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Abstract Multistage ranking models, including the popular Plackett-Luce distribution (PL), rely
on the assumption that the ranking process is performed sequentially, by assigning the positions
from the top to the bottom one (forward order). A recent contribution to the ranking literature
relaxed this assumption with the addition of the discrete-valued reference order parameter, yielding
the novel Extended Plackett-Luce model (EPL). Inference on the EPL and its generalization into a
finite mixture framework was originally addressed from the frequentist perspective. In this work,
we propose the Bayesian estimation of the EPL in order to address more directly and efficiently
the inference on the additional discrete-valued parameter and the assessment of its estimation
uncertainty, possibly uncovering potential idiosyncratic drivers in the formation of preferences. We
overcome initial difficulties in employing a standard Gibbs sampling strategy to approximate the
posterior distribution of the EPL by combining the data augmentation procedure and the conjugacy
of the Gamma prior distribution with a tuned joint Metropolis-Hastings algorithm within Gibbs.
The effectiveness and usefulness of the proposal is illustrated with applications to simulated and
real datasets.

Keywords Ranking data · Plackett-Luce model · Bayesian inference · Data augmentation · Gibbs
sampling · Metropolis-Hastings

1 Introduction

Ranking data are common in those experiments aimed at exploring preferences, attitudes or, more
generically, choice behavior of a given population towards a set of items or alternatives [18,4,19,
17]. A similar evidence emerges also in the sport context, yielding an ordering of the competitors,
for instance players or teams, in terms of their ability or strength, see [5], [15] and [2].

Formally, a ranking π = (π(1), . . . , π(K)) of K items is a sequence where the entry π(i) indicates
the rank attributed to the i-th alternative. Data can be equivalently collected in the ordering format
π−1 = (π−1(1), . . . , π−1(K)), such that the generic component π−1(j) denotes the item ranked in
the j-th position. Regardless of the adopted format, ranked observations are multivariate and, more
precisely, correspond to permutations of the first K integers. Indeed, in line with the standards of
the ranking literature (some fundamental examples can be found in [3,10,1,8]), the vector notation
π (or π−1) has a dual interpretation. In fact, borrowing from those standards, π is also understood
as a bijective mapping π : I → R and π−1 : R → I as its inverse, where I = {1, . . . ,K} and
R = {1, . . . ,K} denote the set of items and the set of ranks both labelled as the first K integers.
This explains why the inverse function notation π−1 is used as a symbol representing a generic
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ordering. Hence, we warn the reader of this twofold meaning, whose correct specific interpretation
should be clear from the context.

The statistical literature concerning ranked data modeling and analysis is broadly reviewed in
[10] and, more recently, in [1,8]. Several parametric distributions on the set of permutations SK have
been developed and applied to real data. A popular parametric family is the Plackett-Luce model
(PL), belonging to the class of the so-called stagewise ranking models. The PL was introduced by [9]
and [13] and has a long history in the ranking literature for its numerous successful applications
as well as for still inspiring new research developments. The basic idea is the decomposition of the
ranking process into K − 1 stages, concerning the attribution of each position according to the
forward order, that is, the ordering of the alternatives proceeds sequentially from the most-liked to
the least-liked item. The implicit forward order assumption has been released by [11] in the Extended
Plackett-Luce model (EPL). This relaxation allows for a more flexible dependence structure, hence
for a better and possibly more parsimonious fitting of the observed ranking data. The PL extension
in [11] relies on the introduction of the reference order parameter ρ = (ρ(1), . . . , ρ(K)), indicating
the rank assignment order. Specifically, the generic entry ρ(t) indicates the rank attributed at the t-
th stage of the ranking process. Thus, ρ is a discrete parameter given by a permutation of the first K
integers and its estimation was originally considered from the frequentist perspective [11]. However,
in that work there was no specific attention to the inferential ability to recover this extra parameter,
as well as quantifying the estimation uncertainty. Indeed, the new EPL parameter space is of
mixed-type (continuous and discrete) and, as far as the discrete component is concerned, there was
little guidance on how to move efficiently towards the global optimal solution and only a multiple
starting point approach was conceived. This resulted in a substantial computational burden with
increasing K, which makes it less feasible a bootstrap approach to investigate parameter estimation
uncertainty.

In this work, we investigate the estimation of the EPL within the Bayesian domain and detail
an original MCMC method to perform approximate posterior inference. In particular, we show how
the estimation of the discrete reference order parameter can be effectively addressed by combining
the Gibbs sampling (GS) for some components of the parameter space with a Metropolis-Hastings
(MH) step based on a joint proposal distribution.

The outline of the article is the following. After a review of the main features of the EPL
and the related data augmentation approach with latent variables, the novel Bayesian EPL is
introduced in Section 2. The detailed description of the MCMC algorithm to perform approximate
posterior inference is presented in Section 3, whereas illustrative applications to both simulated
and real ranking data follow in Section 4. Final remarks and hints for future research are discussed
in Section 5.

