
On Synthesis of Resynchronizers for Transducers
Sougata Bose
LaBRI, University of Bordeaux, France

Shankara Narayanan Krishna
Department of Computer Science & Engineering IIT Bombay, India

Anca Muscholl
LaBRI, University of Bordeaux, France

Vincent Penelle
LaBRI, University of Bordeaux, France

Gabriele Puppis
CNRS, LaBRI, University of Bordeaux, France

Abstract
We study two formalisms that allow to compare transducers over words under origin semantics:
rational and regular resynchronizers, and show that the former are captured by the latter. We then
consider some instances of the following synthesis problem: given transducers T1, T2, construct a
rational (resp. regular) resynchronizer R, if it exists, such that T1 is contained in R(T2) under the
origin semantics. We show that synthesis of rational resynchronizers is decidable for functional,
and even finite-valued, one-way transducers, and undecidable for relational one-way transducers. In
the two-way setting, synthesis of regular resynchronizers is shown to be decidable for unambiguous
two-way transducers. For larger classes of two-way transducers, the decidability status is open.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases String transducers, resynchronizers, synthesis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.55

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.08688.

Funding DeLTA project (ANR-16-CE40-0007)

1 Introduction

The notion of word transformation is pervasive in computer science, as computers typically
process streams of data and transform them between different formats. The most basic form
of word transformation is realized using finite memory. Such a model is called finite-state
transducer and was studied from the early beginnings of automata theory. Differently from
automata, the expressiveness of transducers is significantly affected by the presence of non-
determinism (even when the associated transformation is a function), and by the capability of
processing the input in both directions (one-way vs two-way transducers). Another difference
is that many problems, notably, equivalence and containment, become undecidable when
moving from automata to transducers [11, 14].

An alternative semantics for transducers, called origin semantics, was introduced in [4]
in order to obtain canonical two-way word transducers. In the origin semantics, the output
is tagged with positions of the input, called origins, that describe where each output element
was produced. According to this semantics, two transducers may be non-equivalent even
when they compute the same relation in the classical semantics. From a computational
viewpoint, the origin semantics has the advantage that it allows to recover the decidability
of equivalence and containment of non-deterministic (and even two-way) transducers [6].

© S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 55; pp. 55:1–55:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/288653694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
https://arxiv.org/abs/1906.08688
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


55:2 On Synthesis of Resynchronizers for Transducers

It can be argued that comparing two transducers in the origin semantics is rather
restrictive, because it requires that the same output is generated at precisely the same place.
A natural approach to allow some ’distortion’ of the origin information when comparing
two transducers was proposed in [10]. Rational resynchronizers allow to compare one-way
transducers (hence, the name ’rational’) under origin distortions that are generated with
finite control. A rational resynchronizer is simply a one-way transducer that processes
an interleaved input-output string, producing another interleaved interleaved input-output
string with the same input and output projection. For two-way transducers (or equivalently,
streaming string transducers [1]) a different formalism is required to capture origin distortion,
since the representation of the origin information through interleaved input-output pairs
does not work anymore. To this purpose, regular resynchronizers were introduced in [6] as a
logic-based transformation of origin graphs, in the spirit of Courcelle’s monadic second-order
logic definable graph transductions [8]. In [6] it was shown that containment of two-way
transducers up to a (bounded) regular resynchronizer is decidable.

In this paper we first show that bounded regular resynchronizers capture the rational
ones. This result is rather technical, because rational resynchronizers work on explicit origin
graphs, encoded as input-output pairs, which is not the case for regular resynchronizers.
Then we consider the following problem: given two transducers T1, T2, we ask whether some
rational, or bounded regular, resynchronizer R exists such that T1 is origin-contained in T2
up to R. So here, the resynchronizer R is not part of the input, and we want to synthesize
such a resynchronizer, if one exists.

Our main contributions can be summarized as follows:
1. synthesis of rational resynchronizers for functional (or even finite-valued) one-way trans-

ducers is decidable,
2. synthesis of rational resynchronizers for unrestricted one-way transducers is undecidable,
3. synthesis of bounded regular resynchronizers for unambiguous two-way transducers is

decidable.
Somewhat surprisingly, for both decidable cases above the existence of a resynchronizer turns
out to be equivalent to the classical inclusion of the two transducers.

Full proofs of the results presented in this paper can be found in the extended version
https://arxiv.org/abs/1906.08688.

2 Preliminaries

One-way transducers.

One of the simplest transducer model is the one-way non-deterministic finite-state transducer
(hereafter, simply one-way transducer), capturing the class of so-called rational relations.
This is basically an automaton in which every transition consumes one letter from the input
and appends a word of any length to the output.

Formally, a one-way transducer is a tuple T = (Σ,Γ,Q, I,E,F,L), where Σ,Γ are finite
input and output alphabets, Q is a finite set of states, I,F ⊆ Q are subsets of initial and
final states, E ⊆ Q×Σ×Q is a finite set of transition rules, and L ∶ E ⊎F → 2Γ∗ is a function
specifying a regular language of partial outputs for each transition rule and each final
state. The relation defined by T contains pairs (u, v) of input and output words, where
u = a1 . . . an and v = v1 . . . vn vn+1, for which there is a run q0 Ð

a1 ∣ v1ÐÐÐ→ q1 Ð
a2 ∣ v2ÐÐÐ→ . . . qn Ð

∣ vn+1ÐÐÐ→
such that q0 ∈ I, qn ∈ F , (qi−1, ai, qi) ∈ E, vi ∈ L(qi−1, ai, qi), and vn+1 ∈ L(qn). The
transducer is called functional if it associates at most one output with each input, namely, if
it realizes a partial function. For example, the figure below shows two one-way transducers

https://arxiv.org/abs/1906.08688


S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:3

with input alphabet Σ = {a, b} and output alphabet
Γ ⊇ Σ. The first transducer is functional, and
realizes the cyclic rotation f ∶ cu ↦ uc, for any
letter c ∈ {a, b} and any word u ∈ {a, b}∗. The
second transducer is not functional, and associates
with an input u ∈ Σ∗ any possible word v ∈ Γ∗ as
output such that u is a sub-sequence of v.

a ∣ ε

b ∣ ε

c ∣ c

c ∣ c

∣ a

∣ b

a ∣ Γ∗a

b ∣ Γ∗b

∣ Γ∗

Two-way transducers.

