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Abstract 

Background:  Despite the efficacy of immune checkpoint inhibitors (ICIs) only the 20–30% of treated patients pre-
sent long term benefits. The metabolic changes occurring in the gut microbiota metabolome are herein proposed as 
a factor potentially influencing the response to immunotherapy.

Methods:  The metabolomic profiling of gut microbiota was characterized in 11 patients affected by non-small cell 
lung cancer (NSCLC) treated with nivolumab in second-line treatment with anti-PD-1 nivolumab. The metabolomics 
analyses were performed by GC–MS/SPME and 1H-NMR in order to detect volatile and non-volatile metabolites. 
Metabolomic data were processed by statistical profiling and chemometric analyses.

Results:  Four out of 11 patients (36%) presented early progression, while the remaining 7 out of 11 (64%) presented 
disease progression after 12 months. 2-Pentanone (ketone) and tridecane (alkane) were significantly associated with 
early progression, and on the contrary short chain fatty acids (SCFAs) (i.e., propionate, butyrate), lysine and nicotinic 
acid were significantly associated with long-term beneficial effects.

Conclusions:  Our preliminary data suggest a significant role of gut microbiota metabolic pathways in affecting 
response to immunotherapy. The metabolic approach could be a promising strategy to contribute to the personal-
ized management of cancer patients by the identification of microbiota-linked “indicators” of early progressor and 
long responder patients.
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Background
Despite the efficacy of immune checkpoint inhibitors 
(ICIs) only 20–30% of treated patients present long term 
advantages [1].

Although immunohistochemistry detection of pro-
grammed death-ligand 1 (PD-L1) has been proposed 
as a predictive factor in both treatment of naïve and 
refractory non-small cell lung cancer (NSCLC) patients 
receiving pembrolizumab, atezolizumab or nivolumab, it 
presents several limitations such as expression dynamics, 
different antibody clones used and sampling choice [2].

Recently, tumor mutational burden (TMB) has 
emerged as an independent biomarker of ICIs out-
comes across multiple cancer types, including NSCLC. 
Carbone et  al. [1] recently showed that high TMB, 
calculated by whole exome sequencing (WES), is 
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associated with improved overall response rate (ORR) 
(46.8% vs. 28.3%) and median progression-free survival 
(mPFS) [9.7 vs. 5.8  months; hazard ratio for disease 
progression or death (HR): 0.62; 95% confidence inter-
val (CI), 0.38 to 1.00] in a group of untreated advanced 
NSCLC receiving nivolumab compared to platinum 
chemotherapy treated patients (Checkmate 026 Clini-
cal Trial) [3], and it was proposed as biomarker in 
the Checkmate 227 study (ClinicalTrials.gov number, 
NCT02477826) [4]. However, TMB presented some 
limitation consisting for example in the cut-off score 
and in the technique adopted i.e., WES or Comprehen-
sive Genomic Profiling (CGP). Furthermore, additional 
biomarkers are under investigations such as microsatel-
lites [5], interferon signatures [6], T cell repertoire [7], 
major histocompatibility complex (MHC) status [8], 
and immune infiltrates [9].

In the context of multiple available biomarkers the 
changes occurring in the microbiota composition and 
metabolism have been proposed as a mechanism poten-
tially affecting the response and the toxicity to immuno-
therapy [10].

Recently, several studies have confirmed the relevant 
role of the gut microbiota in the modulation of immune 
functions and its correlation with several diseases, 
including cancer [11]. In particular, gut–brain and gut–
liver axes have already been investigated, while the rela-
tion between gut–lung axis has been newly suggested 
[12], in particular the hypothesis that changes in the gut 
microbiota could influence the lung microbiota, and vice 
versa (cross talk among microbial communities). How-
ever, the local and systemic influence of the gut microbi-
ota, the influence on the lung microbiota and its products 
have not yet been fully assessed [13]. In fact, little is 
known about the hypothetical connection when looking 
at the world’s number one cause of death from cancer—
lung cancer [14].

To date, the abundance of Bifidobacterium species (i.e., 
cocktail including Bifidobacterium breve and Bifidobacte-
rium longum), has been observed to increase anti-tumor 
immunity and facilitate anti PD-L1 activity in germ 
free mice; moreover antibiotic treated mice presented 
impaired response to anti-Cytotoxic T-Lymphocyte Anti-
gen 4 (CTLA-4) [15].