2 The Bayesian Extended Plackett-Luce model

2.1 Model specification

As described in [11], the probability of a generic ordering under the EPL can be written as

PEPL(π−1|ρ, p) = PPL(π−1 ◦ ρ|p) =

K∏
t=1

pπ−1(ρ(t))∑K
v=t pπ−1(ρ(v))

π−1 ∈ SK , (1)

where the symbol ◦ indicates the composition of permutations. Hereinafter, we will shortly refer to
the probability distribution in (1) as EPL(ρ, p). The positive quantities p = (p1, . . . , pK), known
as support parameters, are proportional to the probabilities for each item to be selected at the first
stage of the ranking process and, hence, to be ranked in the position indicated by the first entry of
ρ. Expression (1) reveals that, under the EPL assumption, the probability of a generic ordering is
equal to the product of the conditional probability masses of the items selected at each stage, which
are obtained by normalizing the corresponding support parameters with respect to the alternatives
still available in the choice set. This explains the analogy of the EPL ranking construction with
the sampling without replacement of the alternatives in order of preference. The standard PL is a
special instance of the EPL with ρ = ρF = (1, 2, . . . ,K), i.e., the identity permutation also named
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forward order ; the backward PL is the special case with ρ = ρB = (K,K−1, . . . , 1) = (K+1)−ρF,
i.e., the backward order. A simple example of EPL distribution is described in the Appendix.

As in [12], the data augmentation with the latent quantitative variables y = (yst) for s =
1, . . . , N and t = 1, . . . ,K crucially contributes to make the Bayesian inference for the EPL
analytically more tractable. Let π−1 = {π−1s }Ns=1 be the observed sample of N orderings. The
complete-data model can be specified as follows

π−1s |ρ, p
iid∼ EPL(ρ, p) s = 1, . . . , N,

yst|π−1s , ρ, p
i∼ Exp

(
K∑
ν=t

pπ−1
s (ρ(ν))

)
t = 1, . . . ,K,

where the auxiliary variables yst’s are assumed to be conditionally independent on each other and
exponentially distributed with rate parameter equal to the normalization term of the EPL. The
complete-data likelihood turns out to be

Lc(ρ, p, y) =

K∏
i=1

pNi e
−pi

∑N
s=1

∑K
t=1 ystδsti , (2)

where

δsti =

{
1 if i ∈ {π−1s (ρ(t)), . . . , π−1s (ρ(K))},
0 otherwise,

with δs1i = 1 for all s = 1, . . . , N and i = 1, . . . ,K.
In order to setup all the ingredients needed for a fully Bayesian analysis, we must specify a prior

distribution on the unknown parameters ρ and p. In the absence of a genuinely subjective prior
information, we conveniently adopt prior independence and the following marginal distributions
for ρ and p

ρ ∼ Unif {SK}

pi
iid∼ Ga(c, d) i = 1, . . . ,K.

The adoption of independent Gamma densities for the support parameters is motivated by the
conjugacy with the model, as apparent by checking the form of the likelihood (2). In our analysis,
we considered the hyperparameter setting c = d = 1.

3 Bayesian estimation of the EPL via MCMC

3.1 Attempts towards posterior sampling

In this section, we describe an original MCMC algorithm to carry out Bayesian inference for the
EPL. We propose a tuned joint Metropolis-within-Gibbs sampling (TJM-within-GS) as simulation-
based method to approximate the posterior distribution. Its distinguishing feature is the use of a
suitably tuned MH algorithm relying on a joint proposal on the mixed-type parameter components
(ρ, p), combined with two other kernels which act more specifically on the discrete component ρ and
then on the continuous (p, y). In fact, although partitioning the parameter vector of the augmented
space by using the components of (ρ, p, y) makes it possible to derive standard full-conditionals for
a GS, this ends up being a difficult-to-implement and unsuccessful strategy in practice. On one
hand, the discrete full-conditional for ρ involves a support with a rapidly-increasing cardinality
with respect to K. On the other hand, the meaning of the support parameters is strictly related
to the reference order (mainly to its first component) and this means that, when one keeps p fixed,
the full-conditional of ρ is very unlikely to achieve high posterior density regions.

Indeed, if one aims at implementing an MCMC algorithm for a distribution with a mixed-type
nature, one can try to split the task by separating the update of the continuous (p, y), for which
the full-conditionals can be easily derived, from the update of the discrete ρ. For the latter, in fact,
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a full conditional could be derived only in examples where K is small and perhaps a Metropolis
update could be used instead.

In order to setup a proposal distribution for the reference order parameter, we could rely on a
sequential urn model not necessarily with the same urn composition. In that case, let us denote
with λ = (λtj) the conditional multinomial probabilities governing the sequential rank attribution
path such that, for each stage t = 1, . . . ,K, one has

λtj = P(ρ(t) = j|ρ(1), . . . , ρ(t− 1)) j ∈ Rt,

where Rt = R \ {ρ(1), . . . , ρ(t − 1)} is the set of positions which are still available and can be
assigned at stage t. Of course, at stage t = 1, one has R1 = R; at stage t = K, one has λKj = 1 for
the last available rank j ∈ RK . A possible proposal distribution to be employed in the MH step
for sampling the reference order ρ could have the following form

P(ρ) =

K∏
t=1

P(ρ(t)|ρ(1), . . . , ρ(t− 1)) =

K∏
t=1

P(ct|c1, . . . , ct−1) =

K∏
t=1

∏
j∈Rt

λ
ctj
tj ,

where ct = (ctj)j∈Rt
indicates the vector with binary components defined as follows

ctj = I[ρ(t)=j] =

{
1 at stage t rank j is assigned,

0 otherwise.

