
A Novel Framework for Visualizing Declarative

Process Models

Michael Hanser, Claudio Di Ciccio and Jan Mendling

Vienna University of Economics and Business

michaelhanser@gmx.net, {claudio.di.ciccio, jan.mendling}@wu.ac.at

Abstract The declarative approach to business process modeling has

been introduced to deal with the issue of managing flexible processes.

Instead of explicitly representing all the allowed enactments of a process,

the approach describes the constraints that limit its behavior. However,

current graphical notations for declarative processes are prone to be

difficult to understand, thus hampering a widespread usage of the ap-

proach. To overcome this issue, we present a novel notation framework

for visualizing declarative processes, which is devised in compliance with

well-known notation design principles.

1 Introduction

Caused by an ever increasing demand for business processes to remain flexible,

a declarative process modeling approach seeks to address the issue of current

modeling languages lacking support for highly flexible scenarios [13]. Given

the fact that a declarative approach is considered less intuitive and tougher to

understand [6], a declarative modeling language and notation capable of conveying

concepts in a quick and straight-forward manner is necessary. Current state of

the art solutions struggle with effectively communicating explicit principles of

how to interpret a declarative process model. Owing to the results in existing

literature [6,7], a new notation, facilitating understandability and maintainability,

is needed. The novel notation outlined in this paper is designed to ease the process

of understanding declarative process models. Being developed in compliance with

respected notation design principles [12], it offers a set of consistent and explicit

mechanisms to effectively communicate semantic constructs. Our framework

contributes to existing literature as it builds upon, refines and extends the

notation approaches presented in [13,3,4,5].

This paper is structured as follows. Section 2 summarizes Declare and nota-

tional design. Section 3 describes the proposed notation and Section 4 discusses

its notational quality. Section 5 concludes the paper.

2 Background

In contrast to the widely-used imperative paradigm of process modeling, a

declarative modeling approach does not impose a strict order on activities, but



limits their behavior by using constraints. In fact, a declarative model allows

any order, repetition or absence of activities, as long as it does not violate the

constraints. As each constraint can either evaluate to true or false during the run

time, the state of a process instance is accepting, and consequently considered

complete, if and only if all constraints in the model evaluate to true. Declare

offers a predefined set of constraint templates, each of them consisting of a unique

name, a graphical representation and a formal semantic specification in terms of

Linear Temporal Logic (LTL) [14,1,2].

Constraints are divided into (i) Existence constraints, specifying the cardi-

nality of a task or the first and last activity in a trace; (ii) Relation constraints,
making an activity’s behavior depend on the one of another task; (iii) Mutual
Relation constraints, which build upon Relation constraints but further cover

the converse behavior, i.e. both activities depend on their respective others; and

(iv) Negation constraints, representing negated versions of Relation or Mutual

Relation constraints. Participation(a), for instance, is an Existence constraint

specifying that activity a must be performed at least once. Similarly, AtMo-
stOne(a) prescribes that this activity can only be performed either zero times or

once. Existence constraints are also used to mark the first and last activities in a

process instance. Init(a) states that task a must be the first activity to be executed

in a process instance. Likewise, the constraint End(a) indicates a as the very last

activity to be performed. Response(a,b) is a Relation constraint, which prescribes

that activity a must eventually be followed by activity b. Dually, Precedence(a,b)
imposes that b must be preceded by a. Succession(a,b) depicts a combination of

the former and the latter, i.e. every activity a must be succeeded by b and every

activity b must be preceded by a, thus being a Mutual Relation constraint. These

three constraints can be further strengthened by using the Alternation and Chain
limitation. The concept of Alternate constraints indicates that the activating

task can not reoccur without having the other task executed in between. For

instance, AlternatePrecedence(a,b) forces activity b to be preceded by a, whilst

allowing no further executions of b until a is performed again. Similarly, Chain
constraints represent an even stricter limitation as they prohibit the execution

of any other activity in between. E.g., ChainSuccession(a,b) forces activity a to

be directly preceded by activity b and vice versa. Furthermore, certain Relation

constraints signify the correlated execution of activities, with no restriction on