In melanoma patients treated with antiCTLA4 the 
presence of Bacteroides seems to have a protective role in 
terms of gastrointestinal toxicity [16].

Recently, it was also demonstrated that melanoma 
patients carrying gut microbiota enriched in Faecali-
bacterium prausnitzii presented longer progression 
free survival (lPFS) and overall survival (OS) [17], while 
in patients affected by NSCLC and renal cell carci-
noma (RCC) patients treated with anti-PD-1 an higher 

distribution of Akkermansia muciniphila were assessed 
in responders compared with non-responders [18].

Despite promising results, the characterization of gut 
microbiota lacks full functional information about the 
relationship between the host–diet–microbiota axis, for 
this reason the study of metabolic profile of microbiota 
may actually provide new insights to overcome this gap 
[19].

Hence, as an effort to fill the knowledge gap, metabo-
lomics enclose the comprehensive and concurrent sys-
tematic profiling of metabolic changes that occur in 
living systems in response to set of different factors as 
pathological, environmental or lifestyle conditions [20]. 
Metabolomics corroborate and enhances the informa-
tion provided by genomics and proteomics [21] and have 
already shown promise in identifying metabolic pheno-
types [22, 23].

In the present study, we aimed to characterize the 
metabolomic profile of NSCLC patients treated with 
nivolumab [2] and to investigate, for the first time, 
whether the gut microbiota metabolome may predict a 
baseline response to immunotherapy.

Materials and methods
Patient characteristics and sample collection
From April 2016 to March 2017 a cohort of 11 NSCLC 
patients aged 44 to 82  years (median age 68  years; 8 
males and 3 females) were recruited at the Department of 
Clinical and Molecular Medicine, Sant’ Andrea Hospital, 
Sapienza University of Rome.

As inclusion criteria the following were considered: 
adult subjects, age > 18 years; NSCLC diagnosed by his-
tology; Eastern Cooperative Oncology Group (ECOG) 
performance status ≤ 2; anti-PD-1 nivolumab employed 
as second-line treatment; acceptable pulmonary, cardiac, 
liver renal, and bone marrow functions.

As exclusion criteria the following were considered: 
autoimmune diseases; symptomatic interstitial lung 
disease and other noteworthy comorbidities; systemic 
immunosuppression; previous treatment with immune-
stimulatory antitumor agents, including checkpoint-tar-
geted molecules.

Nivolumab was proven at ordinary dosage of 3 mg/kg 
each 2 weeks till disease progression or undesirable tox-
icity. Radiological response was assessed with Response 
Evaluation Criteria in Solid Tumors (i-RECIST) Cri-
teria and classified according to disease control (com-
plete response, partial response and stable disease) and 
progressive disease. Toxicity was reported consistently 
with National Cancer Institute Common Terminology 
Criteria for Adverse Events (version 4.0) and toxicity 
valuation was performed at day 1 of every cycle until 
end of cure. The PFS was defined as the time from 
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patient registration on clinical trial until the first docu-
mented tumor progression or death from any cause. The 
OS was defined as the time from patient registration 
to death from any cause. We defined as early progres-
sors (EPs), patients experiencing disease progression 
within 3 months from the beginning of nivolumab, and 
long responders (LRs) patients presenting PFS longer 
than 12 months. The study was conducted according to 
good clinical practice guidelines and Helsinki declara-
tion. The final version of the protocol was approved by 
the Institutional Ethics Committee (Ethical Committee 
n 4421, “Sapienza University”). Patients gave informed 
consent according to the guidance of the hospital ethics 
committee and with the approval of regulatory agen-
cies. The fecal samples collected from NSCLC patients 
for gut microbiota metabolome profiling, were handled 
and processed for biobanking and integration process-
ing at the OPBG Human Microbiome Unit and NMR-
based Metabolomics Laboratory, Sapienza University 
of Rome.

Targeted metagenomic on faecal microbiota
Genomic DNA from stool samples was manually 
extracted using QIAmp Fast DNA Stool mini kit 
(Qiagen, Germany), according to the manufacturer’s 
instructions.

Amplification of the variable region V3–V4 from the 
16S rRNA gene (~ 460  bp) was carried out using the 
primer pairs described in the MiSeq rRNA Amplicon 
Sequencing protocol (Illumina, San Diego, CA).