Nevertheless, preliminary implementations of a MH step of this kind on synthetic data revealed
some critical issues in achieving high posterior density regions. Some attempts are reported in
Section 1 of the supplementary material. This suggested, for the reasons described above, that a
joint proposal distribution of the reference order and the support parameters allows for an adequate
mixing of the resulting Markov chain.

This argument inspired us a working MCMC algorithm which combines three different Markov
kernels in the spirit of hybrid strategies described in Section 2.4 of [16]. Of course, each Markov
kernel has our target posterior as invariant distribution. The most original of these kernels relies on
the MH algorithm with a joint proposal strategy for proposing the update of (ρ, p). The other two
kernels are nothing but simple GS kernels limited to specific blocks of the parameter components.

3.2 Tuned Joint Metropolis-Hastings step

Since the marginal distribution of the observed items ranked in the first stage basically embodies a
considerable portion of the information on the support parameters, we decided to decompose the
joint proposal distribution starting from the first component of the reference order, immediately
followed by all the support parameter components conditionally in ρ(1). In fact, in this way, the
chances of proposing acceptable candidates are indeed increased. In order to sample candidate
values for ρ and p simultaneously, we devised a Metropolis kernel KTJM based on a joint proposal
distribution g(ρ, p) with a specific decomposition of the dependence structure, given by

g(ρ, p) = g(ρ(1))× g(p|ρ(1))×
K∏
t=2

g(ρ(t)|p, ρ(1), . . . , ρ(t− 1)). (3)

The dependence structure in (3) shows that, after drawing the first component of ρ, the proposal
can exploit the sample evidence on the support parameters to guide the simulation of the remaining
candidate entries of the reference order. In fact, it is expected that, if ρ(1) is the rank assigned
at the first stage, the observed marginal frequencies of the items ranked in position ρ(1) can be
regarded as an estimate of the support parameters p. In this way, the two simulated parameter
vectors are linked to each other and the joint proposal should better mimic the target posterior
density and, thus, get a better mixing chain. Candidate values (ρ̃, p̃) are jointly generated according
to the following scheme:
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1. sample the first component of ρ̃ (stage t = 1):

c̃1 ∼ Multinomial(1, λ̃1 = (λ̃1j)j∈R) ⇒ ρ̃(1) =
∏
j∈R

j c̃1j .

In our application, we set λ̃1j = P(ρ̃(1) = j) = P(c̃1j = 1) = 1/K for all j ∈ R;
2. sample the support parameters:

p̃|ρ̃(1) ∼ Dirich(α0 × rρ̃(1)),

where Dirich denotes the Dirichlet distribution, α0 is a scalar tuning parameter and rρ̃(1)
is the marginal distribution of the items with rank ρ̃(1), that is, the vector collecting the
relative frequencies of the times that each item i = 1, . . . ,K has been ranked in position ρ̃(1).
Specifically, the i-th entry of rρ̃(1) is

rρ̃(1)i =
1

N

N∑
s=1

I[π−1
s (ρ̃(1))=i]

and, in our analysis, we set α0 = 500;
3. sample iteratively the remaining entries of ρ̃ (from stage t = 2 to stage t = K − 1):

in this step, we deem it convenient to split the sampling of the remaining entries of ρ sequen-
tially. Unfortunately, it is computationally demanding to compute the conditional distribution
of the reference order component at stage t given the reference order components selected up
to stage t− 1, the support parameters and the data. Hence, in order to surrogate it, we exploit
the marginal bivariate distributions of the items in the two consecutive stages (t− 1, t), result-
ing from the observed K-variate contingency table. Indeed, once selected the reference order
component at stage t−1, we compute the observed contingency table τ̃tj having as first margin
the item placed at the selected reference order component ρ̃(t − 1) and as second margin the
item placed at the reference order component ρ̃(t) which can be possibly selected at the next
stage among the remaining positions in Rt. The generic entry of the contingency table is

τ̃ii′tj =

N∑
s=1

I[π−1
s (ρ̃(t−1))=i,π−1

s (j)=i′],

corresponding to the actually observed joint frequency counting how many times each item i
in the previous stage is followed by any other item i′ ranked j-th at the next stage.
We then compare these frequencies with the corresponding expected frequencies Ẽii′t under the
EPL by using a Monte Carlo approximation

η̃−1s (1), . . . , η̃−1s (t)|p̃ i∼ PL(p̃) s = 1, . . . , N,

Ẽii′t =

N∑
s=1

I[η̃−1
s (t−1)=i,η̃−1

s (t)=i′]

and compute the following distances

d̃tj =

K∑
i=1

K∑
i′=1

(τ̃ii′tj − Ẽii′t)2.

In fact, these different distances (d̃tj)j∈Rt
are intuitively ranked according to how compatible,

hence likely, is the attribution of the j-th position at stage t in the light of the observed data.