their temporal order. RespondedExistence(a,b), for example, specifies that the

execution of activity a also requires activity b to happen at some point in the

process. Yet it does not matter whether this is before or after a occurs. Building

upon the latter, CoExistence(a,b) also includes the converse behavior, thereby

implying that the occurrence of a or b always implies the occurrence of one

another. Ultimately, Negation constraints are based on existing Mutual Relation

constraints, depicting their respective negated form. The NotSuccession(a,b)
constraint, e.g., states that activity a must never be succeeded by b and b must

never be preceded by a – hence stating the opposite of Succession(a,b). Likewise,

NotChainSuccession(a,b) states that a and b cannot occur one after the other, as



opposed to ChainSuccession(a,b). NotCoExistence(a,b) imposes that a and b are

not allowed to occur in the same trace.

Visual notations such as the one of Declare can be evaluated using Moody’s

principles of cognitive effectiveness, which relate to the speed, ease and accuracy

by which the human mind can process a visual notation [9]. Cognitive effectiveness

is established as the primary design goal or dependent variable for comparing

and evaluating visual notations and is thus suitable for making judgements on

the goodness of notations. In order to facilitate designing cognitively effective

notations, a set of principles is defined relating to the way the visual vocabulary,

grammar and semantics should be combined to achieve a good visual notation

[12]. In fact, Moody’s principles have been demonstrated to positively influence a

notation’s perceived usefulness [8]. These principles are:

1. Semiotic Clarity: semantic constructs have a 1:1 correspondence with re-

spective graphical symbols.

2. Perceptual Discriminability: symbols can be clearly distinguished.

3. Semantic Transparency: graphical representations suggest their meaning.

4. Complexity Management: explicit mechanisms for dealing with complex-

ity exist.

5. Cognitive Integration: the integration of information from different dia-

grams is supported.

6. Visual Expressiveness: full range and capacities of visual variables is used.

7. Dual Coding: text complements graphical symbols.

8. Graphic Economy: the number of symbols is cognitively manageable.

9. Cognitive Fit: different visual dialects exist for different purposes.

Various declarative notations have been defined up until now. Van der Aalst

et al. propose to visualize declarative models by means of static diagrams that

represent the entire process scheme at once [13,3]. Their notation, based on

representing Declare constraint templates, has become the de-facto standard for

visualizing declarative process models. Even though the notation’s visual syntax

facilitates a compact illustration of a declarative process model, its semantics

tend to be difficult to understand at first sight. Especially when process models

increase in size and complexity, as is common in the process mining field, the

Declare notation discloses lack of providing a clean and comprehensible overview.

Consequently, this increases the mental effort necessary for a user to process and

interpret such a model. Given the shortcomings of the original Declare notation

[6] in terms of understandability, alternative notations are needed.

3 Notation

Di Ciccio et al. [4] propose a visualization of declarative process models on the

basis of Declare constraint templates [13,3] by means of three complementary

views: (a) the global view, depicting a static bird-eye sketch of a process scheme;

(b) the local view, focussing on one activity at a time; and (c) the dynamic
view, visualizing the current state of a running instance. With the notation



primarily being devised for representing mined processes of e-mail collections, it

is designed to handle larger and more complex process models. However, since

the visual elements between these views do not remain consistent, understanding

the connection between them can be a tough task.

Building upon the work in [4,5], the new notation employs two corresponding

views on a process in a similar manner: (i) a static, multi-level global view,

illustrating the entire process at once and (ii) a local view, focussing on one

activity and its directly related constraints and implications at a time.

The static multi-level global view serves as a way of regarding an entire

process scheme at once. Within this view the notation provides for different

levels of granularity, i.e. we abstract away from various types constraints and

merely indicate positive or negative relations between activities, thus increasing

readability at first sight. For the sake of conciseness, this paper focusses on the

more detailed “standard” granularity level of the global view. It bases its rationale

on a network topology-like alignment of activities, which are accordingly depicted

by means of circular elements and complemented by full text identifiers. Relation

constraints are embodied by utilizing solid lines and cursors between activities,

whereas Existence constraints are delineated by text annotations within the

activity element. The notation illustrates constraints prescribing the cardinality

of a task, e.g. Participation(a) or AtMostOne(a), by adding text to the upper

half of the circular element. If the constraint specifies the first or last activity of

a process, Init(a) or End(b) respectively, it is indicated by an annotation in the

lower left or right part of the element.