The so obtained DNA amplicons were then cleaned-
up by AMPure XP beads (Beckman Coulter Inc., Bev-
erly, MA, USA). After second amplification step using a 
unique combination of bar-coded Illumina Nextera for-
ward and reverse adaptor-primers, the final library was 
cleaned-up using 50 μL of AMPure XP beads and quan-
tified using Quant-iT™ PicoGreen® dsDNA Assay Kit 
(Thermo Fisher Scientific, Waltham, MA). Finally, the 
library was diluted in equimolar concentrations (4 nM), 
pooled together and sequenced on an Illumina MiSeqTM 
platform according to the manufacturer’s specifications.

Paired-ends reads were trimmed for their quality, read 
length and chimera presence using Qiime v1.8. pipeline 
[24]. Sequences were organized into Operational Taxo-
nomic Units (OTUs) with a 97% of clustering thresh-
old of pairwise identity and representative sequences 
were aligned using PyNAST v.0.1. software [25] against 
Greengenes 13_08 database [26] with a 97% threshold of 
similarity. Ecological and statistical analyses were per-
formed using phyloseq and DESeq2 packages from R soft-
ware [27, 28].

Gut microbiota metabolomics profiling
Generation of volatilome by gas chromatography 
solid‑phase microextraction (GC–MS/SPME)
Fecal volatile organic compounds (VOCs) from 11 
NSCLC patients were detected according to Vernoc-
chi et al. [29] by using the carboxen–polydimethylsilox-
ane coated fiber (CAR-PDMS) (85  μm) and the manual 
SPME holder (Supelco Inc., Bellefonte, PA, USA) accord-
ing to Vernocchi et al. [29]. The SPME fiber was exposed 
to each sample for 45 min. Both phases of equilibration 
and absorption were carried out under stirring condition. 
The fiber was then inserted into the GC injection port 
(10  min) for sample desorption and the GC–MS analy-
ses carried out on an Agilent Technologies 7890B GC, 
coupled to a 5977A mass selective detector operating in 
electron impact mode (ionization voltage 70 eV), within a 
1-mm quartz liner fitted system, equipped with a Supel-
cowax 10 capillary column (60  m length, 0.32  mm ID, 
Supelco, Bellefonte, PA, USA). The temperature program 
was the following: 50  °C for 1 min, 4.5  °C/min to 65  °C 
and 10  °C/min to 230  °C, which was held for 15  min. 
Injector, interface and ion source temperatures were 250, 
250 and 260 °C. Total run time 35.83 min. The mass-scan 
range was 30–300 a.m.u. at 5.19 scans/s. Injections were 
carried out in splitless mode, under helium (1.5 mL/min) 
carrier. Molecule identification (ID) was carried out by 
using retention times (Rt) compared to pure compounds 
Rt (Sigma-Aldrich, Milan, Italy). The chromatograms 
were integrated and identified by comparing the frag-
ment pattern with those in the mass spectral NIST library 
(version 2.2, NIST 14MS database; National Institute of 
Standards and Technology, Rockville, MD) and literature 
[30] followed by manual visual inspection. Quantitative 
compound data were expressed as ppm (mg/kg) obtained 
by interpolation of the relative areas vs. IS area.