The above distances are then suitably scaled as z̃tj =
d̃tj∑

j′∈Rt
d̃tj′

to ensure unit sum. Note

that the position corresponding to the smallest distance should be the one to be proposed with
the highest probability. Moreover, we should maintain the disparities among the alternative
distances so that, when the distances are very similar, the probabilities should be also very
similar. To achieve these goals, we simply maintain the same values z̃tj reallocating them to the
positions j ∈ Rt according to the reverse order, so that if j1 is the position corresponding to the
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smallest rescaled distance z̃tj1 , after the rearrangement it is assigned a value q̃tj1 = maxj∈Rt
z̃tj .

Similarly, if j2 is the position corresponding to the second smallest rescaled distance z̃tj2 , it is
assigned a value q̃tj2 = maxj∈Rt\j1 z̃tj and so on. The rearranged relative distances {q̃tj , j ∈ Rt}
are used as surrogate approximation of the conditional probabilities corresponding to the target
distribution. Indeed, we define the proposal probability of assigning position j at stage t as

λ̃tj =
q̃tj + h∑

j′∈Rt
(q̃tj′ + h)

,

where h ∈ (0, 1/K) is a tuning parameter introduced to avoid a too sparse multinomial distri-
bution. As default value we set h = 0.1. Finally, for t = 2, . . . ,K − 1, we sample

c̃t|c̃1, . . . , c̃t−1 ∼ Multinomial(1, λ̃t = (λ̃tj)j∈Rt) ⇒ ρ̃(t)|ρ̃(1), . . . , ρ̃(t− 1) =
∏
j∈Rt

j c̃tj .

The resulting joint proposal probability of the candidate values is

g(ρ̃, p̃) = Dirich(p̃|α0 × rρ̃(1))
K∏
t=1

∏
j∈Rt

λ̃
c̃tj
tj .

Hence, if we denote the observed-data likelihood with L(ρ, p), the acceptance probability is equal
to

α′ = min

{
g(ρ(l), p(l))

g(ρ̃, p̃)

L(ρ̃, p̃)
∏K
i=1 Ga(p̃i|c, d)

L(ρ(l), p(l))
∏K
i=1 Ga(p

(l)
i |c, d)

, 1

}
and the MH step ends with the classical acceptance/rejection of the candidate pair

(ρ′, p′) =

{
(ρ̃, p̃) if log(u′) < log(α′),

(ρ(l), p(l)) otherwise,

where u′ ∼ Unif(0, 1) and (ρ(l), p(l)) is the current pair.
In order to promote a better mixing, we combine the just illustrated Metropolis kernel KTJM by

composing it with two additional kernels, labelled as KSM (Swap Move) and KGS (Gibbs Sampling).
Hence, the MCMC simulation is based on the composition kernel K = KTJM ◦KSM ◦KGS. Indeed,
the KSM kernel focuses on local moves of the discrete component ρ, whereas KGS aims at improving
the mixing of the continuous component. The kernel KSM is illustrated in the next section, while
KGS is just a full GS cycle involving the (p, y) components and is detailed in Section 3.4.

3.3 Swap move

We remind that the values (ρ′, p′) have to be regarded as temporary parameter drawings. We
decided to accelerate the exploration of the parameter space by including an intermediate kernel
KSM of the ρ component only, that attempts a possible local move with respect to the current
value. We label the possibly successful update of this kernel as Swap Move (SM). In fact, the idea
relies on a random swap of two adjacent components of ρ′. Specifically, one first simulate

t∗ ∼ Unif{1, . . . ,K − 1}

and then define the new candidate as

ρ′′ = (ρ′(1), . . . , ρ′(t∗ + 1), ρ′(t∗), . . . , , ρ′(K)).

Finally, by computing the acceptance probability as

α′′ = min

{
L(ρ′′, p′)

L(ρ′, p′)
, 1

}
,

the sampled value of the reference order at the (l + 1)-th iteration turns out to be

ρ(l+1) =

{
ρ′′ if log(u′′) < log(α′′),

ρ′ otherwise,

where u′′ ∼ Unif(0, 1).
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3.4 Tuned Joint Metropolis-within-Gibbs-sampling

At the generic iteration (l+ 1), the TJM-within-GS iteratively alternates the following simulation
steps

ρ(l+1), p′|π−1, ρ(l), p(l) ∼ KTJM ◦ KSM,

y
(l+1)
st |π−1s , ρ(l+1), p′ ∼ Exp

(
K∑
i=1

δ
(l+1)
sti p′i

)
,

p
(l+1)
i |π−1, y(l+1), ρ(l+1) ∼ Ga

(
c+N, d+

N∑
s=1

K∑
t=1

δ
(l+1)
sti y

(l+1)
st

)
.

In the last two lines, the full-conditional of the unobserved continuous variables y’s is derived from
the construction of the complete-data model specified in Section 2.1, whereas the full-conditional of
the support parameters is deduced by the partial conjugate structure, requiring a straightforward
update of the corresponding Gamma priors.

