time by touching the robot on the sen-

sorized area with objects having different properties such

as shape, size, material (e.g., plastic, metal, etc.), and soft-

ness. The contacts with human body parts (e.g., torso, arm,

forearm, shoulder, back) have been collected both by the

authors and by the subjects involved in the experiment

without using a formal protocol. In particular, all the users

have been asked to touch the robot five times with different

body parts other than the hand. In summary, about 35%

non-hand images have been created from contacts with

body parts and the remainder from contacts with objects.

Some examples are shown in Figure 7. As an outcome,

the dataset used to train the classifiers in Section 5 is com-

posed of 3,530 tactile images. The dataset has been split

into a training set (70%) and a test set (30%). In order to

evaluate the classifiers on previously unseen human sub-

jects, the test set has been created containing images gener-

ated from subjects not included in the training set.

The semantic segmentation models described in Section

6 require pixel-wise labeled tactile images as ground truth.

Fig. 8. Experimental setup. (a) Triangular module of the robot

skin. The diameter of each taxel is 3.5 mm, with a pitch of 8 mm

among nearby taxels. (b) Sensorized link mounted on the real

robot and covered with a conductive ground plane.

Albini and Cannata 9



According the discussion in Section 6, the initialization

with pre-trained weights allowed only a fraction of the

whole dataset to be used. In particular, 350 samples have

been picked from the whole dataset of human hands and

labeled pixel by pixel. The distribution of classes is shown

in Figure 10. In addition for this task, the dataset has been

split into a training set (70%) and a test set (30%).

Both datasets, for the classification and segmentation

tasks, are provided as supplementary material.

8. Experimental Results

This section reports the experimental results obtained with

the models in Sections 5 and 6 using the datasets acquired

as discussed in Section 7. The models have been trained on

Matlab running on a server equipped with two Intel Xeon

E5 CPUs and two Nvidia P100 GPUs with 16 GB of RAM

each. For each model, a set of hyper-parameters has been

selected and tuned. Details about the training and tuning

procedures are reported in the Appendix.

8.1. Human hand touch classification

The models trained with the parameters described in the

Appendix are evaluated on the test set. The results are given

in Table 3 where the mean accuracy and the classification

times are reported.

A more detailed analysis about the results obtained on

the test set is given in Tables 4–7, representing the confu-

sion matrices of the models.

It can be seen that HandsNet performs slightly better

than VGG16 + ft. The difference in terms of accuracy is

larger than 1% and it is faster with respect to VGG16 + ft.

It is worth noting that the model VGG16 + SVM obtained

good results in terms of accuracy and time, having only a

single hyper-parameter to tune (see Appendix), whereas the

BoVW produced lower performance with respect to the

other models.

An example of tactile images misclassified by the

HandsNet model is given in Figure 11, whereas the full list

of tactile images classified correctly and misclassified for

each model can be found in the provided supplementary

material.

Fig. 9. Two different positions taken by a human during the experiments: in front of the robot (a) and on its side (b).

Table 2. Summary of the characteristics of the subjects involved

in the experiment. The hand length is measured from the wrist to

the tip of the middle finger.

Hand length Age Weight Height

Min 15 cm 20 48 kg 154 cm
Max 22 cm 59 105 kg 194 cm
Mean 18 cm 26 70 kg 178 cm

Fig. 10. Histogram representing the average frequency of pixels

for segmented class. The colors shown in the histogram are also

used in the following to identify the segments in the tactile

images.
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8.2. Human hand touch segmentation

To evaluate the models described in Section 6, the four

metrics discussed in Long et al. (2015) have been consid-

ered. The first is the pixel accuracy Acc, which evaluates

the percentage of correctly classified pixels without consid-

ering their classes. The second is the pixel mean accuracy

mAcc, i.e., the percentage of correctly predicted pixels for

each class, averaged over the classes. The third metric is

the mean intersection over union mIoU, which computes

how well the sets of predicted classes overlap the ground

truth. Finally, owing to the presence of imbalances in the

dataset (see Figure 10), the frequency weighted intersection

over union fwIoU has also been considered, i.e., a weighted

version of the mIoU that takes into account the appearance

frequency of each class.

Table 8 reports the scores obtained on the test set for

each metric. SegNet model outperforms FCN providing

also a lower inference time. The confusion matrices in

Table 9 and 10 give detailed information about the pixel

accuracy for each class. A comparative example between

the two models is shown in Figure 12.