Determination of non‑volatile metabolites by 1H‑NMR 
spectroscopy
Fecal water was obtained as previously described [31]. 
After sample collection, 2 out of 11 NSCLC samples were 
excluded for insufficient sample collection. Briefly, 1H-
NMR spectroscopy analysis was performed on 500 mg of 
feces suspended with 1 mL of D2O–PBS–NaN3 buffered 
solution. Each sample was vortexed for 2  min and then 
centrifuged for 25 min at 10,000 rpm and 4 °C to obtain 
fecal water. In total, 600 μL of supernatant was collected 
and analyzed according to Brasili et al. [31] NMR analy-
sis was carried out at 298 K by using a Bruker Advance 
400 spectroscope (Bruker BioSpin GmbH, Rheinstetten, 
Germany), equipped with a magnet operating at 9.4 Tesla 
(400.13 MHz for 1H frequency). 1D 1H NMR experiment 
was performed employing the standard presaturation 
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presat pulse sequence. Spectral width was set to 6009 Hz 
(15 ppm) and 64 scans were collected for each spectrum 
with a presaturation pulse length of 2.00 s and a relaxa-
tion delay of 6.55 s. The spectra were collected with 64 K 
points for an acquisition time of 5.5  s [32]. The assign-
ment of resonances was done by 2D homonuclear NMR 
Total Correlated Spectroscopy (TOCSY) and heteronu-
clear Single Quantum Coherence (HSQC) experiments. 
TOCSY experiments were recorded at 298 K with a spec-
tral width of 15 ppm in both dimensions, using 8 K × 256 
data points matrix, repetition time of 2  s and 80 scans 
with a mixing time of 110 ms. HSQC experiments were 
acquired with a spectral width of 12  ppm in proton 
dimension and 200 ppm in the carbon dimension, using 
8 K × 256 data points matrix for the proton and the car-
bon dimensions, respectively, with a repetition delay of 
2 s and 96 scans. The assignment was confirmed accord-
ing to Human Metabolome Data Base [33] and own lab-
oratory database. 1D 1H NMR spectra were processed 
and quantified by using the ACD Lab 1D-NMR Manager 
12.0 software (Advanced Chemistry Development, Inc., 
Toronto, ON, Canada), whereas the MestReC software 
(Mestrelab Research SL, Santiago de Compostela, Spain) 
was used to assess 2D-NMR spectra. The quantifica-
tion of metabolites was obtained by comparison of the 
integrals (normalized for number of protons) of specific 
signals with the IS trimethyl silyl propanoic acid (TSP) 
integral and then normalized for feces weight (expressed 
as µmol/g).

Statistical analysis
To characterize the differences between NSCLC sub-
jects from a single- and a multi-omic standpoint (i.e., 
1H-NMR- and GC–MS-based metabolomics), a data 
analytical strategy based on the use of multivariate che-
mometric methods were carried out on the integrated 
dataset of 9 patients considering both GC–MS and 1H-
NMR data. However, in order to have reliable results, 
prior to data processing, the raw data matrix of GC–MS/
SPME metabolites was cleaned by retaining only those 
molecules which were detected in at least 80% of the 
investigated subjects. Such a screening was not needed 
in the case of 1H-NMR data. Since the two blocks of 
data came from different experimental techniques and 
had different variances and because of high inherent 
variability, data were block scaled after individual autos-
caling. Metabolomics multivariate data analysis was car-
ried out using in house written functions running under 
MATLAB (R2015b; The Mathworks, Natick, MA) envi-
ronment. Principal components analysis (PCA) was 
used to analyze inherent clustering, to identify outliers 
and significant metabolites. Mann–Whitney U test was 
then applied to assign significant differences at the level 

of single metabolite in the PCA model in particular, a 
p-value of 0.05 was considered as threshold for statistical 
significance.

Results
Clinical characteristics
Eleven patients with stage IV NSCLC treated with sec-
ond-line nivolumab were enrolled in this study. Baseline 
clinical characteristics of patients are summarized in 
Table 1. Among them, 10 patients had squamous-cell car-
cinoma and one adenocarcinoma. Median PFS and OS 
were 7.5 and 7.7 months, respectively. Four patients were 
EPs, while 7 LRs (Table 1).

Gut microbiota ecological analysis
The metagenomics data have been analyzed in a prelimi-
nary way and no cluster formation has been highlighted 
between EPs and LRs in the structure of microbiota 
(Additional file 1: Figure S1).

Table 1  Clinical features of  NSCLC patients: phenomic 
metadata

Patient characteristics at baseline N° (%)

Age

 ≤ 65 5 (45)

 > 65 6 (55)

Sex

 Male 8 (73)

 Female 3 (27)

Histology

 Adenocarcinoma 1 (10)

 Squamous cell carcinoma 10 (90)

ECOG performance status

 0–1 10 (90)

 > 1 1 (10)

N° sites of metastasis

 1 2 (18)

 > 1 9 (82)

Brain metastases

 Present 1 (10)

 Absent 10 (90)

Treatment line

 2 11 (100)

 > 2 0 (0)

Previous platinum based chemotherapy

 Yes 9 (82)

 No 2 (18)

Response to nivolumab

 Early progressors (EPs) 4 (36)

 Long responder (LRs) 7 (64)
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In particular, the analysis performed by Bray–Curtis 
dissimilarity (Additional file  1: Figure S1, panel A) does 
not highlight the existence of a specific cluster related to 
the clinical condition of EP or LR. Furthermore, this is 
confirmed in the distribution of the main bacterial gen-
era for each sample (Additional file 1: Figure S1, panel B).