4 Illustrative applications

4.1 Simulated data

In order to verify the efficacy of our MCMC strategy, as well as the ensuing inferential ability of
the proposed Bayesian framework, we have setup the following simulation plan: we considered a
grid of simulation settings combining different number of items K ∈ {5, 10, 20} and sample sizes
N ∈ {50, 200, 1000, 10000}. For each distinct pair (K,N), we replicated 100 times the simulation
of datasets from the EPL model by varying the parameter configuration: for each replication
R = 1, . . . , 100, after fixing a true reference order ρ̇(R) and a true support parameter vector ṗ(R)

by drawing ρ̇(R) uniformly in SK and all the components ṗ
(R)
i i.i.d. from a uniform distribution,

we simulated N i.i.d. orderings of K items from the EPL(ρ̇(R), ṗ(R)), forming the sample matrix

π−1(R).

For each replication, we ran the TJM-within-GS described in Section 3 for a total of 10000 it-
erations and 2000 were discarded as burn-in phase. As a starting point for the MCMC simulation,
we randomly selected ρ and all the components pi. The resulting 8000 simulations were used to ap-
proximate the posterior distribution. Several measures were computed for assessing the inferential
performance of the proposed MCMC sampler to recover the actual parameter values (ρ̇(R), ṗ(R))

and the true EPL modal ranking σ̇(R) of K the items. The ability of the approximated marginal
posterior distributions to infer the known EPL paramaters and modal sequences was quantified
with five criteria and by averaging the results over the 100 replicated datasets π−1(R):

1. the percentage of matches between the true reference order ρ̇(R) and the most frequently sim-
ulated reference order ρ̂(R)

%recρ̂ =

100∑
R=1

I[ρ̇(R)=ρ̂(R)];

2. average posterior probability on the matching estimate ρ̂(R) = ρ̇(R)

P̄(ρ = ρ̂|π−1) =
1

%recρ̂

100∑
R=1

I[ρ̇(R)=ρ̂(R)]P(ρ = ρ̂(R)|π−1(R));

3. average relative Kendall distance between ρ̇(R) and ρ̂(R)

d̄K(ρ̇, ρ̂) =
1

100

100∑
R=1

dK(ρ̇(R), ρ̂(R));
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4. average scaled total variation distance between ṗ(R) and p̂(R) = E[p|ρ = ρ̂(R), π−1(R)], given by

d̄TV(ṗ, p̂) =
1

%recρ̂

100∑
R=1

I[ρ̇(R)=ρ̂(R)]dTV(ṗ(R), p̂(R))

where dTV(ṗ(R), p̂(R)) = 1
2

∑K
i=1 |ṗ

(R)
i − p̂(R)

i |.
5. average relative Kendall distance between σ̇(R) and σ̂(R)

d̄K(σ̇, σ̂) =
1

100

100∑
R=1

dK(σ̇(R), σ̂(R)),

where σ̇(R) is the true EPL modal ranking and σ̂(R) is the maximum a posteriori (MAP)
estimate.

The first three criteria concern the estimation of ρ, whereas the last two measures are used to assess
the inferential performance, respectively, for p and σ. Note that, since the range of the Kendall
distance depends on K, we rescaled it by K(K − 1)/2 in order to have a relative index ranging
over [0, 1] regardless of K.

Additionally, we have verified whether the choice of the starting point of the MCMC simulation,
especially the starting reference order, could make a difference in terms of convergence speed and
its possible impact on the inferential ability to recover the true ρ̇. So, for all the same simulated
datasets π−1(R), we re-ran our MCMC sampling starting from the known true ρ̇(R) instead of a

random starting reference order. Indeed, on average, we have verified no noteworthy change of
inferential ability, as testified by the values of the performance criteria reported in Table 2 of the
supplementary material. This can be interpreted as a sign of an MCMC algorithm with a suitable
mixing behaviour not strongly dependent on the starting point.

Regarding the estimation of ρ, for each replication R, we focussed on the approximated marginal
posterior distribution of the reference order, denoted as P(ρ|π−1(R)), and used the corresponding

posterior mode ρ̂(R) as the point MAP estimate of ρ̇(R). In the first column of Table 1, we can
appreciate how frequently the posterior mode ρ̂(R) matches the true reference order ρ̇(R) in terms
of the percentage of true recoveries (%recρ̂). We note that this percentage consistently grows with
N and, on average, a larger portion of posterior mass P̄(ρ = ρ̂|π−1) is assigned to the matching
mode (second column of Table 1). Moreover, by considering all the replications, even those in which
there is no match, the posterior mode ensures a consistently decreasing (with N) average relative
Kendall distance between the true reference order and the estimated one (third column of Table 1).
This means that the whole posterior distribution is consistently concentrating around ρ̇(R).

Also for the parameters p and σ, the inferential results improve with increasing N , although
with a slower rate for larger values of K (forth and fifth columns of Table 1). In fact, if we
look at a fixed N , we observe that the overall inferential properties worsen for increasing values
of K, as expected. Indeed, for larger values of K, the cardinality of the finite space SK of the
discrete parameter ρ grows factorially with K and this increases the chance that a slightly more
diffuse posterior distribution might miss to select the true ρ̇ as the MAP estimate. Moreover, the
diffuseness of the posterior is also related to the more likely closeness of some components of the
true support parameters ṗ(R), which weakens the identifiability of the reference order. In fact, in
the extreme case when all the support parameter components are the same, we know that the
reference order is not identifiable.