Allowing the input head to move in any direction, to the left or to the right, gives a more
powerful model of transducer, which captures e.g. the relation {(u,un) ∶ u ∈ Σ∗, n ∈ N}.
To define two-way transducers, we adopt the convention that, for any given input u ∈ Σ∗,
u(0) = ⊢ and u(∣u∣+ 1) = ⊣, where ⊢,⊣ ∉ Σ are special markers used as delimiters of the input.
In this way, a transducer can detect when an endpoint of the input has been reached.

A two-way transducer is a tuple T = (Σ,Γ,Q, I,E,F,L), whose components are defined
just like those of a one-way transducer, except that the state set Q is partitioned into two
subsets, Q≺ and Q≻, the set I of initial states is contained in Q≻, and the set E of transition
rules is contained in (Q ×Σ ×Q) ⊎ (Q≺ × {⊢} ×Q≻) ⊎ (Q≻ × {⊣} ×Q≺). The partitioning
of the set of states is useful for specifying which letter is read from each state: states from
Q≺ read the letter to the left, whereas states from Q≻ read the letter to the right. Given
an input u ∈ Σ∗, a configuration of a two-way transducer is a pair (q, i), with q ∈ Q and
i ∈ {1, . . . , ∣u∣ + 1}. Based on the types of source and target states in a transition rule, we can
distinguish four types of transitions between configurations (the output v is always assumed
to range over the language L(q, a, q′)):

(q, i)Ða ∣ vÐÐ→ (q′, i + 1) if (q, a, q′) ∈ E, q, q′ ∈ Q≻, and a = u(i),
(q, i)Ða ∣ vÐÐ→ (q′, i) if (q, a, q′) ∈ E, q ∈ Q≻, q′ ∈ Q≺, and a = u(i),
(q, i)Ða ∣ vÐÐ→ (q′, i − 1) if (q, a, q′) ∈ E, q, q′ ∈ Q≺, and a = u(i − 1),
(q, i)Ða ∣ vÐÐ→ (q′, i) if (q, a, q′) ∈ E, q ∈ Q≺, q′ ∈ Q≻, and a = u(i − 1).

Note that, when reading a marker ⊢ or ⊣, the transducer is obliged to make a U-turn, either
left-to-right or right-to-left. The notions of successful run, realized relation, and functional
transducer are naturally generalized from the one-way to the two-way variant, (we refer to
[6] for more details).

In [5], a slight extension of two-way transducers, called two-way transducers with common
guess, was proposed. Before processing its input, such a transducer can non-deterministically
guess some arbitrary annotation of the input over a fixed alphabet. Once an annotation is
guessed, it remains the same during the computation. Transitions may then depend on the
input letter and the guessed annotation at the current position. For example, this extension
allows to define relations of the form {(u, vv) ∣ u ∈ Σ∗, v ∈ Γ∗, ∣u∣ = ∣v∣}. Note that the
extension with common guess does not increase the expressiveness of one-way transducers,
since these are naturally closed under input projections. Likewise, common guess does not
affect the expressive power of functional two-way transducers, since one can guess a canonical
annotation at runtime.

Classical vs origin semantics.

In the previous definitions, we associated a classical semantics to transducers (one-way
or two-way), which gives rise to relations or functions between input words over Σ
and output words over Γ. In [4] an alternative semantics for transducers, called origin

MFCS 2019



55:4 On Synthesis of Resynchronizers for Transducers

semantics, was introduced with the goal of getting canonical transducers for any given
word function. Roughly speaking, in the origin semantics, every position of the output
word is annotated with the position of the input where that particular output element
was produced. This yields a bipartite graph, called origin graph, with two linearly
ordered sets of nodes, representing respectively the input and the output elements, and
edges directed from output nodes to input nodes, representing the so-called origins.
The figure depicts an input-output pair (an, bn) an-
notated with two different origins: in the first graph,
a position i in the output has its origin at the same
position i in the input, while in the second graph it
has origin at position n − i.

a a a . . . a a a

b b b . . . b b b

a a a . . . a a a

b b b . . . b b b

Formally, the origin semantics of a transducer is a relation So ⊆ Σ∗ × (Γ ×N)∗ consisting
of pairs (u, ν), where u = a1 . . . an ∈ Σ∗ is a possible input and ν = ν1 . . . νm+1 ∈ (Γ×N)∗ is the
corresponding output tagged with input positions, as induced by a successful run of the form
(q0, i0)Ð

a1 ∣ ν1ÐÐÐ→ (q1, i1)Ð
a2 ∣ ν2ÐÐÐ→ . . . (qm, im)Ð∣ νm+1ÐÐÐ→, with each νj ∈ (Γ × {ij})∗. We identify a

pair (u, ν) with the origin graph obtained by arranging the input elements and the output
elements along two lines (we omit the successor relation in the graph notation), and adding
edges from every output element (a, i) to the i-th element of the input. Given an origin
graph G = (u, ν), we denote by in(G), out(G), and orig(G) respectively the input word u,
the output word obtained by projecting ν onto the finite alphabet Γ, and the sequence of
input positions (origins) obtained by projecting ν onto N.