Gut microbiota metabolomics
Each fecal sample was analysed to determine both VOCs 
and non-volatile metabolites, in an untargeted fashion, 
thus capturing large numbers of known and uncharacter-
ized metabolites, including those of potential microbial 
origin.

VOCs profiling
Two-hundred and twenty-three VOCs for all 11 NSCLC 
patients were identified and quantified by GC–MS/
SPME, and grouped into the following 18 chemical 
classes: alcohols (n 44); esters (n 31); aldehydes (n 21); 
ketones (n 35); alkenes (n 12); alkanes (n 17); acids (n 8); 
phenols (n 4); terpenes (n 18); sulfur compounds (n 2); 
hydrazine (n 1); azetidine (n 1); indoles (n 7); pyridine 
(n 1); amines (n 13); furans (n 2); pyrazine (n 2) and aro-
matic hydrocarbons (n 4) (data not shown). After data 
reduction, a matrix with 24 metabolites detected in the 
80% of samples was considered for computation (Addi-
tional file 2: Table S1).

Non‑volatile metabolite profiling
Fourty-nine non volatile metabolites were detected (i.e., 
acids, amino acids, amines, and sugars) and quantified 
(µmol/g) by 1H-NMR for 9 NSCLC patients (Additional 
file 3: Table S2).

Integrated metabolomic model
In order to have a multi-omics overview, the integra-
tion of GC–MS/SPME and 1H-NMR data was carried 
out through a low-level data fusion approach. There-
fore, PCA was applied to the matrix obtained by con-
catenation of GC–MS/SPME and 1H-NMR data after 

block-scaling. The PCA scores plot (PC1 vs. PC2; PC1: 
28.82%; PC2: 17.80%), displayed in Fig. 1, panel a, showed 
a clear separation between EP and LR patients (Fig.  1, 
panel a). In particular, the separation between the two 
groups occurred mainly along the axis of PC1; therefore, 
in order to assess which metabolites mainly contributes 
to the observed separation, only the variables having the 
highest absolute value of the loadings on such compo-
nent were considered (Fig. 1, panel b).

Accordingly, inspection of the loadings plot allowed 
observing how the gut microbiota metabolome of LRs 
patients was mostly characterized by SCFAs (i.e., butyric, 
valeric, acetic and propionic), AAs (i.e., lysine) and 
nicotinic acid. On the contrary, EPs were mainly repre-
sented by alcanes (i.e., tridecane, dodecane) ketones (i.e., 
2-pentanone, 2-octanone), aldehydes (i.e., benzeneac-
etaldehyde), and p-cresol. For glutamic acid, isoleucine, 
2-octanone, valeric acid, acetic acid, butyric acid and 
dodecane the level differences between EPs and LRs sub-
jects were not statistically significant (data not shown).

Interestingly, the levels of tridecane could be meas-
ured only in fecal metabolome of EPs patients, being 
absent in that of LR ones. Particularly, the differences 
between levels of propionic acid (p value = 0.016), lysine 
(p value = 0.032), nicotinic acid (p value = 0.016), tride-
cane (p value = 0.032) 2-pentanone (p value = 0.016) and 
p-cresol (p value = 0.016) were statistically significant, as 
inferred by U-Mann–Whitney test. PCA model took into 
account the covariance of propionic acid with the other 
SCFAs (Fig. 2).

Discussion
Some evidences suggest that gut microbiota-induced 
immune effects dependent on the specific therapy for dif-
ferent type of cancer [15, 34, 35].

Chemotherapy could impact on both immune system 
and gut microbiota, influencing the relationship between 
both of them [14].