Finally, we carried out a sensitivity analysis to investigate the possible effect of the hyperpa-
rameter and tuning value setting on the performance of our MCMC algorithm. The reader can
find a detailed description of this study in the supplementary material.

4.2 Application to the sport data

We applied our Bayesian EPL to the sport dataset included in R package Rankcluster [6], where
N=130 students at the University of Illinois were asked to rank K = 7 sports in order of preference:
1=Baseball, 2=Football, 3=Basketball, 4=Tennis, 5=Cycling, 6=Swimming and 7=Jogging. Prior
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Table 1: Inferential performance of the TJM-within-GS algorithm on simulated data with different
settings of K and N and random initialization.

(K,N) %recρ̂ P̄(ρ = ρ̂|π−1) d̄K(ρ̇, ρ̂) d̄TV(ṗ, p̂) d̄K(σ̇, σ̂)

(5,50) 48 0.521 0.212 0.060 0.288

(5,200) 79 0.798 0.065 0.033 0.138

(5,1000) 97 0.975 0.008 0.014 0.087

(5,10000) 100 1.000 0.000 0.006 0.048

(10,50) 1 0.123 0.329 0.161 0.411

(10,200) 20 0.426 0.156 0.077 0.350

(10,1000) 64 0.738 0.062 0.044 0.259

(10,10000) 100 0.998 0.000 0.032 0.201

(20,50) 0 – 0.459 – 0.496

(20,200) 0 – 0.348 – 0.472

(20,1000) 3 0.070 0.195 0.087 0.449

(20,10000) 76 0.826 0.031 0.075 0.412

to the Bayesian EPL analysis, sample heterogeneity has been preliminary investigated by using
the EPL mixture methodology presented by [11], that suggested the presence of two preference
groups labelled as G1 and G2 with sizes N1 = 62 and N2 = 68 (best fitting 2-component EPL
mixture with BIC=2131.25). We then decided to estimate the Bayesian EPL separately on the two
clusters. Furthermore, our modeling proposal has been compared with two special cases thereof:
the forward (standard) PL and the backward PL, respectively labelled as EPL-ρF and EPL-ρB. To
inspect the fitting gain obtained with the EPL parametric class, the popular Deviance Information
Criterion (DIC) developed by [14] was adopted.

To fit the Bayesian EPL, we ran the TJM-within-GS for a total of 20000 iterations and 10000
samples were discarded as burn-in phase. The MCMC algorithm was launched with four randomly
dispersed starting points to explore the mixing performance of the sampler over the parameter
space. Indeed, the four chains were found to be consistent with respect to the initial values. In
this regard, Figure 1 shows the traceplots of the log-posterior values for the four MCMC chains
launched with alternative starting values for the two subsamples, where it is apparent that the
MCMC algorithm exhibits a good mixing behavior and a satisfactory convergence regardless of
the initialization. The graphical inspection was confirmed by Geweke’s convergence diagnostics
(equal to 1.29, 1.29, 0.33 and 1.68 for G1 and to 0.71, 1.54, 0.16 and 1.56 for G2) and Gelman
and Rubin’s convergence diagnostics (equal to 1.002 for G1 and to 1.004 for G2). Convergence
diagnostics for the traces of the support parameters are shown in the supplementary material.

The DIC for the inference on the first subsample G1 highlights evidence in favor of the conven-
tional PL, corresponding to the minimum value highlighted in bold in the first column of Table 2.
Indeed, this result is recovered through the estimation of the more general EPL, whose DIC is very

Table 2: DIC values for the Bayesian EPL models fitted to the two subsamples of the sport dataset.
Optimal (minimum) values of the criterion are highlighted in bold.

G1 G2

EPL-ρF 898.25 1125.42

EPL-ρB 934.56 1083.95

EPL 898.60 1021.48
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Fig. 1: Traceplots of the log-posterior values for the MCMC chains launched with four randomly
dispersed starting values for the two subsamples of the sport dataset: log-posterior values for the
subsample G1 with N1 = 62 units are plotted in the left panel, whereas the log-posterior values
for the subsample G2 with N2 = 68 units are plotted in the right panel.

close to that of the PL. For the second subsample G2, instead, the DIC indicates a significantly
improvement of the fit associated to the EPL family with respect to the two considered restrictions
thereof (second column of Table 2).

