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Abstract: The importance of the extent of resection (EOR) has been widely demonstrated as the
main predictor for survival, nevertheless its effect on tumor related epilepsy is less investigated.
A total of 155 patients were enrolled after a first-line surgery for supratentorial Diffuse Low Grade
Gliomas (DLGGs). Postoperative seizure outcome was analyzed stratifying the results by tumor
volumetric data and molecular markers according to 2016 WHO classification. Receiver operating
characteristic (ROC) curves were computed to asses EOR, residual tumor volume, and ∆T2T1 MRI
index (expressing the tumor growing pattern) corresponding to optimal seizure outcome. A total of
70.97% of patients were seizure-free 18 months after surgery. Better seizure outcome was observed
in IDH1/2 mutated and 1p/19q codeleted subgroup. At multivariate analysis, age (p = 0.014), EOR
(p = 0.030), ∆T2T1 MRI index (p = 0.016) resulted as independent predictors of postoperative seizure
control. Optimal parameters to improve postoperative seizure outcome were EOR ≥ 85%, ∆T2T1 MRI
index ≤ 18 cm3, residual tumor volume ≤ 15 cm3. This study confirms the role of EOR and tumor
growing pattern on postoperative seizure outcome independently from the molecular class. Higher
∆T2T1 MRI index, representing the infiltrative component of the tumor, is associated with worse
seizure outcome and strengthens the evidence of common pathogenic mechanisms underlying tumor
growth and postoperative seizure outcome.

Keywords: low grade glioma; seizure outcome; molecular markers; extent of resection; tumor growth
pattern; ROC curves

1. Introduction

Seizure is the most common onset symptom in patients with supratentorial diffuse low grade
gliomas (DLGG), with a seizure frequency ranging from 60% to 90% [1,2]. Tumor-related epilepsy tends
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to manifest with focal and focal-to-bilateral tonic-clonic seizures, and more than 50% of cases show
pharmaco-resistance, which contributes negatively on quality of life [3–5]. Recent studies have pointed
out that epileptogenesis and tumor growth in DLGG may share common pathogenic mechanisms that
can influence each other, thus representing two aspects of the same disease [6]. In this context, several
genetic alterations have been identified as risk factors of glioma-related epilepsy. Mutations of the
gene encoding the isocitrate-dehydrogenase1 (IDH1) and 2 (IDH2) can be found in about 70%–80%
of DLGG [7]. These mutations have been associated with metabolic changes that are potentially
epileptogenic, in accordance with the capability of IDH-mutated glioma cells to penetrate and surround
the neurons in the gray matter [8,9].

Seizure outcome represents an important challenge in the daily management of DLGG patients.
In particular, decision-making still varies across surgical centers given the lack of well-established and
universally recognized predictors of seizure outcomes.

In the last decades, numerous studies, based on the objective evaluation of the extent of resection
(EOR) has been published, demonstrating that an extensive surgery leads to increased overall patient
survival and decreased malignant progression [10–14].

Although EOR has also been shown to be one of the main strongest significant predictor markers
for seizure outcome [7,15–18], its predictive role has not been completely clarified in complex predictor
models for epileptic outcome stratification combining molecular and tumor volumetric data.

We assessed the capability of the main clinical, molecular, and radiological data used in DLGG,
including the tumor growing pattern and EOR, to predict postoperative seizure outcome, with the
aim to provide useful tools for the early identification of postoperative seizure persistence and for the
refinement of medical treatment tailoring in subjects with refractory epilepsy.

2. Results

2.1. Study Population and Postoperative Seizure Outcome

Demographic, clinical, histological, molecular, and radiological data of the 155 DLGG patients
included in the study are summarized in Tables 1 and 2. Seizure features are plotted in Figure 1
according to the preoperative Anti-Epileptic Drugs (AEDs). Overall, the median duration between
seizure onset and surgery was 6 months (range 4–20 months). The preoperative MRI evidenced in
all cases the absence of enhancement on T1-weighted post contrast MRI sequences. The median
preoperative tumor volume, computed on T2-weighted MR images, was 48 cm3 (range 6–144 cm3).
The median preoperative ∆T2T1 MRI value was 12 cm3 (range 0–55 cm3). The median EOR was 88%
(range 38%–100%) and the median postoperative residual tumor was 10 cm3 (range 0–44). According
to the 2016 WHO classification of the brain tumors, based on morphology and molecular alterations,
44 oligodendroglioma, IDH-mutant, and 1p/19q codeleted, 93 diffuse astrocytoma, IDH-mutant, and
18 diffuse astrocytoma, IDH-wild type, were identified.
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Table 1. Baseline characteristics of the study population. Characteristics of the study population are
described using means± s.d. (standard deviation) or median and range for continuous variables, number
of cases with relative percentages reported in parentheses for categorical variables. Abbreviations:
∆T2T1 MRI index, volumetric difference between preoperative tumor volumes on T2 and T1 weighted
MRI images; EOR, extent of surgical resection.