For one-way transducers, there is a simpler presentation of origin graphs in the form
of interleaved words. Assuming that the alphabets Σ and Γ are disjoint, we interleave the
input and output word by appending after each input symbol the output word produced
by reading that symbol. For example, if Σ = {a} and Γ = {b}, then a word of the form
abb . . . abb represents an origin graph (an, ν), where ∣ν∣ = 2n and ν(2i − 1) = ν(2i) = (b, i), for
all i = 1, . . . , n. Words over Σ ⊎ Γ are called synchronized words. Just as every synchronized
word represents an origin graph, a regular language over Σ ⊎ Γ represents a rational relation
with origins, or equally the origin semantics of a one-way transducer.

In general, when comparing transducers, we can refer to one of the two possible semantics.
Clearly, two transducers that are equivalent in the origin semantics are also equivalent in the
classical semantics, but the converse is not true.

3 Resynchronizations

The central concept of this paper is that of resynchronization, which is a transformation
of origin graphs that preserves the underlying input and output words. The concept was
originally introduced in [10], and mostly studied in the setting of rational relations. Here we
use the concept in the more general setting of relations definable by two-way transducers.

Formally, a resynchronization is any relation R ⊆ (Σ∗ × (Γ × N)∗)2 that contains only
pairs (G,G′) of origin graphs such that in(G) = in(G′) and out(G) = out(G′), namely, with
the same projections onto the input and output alphabets.1 A resynchronization R can
be used to modify the origin information of a relation, while preserving the underlying
input-output pairs. Formally, for every relation So ⊆ Σ∗ × (Γ ×N)∗ with origins, we define

1 In [10], resynchronizers were further restricted to contain at least the pairs of identical origin graphs. Here
we prefer to avoid this additional restriction and reason with a more general class of resynchronizations.



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:5

T1 a ∣ b

a ∣ b

a a a a . . . a a

b b b b . . . b b

T2 a ∣ bb

a ∣ ε

a a a a . . . a a

b b b b . . . b b

R
a ∣ a

b ∣ b

a ∣ b
b ∣ a

abababab . . . abab↦

abbaabba . . . abba

Figure 1 Two functional 1NFT T1, T2, their origin graphs, and a rational resynchronizer R.

the resynchronized relation R(So) = {G′ ∈ So ∣ (G,G′) ∈ R, G ∈ So}. Note that if the origin
information is removed from both R(So) and So, then R(So) ⊆ So. Moreover, R(So) = So
when R is the universal resynchronization, that is, when R contains all pairs (G,G′), with
G,G′ ∈ Σ∗ × (Γ ×N)∗, in(G) = in(G′), and out(G) = out(G′).

Definability of resynchronized relations.

An important property that we need to guarantee in order to enable some effective reasoning
on resynchronizations is the definability of the resynchronized relations. More precisely, given
a class C of transducers, we say that a resynchronization R preserves definability in C if for
every transducer T ∈ C, the relation R(T ) is realized by some transducer T ′ ∈ C, that can
be effectively constructed from R and T . The class C will usually be the class of one-way
transducers or the class of two-way transducers, and this will be clear from the context.

Below, we recall the definitions of two important classes of resynchronizations, called
rational [10] and regular resynchronizers [6], that preserve definability by one-way transducers
and by two-way transducers, respectively. We will then compare the expressive power of
these two formalisms, showing that rational resynchronizers are strictly less expressive than
regular resynchronizers.

Rational resynchronizers.

A natural definition of resynchronizers for one-way transducers is obtained from rational
relations over the disjoint union Σ ⊎ Γ of the input and output alphabets. Any such relation
consists of pairs of synchronized words (w,w′), and thus represents a transformation of origin
graphs. In addition, if the induced synchronized words w and w′ have the same projections
over the input and output alphabets, then the relation represents a resynchronization. We
also recall that rational relations are captured by one-way transducers, so, by analogy, we
call rational resynchronizer any one-way transducer over Σ ⊎ Γ that preserves the input and
output projections.

It is routine to see that rational resynchronizers preserve definability of relations by one-way
transducers. It is also worth noting that every rational resynchronizer is a length-preserving
transducer. By a classical result of Elgot and Mezei [9] every rational resynchronizer can be
assumed to be a letter-to-letter one-way transducer, namely, a transducer with transitions of
the form q Ða ∣ bÐÐ→ q′, with a, b ∈ Σ ⊎ Γ.

I Example 1. Consider the functional one-way transducers T1, T2 in Figure 1. The domain
of both transducers is (aa)∗. An origin graph of T1 is a one-to-one mapping from the output
to the input (each a produces one b). On the other hand, in an origin graph of T2, every a at
input position 2i+1 is the origin of two b’s at output positions 2i+1, 2i+2. The transducer R

MFCS 2019



55:6 On Synthesis of Resynchronizers for Transducers

depicted to the right of the figure transforms synchronized words while preserving their input
and output projections. It is then a rational resynchronizer. In particular, R transforms
origin graphs of T1 to origin graphs of T2.

Regular resynchronizers.