By metagenomics approach no statistical significant 
association were found between EPs and LRs; moreover 

Fig. 1  Principal component analysis (PCA) of integrated datasets of 1H-NMR and GC–MS/SPME data at T0. a PC score plot. b Loading plot. The 
first two components explained 47% of the total variance. In green and red circles are represented EP (early progressors, not responders) and LR 
(long responders) patients, respectively. a Red, early progressors (EPs); green, long responders (LRs). b 1: 1-butanol; 2: 1-hexanol; 3: 1-pentanol; 
4: 2,6-dimethyl 4 heptanone; 5: 2-butanone; 6: 2-heptanone; 7: 2-hexanol; 8: 2-nonanone; 9: 2-octanol; 10: 2-octanone; 11: 2-pentanone; 12: 
6-methyl-5-hepten-2-one; 13: benzaldehyde; 14: benzeneacetaldehyde; 15: cis-2,6-dimethyl-2,6-octadiene; 16: dimethyl disulfide; 17: dodecane; 
18: indole; 19: methyl isobutyl ketone; 20: p-cresol; 21: tridecane; 22: Bile salt 1; 23: Bile salt 2; 24: U1; 25: 2-hydroxy-3-methylbutyric acid 26: U2; 
27: valeric acid; 28: isovaleric acid; 29: leucine; 30: valine; 31: isoleucine; 32: U3; 33: 2-oxoisovaleric acid; 34: ethanol; 35: lactic acid; 36: acetoin; 37: 
2-aminoisobutyrate; 38: alanine; 39: butyric acid; 40: lysine 41: acetic acid; 42: N-acetyl-moieties; 43: propionic acid; 44: glutamic acid; 45: succinic 
acid; 46: U4; 47: methionine; 48: aspartic acid; 49: trimethylamine (TMA); 50: 2-oxoglutarate; 51: malonic acid; 52: U5; 53: choline; 54: taurine; 55: 
methanol; 56: glycine; 57: b-arabinose; 58: b-galactose; 59: b-xylose; 60: b-glucose; 61: U6; 62: uracil; 63: orotic acid; 64: U7; 65: fumaric acid; 66: 
tyrosine; 67: phenylalanine; 68: U8; 69: formic acid; 70: nicotinic acid

(See figure on next page.)
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it was not possible to hypothesize a potential relationship 
with the clinical outcomes.

Untargeted metabolomics may contribute to high-
light gut microbiota metabolites allowing to infer host-
microbiome co-metabolism [36]. The application of 
multivariate chemometric model based on the GC–MS 
and 1H-NMR data may concur to clarify the respon-
siveness to immune therapy of NSCLC patients under 
specific disease conditions.

The gut microbiota metabolome in cancer has been 
particularly investigated to give information on the 
relationship between colorectal cancer and gut micro-
biome. However, the role of specific bacteria metabo-
lism in carcinogenesis and progression remains an 
active area of inquiry [37].

Metabolites and VOCs have been investigated in lung 
cancer on exhaled breath [38–40] and urine [41, 42]. 
Therefore, low weight molecules have been proposed 

Fig. 2  Concentration (µmol/g) of proprionic acid (median LR = 7.14 EP = 2.56), nicotinic acid (median LR = 0.08 EP = 0.04), lysine (median LR = 7.51 
EP = 4.13), 2-pentanone (median LR = 0; EP = 53.9) tridecane (median LR = 0; EP = 11.03) and p-cresol (median LR = 582.91; EP = 1721.48)
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as biomarkers of lung cancer. Up to date the interindi-
vidual variations of gut microbiota composition have 
been studied to find a possible relationship between 
enterotype and immune-checkpoint therapy response in 
NSCLC patients [14, 18]. In the present study, by using 
a metabolomics approach, was detected for the first time 
a gut microbiota metabolome potentially associated to 
NSCLC patients responsiveness to immune checkpoint 
inhibitors (ICIs). Fecal samples of EPs NSCLC patients 
were characterized by a metabolic profile constituted by 
high levels of alkanes (tridecane and dodecane), methyl-
ketones (2-pentanone and 2-octanone), p-cresol, and low 
levels of SCFAs (propionic, butyric, acetic, valeric acids), 
aminoacids (lysine, isoleucine and glutamic) and nico-
tinic acid suggesting an imbalanced microbiota metabo-
lism in agreement with a dysbiotic intestinal microbiota 
as reported in previous studies [18]. Patients affected by 
NSCLC with longer progressive free-survival have an 
higher abundance of Akkermansia muciniphila and of 
other commensales such as Ruminococcus spp., Alistipes 
spp., and Eubacterium spp., with a relative under repre-
sentation of Bifidobacterium adolescentis, B. longum, 
and Parabacteroides distasonis [18]. Akkermansia 
muciniphila is a mucin degrader producing propionate 
through propanediol pathway, as well as some of Rumi-
nococcus spp. fermenting fucose, released from mucin 
degradation, for the propionate production [43]. Gener-
ally, SCFAs reach very high concentrations in the colon 
[44], reducing pH, satisfying nutritional requirements, 
microbial function regulation and composition, and also 
affecting the immune system [45]. SCFAs regulate innate 
immune cells such as neutrophils acting as neutrophil 
chemotaxin, macrophages and dendritic cells (DCs) by 
G-protein-joined receptors (GPCRs) and HDACs and 
also modulate bidirectionally antigen-specific adaptive 
immunity mediated by T-cells and B-cells.