Figure 2 shows the approximations of the posterior distribution on the reference order for the
two subsamples of the sport dataset. The corresponding posterior modal reference orders turned
out to be ρ̂1 = (2, 1, 3, 5, 4, 6, 7) and ρ̂2 = (5, 6, 4, 7, 3, 1, 2), i.e., a reference order very similar to
the forward one and an alternative reference sequence suggesting a preference elicitation starting
from the middle-bottom positions. The posterior means and standard deviations of the group-
specific support parameters conditionally on the MAP estimates ρ̂1 and ρ̂2 are detailed in Table
3. Those obtained from the EPL-ρF and the EPL-ρB are reported in the supplementary material.
The MAP estimates of the group-specific modal orderings under the EPL scenario turn out to
be (2=Football, 1=Baseball, 3=Basketball, 5=Cycling, 4=Tennis, 6=Swimming, 7=Jogging) and
(6=Swimming, 7=Jogging, 4=Tennis, 3=Basketball, 2=Football, 1=Baseball, 5=Cycling) indicat-
ing opposite preferences in the two subsamples towards team and individual sports. Actually, we
verified that these modal sequences are very similar to those found with the clustering approach
described by [10].
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Fig. 2: Traceplots (left) and top posterior probabilities (right) for the reference order parameter
estimated from the two subsamples of the sport dataset. In the traceplots, sampled reference orders
are renamed with numeric labels according to the decreasing order of the posterior probability
masses, so label 1 is associated to the MAP reference order. The correspondence between sampled
reference orders and numeric labels is shown on the horizontal axes of the barplots.

4.3 Application to the sushi data

For the second real data application, we considered a subsample of the popular sushi data con-
cerning preferences on K = 10 types of sushi, namely 1=Shrimp, 2=Sea eel, 3=Tuna, 4=Squid,
5=Sea urchin, 6=Salmon roe, 7=Egg, 8=Fatty tuna, 9=Tuna roll, 10=Cucumber roll. See [7] for
further details on the sushi dataset. Specifically, we focused on the N=134 sequences regarding
rankers who declared to have most longly lived in the 39th prefecture until 15 years old.

Besides the forward and backward PL, also the Bayesian distance-based model with the Kendall
distance (DB-Kend) was considered as a possible competitor of the EPL to learn preferences on
the sushi types. The latter was fitted to the data by employing the functions of the R package
BayesMallows, recently released on CRAN [18] and including the entire sushi dataset of 5000
complete rankings. As in the previous application, four chains of the TJM-within-GS procedure
were launched with randomly dispersed starting points and the DIC was used to select the optimal
model.

We checked the effective achievement of convergence of the MCMC output with the analy-
sis of the traceplots and the computation of relevant diagnostics. For the log-posterior values we
obtained Geweke’s z-scores equal to 1.73, 1.61, 0.87 and 0.64 and Gelman and Rubin’s potential
scale reduction factor equal to 1.001. Convergence diagnostics for the traces of the support pa-
rameters are shown in the supplementary material. We then focussed on model comparison and
parameter interpretation. For the sushi data analysis, we noticed a greater variability associated
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Fig. 3: Traceplots (left) and top posterior probabilities (right) for the reference order parameter
estimated from the subsample of the sushi dataset. In the traceplots, sampled reference orders
are renamed with numeric labels according to the decreasing order of the posterior probability
masses, so label 1 is associated to the MAP reference order. The correspondence between sampled
reference orders and numeric labels is shown on the horizontal axes of the barplots.

to the posterior distribution of the reference order, where probability masses turn out to be dif-
fuse on a neighbourhood close to the backward path (Figure 3). This variability represents the
uncertainty on the reference order estimation which is overlooked by the restricted EPL-ρB. The
DIC indicates a remarkable superiority of EPL-ρB over EPL-ρF (DIC=3819.65 vs DIC=3885.94),
but the more flexible EPL class, which properly accounts for the uncertainty on ρ, produces a
further improvement of the final fit (DIC=3815.07). The new Bayesian EPL outperforms also the
DB-Kend (DIC=3838.95). The posterior means and standard deviations of the EPL support pa-
rameters are reported in Table 4. Those obtained from the EPL-ρF and the EPL-ρB are reported
in the supplementary material. The MAP estimate of the modal ordering under the EPL scenario
is equal to (5=Sea urchin, 8=Fatty tuna, 1=Shrimp, 6=Salmon roe, 3=Tuna, 4=Squid, 2=Sea eel,
10=Cucumber roll, 9=Tuna roll, 7=Egg).

5 Conclusions

We have addressed some relevant issues in modelling and inferring choice behavior and preferences.
The standard PL for complete rankings relies on the hypothesis that the probability of a particular
ordering does not depend on the subset of items from which one can choose (Luce’s Axiom).

Table 3: Posterior means and standard deviations (s.d.) of the EPL support parameters for the
two subsamples of the sport dataset.

G1 G2

Sport p̂i s.d. p̂i s.d.

Baseball 0.3743 (0.040) 0.2642 (0.031)

Football 0.2102 (0.029) 0.3194 (0.035)

Basketball 0.1888 (0.027) 0.1584 (0.022)

Tennis 0.0697 (0.012) 0.0795 (0.012)

Cycling 0.0856 (0.014) 0.0910 (0.014)

Swimming 0.0457 (0.008) 0.0501 (0.009)

Jogging 0.0256 (0.006) 0.0374 (0.007)
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Although this can be considered a very strong assumption, the widespread use of the PL suggested
to exploit it as a building block to gain more flexibility. In particular, [11] explored the possibility
of adding flexibility with the help of two main ideas: i) the use of an additional discrete parameter,
the reference order, specifying the order of the ranks sequentially assigned by the individual and
which should be inferred from the data; ii) the finite mixture of PL distributions enriched with the
reference order parameter (EPL mixture).