While languages of synchronized words are a faithful representation of rational relations, this
notation does not capture regular relations, so relations realized by two-way transducers. An
alternative formalism for resynchronizations of relations defined by two-way transducers was
proposed in [6] under the name of MSO resynchronizer (here we call it simply ‘resynchronizer’).
The formalism describes pairs (G,G′) of origin graphs by means of two relations moveγ and
nextγ,γ′ (γ, γ′ ∈ Γ) in the spirit of MSO graph transductions. More precisely:

moveγ describes how the origin y of an output position x labeled by γ is redirected to
a new origin z (for short, we call y and z the source and target origins of x). Formally,
moveγ is a relation contained in Σ∗ ×N ×N that induces resynchronization pairs (G,G′)
such that, for all output positions x, if out(G)(x) = γ, orig(G)(x) = y, and orig(G′)(x) = z,
then (in(G), y, z) ∈ moveγ .
nextγ,γ′ constrains the target origins z and z′ of any two consecutive output positions
x and x + 1 that are labelled by γ and γ′, respectively. Formally, nextγ,γ′ is a relation
contained in Σ∗ ×N ×N that induces resynchronization pairs (G,G′) such that, for all
output positions x and x + 1, if out(G)(x) = γ, out(G)(x + 1) = γ′, orig(G′)(x) = z, and
orig(G′)(x + 1) = z′, then (in(G), z, z′) ∈ nextγ,γ′ .

A resynchronizer is a tuple ((moveγ)γ∈Γ, (nextγ,γ′)γ,γ′∈Γ), and defines the resynchronization
R with pairs (G,G′) induced by the relations moveγ and nextγ,γ′ , where γ, γ′ ∈ Γ.

In order to obtain a well-behaved class of resynchronizations, that in particular preserves
definability by two-way transducers, we need to enforce some restrictions. First, we require
that the relations moveγ and nextγ,γ′ are described by regular languages (or equally, definable
in monadic second-order logic). By this we mean that we encode the input positions y, z, z′
with suitable annotations over the binary alphabet B = {0,1}, so that we can identify the
relations moveγ and nextγ,γ′ with some regular languages over the expanded alphabet Σ×B2.
We call regular resynchronizer a resynchronizer where the relations moveγ and nextγ,γ′ are
given by regular languages. In addition, we also require that regular resynchronizers are
k-bounded, for some k ∈ N, in the sense that for every input u, every output letter γ, and
every target origin z, there are at most k positions y such that (u, y, z) ∈ moveγ .

I Example 2. Consider the resynchronization R that contains the pairs (G,G′), where the
origin graph G (resp. G′) maps every output position to the first (resp. last) input position, as
shown in the figure. Note that R is ‘one-way’, in the sense
that it contains only origin graphs that are admissible
outcomes of runs of one-way transducers. However, R
is not definable by any rational resynchronizer, since, in
terms of synchronized words, it should map av u to auv,

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 b5

for every a ∈ Σ, u ∈ Σ∗, and v ∈ Γ∗, which is clearly not a rational relation. The resyn-
chronization R can however be defined by a 1-bounded regular resynchronizer, for exam-
ple ((moveγ)γ∈Γ, (nextγ,γ′)γ,γ′∈Γ), where moveγ = {(u, y, z) ∣ u ∈ Σ∗, y = 1, z = ∣u∣} and
nextγ,γ′ = Σ∗ ×N ×N.

One can observe that, in the previous example, next is not restricting the resynchronization
further. For other examples that use next in a non-trivial way see for instance [6, Example 13].



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:7

The notion of resynchronizer can be slightly enhanced in order to allow some additional
amount of non-determinism in the way origin graphs are transformed (this enhanced notion
is indeed the one proposed in [6]). The principle is very similar to the idea of enhancing
two-way transducers with common guess. More precisely, we allow additional monadic
parameters that annotate the input and the output, thus obtaining words over expanded
alphabets of the form Σ ×Σ′ and Γ × Γ′. A resynchronizer with parameters is thus a tuple
(ipar,opar, (moveγ)γ , (nextγ,γ′)γ,γ′), where ipar ⊆ (Σ×Σ′)∗ describes the possible annotations
of the input, opar ⊆ (Γ × Γ′)∗ describes the possible annotations of the output, and, for every
γ, γ′ ∈ Γ×Γ′, moveγ ⊆ (Σ×Σ′ ×B2)∗ describes a transformation from source to target origins
of γ-labelled output positions, and nextγ,γ′ ⊆ (Σ ×Σ′ ×B2) constraints the target origins of
consecutive output positions labelled by γ and γ′. The resynchronization pairs (G,G′) in
this case are induced by ((moveγ)γ∈Γ×Γ′ , (nextγ,γ′)γ,γ′∈Γ×Γ′) and are obtained by projecting
the input and output over the original alphabets Σ and Γ, under the assumption that the
annotations satisfy ipar and opar. A resynchronizer with parameters is called regular if all its
relations are regular. A regular resynchronizer is called bounded if it is k-bounded, for some
k.

In [6] it was shown that, given a bounded regular resynchronizer R with parameters and
a two-way transducer T with common guess, one can construct a two-way transducer T ′
with common guess such that T ′ =o R(T ). The notation T ′ =o R(T ) is used to represent the
fact that T ′ and R(T ) define the same relation in the origin semantics.

Unless otherwise stated, hereafter we assume that two-way transducers are enhanced with
common guess, and regular resynchronizers are enhanced with parameters.

Rational vs regular resynchronizers.