A visualized constraint involving a dashed line always implies its belonging to

the group of Negation constraints. The notation illustrates Relation constraints

between activities by using solid cursors for positive constraints and empty cursors

for Negation constraints, each of them connecting two activities per constraint.

Relation constraints are perceived as “if-then” statements: The “if-part” or

activation part is complemented by a cursor, being placed pointing either inwards
or outwards of the activating task circle, depending on the sequence-verse of the

constraint. This suggests that, if the cursor points inwards, the respective target

activity (“then-part”) must have been executed before the activation task can be

performed. Conversely, if the cursor points outwards, the target activity must

happen after the activation task is completed. Applying this rationale to the

Response(a,b) constraint consequently implies that, since a is the activation task

of the constraint, the cursor is placed at this very activity. Moreover, as it specifies

that the respective target activity b must eventually be performed afterwards, the

cursor is placed outwards on the activity border. Contrarily, in order to illustrate

the Precedence(a,b) constraint, the cursor is now located at activity b, pointing

inwards. The combination of both constraints, i.e. Succession(a,b), is depicted

by joining the distinctive elements of their respective graphical representations.

Figure 1 illustrates the graphical notation of Declare constraints.

In case a constraint allows executions of further tasks in between, these

optional activities are visualized by means of smaller circles and complemented

by a Kleene star (∗), referring to “any other activity”. If the constraint does



*a b
Succession(a,b)

AlternatePrecedence(a,b)

*a I

b

*a b
Precedence(a,b)

a
END

End(a)

*a b
CoExistence(a,b)

*a b
NotSuccession(a,b)

a0..1
AtMostOne(a)

a b
ChainSuccession(a,b)

*a b
Response(a,b)

a
INIT

Init(a)

*a b
RespondedExistence(a,b)

*a b
AlternateResponse(a,b)

I

a b
ChainResponse(a,b)

a b
ChainPrecedence(a,b)

*a b
AlternateSuccession(a,b)

I I

a b
NotChainSuccession(a,b)

*a b
NotCoExistence(a,b)

Participation(a)

a1..x

Figure 1. Constraint templates in Declare and their corresponding visual notation.

not prescribe a particular sequence, as in the case of RespondedExistence(a,b)
or CoExistence(a,b), the notation employs two connected cursors, thus forming

a diamond, which is placed at the activation part of the constraint. In order to

indicate an Alternate limitation, the Roman symbol for 1 (“I”) is added to the

activation part of the constraint. This acts as a counter, stating that this very

activity is allowed to only happen once until the other one is performed. Finally,

Chain variations are depicted by leaving out optional activity circles, thereby

specifying that no further activity must be performed in between. The process

model in Figure 2 depicts an example of the global view.

In contrast to the panoramic global view, the local view only focuses on one

activity and its directly related constraints at a time. As shown in Figure 3, it

aims at providing a clear picture of what can, must or must not happen before

and after the execution of the examined activity. As the local view’s objective is

to suggest a possible order of activities, two parameters are taken into account:



PerformX ray

*
PerformsurgeryExaminepatient

INIT

*CheckX ray risk
1..x

Applycast*
*

Removecast*

Prescriberehabilitation*

Performreposition

I

Figure 2. The enhanced global view level of a fracture treatment process.

time and implication. Based on the approach in [4,5], its rationale is inspired by

the two-dimensional Cartesian coordinate system. With time being put on the

x-axis, a timeline intuitively leads from left (past) to right (future), while the

activity to be analyzed is put at the origin. Pointing from top to bottom, the

upper part of the y-axis contains all activities that imply the activity located

at the center. Conversely, the lower part of the y-axis encompasses all activities

that are implied by the activity located at the origin.