Parameters Value
(N and %, Mean ± s.d. or Median and Range)

No. of patients 155
Sex

Female 59 (38.06%)
Male 96 (61.94%)

Age (years) 37 18-73)
Tumor side

Left 88 (56.77%)
Right 67 (43.23%)

Tumor site
Frontal 50 (32.26%)
Parietal 13 (8.39%)

Temporal 24 (15.48%)
Insular 65 (41.94%)

Occipital 3 (1.93%)
Preoperative tumor volume computed on

T2-weighted MRI images, cm3 48 (6–144)

Preoperative ∆T2T1 MRI index, cm3 12 (0-55)
Preoperative ∆VT2T1 MRI index

<18 cm3 88 (56.67%)
≥18 cm3 67 (43.23%)
EOR% 88 (38–100)
EOR%

100 30 (19.36%)
99–90 43 (27.74%)
70–89 45 (29.03%)
≤69 37 (23.87%)

Postoperative residual tumor volume computed on
T2-weighted MRI images, cm3 10 (0–44)

Molecular class
Oligodendroglioma IDH1/2 mutated 1p-19q

codeleted 44 (28.39%)

Astrocytoma IDH 1/2 mutated 1p-19q non codeleted 93 (60.00%)
Astrocytoma IDH 1/2 wild type 18 (11.61%)

MGMT
Methylation status

yes vs. no

136 vs. 19
(87.74% vs. 12.26%)

Intraoperative protocol
Awake surgery 113 (72.90%)

General anesthesia 42 (27.10%)
Time between seizure onset and surgery 6 months (range 4–20 months)
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Table 2. Seizure characteristics. Abbreviations: AEDs, anti-epileptic drugs.

Parameter N (%)

Onset Seizure Features

Focal 52 (33.55%)
Motor 18

Non motor sensory 17
Non motor emotional 2
Non motor cognitive 11

Non motor autonomic 4

Generalized 103 (66.45%)
Motor 76

Focal to bilateral 14
Absence 9

Non motor cognitive 2
Non motor emotional 1

Non motor sensory 1

Seizure Frequency
Monthly 92 (59.35%)
Weekly 52 (33.55%)
Daily 11 (7.10%)

Duration
<1 year 133 (85.81%)
>1 year 22 (14.19%)

Preoperative AEDs
Levetiracetam 96 (61.94%)
Polytherapy 27 (17.42%)

Carbamazepine 22 (14.19%)
Phenytoin 10 (6.45%)

Postoperative Engel Class
IA 110 (70.97%)

IB, IC, ID 16 (10.32%)
II, III 23 (14.84%)

IV 6 (3.87%)

Postoperative AEDs
Levetiracetam 105 (67.74%)
Polytherapy 31 (20.00%)

Oxcarbamazepina 6 (3.86%)
Carbamazepine 5 (3.23%)
Valproic Acid 5 (3.23%)
Lacosamide 3 (1.94%)
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Figure 1. Graph illustrating the preoperative Anti-Epileptic Drugs (AESs) stratified by seizure 
frequency (A) and by onset seizure type (B). 

2.2. Postoperative Seizure Outcome Analysis 

Postoperative seizure outcome was proportionally similar at the four analyzed time points (4, 8, 
12, and 18-month follow-up). By considering the entire cohort of 155 cases, postoperative seizure 
control at 18 months was as follows: 110 patients (70.97%) were classified as Engel Class IA 

Figure 1. Graph illustrating the preoperative Anti-Epileptic Drugs (AESs) stratified by seizure frequency
(A) and by onset seizure type (B).

2.2. Postoperative Seizure Outcome Analysis

Postoperative seizure outcome was proportionally similar at the four analyzed time points (4, 8,
12, and 18-month follow-up). By considering the entire cohort of 155 cases, postoperative seizure
control at 18 months was as follows: 110 patients (70.97%) were classified as Engel Class IA (completely
seizure free), 16 patients (10.32%) as Engel Class IB-ID, 23 patients (14.84%) as Engel Class II-III, and
six patients (3.87%) as Engel Class IV. The distribution, according to different postoperative seizure
outcome (Engel Class IA vs. IB-IV), of EOR, residual tumor, molecular class, and preoperative ∆T2T1
MRI index, and intraoperative protocol are represented in Figure 2.
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Figure 2. Graph illustrating 18-months postoperative seizure outcome stratified by the significant
variables at univariate analysis. Blue bars indicate patients in Engel Class IA; yellow bars indicate those in
Engel Class IB or above. Individual bar totals are the total number of patients with postoperative seizures
within each category. (A) Distribution of patients stratified by the EOR; (B) Distribution of patients
stratified by the preoperative tumor growing pattern expressed by the ∆T2T1 MRI index; (C) distribution
of patients stratified by the residual tumor computed on T2 weighted images; (D) distribution of
patients stratified by the molecular class according to the 2016 WHO classification.