Our first result shows that bounded, regular resynchronizers are more expressive than
rational resynchronizers. Consider for instance Example 1: it can be captured by the regular
resynchronizer with opar annotating even/odd positions. The resynchronizer shifts the origins
of the even positions of the output by one to the left and keeps the origins of the odd positions
unchanged. So here moveγ can be described by a regular language. On the other hand,
Example 2 shows that there are bounded, regular resynchronizers that cannot be captured
by rational resynchronizers.

I Theorem 3. For every rational resynchronizer, there is an equivalent 1-bounded regular
resynchronizer.

The proof of the above result is rather technical and can be found in the extended version.
Here we only provide a rough idea. Consider a rational resynchronizer R, that is, a one-
way transducer that transforms synchronized words while preserving the input and output
projections. For example, the figure to
the right represents a possible pair of syn-
chronized words, denoted w and w′, shown
in blue and in red, respectively, such that
(w,w′) ∈ R. We assume that Σ = {a} and

a a b a a a b b a a a b a a b b b a

a b a a a b a a a b b a a b a b b a

Γ = {b}.
From the given rational resynchronizer R we construct an equivalent 1-bounded, regular

resynchronizer R′. The natural approach is to encode a successful run ρ of R over a
synchronized word w. By measuring the differences between the partial inputs and the
partial outputs that are consumed and produced along the run ρ, we obtain a partial bijection

MFCS 2019



55:8 On Synthesis of Resynchronizers for Transducers

on the input letters that represents a mapping from source origins to target origins. This
mapping determines the relation moveγ of R′, and in fact depends on a suitable additional
annotation γ of the underlying output position. The additional annotation is needed in order
to distinguish output elements with the same origin in the source, but with different origins
in the target.

For example, by referring again to the figure above, consider the first occurrence of b in
w. Its origin in w is given by the closest input letter to the left (follow the blue arrow). To
find the origin in w′, one finds the same occurrence of b in w′ (solid line), then moves to the
closest input letter to the left (red arrow), and finally maps the latter input position in w′

back to w (dashed line). The resulting position determines the new origin (w.r.t. w′) of the
considered output element.

The remaining components ipar, opar, and nextγ,γ′ of R′ are used to guarantee the
correctness of the various annotations (notably, the correctness of the encoding of the run ρ
and that of the output annotations).

4 Synthesis of Resynchronizers

Recall that containment between transducers depends on the adopted semantics. More
precisely, according to the classical semantics, T1 is contained in T2 (denoted T1 ⊆ T2) if all
input-output pairs realized by T1 are also realized by T2; according to the origin semantics,
T1 is contained in T2 (denoted T1 ⊆o T2) if all origin graphs realized by T1 are also realized
by T2. In this section, we study the following variant of the containment problem:

Resynchronizer synthesis problem.
Input: two transducers T1, T2.
Question: does there exist some resynchronization R such that T1 ⊆o R(T2).

In fact, the above problem comes in several variants, depending on the model of transducers
considered (one-way or two-way) and the class of admissible resynchronizations R (rational
or bounded regular). Moreover, for the positive instances of the above problem, we usually
ask to compute a witnessing resynchronization R from the given T1 and T2 (this is the reason
for calling the problem a synthesis problem).

Clearly, the synthesis problem for unrestricted resynchronizers is equivalent to a clas-
sical containment, that is, T1 ⊆ T2 if and only if T1 ⊆o R(T2) for some resynchronizer R.
Therefore, the synthesis problem for unrestricted resynchronizers is undecidable. Thus we
will consider the synthesis problem of rational (resp. bounded regular) resynchronizers for
one-way (resp. two-way) transducers.

We also recall that rational resynchronizers preserve definability of relations by one-
way transducers [10], while bounded regular resynchronizers (which, by Theorem 3, are
strictly more expressive than rational resynchronizers) preserve definability by two-way
transducers [6]. For the sake of presentation, we shall first consider the synthesis of rational
resynchronizers in the functional one-way setting, that is, for instances given by functional
one-way transducers. We show that in this setting the problem collapses again to the
classical containment problem, which is however decidable now, that is: T1 ⊆ T2 if and only
if T1 ⊆o R(T2) for some rational resynchronizer R. The decidability result can be slightly
extended to some non-functional transducers. More precisely, we will show that synthesis
of rational resynchronizers for finite-valued one-way transducers is still decidable. When
moving to the relational case, however, the problem becomes undecidable.



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:9

The decidability status in the one-way setting could be also contrasted with the two-way
setting. In this respect, we observe that, in the functional case, the synthesis problem does not
collapse anymore to classical containment, as there are functional two-way transducers T1, T2
such that T1 ⊆ T2, but for which no bounded regular resynchronizer R satisfies T1 ⊆o R(T2)
(an example can be found at the beginning of Section 4.3). We are able to prove decidability
of synthesis of bounded, regular resynchronizers for unambiguous two-way transducers. The
decidability status, however, remains open in the functional two-way case, as well as in the
unrestricted (non-functional) two-way case.

4.1 Resynchronizing functional, one-way transducers
Recall that it can be decided in PSpace whether a transducer (be it one-way or two-way) is
functional [2], and that the classical containment problem for functional (one-way/two-way)
transducers is also in PSpace [3]. The following result shows that, for functional one-way
transducers, classical containment and rational resynchronizer synthesis are inter-reducible.

I Theorem 4. Let T1, T2 be two functional one-way transducers. The following conditions
are equivalent, and decidable:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 =o R(T2) for some rational resynchronizer R.