Focusing on SegNet, Figure 13(a)–(j) show a set of

segmented tactile images (first row), along with the mis-

classified pixels (second row). As it can be seen, the net-

work is able to correctly create the clusters under

different conditions. For example in Figure 13(a) and (b)

almost the whole hand is in contact with the robot body.

In contrast, Figure 13(c), (d), and (e) show contacts

where the fingers or palm are partially or completely not

involved.

The network can also correctly segment fingers com-

posed of non-connected regions as visible in Figure 13(f)

and (g), or when the fingers are bent owing to the distor-

tions introduced by the flattening (see Figure 13(h)). Figure

13(i) and (j) show instead two examples of poorly segmen-

ted tactile images with a mean pixel accuracy lower than

80%. The full list of images segmented using both models

is included as supplemental material.

9. Robustness and transferability analysis

Owing to repeated physical contacts, the elements compos-

ing a robot skin are prone to failures. The complexity and

the costs of the system could make it difficult or infeasible

to replace a damaged part. Therefore, an analysis of the

robustness of the proposed method is performed in the fol-

lowing, considering an increasing number of faulty tactile

elements.

Table 3. Performance of the models. For each model, the mean

accuracy on the test set and the time for classifying one tactile

image have been computed.

Accuracy Time (ms)

HandsNet 97.81% 12.6
VGG16 + SVM 95.40% 14.4
VGG16 + ft 96.69% 27.5
BoVW 94.03% 17.6

Table 4. Confusion matrix of the HandsNet model applied on

the test set. The mean accuracy is 97.81%.

Hand Non-hand

Hand 96.88% 1.28%
Non-hand 3.12% 98.72%

Table 5. Confusion matrix of the VGG16 + SVM model applied

on the test set. The mean accuracy is 95.40%.

Hand Non-hand

Hand 96.49% 5.69%
Non-hand 3.51% 94.31%

Table 6. Confusion matrix of the VGG16 + ft model applied on

the test set. The mean accuracy is 96.75%.

Hand Non-hand

Hand 98.64% 5.14%
Non-hand 1.36% 94.86%

Table 7. Confusion matrix of BoVW classifier applied on the

test set. The mean accuracy is 94.03%.

Hand Non-hand

Hand 96.49% 8.44%
Non-hand 3.51% 91.56%

Fig. 11. Examples of tactile images misclassified by HandsNet;

(a) and (b) non-human hand contacts classified as hands; (c) and

(d) human hand contacts classified as non-hands.
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In particular, two different types of failures have been

considered. In the first case, it is assumed that one or more

groups of contiguous taxels fail during a physical interac-

tion, causing a set of blind spots in the tactile image. In the

second case, the analysis is made assuming to eliminate a

random distribution of faulty taxels (likewise a salt and pep-

per noise) from the 2D triangulation, producing a tactile

map with lower spatial resolution.

To this aim, two experimental tests have been conducted,

simulating: (i) failures of groups of taxels (Test A); (ii) ran-

domly distributed faulty taxels (Test B). In order to bench-

mark these experiments we used the models HandsNet and

SegNet for the classification and segmentation task, respec-

tively, which performed best in Section 8.

Furthermore, an additional experiment (Test C) has

been conducted to analyze how the hand recognition sys-

tem behaves when applied on sensorized robot parts having

a significantly different geometry.

9.1. Test A

The goal of this experiment is to evaluate the performance

of the proposed method when groups of contiguous tactile

elements stop working, possibly at run time. In this scenario,

it is assumed that the response of the faulty taxels is zero

producing a sort of blind spot in the tactile map. The prob-

lem of detecting faulty taxels and to set the corresponding

Table 9. Confusion matrix of the SegNet model fed with the test set.

Thumb Index Middle Ring Pinkie Palm

Thumb 95.05% 0% 0% 0% 0.04% 0.92%
Index 0% 92.85% 2.59% 0.60% 2.10% 0.92%
Middle 0% 1.29% 90.34% 3.88% 0.25% 0.10%
Ring 0% 0.31% 5.07% 92.08% 1.03% 0.42%
Pinkie 0.38% 2.21 % 0.43% 2.56% 91.34% 1.02%
Palm 4.47% 3.33% 1.57% 0.88% 5.20% 96.61%

Table 10. Confusion matrix of the FCN model fed with the test set.