Patients of Engel Class IB-IV required changes in AEDs therapy to optimize seizure control after
surgery. As shown by the 18-month postoperative follow-up evaluation, these therapeutic changes,
however, failed to produce complete seizure freedom, and no other patients achieved Engel Class IA.

AEDs changes was usually done for patients belonging to Engel Class IA and IB. For all the others,
we proceeded with changings and/or optimization of the pharmacological treatments (i.e., add on
therapy, a new AED as monotherapy, increased posology). Specifically, further surgery, radiotherapy
or chemotherapy were not considered, in patients not seizure free after surgery, based on the fact that
all cases showed no signs of tumor progression within the follow-up considered.

At univariate analysis the following parameters were associated with postoperative seizure
outcome: frequency of preoperative seizures; seizure-onset features; preoperative ∆T2T1 MRI index;
molecular class; EOR; AEDs in mono- or poly-therapy; and postoperative residual tumor computed on
T2-weighted images.

In a multivariate analysis model which considered all these variables, only age (p = 0.014), ∆T2T1
MRI index (p = 0.016), and EOR (p = 0.030) were shown to be independent predictors of outcome
(Table 3).
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Table 3. Predictors of 18 months postoperative seizure control (Engel IA) on univariate and multivariate
analyses. Boldfacing values represent statistically significant results (p < 0.05).

Variable
Univariate Analysis Multivariate Analysis

Odds Ratio 95% CI p-Value Odds Ratio 95% CI p-Value

Age (yrs) 1.042 1.010–1.074 0.009 1.056 1.010–1.103 0.014
Sex

Male 1
Female 1.456 0.718–2.950 0.297

Tumor side
Left 1

Right 1.044 0.290–3.758 0.947
Tumor Site
Pre-central 1

Retro-central 0.755 0.207–2.752 0.671
Temporal 0.497 0.159–1.552 0.229

Insular 0.723 0.328–1.591 0.421
Onset seizure

features
Generalized 1

Focal 1.057 0.324–2.267 0.013
Seizure frequency

Monthly 1
Weekly 1.457 0.690–3.076 0.323
Daily 2.500 0.697–8.966 0.160

Duration
<1 yr 1
>1 yr 0.857 0.324–2.267 0.756

Preoperative
tumor volume
computed on
T2-weighted
images, cm3

1.116 1.069–1.185 <0.0001

∆T2T1 MRI index 1.156 1.066–1.195 <0.0001 1.077 1.102–1.134 0.016
Molecular Class

Astrocytoma
IDH1/2 mutated

1p-19q non
codeleted

1

Astrocytoma
IDH1/2 wild type 0.430 0.154–1.200 0.107

Oligodendroglioma
IDH1/2 mutated
1p-19q codeleted

0.222 0.669–0.747 0.014

MGMT
Methylation
yes vs. no

2.382 0.658–8.619 0.186

% EOR
Continuous

variable
0-929 0.903–0.955 <0.0001 0.957 0.920–0.995 0.030

Postoperative
residual tumor

volume computed
on T2 weighted

MRI images, cm3

1.057 0.324–2.267 0.001

2.3. ROC Analysis

In order to determine statistical clinical useful postoperative seizure outcome cutoff predictive
values for EOR, preoperative ∆T2T1 MRI index and residual tumor, a receiver operating characteristic
(ROC) curve was computed based on Engel class, using a binary outcome (Engel Class IA versus IB-IV)
(Figure 3).
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Figure 3. A receiver operating characteristic (ROC) curve for EOR, preoperative ∆T2T1 MRI index,
and postoperative residua tumor on T2-weighted images, to predict seizures relapse after surgery.
The optimal diagnostic point is the one with maximal sensitivity and specificity. It is the point closest
to the top left corner of the graph, indicated by the arrow. (A) The optimal threshold corresponded to
an EOR of 85%, which was the point with the highest sensitivity (0.764) and specificity (0.644), with a
resulting area under the curve of 0.783 (CI 95% 0.700–0.865) and a predictive accuracy of 72.90%; (B)
for the preoperative ∆T2T1 MRI index, the threshold of 18 cm3 corresponded to the point with the
highest sensitivity (0.689) and specificity (0.855), with a resulting area under the curve of 0.813 (CI 95%
0.731–0.895) and a predictive accuracy of 82.65%; (C) regarding the residual tumor, the optimal threshold
corresponded to 15 cm3, which was the point with the highest sensitivity (0.556) and specificity (0.809),
with a resulting area under the curve of 0.753 (CI 95% 0.663–0.842) and a predictive accuracy of 73.55%.