Proof sketch. The implications from 2. to 1. and 3. to 2. are trivial. The implication from
1. to 3. is proved by constructing a rational resynchronizer R as a product of T1, T2: at each
step, R consumes a symbol a ∈ Σ and a word v1 ∈ Γ∗ from a transition of T1 and produces
the same symbol a and possibly a different word v2 ∈ Γ∗ from a corresponding transition of
T2. The fact that R preserves the outputs relies on functionality of T1 and T2. J

A natural question arises: can a characterization similar to Theorem 4 be obtained for
transducers that compute arbitrary relations, rather than just functions? The example below
provides a negative answer to this question. Later in Section 4.2, we will see that synthesis
of rational resynchronizers for unrestricted one-way transducers is an undecidable problem.

I Example 5. Consider a one-way transducer T1 that checks that the input is from (aa)∗ and
produces a single output letter b for each consumed input letter a, and another transducer T2
that works in two phases: during the first phase, it produces two b’s for each consumed a, and
during the second phase consumes the remaining part of the input without
producing any output. The origin graphs of T1 and T2 are shown to the right.
We have T1 ⊆ T2, but T1 /⊆o T2. The only resynchronization R that satisfies
T1 ⊆o R(T2) must map synchronized words from (ab)∗ to (abb)∗(a)∗, while
preserving the number of a’s and b’s. Such a transformation cannot be defined
by any rational resynchronizer, nor by a bounded regular resynchronizer.

a a . . . a a

b b . . . b b

a a . . . a a

b b b b . . . ε ε

There is however an intermediate case, between the functional and the full relational
case, for which a generalization of Theorem 4 is possible. This is the case of finite-valued
one-way transducers, that is, transducers that realize finite unions of partial functions.
The generalization exploits a result from [10], stated just below, that concerns synthesis
of bounded-delay resynchronizers. Formally, given two origin graphs G and G′ with the
same input and output projections, and given an input position y, we denote by delayG,G′(y)
the difference between the largest x ∈ dom(out(G)) such that orig(G)(x) = y and the

MFCS 2019



55:10 On Synthesis of Resynchronizers for Transducers

largest x′ ∈ dom(out(G′)) such that orig(G′)(x′) = y. Given d ∈ N, we define the d-delay
resynchronizer as the resynchronization that contains all pairs (G,G′) with the same input
and output projections and such that delayG,G′(y) ∈ [−d,+d] for all input positions y. It is
easy to see that the d-delay resynchronizer is a special case of a rational resynchronizer.

I Theorem 6 (Theorem 13 in [10]). Let T1, T2 be one-way transducers, where T2 is k-
ambiguous.2 One can compute a d-delay resynchronizer Rd, for some d ∈ N, such that T1 ⊆ T2
implies T1 ⊆o Rd(T2).

As a corollary we can generalize Theorem 4 to k-valued one-way transducers, with the
only difference that the witnessing rational resynchronizer now satisfies T1 ⊆o R(T2) rather
than T1 =o R(T2). We also recall that classical containment remains decidable for k-valued
one-way transducers, thanks to the fact that these can be effectively transformed to finite
unions of functional transducers [17]:

I Corollary 7. Let T1, T2 be k-valued one-way transducers. The following conditions are
equivalent, and decidable:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 ⊆o R(T2) for some rational resynchronizer R.

Proof. We prove the only interesting implication from 1. to 3. Suppose that T1, T2 are
k-valued one-way transducers such that T1 ⊆ T2. Using the decomposition theorem from [17],
we can construct a k-ambiguous one-way transducer T ′2 that is classically equivalent to T2
and such that T ′2 ⊆o T2. Since T1 ⊆ T ′2, by Theorem 6 we can compute a d-delay (in particular,
rational) resynchronizer Rd such that T1 ⊆o Rd(T ′2). Finally, since T ′2 ⊆o T2, T1 ⊆o Rd(T ′2),
and Rd(T ′2) ⊆o Rd(T2), we get T1 ⊆o Rd(T2). J

4.2 Resynchronizing arbitrary one-way transducers
In the previous section we saw how to synthesize a rational resynchronizer for functional, or
even finite-valued, one-way transducers. One may ask if finite-valuedness is necessary. We
already know that classical containment T1 ⊆ T2 is undecidable [11, 12] for arbitrary one-way
transducers, whereas origin-containment T1 ⊆o T2 is decidable [6]. Synthesis of a rational
resynchronizer R such that T1 ⊆o R(T2) is a question that lies between the two questions
above. We show in this section that in the case of real-time transducers with unary output
alphabet, the latter question is equivalent to language-boundedness of one-counter automata,
a problem that we define below.

A transducer is said to be real-time if it produces bounded outputs for each consumed
input symbol. A one-counter automaton (OCA) is a non-deterministic pushdown automaton
with a single stack symbol, besides the bottom stack symbol. In the definition of the
language-boundedness problem, we assume that the OCA recognizes a universal language;
this assumption is used in the reduction to the synthesis problem.

Language-boundedness of OCA.
Input: An OCA A over alphabet Ω that recognizes the universal language L(A) = Ω∗.
Question: Does there exist some bound k such that every word over Ω can be accepted by

A with a run where the counter never exceeds k?

2 A transducer is k-ambiguous if each input admits at most k successful runs.



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:11

Our reductions between language-boundedness of OCA and synthesis of rational resynchro-
nizers rely on the following result from [10], that implies that bounded-delay resynchronizers
are enough for synthesizing resynchronizers of real-time transducers:

I Theorem 8 (Theorem 11 in [10]). Let T1, T2 be real-time, one-way transducers and R a
rational resynchronizer such that T1 ⊆o R(T2). One can compute a d-delay resynchronizer
Rd such that T1 ⊆o Rd(T2).