4 Discussion

This section briefly discusses the implications of our findings with respect to

Moody’s nine principles [12] of designing cognitively effective visual notations.

The principle of graphic economy [12] is applied, i.e., the number of different

symbols is being kept as low as possible in order to stay cognitively manageable.

This principle explains, e.g., why optional unspecified activities (labeled with ∗)

are being illustrated by means of the same geometrical shape as regular activities.

The principle of cognitive integration [12] motivates the usage of the same set

of graphical elements both in the global and the local view. This mechanism

supports the integration and enhancement of information from the former to the

latter. By employing a rationale with corresponding arrowheads for visualizing

“if-then” statements, the notation builds upon using an explicit mechanism for

dealing with complexity, as described in the principle of complexity management
[12]. Moreover, employing this rationale applies to the principle of semiotic
clarity [12], since a user can easily trace back how each graphic representation is

constructed on the basis of its respective semantic construct. Finally, the same

principle is considered in delineating Alternate constructs as they are indicated

by adding a counter of 1, thereby specifying that an activity can be involved once

in every alternation. Note that, by contrast, the standard notation of Declare

[13] does not exploit explicit principles to increase comprehensiveness.



I

time

implication
implied by

implying

before after

Performreposition

Applycast

Performsurgery

*

*

*
PerformX ray

*CheckX ray risk

Figure 3. Design rationale of the local view examining the activity perform X ray.

Utilizing circular elements for depicting activities supports the alignment of

activities in a more space saving and tidy way, hence enhancing readability and

understandability. As cursors can easily be moved alongside the circular border,

their connecting lines’ bending points can be reduced to a minimum.

5 Conclusion

In this paper, we presented a novel conceptual framework for representing declar-

ative process models on the basis of Declare constraint templates [3]. As this work

is only concerned with the design of the notation, future research investigating

and evaluating the framework is needed. In the context of process mining, the

possibility of scaling the size of activity circles could be used to emphasize reoc-

curring activities and constraints in a model, as first addressed in [10]. Studies

on the guidelines of declarative process modeling could be established, as already

existing for imperative languages [11].

References

1. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on ltl on finite traces:

Insensitivity to infiniteness. In: Proceedings of the 28th AAAI Conference on AI.

pp. 1027–1033 (2014)

2. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on

finite traces. In: Proceedings of the 23rd international joint conference on AI. pp.

854–860. AAAI Press (2013)



3. van Der Aalst, W.M., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing

between flexibility and support. Computer Science-Research and Development

23(2), 99–113 (2009)

4. Di Ciccio, C., Mecella, M., Catarci, T.: Representing and visualizing mined artful

processes in mailofmine. In: USAB. pp. 83–94. Springer (2011)

5. Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.: Mailofmine –

analyzing mail messages for mining artful collaborative processes. In: SIMPDA. pp.

55–81. Springer (2011)

6. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zu-

gal, S.: Declarative versus imperative process modeling languages: The issue of

understandability. In: Enterprise, BP and IS Modeling, pp. 353–366. Springer

(2009)

7. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: Declar-

ative versus imperative process modeling languages: The issue of maintainability.

In: BPM Workshops. vol. 43, pp. 477–488. Springer (2009)

8. Figl, K., Derntl, M.: The impact of perceived cognitive effectiveness on perceived

usefulness of visual conceptual modeling languages. In: Conceptual Modeling–ER

2011, pp. 78–91. Springer (2011)

9. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand

words. Cognitive Science 11(1), 65–100 (1987)

10. Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: Efficient discovery of understand-

able declarative process models from event logs. In: Advanced IS Engineering. pp.

270–285. Springer (2012)

11. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines

(7PMG). Information and Software Technology 52(2), 127–136 (2010)

12. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing

visual notations in software engineering. Software Engineering, IEEE Transactions

on 35(6), 756–779 (2009)

13. Pesic, M., Van der Aalst, W.M.: A declarative approach for flexible business

processes management. In: Business Process Management Workshops. pp. 169–180.

Springer (2006)

14. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,

18th Annual Symposium on. pp. 46–57. IEEE (1977)