The optimal threshold corresponded to an EOR of 85%, which was the point with the highest
sensitivity (0.764) and specificity (0.644), with a resulting area under the curve of 0.783 (CI 95%
0.700–0.865) and a predictive accuracy of 72.90%.

Regarding the residual tumor, the optimal threshold corresponded to 15 cm3, which was the point
with the highest sensitivity (0.556) and specificity (0.809), with a resulting area under the curve of 0.753
(CI 95% 0.663–0.842) and a predictive accuracy of 73.55%.

For the preoperative ∆T2T1 MRI index, the threshold of 18 cm3 corresponded to the point with
the highest sensitivity (0.689) and specificity (0.855), with a resulting area under the curve of 0.813
(CI 95% 0.731–0.895) and a predictive accuracy of 82.65%.

Based on the preoperative ∆T2T1 MRI index an example of proliferative and diffusive DLGG are
shown in Figures 4 and 5.
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Figure 4. A case of insular diffuse low grade gliomas (DLGG) with a regular shape, determining
similar tumor volume in both post-contrast T1-weighted MRI and T2-weighted MRI sequences and
displacing the Fronto-Occipital Longitudinal Fasciculus. The preoperative tumor volume computed
on post-contrast T1-weighted magnetic resonance imaging (MRI) was 32 cm3 (axial slices A). The
preoperative tumor volume computed on T2-weighted MRI was 34 cm3 (axial slices B). The preoperative
∆T2T1 MRI index was 2 cm3, showing the prevalence of the proliferative tumor growing pattern.
The patient was in Engel Class IA 18 months after surgery.
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Figure 5. A case of insular DLGG infiltrating the Cortico-Spinal tract. The preoperative tumor volume
computed on post-contrast T1-weighted magnetic resonance imaging (MRI) was 58 cm3 (axial slices
(A)). The preoperative tumor volume computed on T2-weighted MRI was 83 cm3 (axial slices (B)).
The preoperative ∆T2T1 MRI index was 25 cm3. The prevalence of the diffusive and infiltrative growth
generates the tumor diffusion along the white matter, resulting in a complex shape with digitations
more visible on T2-weighted images. The patient was in Engel Class IB 18 months after surgery.

3. Discussion

In this retrospective study, which included 155 adult patients DLGG with preoperative
drug-resistant tumor related epilepsy, postoperative seizure outcome was analyzed stratifying the
results by tumor volumetric data and molecular markers.
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This study showed the following:

(1) 70.97% of epileptic DLGG patients were in Engel Class IA 18 months after surgery;
(2) Improved postoperative seizure outcome can be expected for EOR ≥ 85%, residual tumor ≤

15 cm3, and preoperative ∆T2T1 MRI index ≤ 18 cm3.
(3) Tumor infiltration index, expressed by ∆T2T1 MRI index, represents a quantitative evaluation of

the diffusive and infiltrative tumor component as predictor of postoperative seizure outcome.
(4) IDH1/2 mutation may represent the prevalent epileptogenic mechanism in presence of higher

∆T2T1 MRI index and consequent lower EOR.

3.1. The Role of EOR

The treatment paradigm of DLGGs is based on the principle of the onco-functional balance, which
implies maximization of EOR with preservation of quality of life.

The role of EOR as the strongest predictors of postoperative seizure long-term outcome (Table 4)
has recently been demonstrated in a limited number of retrospective studies [8,15–17,19–23]. Only two
investigations examined which value of EOR corresponded to the threshold above which seizure
control, defined as Engel Class level, was optimal [16,17].

Xu et al. showed the existence of an EOR threshold for long-term seizure freedom corresponding
to an EOR > 80% [17].

In a subsequent larger multi-center investigation, methodologically well-designed, Still et al.
demonstrated that postoperative seizure control was more likely when EOR was ≥91% and/or when
residual tumor volume was ≤ 19 cc in supratentorial DLGG patients [16].

The results reported in these studies with a postoperative follow-up of 6 months were also
confirmed in our study, however, with a follow-up period of 18 months. Our data showed an optimum
EOR threshold of ≥ 85% and a residual tumor threshold of 15 cm3 to be associated with a higher
likelihood of postoperative seizure control at one year. The epileptogenic focus and the tumor are not
always overlapped. Hippocampectomy and corticectomy combined with lesionectomy in patients
with DLGG and intractable preoperative tumor related epilepsy have been shown to improve seizure
control [24]. The use of intraoperative electrocorticography (ECoG) to identify epileptogenic areas,
guide surgical strategy, and improve postoperative seizure control in patients with LGGs still remains
inconclusive, mainly due to its low accuracy to detect distant epileptogenic focus and to follow
the spreading of epileptic activity [25]. Future intraoperative prospective studies are required to
combine the intraoperative use of direct electrical stimulation (DES) and ECoG in order to optimize the
DLGG surgery not only in terms of EOR achievable but also for the postoperative seizure outcome.
Intraoperative integration between DES and ECoG may allow a supratotal resection, beyond the
radiological margins of the tumor, when functionally possible.
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Table 4. Postoperative tumor related epilepsy outcome in DLGGs: Literature review stratified by EOR and 2016 WHO molecular features.