In fact, SCFAs regulate the immune system by his-
tone deacetylases (HDACs), receptors and/or metabolic 
integration.

Heerdt et al. [46] highlighted that SCFAs are generally 
perceived as tumor suppressors as they induce cancer cell 
differentiation and apoptosis. Acetic and butyric acid lev-
els were reduced in patients with colitis, colon cancer, or 
other intestinal disorders as inflammatory bowel disorder 
[47, 48].

The gut–lung axis theory [49] suggests that microbes or 
their metabolic products might have systemic effects, and 
hence, could give an effect on the lung bacterial composi-
tion and immune response. For this reason, fecal SCFAs, 
which are considered immune modulators/protectors of 
the intestinal barrier [50], might be possible mediators of 
the gut “long-distance” affecting directly or indirectly the 
target site by the stimulation of gut/circulating immune 

system [14]. Therefore, the gut microbiota of EPs patients 
appears characterized by a low metabolic activity produc-
ing SCFAs associated to an high production of p-cresol as 
compared to LRs. P-cresol is a microbial metabolite pro-
duced from tyrosine through tyrosine lyase or tyrosine 
aminotransferase β activity; p-cresol producers belonged 
to the Coriobacteriaceae and Clostridium clusters XI and 
XIVa [51]. The p-cresol exhibits cytotoxicity and geno-
toxicity and reduces endothelial barrier function in vitro 
[52, 53]. P-cresyl sulfate, a sulfate-conjugate of p-cresol, 
suppresses Th1-type cellular immune responses in mice 
[39, 42]. High levels of this metabolite in urine have been 
found in patients with cardiovascular and renal diseases 
[51]. Finally, low levels of nicotinic acid (niacin) complete 
the metabolic profile of EPs patients. In general, the nia-
cin levels in the feces depend on the food intake, however 
gut bacteria metabolism could also contribute to the fecal 
levels of this metabolite [54]. Niacin is a important pre-
cursor for the synthesis of nicotinamide adenine dinucle-
otide (NAD+) that is the central cofactor of metabolism, 
mediating ATP generation, energy substrate oxidation, 
reactive oxygen species (ROS) detoxification, DNA repair, 
and nutritionally sensitive gene regulation [55].

Indeed, in general, metabolome encloses the compre-
hensive systematic profiling of metabolic changes that 
occur in living systems in response to sets of different 
factors such as pathological, environmental or lifestyle 
conditions [56]. Gut microbiota metabolomic profile 
corroborates and enhances the information provided by 
genomics and proteomics [57] and has already shown 
promises in identifying metabolic phenotypes associated 
to microbiota patterns [22].

Conclusion
In our study SCFAs mainly characterize the gut micro-
biota metabolome of LRs subjects to immune therapy 
and therefore it can be hypothesized that these molecules 
might be considered as biomarker of responsiveness. On 
the contrary, the fecal levels of tridecane might be con-
sidered as biomarker of non-responsiveness.

These results should be of support to better under-
stand the close interaction between the gut microbiota 
of different “communicating” body districts and their 
interaction with the immune system in NSCLC patients. 
The power of this study approach is that data collection 
through non-invasive techniques can be incorporated 
into standard laboratory exams, hence modulating treat-
ment of the patients.

However, it is necessary to pursue with larger follow-
up clinical studies, in order to provide more repre-
sentative datasets. The mechanism how these microbial 
metabolites alone or in combination modulate the host 
immune system remains to be highlighted. Hence, 
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the identification of biomarkers might help in design-
ing new personalized or “alternative” therapies in lung 
cancer treatment, with also a better characterization 
of patient’s status and diagnosis, as well as in search-
ing new ways to improve immunotherapy tolerance 
and immune therapies responses, also implemented 
with nutritional support as pre, pro, postbiotics and 
symbiotics.
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