Thumb Index Middle Ring Pinkie Palm

Thumb 91.24% 0.75% 0.31% 0.23% 1.12% 0.90%
Index 0.81% 83.95% 3.31% 0.40% 3.51% 0.98%
Middle 0% 3.09% 78.41% 5.92% 1.30% 0.61%
Ring 0% 0.79% 9.91% 84.47% 1.48% 0.61%
Pinkie 0.6% 3.12% 1.62% 2.41% 80.10% 0.93%
Palm 7.88% 8.28% 6.42% 6.55% 12.47% 95.96%

Table 8. Metrics evaluated for both models on the test set.

Acc mAcc mIoU fwIoU Time (ms)

SegNet 93.37% 93.05% 89.17% 90.53% 63.37
FCN 88.82% 85.69% 80.14% 83.06% 75.13

(a) (b)

Fig. 12. Segmentation performed by SegNet and FCN on the

same tactile image. (a) SegNet output mAcc: 98.77%. (b) FCN

output mAcc: 94.86%. The first line shows the models output.

The colors of the various segments are the same as used in

Figure 10. The second line shows the tactile image in binary

scale with red pixels corresponding to misclassified regions.
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measurements to zero is part of the data acquisition and the

processing pipeline and it is beyond the scope of this article.

Several tactile maps affected by randomly generated pat-

terns of faulty taxels (i.e., corrupted maps) have been con-

sidered. For each contact, corresponding to images

belonging to the test sets described in Section 7, a new tac-

tile image has been regenerated using the corrupted map

for both the classification and segmentation tasks. Then,

the performance of the models has been evaluated on these

new test sets of images. The failure patterns have been cre-

ated using the following procedure: a taxel lying on the tac-

tile map is randomly selected as the center of the blind

spot, then the response of all the taxels within a distance of

�r is set to zero. The number of blind spots Ns corrupting a

tactile map can range from 1 to 4, whereas the radius of the

spots �r varies from 10 to 40 mm in steps of 10 mm. For

each one of the 16 combinations of these parameters, 10

random patterns have been generated, leading to a total of

160 corrupted maps. Examples of corrupted maps with dif-

ferent values of Ns and �r are shown in Figure 14. The full

list of corrupted tactile maps is included as supplementary

material.

In order to evaluate the performance in the case of the

segmentation task, the same blind spots appearing on the

test images have been transferred to the ground truth

images.

Tables 11 and 12 show the performance for each combi-

nation of Ns and �r, computed by averaging the results

obtained for the corresponding 10 random patterns. From

Tables 11 and 12 it can be seen that in the classification

case the system provides an acceptable performance even

with high levels of degradation. In the case of the segmen-

tation task, the proposed method is less robust, providing a

mean accuracy of about 80% in the worst case.

9.2. Test B

After a failure is detected and there is no contact occurring,

the faulty taxels can be removed from the tactile map and

the triangulation can be recomputed, thus generating a tac-

tile map with lower spatial resolution. In this experiment, a

salt and pepper faulty pattern is simulated, randomly remov-

ing from the tactile map a certain percentage �p of the taxels.

The goal is to benchmark the system, evaluating its depen-

dency on the spatial resolution of the tactile map. The per-

centage of removed taxels �p is a parameter which varies

from 10% to 70% with steps of 10%. Taxels are incremen-

tally removed. This means that the taxels lying on the tactile

map generated with 20% of faulty sensors are a subset of

the ones generated with 10%.

Once the taxels are removed from the tactile map, the

triangulation is recomputed. In addition in this case, 10 pat-

terns of broken sensors are randomly generated for each

percentage value; therefore, 70 different tactile maps have

been created and for each one a corresponding dataset of

tactile images has been generated. Figure 15 shows exam-

ples of the degradation obtained for different percentage of

(c) (d) (e)(a) (b)

(h) (i) (j)(f) (g)

Fig. 13. Examples of segmentation results. mAcc: (a) 98.88%; (b) 94.51%; (c) 98.00%; (d) 94.17%; (e) 100.00%; (f) 100.00%;

(g) 100.00%; (h) 96.87%; (i) 72.21%; (j) 41.51%. First line: SegNet output. Second line: thresholded tactile image with red areas

corresponding to misclassified pixels.
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removed taxels. The full list of downsampled tactile maps

is included as supplementary material.