Authors N of
Cases

Age at
Surgery
(years)

Location Histology
Preoperative

Tumor
Volume cm3

EOR Preoperative
Seizures

Postoperative
Seizures

(Engel Class I
Outcome)

IDH1/2
Mutation

1p/19q
Codeletion

MGMT
Methylation P53+

Neal A et
Al. 2018

[21]

70 HGG
and 30
LGG

50.2 ± 17.5

Frontal 48;
occipital 1;
parietal 11;
temporal 26

70 HGG
20 A

10 O/OA
NA

15 PR
42 ST

37 GTR
6 unknown

52 cases
(52%)

58 cases
(58%)

35 cases
(35%) NA NA NA

Still
M.E.H. et
al. 2018

[16]

346 LGG 35.0

Frontal 192,
temporal 70,
insular 41,

parietal 27, other
16

48 A
298 O NA

100% 50 cases;
90%–99% 92

cases; 50%–89%
134 cases;

<50% 70 cases

346 cases
(100%)

227 cases
(65.60%)

19 (21 cases
tested)

(90.47%)

65 (206
cases tested)

(31.55%)
NA NA

Xu DS et
al. 2018

[17]
128 LGG 40.8

Frontal 74,
parietal 34,

temporal 45,
occipital 8,

insular 17, deep 6

18 A
86 O

24 OA
57,5

90%–99%
64 cases;
80%–89%
11 cases

128 cases
(100%)

105 cases
(82.03%) NA 25 cases

(19.53%) NA NA

Chen H et
al. 2017

[19]

712
GLIOMA

54
(60.7–53.4)

Temporal 191
non temporal 521

77 WHO II, 128
WHO III, 507 WHO

IV
NA NA 276 cases

(38.76%) NA 177 cases
(16.43%)

644 cases
(90.44%) NA NA

Zhong Z.
et al. 2015

[23]
311 LGG 38 NA

140 A
140 OA

31 O
NA NA 183 cases

(58.84%)
211 cases
(67.84%)

257 cases
(82.63%) NA NA NA

Yang Y. et
al. 2015

[22]

6 LGG
106 HGG

34
(39.8–42.2)

88 frontal; 74
temporal; 45
parietal; 11
occipital; 17

insular

64 WHO II
58 WHO III
48 WHO IV

4.7 cm (5.6–6.4
cm) NA 74 cases

(42.3%) NA

41 WHO II
cases (64.0%);
33 WHO III

cases (56.8%);
10 WHO IV

cases (20.8%)

NA NA

24 WHO II
cases (37.5%);
28 WHO III

cases (48.2%);
25 WHO IV

cases (52.0%)

Ius et al.
2014 [15]

52
LGG 38.73 Insula; left 36,

right 16

32 A
11 OA

9 O
75.42

87%
>90% 21 cases

70–89% 23 cases
<70% 8 cases

NA 35 cases
(67.30%) NA NA NA NA

Mulligan
L. et al.

2014 [20]
62 LGG NA NA 62 O

4 groups:
45 mm
46 mm
56 mm

37.5 mm

NA 48 cases
(77.41%) NA 48 cases

(77.41%)
39 cases
(62.90%) NA 24 cases

(38.70%)
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Table 4. Cont.

Authors N of
Cases

Age at
Surgery
(years)

Location Histology
Preoperative

Tumor
Volume cm3

EOR Preoperative
Seizures

Postoperative
Seizures

(Engel Class I
Outcome)

IDH1/2
Mutation

1p/19q
Codeletion

MGMT
Methylation P53+

Liubinas
SV et al.
2014 [8]

30 LGG 35.4 years NA

22 A
6 OA

1 mixed OA and
protoplasmic
astrocytoma

1 O

4 groups: 45
mm, 46 mm, 56
mm, 37.5 mm

NA 23 cases
(76.66%) NA 17 cases

(56.66% NA NA NA

Pallud J et
al. 2014

[7]
1509 LGG

<30 yrs =
390 cases,
30–45 yrs

= 726
cases

NA

327 A
781 OA

280 mixed glioma
121 missing

NA

<100 cm3 808
cases (53.54%),

>100 cm3

346 cases
(22.92%),

missing cases
355

(23,54)

NA NA NA NA NA NA

A = astrocytoma; EOR = extent of resection: GTR = gross-total resection; HGG = high grade glioma; LGG = low grade glioma; NA = not applicable; PR = partial resection: OA =
oligoastrocitoma; O = oligodendroglioma; STR = subtotal resection.
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3.2. The Tumor Growth Pattern Influences the Postoperative Seizure Outcome

Changes in peritumoral tissue are involved in in the pathogenesis of tumor-related epilepsy [1,2,6,
8,15,26,27].