I Proposition 9. Synthesis of rational resynchronizers for real-time one-way transducers
with unary output alphabet and language-boundedness of OCA are inter-reducible problems.
Moreover, in the reductions, one can assume that the left hand-side transducer is functional.

Proof sketch. Given some real-time transducers T1, T2, one constructs an OCA A that,
when the input encodes a successful run of T1, guesses and simulates an equivalent successful
run of T2. The OCA A keeps track in its counter, how ahead or behind is the partial output
produced by the encoded run of T1 compared to the partial output produced by the simulated
run T2, and accepts with an empty counter. Moreover, A accepts all inputs that do not
encode successful runs of T1: as soon as an error is detected, the counter is reset and frozen.
Thus, badly-formed encodings do not affect language-boundedness. Then, using Theorem
8, one shows that A is language-bounded if and only if T1 ⊆o R(T2) for some rational (and
w.l.o.g. bounded-delay) resynchronizer R.

In the opposite reduction, one has to construct some real-time transducers T1, T2 from a
given OCA A. Both transducers receive inputs over the same alphabet as A. T1 is a simple
functional transducer that outputs one symbol for each consumed input symbol. T2, instead,
guesses and simulates a run of A, and ouputs two symbols when the counter of the OCA
increases, and no symbol when it decreases. As before, one argues using Theorem 8 that A
is language-bounded if and only if T1 ⊆o R(T2) for some rational resynchronizer R. J

The status of the problem of language-boundedness of OCA was open, to the best of our
knowledge. Piotr Hofman communicated to us the following unpublished result, which can
be obtained by a reduction from the undecidable boundedness problem for Minsky machines
(the proof is in the extended version of this paper):

I Theorem 10 ([13]). The language-boundedness problem for OCA is undecidable.

I Corollary 11. Synthesis of rational resynchronizers for (real-time) one-way transducers is
undecidable, and this holds even when the left hand-side transducer is functional.

4.3 Resynchronizing unambiguous, two-way transducers
We now focus on the resynchronizer synthesis problem for two-way transducers. Here the
appropriate class of resynchronizations is that of regular resynchronizers, since, differently
from rational resynchronizer, they can handle origin graphs induced by two-way transducers.
The situation is more delicate, as the synthesis problem does not reduce anymore to classical
containment. As an example, consider the transducer T1 that consumes an input of the
form a∗ from left to right, while copying the letters to the output, and a two-way transducer
T2 that realizes the same function but while consuming the input in reverse. We have
that T1 ⊆ T2, but there is no resynchronizer R that satisfies T1 ⊆o R(T2) and that is
bounded and regular at the same time. As we will see, extending Theorem 4 to two-way
transducers is possible if we move beyond the class of regular resynchronizers and consider
bounded resynchronizers defined by Parikh automata. The existence of bounded regular

MFCS 2019



55:12 On Synthesis of Resynchronizers for Transducers

resynchronizers between functional two-way transducers can thus be seen as a strengthening
of the classical containment relation. Unfortunately, we are only able to solve the synthesis
problem of bounded regular resynchronizers for unambiguous two-way transducers, so the
problem remains open for functional two-way transducers.

First we introduce resynchronizers definable by Parikh automata. Formally, a Parikh
automaton is a finite automaton A = (Σ,Q, I,E,F,Z,S) equipped with a function Z ∶ E → Zk

that associates vectors of integers to transitions and a semi-linear set S ⊆ Zk. A successful
run of A is a run starting in I, ending in F and such as the sum of the weights of its
transitions belongs to S. We say that A is unambiguous if the underlying finite automaton
is. In this case, we can associate with each input u the vector A(u) ∈ Zk associated with the
unique accepting run of the underlying automaton of A on u, if this exists, otherwise A(u)
is undefined. By taking products, one can easily prove that unambiguous Parikh automata
are closed under pointwise sum and difference, that is, given A1 and A2, there are A+ and
A− such that A+(u) = A1(u) +A2(u) and A−(u) = A1(u) −A2(u) for all possible inputs u.
Hereafter, we will only consider languages recognized by unambiguous Parikh automata with
the trivial semilinear set S = {0k}.

By a slight abuse of terminology, we call Parikh resynchronizer any resynchronizer with
parameters whose relations moveγ and nextγ,γ′ are recognizable by unambiguous Parikh
automata, and ipar and opar are regular. We naturally inherit from regular resynchronizers
the notion of boundedness. Moreover, we introduce another technical notion, that will be
helpful later. Given a resynchronizer R, we define its target set as the set of all pairs (u, z)
where u is an input, z is a position in it, and (w,y, z) ∈ moveγ for some annotation w of u
with input parameters, some input position y, and some output type γ. Similarly, we define
the target set of a two-way transducer T as the set of all pairs (u, z), where u = in(G) and
z ∈ orig(G)(x) for some x ∈ dom(out(G)) and some origin graph G realized by T .

I Theorem 12. Let T1, T2 be two unambiguous two-way transducers. The following conditions
are equivalent:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 =o R(T2) for some 1-bounded Parikh resynchronizer R whose target set coincides with

that of T1 and where, each relation nextγ,γ′ is regular if moveγ and moveγ′ are regular.

Proof sketch. We focus on the implication from 1. to 3., as the other implications are trivial.
Similarly to the one-way case, to synthesize a resynchronizer, we need to annotate the input
with the (unique) successful runs of T1 and T2 (if these runs exist). Since T1, T2 are two-way,
the natural way of doing it is to use crossing sequences. Thanks to the encoding of runs by
means of crossing sequence, we can describe any output position x with a pair (y, i), where
y is the origin of x (according to T1 or T2) i is the number of output positions before x with
the same origin y. Note that i is bounded, as the transducers here are unambiguous, and
hence every input position is visited at most a bounded number of times.