The benchmark for the segmentation task requires

labeled ground truth images (see Section 7.2). As the tac-

tile maps have changed, to exactly evaluate the perfor-

mance of the segmentation model it would require all 70 of

the tactile images in the dataset to be labeled pixel-wise:

this is practically an infeasible operation. In order to over-

come this issue, for each low-resolution tactile images, the

following procedure has been applied. Given IT
H the seg-

mented ground truth image at full resolution (see Section

7), and given IO
L the corresponding tactile image generated

from a low-resolution map, a binary mask is computed as

IM = IT
H

� �B ^ IO
L

� �B

where �½ �B is the thresholding operator and ^ is the logical

AND operator. Then the actual low-resolution pair IL, I
T
L

� �
is computed as

IL = IO
L s IM

IT
L = IT

H s IM

where s represents the pixel-wise product. Figure 16 gra-

phically describes this process. Clearly, this is an approxi-

mation, because some of the pixels are not considered.

However, it gives a qualitative assessment of the results

obtained when lowering the resolution of the tactile map.

Tables 13 and 14 list the accuracy of the models

described in Section 8, evaluated on the low-resolution test

sets. Similarly to Test A, the scores are computed by aver-

aging the results obtained on the 10 datasets generated for

each �p value. In Table 14, the quantity pd represents the

mean percentage of pixels discarded from the low-

resolution image as a result of the masking operation

described previously.

The results obtained from this experiment show that the

system is robust with respect to changes in spatial resolu-

tion of the sensors. Indeed, even with 60% of taxels

removed, the system provides a classification accuracy

above 90%. In the case of the segmentation task, a mean

accuracy higher than 90% can be achieved considering

30% of faulty taxels.

9.3. Test C

To test the transferability of the proposed method, a custom

end-effector for the Baxter robot has been designed. The

new part is shown in Figure 17, along with its tactile map

and an example of a tactile image generated from a

human hand contact. As it can be seen, the contacts on

this tactile map are mapped generating tactile images

Fig. 14. Examples of corrupted tactile maps: (a) Ns = 1 and

�r= 40; (b) Ns = 3 and �r= 20; (c) Ns = 4 and �r= 30; (d) Ns = 3

and �r= 40. Red areas corresponds to contiguous regions of

faulty taxels.

Table 11. Test A: classification. Mean scores obtained over the

10 test sets for each combination of number of spots and radius

values.

Ns �r (mm) Accuracy

1 10 97.81%
1 20 97.50%
1 30 97.61%
1 40 97.21%
2 10 97.68%
2 20 97.28%
2 30 96.88%
2 40 95.18%
3 10 97.73%
3 20 97.00%
3 30 96.16%
3 40 93.95%
4 10 97.67%
4 20 96.78%
4 30 94.42%
4 40 89.74%

Table 12. Test A: segmentation. Mean scores obtained over the

10 test sets for each combination of number of spots and radius

values.

Ns r Acc mAcc mIoU fwIoU

1 10 93.18% 92.58% 88.66% 90.33%
1 20 92.81% 92.07% 88.03% 89.91%
1 30 92.48% 91.33% 87.36% 89.59%
1 40 91.53% 90.03% 85.89% 88.58%
2 10 93.14% 92.56% 88.63% 90.28%
2 20 92.61% 91.76% 87.72% 89.67%
2 30 91.70% 90.40% 86.04% 88.65%
2 40 90.22% 88.63% 83.96% 87.06%
3 10 93.03% 92.42% 88.44% 90.16%
3 20 91.81% 90.66% 86.05% 88.68%
3 30 90.05% 88.05% 83.43% 86.90%
3 40 86.42% 82.47% 77.51% 83.05%
4 10 92.90% 92.27% 88.31% 90.03%
4 20 92.01% 90.99% 86.81% 89.06%
4 30 88.76% 85.89% 81.03% 85.42%
4 40 84.15% 80.20% 74.40% 80.52%
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completely different from the ones used for training the

models in Section 5.

Considering the classification task, to validate the

HandsNet model on this new geometry, a new dataset is

required. The end-effector has been attached to the robot

and a new dataset has been collected following the same

procedure described in Section 7.2. These new experiments

(c) (d) (e)(a) (b)

Fig. 15. Examples of downsampled tactile maps and tactile images generated for different values of �p: (a) original; (b) �p= 10%;

(c) �p= 30%; (d) �p= 50%; (e) �p= 70%. The first row shows the tactile maps, whereas the remaining rows show the level of

degradation of the tactile images generated from the corresponding tactile map.