Furthermore, during the sprouting of tumor cells in normal tissue, glioma cells release a high
level of glutamate into the extracellular space. As a consequence, an imbalance between inhibitory
and excitatory mechanisms is induced, generating neuron cell death, and promoting the migration of
tumor cells [6,27].

As previously described, the preoperative ∆T2T1 MRI index provides an imaging estimate of
tumor growing pattern prevalence and the EOR achievable [12,15].

Kinetic analysis in low grade gliomas highlighted that tumor growth results from two main
mechanisms: proliferation and diffusion [28,29].

The prevalence of proliferation growth leads to a bulky tumor with a regular shape, determining
similar tumor volume in both post-contrast T1-weighted MRI and T2-weighted preoperative MRI
sequences; whereas the prevalence of the diffusive growth generates the tumor infiltration along the
white matter, resulting in a complex shape with digitations more visible on T2-weighted images and
less amenable of an extensive tumor resection [28,29].

Higher level of preoperative ∆T2T1 MRI index thus represents the prevalence of the diffusive
growing mechanism.

In this study, we confirmed the role played by the tumor growth pattern (proliferative versus
diffusive), expressed by ∆T2T1 MRI index on postoperative seizure outcome [15].

As a new feature, we provided a predictive cut-off value by the receiver operating characteristic
(ROC) analysis.

According to ROC analysis, the optimum ∆T2T1 MRI index threshold ≤ 18 cm3 was associated
with a higher likelihood of long-term seizure control. Otherwise patients with a ∆T2T1 MRI index
>18 cm3 had a higher likelihood of postoperative seizure persistence at 18 months.

Assuming that the preoperative ∆T2T1 MRI index higher than 18 cm3 reflects the prevalence of
the diffusive and infiltrative tumor component, it could constitute an indirect imaging evaluation of
changes in peritumoral tissue induced by tumor growth.

When the diffusive mechanism is predominant, tumor infiltrates the functional area limiting the
resection, thus ∆T2T1 MRI index may provide a potentially estimation of the epileptic network
development, allowing the preoperative detection of patients at greater risk of postoperative
seizure persistence.

3.3. It is a Matter of Interaction between EOR and Tumor Growth Pattern

The simultaneous role played by the EOR and the ∆T2T1 MRI index in postoperative seizure
outcome could reflect the relationship between the extent of resection achievable and the tumor
growing pattern. The ∆T2T1 MRI index is the prognostic preoperative index of EOR itself, while the
EOR is inversely related to the tumor growth pattern, as demonstrated in our previous study [12,15].

We can thus assume that the less infiltrative the tumor growth pattern is, the better the chances of
greater EOR are and, consequently, the better the postoperative seizure control is.

Regarding the molecular assessment, only a few investigations have focused on the role played
by the molecular biomarkers on postoperative seizure outcome in DLGG patients, reaching divergent
results [21,23].

In a recent investigation, Neal et al. found a strong relationship between the higher IDH1-R132H
rates and a severe postoperative seizure outcome, although the contribution to tumor related epilepsy
by IDH 1/2mutation is not clear [21].

In contrast, Zhong et al. reported no significant difference in IDH status and seizure outcomes in
222 patients with WHO grade II gliomas [23].

In our study, when comparing seizure outcomes in patients with oligodendrogliomas and with
astrocytomas (based on the 2016 WHO update), the majority of patients with oligodendrogliomas
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were Engel Class IA in comparison with patients with astrocytoma IDH1/2 mutated or astrocytoma
IDH1/2 wild type (81.82%, 68.89%, and 50%, respectively; p = 0.001). It is likely that LGGs, which show
less infiltrative growth, as oligodendrogliomas, are less prone to modify the tumor microenvironment,
comparing to infiltrative lesions. Thus, electrical signaling of peritumoral tissues may be less impaired
in oligodendrogliomas [20].