In this paper, we have focussed on i) and developed a methodology for a fully Bayesian estima-
tion of the EPL distribution. We have devised a hybrid strategy by combining appropriately tuned
MH kernels and the GS. This allows for a successful exploration of the whole mixed-type parameter
space. The resulting Bayesian inference turned out to be effective in inferring the true reference
order and provided a suitable MCMC simulation which can be used to quantify the uncertainty
on the EPL parameters. We stress that the previous attempts to infer on the underlying reference
order were limited to the maximum likelihood point estimation via EM algorithm, which required
a brute-force multiple starting point strategy in order to attempt to reach the global maximum.
We note that, in order to assess the uncertainty on the reference order parameter, one should
employ a bootstrap approach which, of course, implies a greater computational effort. Moreover,
as K increases, a fixed number of multiple starting points becomes a factorially decreasing (hence
negligible) fraction of all the possible initializations and, obviously, this hampers the possibility of
achieving eventually the global optimum in applications with larger K. On the other hand, the
hybrid MCMC strategy provided valid results which are less sensitive to the starting reference
order. Hence, our Bayesian methodology provides both an appropriate way to assess parameter
uncertainty and a computational improvement for inferring the EPL.

Simulation studies explored the sensitivity of TJM-within-GS to the prior hyperparameters as
well as tuning constants. They also evaluated its efficacy in recovering the true EPL parameters
generating the data. Finally, the novel parametric approach was successfully applied to two real
datasets concerning the analysis of preference patterns.

Moreover, our model setup gains more insights on the sequential mechanism of formation of
preferences and whether it privileges a more or less naturally ordered assignment of the most
extreme ranks. In other words, we show how it is possible to assess with a suitable statistical
approach the formation of ranking preferences and answer through a statistical model the following
questions: “What do I start ranking first? And what do I do then?”.

For possible future developments, several directions can be contemplated to further extend
the Bayesian EPL. First, the methodology can be generalized for the accommodation of partial
orderings and the introduction of item-specific and individual covariates that can improve the
characterization of the preference behavior. Moreover, a Bayesian EPL mixture could fruitfully
support more efficiently the identification of a parsimonious cluster structure in the sample.

Table 4: Posterior means and standard deviations (s.d.) of the EPL support parameters for the
subsample of the sushi dataset.

Sushi type p̂i s.d.

Shrimp 0.0538 (0.006)

Sea eel 0.0799 (0.008)

Tuna 0.0760 (0.007)

Squid 0.0974 (0.009)

Sea urchin 0.0453 (0.005)

Salmon roe 0.0729 (0.007)

Egg 0.1591 (0.014)

Fatty tuna 0.0380 (0.004)

Tuna roll 0.1271 (0.012)

Cucumber roll 0.2504 (0.020)
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Appendix

An example of EPL model

Here is a simple example to clarify the EPL formulation introduced in (1). Without loss of generality, let us suppose
that an EPL(ρ̇, ṗ) with parameter values ρ̇ = (4, 1, 3, 2) and ṗ = (0.4, 0.3, 0.2, 0.1) represents the true data generating
mechanism. Under this EPL scenario, the positions are assigned according to an alternating preference scheme: the
item selected at the first stage corresponds to the least-liked alternative (ρ̇(1) = 4); at the second stage, the most-
liked item is specified (ρ̇(2) = 1); the item ranked at the third stage is the one receiving the third position (ρ̇(3) = 3)
and, finally, the remaining alternative of the forth stage is placed second in order of preference (ρ̇(4) = 2). Regarding
the support parameters, they reflect a decreasing first-stage choice probability such that ṗi ∝ (K + 1) − i. Hence,
the chance of being ranked last reduces when proceeding from alternative 1 up to alternative 4: item 1 is more likely
to be chosen at the first step and, thus, to be ranked last, followed in the order by item 2, 3 and 4.

Since the rank assignment order ρ is not restricted to the identity permutation ρF as in the PL, a generic ordering
π−1 does not coincide with the sequence η−1 = π−1 ◦ ρ listing the items selected at each stage of the ranking
process. For example, the considered EPL(ρ̇, ṗ) implies that observing the ordering π−1 = (3, 1, 4, 2) corresponds to
the sequential item selections indicated by the composition below

η−1 = π−1 ◦ ρ̇ = (π−1(ρ̇(1)), π−1(ρ̇(2)), π−1(ρ̇(3)), π−1(ρ̇(4)))

= (π−1(4), π−1(1), π−1(3), π−1(2)) = (2, 3, 4, 1),

that is, one chooses item 2 at the first stage, item 3 at the second stage, item 4 at the third stage and item 1 at the
last stage.

Equation (1) states that the probability mass associated to π−1 = (3, 1, 4, 2) under the specified EPL(ρ̇, ṗ) can

be computed from the PL distribution after rearranging the components of π−1 according the reference order ρ̇:

PEPL(π−1 = (3, 1, 4, 2)|ρ̇, ṗ) = PPL(η−1 = (2, 3, 4, 1)|ṗ) =
0.3

1
·

0.2

0.4 + 0.2 + 0.1
·

0.1

0.4 + 0.1
· 1 ≈ 0.017.
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