Fig. 16. Process for generating data to evaluate the segmentation

model with low-resolution tactile maps. In the example, the hand

image is generated from a tactile map where 40% of the taxels

have been removed.

Table 13. Test B: classification Mean scores obtained over the

10 test sets for each value of �p.

�p Accuracy

10% 97.33%
20% 96.98%
30% 96.63%
40% 95.93%
50% 94.79%
60% 92.67%
70% 88.67%

Table 14. Test B: segmentation. Mean scores obtained over the

10 test sets for each value of �p.

�p Acc mAcc mIoU fwIoU pd

10% 92.75% 91.69% 87.83% 89.85% 6.05%
20% 92.59% 91.16% 87.31% 89.65% 11.47%
30% 92.17% 90.54% 86.62% 89.21% 16.40%
40% 91.77% 89.55% 85.69% 88.79% 20.88%
50% 90.71% 87.62% 83.48% 87.43% 25.41%
60% 89.13% 84.88% 80.23% 85.54% 30.58%
70% 84.83% 78.20% 72.83% 80.84% 35.87%
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involved 12 people, leading to a new dataset composed of

228 hand images and 250 non-hand images.

A first experiment consisted in feeding the model con-

sidering the whole amount of images as a new test set. This

produced very poor results, with a mean accuracy below

53%. As it can be seen from Table 15, almost all the hand

contacts are misclassified, which is reasonable, since the

human hand shape is mapped in a completely different way

with respect to the original case.

A possible solution to obtain better results would be to

perform fine tuning, allowing the model to learn the newly

introduced distortions. Thus, the new dataset has been split

into training and test sets using the same modalities

described in Section 7.2. Then a fine-tuning of the

HandsNet model has been performed using the training

set. The model has been trained on the new data for 120

epochs using a batch size of 128 and a learning rate of

0.01, which has been halved after 60 epochs. The learning

rate applied during the training has been reduced of a 0.1

factor in the first two convolutional layers. The training

process led to a mean accuracy higher than 93%. In this

phase an intensive hyper-parameters tuning procedure has

not been performed. Table 16 shows the confusion matrix

of the model fed with the test set.

10. Conclusions

In this work, a technique allowing to discriminate between

human hand contacts and other generic type of contacts has

been proposed. Furthermore, it has been shown that human

hand contacts can be segmented with a good accuracy to

recognize the various hand parts involved into the contact.

With respect to the existing literature, mostly based on

the processing of planar tactile measurements, our approach

is based on the transformation of tactile pressure measure-

ments obtained from taxels non-uniformly placed on curved

robot body parts. This leads to a 2D tactile image which

can be processed and classified using state-of-the-art image

processing techniques.

The results of this article can have a major impact in

the domain of pHRI because the recognition of a human

hand contact can be seen as a voluntary interaction

aimed at starting a cooperation. Moreover, the possibil-

ity of segmenting the pressure distribution can provide

relevant information about the role of the various part of

the hand involved in the interaction. An example is

given in Figure 18, where it can be seen that, after the

segmentation operation, the information related to

the contact distribution can be extracted for each part of

the hand involved in the contact.

Furthermore, the robustness and the transferability of

the proposed method have been analyzed, which, to the

best of the authors’ knowledge, it is a novel contribution

with respect to current tactile processing/classification

literature.

The models used in the classification tasks have been

implemented using Matlab 2018b, with acceptable time

performance with respect to the sampling rate of the tactile

images. This suggests that an efficient implementation of

the models, using optimized libraries, such as Tensorflow

(Abadi et al., 2015), can further speed-up the computation.

It can be observed that the proposed approach is not tied

to a specific technology. Indeed, in order to create a tactile

image, the major requirement is to have a discrete distribu-

tion of contact measurements on the robot body.

Fig. 17. The sensorized robot end-effector used in this

experiment. (a) Robot end-effector partially covered with tactile

sensors. (b) The robot end-effector tactile map. (c) Example of a

tactile images generated by a human touching the end-effector.

Table 15. Confusion matrix of the HandsNet model fed with

the images generated from the robot end-effector tactile map. The

mean accuracy is 52.92%.

Hand Non-hand

Hand 8.71% 2.87%
Non-hand 91.29% 97.13%

Table 16. Confusion matrix of the HandsNet model after the

fine-tuning procedure. Results are computed on the test set of

tactile images generated from contact occurring on the robot end-

effector. The mean accuracy is 93.57%.