As a further confirmation regarding the role of EOR on seizure outcome, the Cox analysis revealed
that the tumor molecular class did not result as an independent predictor at multivariate analysis,
suggesting that EOR and the peritumoral infiltrative component are more important in predicting the
outcome of epilepsy. Considering that the ∆T2T1 MRI index represents the infiltrative component of
the tumor, it could be an indirect index of changes in peritumoral tissue induced by tumor growth and
infiltration [15,26,27]. This index may be considered as a measure of persistent epileptogenic process
after surgery. It is interesting to note that patients with prevalence of infiltrative tumor growing pattern,
which means ∆T2T1 MRI index higher than 18 cm3, had a worse seizure outcome (66% of patient in
Engel Class IB-IV, Figure 1B) and expressed the IDH1-2 mutation in more than 90% of cases. Huberfeld
et al., in 2016, explained the relationship between epilepsy in glioma and IDH1/2 expression.

The epileptic discharge and tumor proliferation can be traced back to an imbalance in glutamate
transporters determining an increase in concentrations of extracellular glutamate [6]. The presence of
IDH mutated cells can explain seizure persistence in patients with a reduced EOR and high ∆T2T1
MRI index in the IDH-mutated tumors.

This hypothesis may explain the negative epileptic outcome in patient with higher ∆T2T1 MRI
index. Indeed, at multivariate analysis, the ∆T2T1 MRI index (p = 0.016) resulted as a stronger predictor
of postoperative outcome in comparison with EOR (p = 0.030), underlying the importance of the
infiltrative tumor component, which is generally not removed because it is functional, in seizure
persistence. The availability of predictive factors for postoperative seizure outcome could provide
a useful tool to guide therapeutic antiepileptic strategy after surgery, avoiding pharmacological
overtreatment improving the patients’ quality of life.

3.4. Limitation and Future Directions

There are several limitations of our study. The most important one is based on the retrospective
nature of the investigation

The peritumoral cortex may contain epileptogenic foci, which may directly affect postoperative
seizure control [8,24,30]. Future studies are thus required to better investigate the correlation between
supra-total resection, when functionally achievable, and seizure outcome.

Although in the present study gliomas were classified accordingly to the currently used 2016
WHO classification of the brain tumors, it is desirable in the future to molecularly characterize
diffuse astrocytic gliomas, IDH-wildtype, in order to recognize those that can indeed be classified
as diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade
IV [31,32]. Additional information deriving from next generation sequencing analysis would help
stratify postoperative seizure outcome in DLGGs, using markers with known pathophysiological roles
in epilepsy such as glutamate metabolism/clearance [5].

In the pattern of results reported, the cognitive statuses of the patients were not considered.
The impact of tumor related epilepsy on the pre-surgical neuropsychological examination could prove
to be useful to better assess the effects of tumor growth itself and the influence of tumor related epilepsy
or medication on the cognitive status of the patients. It has been shown that DLGG patients can present
emotional and personality changes in their post-surgery examination [33]. An important aspect would
be analyzing the effects of tumor related epilepsy on the post-surgery quality of life of patients in terms
of emotional processing and personality.

In closing, considering the lack of standardized protocol for tumor related epilepsy management,
both before and after surgery, it should be important to plan a multidisciplinary approach considering
the complex therapeutic profile of DLGGs patients [34]. In detail, a preoperative study as for epilepsy
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surgery with prolong Video-EEG recordings for patients with tumor related epilepsy characterized
by complex semiology not directly associated with tumor location, could be useful in future studies
to assess the spreading of epileptic discharges and plan the function possibility of resection and the
intra-operative position of the strips.

A tailored AEDs treatment should be adopted for each patient, considering that changes in
seizure type or worsening in Engel Class could be related to tumor progression. There are numerous
points of interest to be noted: homogeneous data collection in a monoinstutional case-series; strict
definition of postoperative seizure control as Engel Class A patients; postoperative seizure follow-up
at 18 months after surgery concomitant with control MRI, to rule out cases with tumor progression;
integration of tumor volumetric data and molecular data, according to 2016 WHO classification,
to stratify postoperative seizure outcome; ROC analysis to determine EOR, residual tumor volume,
and ∆T2T1 MRI index corresponding to optimal seizure outcome.

4. Materials and Methods

4.1. Study Population

A total of 155 adult patients with tumor related epilepsy underwent surgery at our institution for
primary DLGG (January 2007–May 2018).

Seizures were the onset symptom and all patients developed seizure not fully controlled with
medical treatment before surgery. At least two AEDs were given in successive monotherapies or
together in politherapy, resulting in a drug-resistant epilepsy, according to the International League
Against Epilepsy (ILAE) definition [35].

The 2017 ILAE classification was applied to classify the type of seizures [36].
Patients were enrolled according to the following criteria: age ≥ 18 years; preoperative MRI

suggestive of supratentorial low grade glioma; no previous surgery, chemo- or radio-therapy; at least
18 months of follow up, with concomitant MRI control, to rule out cases with tumor progression.
Objective evaluation of EOR preoperatively and postoperatively on MRI images in DICOM format
based on T2-weighted MRI sequences; revision of histopathological specimens by using the new
2016 WHO Classification; diagnosis of drug-resistant tumor related epilepsy, according to the ILAE
definition [37].

Patients were evaluated preoperatively, at discharge and, during the follow up, every 6
months. Engel Class at 18-month follow-up was used to compute predictors of postoperative
seizure outcome [36].

No patient underwent adjuvant therapy with radiotherapy or chemotherapy during the period of
postoperative follow-up.

The local Ethics Committee, Comitato Etico Unico Regionale del Friuli Venezia Giulia, approved
this investigation (protocol N.0036567/P/GEN/EGAS, ID study 2540). Considering that the study was
retrospective, written consent to participate in the study was not applicable. Written informed consent
was obtained for surgery.

4.2. Surgical Procedure

All patients were surgically treated with the aim of the intraoperative brain mapping technique
both at cortical and subcortical level [38].

The awake surgery protocol was selected following the standard protocol previously described [39].

4.3. Volumetric Analysis

Tumor volume data were obtained by analyzing structural imaging data routinely acquired
during pre-surgery and post-surgical investigations in axial 3D T2-weighted and 3D post-contrast
T1-weighted MRI slices. All tumor segmentations were realized by using the OSIRIX software tool
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(GNU LESSER, General Public License, Geneva, Switzerland) [40,41]. Specifically, the tumor growing
pattern, expressed by MRI ∆T2T1 index, and EOR were computed as previously described [12,15].

Briefly, the tumor growing pattern and the EOR were assessed as listed: (1) preoperative tumor
volume segmented on axial T2-weighted MRI images-preoperative tumor volume segmented on axial
T1-weighted images. (2) (preoperative tumor volume-postoperative tumor volume)/(preoperative
tumor volume) in axial T2-weighted MRI axial images.

4.4. Histological and Molecular Analysis

Histological and molecular data were retrospectively analyzed according to the 2016 WHO
classification [42].

Immunohistochemistry (IHC) for Ki67 and IDH1R132H, fluorescence in situ
hybridization (FISH) to evaluate 1p/19q codeletion and analysis of the genetic status of
O6-methylguanine-DNA-methyltransferase (MGMT) promoter and isocitrate dehydrogenase
(IDH1/2) genes were performed as previously described. Gliomas were classified as methylated when
the average percentage of methylation of CpG islands was ≥ 8% [43].

4.5. Statistical Analysis

Categorical variables were reported as percentages, continuous variables were reported as mean ±
standard deviation or median and range as appropriate, according with the data distribution. Normality
of the continuous variables was tested using the Shapiro–Wilk test, the t-test or Mann–Whitney U-test
as appropriate, was used to compare continuous variables between groups. For the outcome analysis,
Engel classification was dichotomized as Class IA versus Class IB-IV (patients were either completely
seizure free or not completely seizure free). In univariate analysis, the variables considered as possible
prognostic factors were age, sex, preoperative tumor volume, tumor histological subtype, molecular
markers, tumor side, preoperative seizures feature, seizure onset characteristics and frequency, time
between seizure onset and surgery, intraoperative protocol used, EOR, residual tumor volume, and
preoperative ∆T2T1 MRI index.

Multivariate stepwise backward analyses included all variables significant at p = 0.05 in univariate
analysis. The results were presented as odds ratios and 95% confidence intervals.

For EOR, preoperative ∆T2T1 MRI index and residual tumor threshold, the cut-off values able to
discriminate, with high sensitivity and specificity, the postoperative seizure control, was determined
by De Long’s nonparametric receiver operating characteristic (ROC) analysis with exact binomial
estimation of confidence intervals (CI) of the area under the curve (AUC).

All analyses were conducted using Stata/SE (version 14.0 Stata Corp.) for Mac. All two-tailed
statistical significance levels were set at p < 0.05.

5. Conclusions

The association between a worse seizure outcome and the prevalence of an infiltrating tumor
growing pattern expressed by high ∆T2T1 MRI index reinforces evidence of common mechanisms
underlying both epileptogenesis and tumor growth.

The individual evaluation of the tumor growing pattern and the estimation of the EOR may
thus represent a helpful tool in the early identification of patients with an increased risk of seizure
persistence after surgery.

Tumor volumetric information could be useful when deciding and discussing prognosis and
potential postoperative seizure outcomes to better handle the entire management, starting from pre- to
post surgery.

Considering the role of IDH 1/2 mutation in both tumor growing and epileptogenesis, and
considering that up to 80% of DLGGs carried out this mutation [44], potential future goals could be
represented in the development of anti-epileptic drugs targeting the underlying biochemical pathology
related to the mutation of IDH 1/2.
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