Hand Non-hand

Hand 92.41% 5.26%
Non-hand 7.59% 94.74%
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The results of this article represent the stand point for fur-

ther research. First by considering the problem of multiple

contacts. Second, addressing the problem of recognizing the

type of pHRI (e.g., push, pull, twist, etc.) by analyzing the

contact dynamics considering sequences of tactile images.
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Appendix. Training details

This appendix reports information about the training proce-

dure and the selection of hyper-parameters.

The methodology adopted to find a good set of hyper-

parameters is the same among the models. In particular,

each model has been subjected to a tuning procedure,

where the effects of several possible combinations of hyper-

parameters have been investigated. Each combination has

been evaluated using five-fold cross-validation on the train-

ing data (Goodfellow et al., 2016). During the process, a

dataset augmentation is performed on the training folds:

the images have been flipped both horizontally and
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vertically, increasing the number of images in the training

fold by a factor of three.

During the experiments, it was observed that the tactile

image size has an effect on the model performance. Thus,

we decided to treat it as a hyper-parameter to be tuned.

Images at different resolution have been tested and in

the end that with a resolution of 68× 100 has been kept

because it provided the best scores among the models.

As discussed in Section 3, the shape of the tactile

images is 247× 362. In the case of the HandsNet, BoVW,

and SegNet we can directly resize and feed images of

68× 100 pixels. On the other hand, the VGG16 + SVM,

VGG16 + ft, and FCN, require an input of 224× 224. In

order to work with inputs having the same resolution, the

tactile images of 68× 100 pixels have been padded with

zeros in order to fit the shape of 224× 224.

A.1. Human hand touch classification

The two networks have been trained in order to minimize

the cross-entropy loss (Goodfellow et al., 2016), using the

hyper-parameters reported in Table 17, where lr is the ini-

tial learning rate and lrdf is a drop factor applied to the

learning rate every lrde epochs. The other hyper-parameters

are the batch size, and the number of training epochs.

For what concerns the VGG + ft net, the learning rate,

defined by the parameters reported in Table 17, has been

applied only in the classification layers. Furthermore, dur-

ing the training process, the value of the learning rate has

been decreased of a 0.1 factor, to fine tune the first three

convolutional layers of VGG16.

In the VGG + SVM model, the network works as a fea-

ture extractor, so there is no need for training. The classifi-

cation is performed using a linear SVM, which has been

selected by tuning the penalty parameter C. The classifier

with C = 0:25 has been selected, because it provided the

highest accuracy.

In the case of BoVW model, the hyper-parameters con-

sidered are length of the SIFT descriptors L (Lowe, 2004)

and the vocabulary size K (Kato and Harada, 2014), which

have been selected as 128 and 80, respectively.

A.2. Human hand touch segmentation

As can be seen in Figure 10 the class distribution is not uni-

form, indeed most of the pixels (almost 40%) are labeled as

Palm. A non-balanced dataset can cause problems during

the training phase because the learning process can be

biased in favor of the Palm class. As suggested in the litera-

ture (Badrinarayanan et al., 2017; Sudre et al., 2017) there

are two efficient strategies to deal with an imbalanced data-

set. One solution is to use a cross-entropy loss weighted

using the median frequency balancing. Another approach

is to use the dice loss function. Both methods have been

tested. In the case of SegNet, the weighted cross-entropy

loss performed better, thus it has been selected for training

the model. In contrast, the dice loss produced better results

with the FCN model.

As described in Long et al. (2015) there are three versions

of the FCN, namely FCN-32s, FCN-16s, and FCN-8s. The

difference among them is the size of the stride used in the

classification layer. According to Long et al. (2015) the 8s

version provides slightly more accurate predictions. In this

work, we trained the FCN-16 because with our data we did

not find any improvement with respect to use FCN-8s, which

has a higher computational cost.

The hyper-parameters selected after the tuning procedure

are reported in Table 18. During the training, the models

have been fine-tuned by reducing the applied learning rate

of a 0.1 factor in the VGG16 convolutional layers, slightly

adapting their weights to the new data.

Table 17. Hyper-parameters used to train the networks for the

classification task.

Model lr lrdf lrde Batch size Epochs

HandsNet 0.01 0.2 40 64 80
VGG + ft 0.1 0.5 40 32 80

Table 18. Hyper-parameters used to train the networks for the

semantic segmentation task.

Model lr lrdf lrde Batch size Epochs

SegNet 0.1 0.1 90 16 100
FCN 0.1 0.15 80 8 130
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