Given T = T1 or T = T2 and an index i, one can construct a unambiguous Parikh automaton
AT,i that, when receiving as input a word u with a marked position y, produces the unique
position x that is encoded by the pair (y, i), according to the transducer T . It follows that, for
every output element correctly annotated with γ = (a, i, j), the relation moveγ can be defined
as {(y, z) ∣ AT2,i(y) −AT1,j(z) = 0}, which is a unambiguous Parikh language. This almost
completes the definition of the Parikh resynchronizer R. The remaining components of R
consists of suitable relations nextγ,γ′ that check correctness of the annotations. In particular,
the relations nextγ,γ′ are obtained by pairing a regular property with properties defined in



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:13

terms of the prior relations moveγ and moveγ′ , and hence nextγ,γ′ is regular whenever moveγ
and moveγ′ are. J

We now explain how to exploit the above characterization to decide bounded regular
resynchronizer synthesis problem. We provide the following characterization, whose proof
follows from the previous theorem:

I Theorem 13. Let T1, T2 be two unambiguous two-way transducers such that T1 ⊆ T2,
and let R̂ be the bounded Parikh resynchronizer obtained from Theorem 12. The following
conditions are equivalent:
1. R̂ is a regular resynchronizer,
2. T1 ⊆o R(T2) for some bounded regular resynchronizer R,
3. T1 ⊆o R(T2) for some 1-bounded regular resynchronizer R,
4. T1 =o R(T2) for some 1-bounded regular resynchronizer R with the same target set as T1.

Theorems 12 and 13 together provide a characterization of those pairs of unambiguous
two-way transducers T1, T2 for which there is a bounded regular resynchronizer R such
that T1 ⊆o R(T2). The effectiveness of this characterization stems from the decidability of
regularity of languages recognized by unambiguous Parikh automata [7]. This result requires
unambiguity and uses Presburger arithmetics to determine for each (simple) loop a threshold
such that iterating the loop more than the threshold always satisfies the Parikh constraint.
The language of the Parikh automaton is regular if and only if every (simple) loop has such
a threshold. We thus conclude:

I Corollary 14. Given two unambiguous two-way transducers T1, T2, one can decide whether
there is a regular resynchronizer R such that T1 ⊆o R(T2).

5 Conclusions

We studied two notions of resynchronization for transducers with origin, called rational
resynchronizer and regular resynchronizer. Rational resynchronizers are suited for transform-
ing origin graphs of one-way transducers, while regular resynchronizers can be applied also
to origin graphs of two-way transducers. We showed that the former are strictly included
in the latter, even when restricting the origin graphs to be one-way. We then studied the
following variant of containment problem for transducers: given two transducers T1, T2,
decide whether T1 ⊆o R(T2) for some (rational or regular) resynchronizer R. That is, if
all origin graphs of T1 can be seen as some origin graph of T2 transformed according to R,
then compute such a resynchronizer R. This problem can be seen as a synthesis problem
of resynchronizers. It is shown that the synthesis problem is decidable when T1, T2 are
finite-valued one-way transducers and the resynchronizer is constrained to be rational, as well
as when T1, T2 are unambiguous two-way transducers and the resynchronizer is allowed to
be regular (and bounded). In the one-way setting, the problem turns out to be undecidable
already for unrestricted (non-functional) transducers and rational resynchronizers. In the
two-way setting, the decidability status remains open already when the transducers are not
unambiguous (be them functional or not). Concerning this last point, however, we recall that
the synthesis problem becomes undecidable as soon as we consider regular resynchronizers
that are unbounded, as in this case the problem is at least as hard as classical containment.

References
1 Rajeev Alur and Pavel Cerný. Expressiveness of streaming string transducer. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science

MFCS 2019



55:14 On Synthesis of Resynchronizers for Transducers

(FSTTCS’10), volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010.

2 Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theor. Comput.
Sci., 292:45–63, 2003.

3 Meera Blattner and Tom Head. Single-valued a-transducers. J. Comput. and System Sci.,
15:310–327, 1977.

4 Mikolaj Bojańczyk. Transducers with origin information. In International Colloquium on
Automata, Languages and Programming (ICALP’14), number 8572 in LNCS, pages 26–37.
Springer, 2014.

5 Mikolaj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle. Which classes
of origin graphs are generated by transducers? In International Colloquium on Automata,
Languages and Programming (ICALP’17), volume 80 of LIPIcs, pages 114:1–114:13, 2017.

6 Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis. Origin-equivalence of
two-way word transducers is in PSPACE. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’18), volume 122 of LIPIcs,
pages 1–18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

7 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.
Int. J. Found. Comput. Sci., 24(7):1099–1116, 2013. URL: https://doi.org/10.1142/
S0129054113400339, doi:10.1142/S0129054113400339.

8 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

9 Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata. IBM
Journal of Research and Development, 9(1):47–68, 1965. URL: https://doi.org/10.1147/
rd.91.0047, doi:10.1147/rd.91.0047.

10 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence and
uniformisation problems for finite transducers. In International Colloquium on Automata,
Languages and Programming (ICALP’16), volume 55 of LIPIcs, pages 125:1–125:14, 2016.

11 Patrick C. Fischer and Arnold L. Rosenberg. Multi-tape one-way nonwriting automata. J.
Comput. and System Sci., 2:88–101, 1968.

12 T. V. Griffiths. The unsolvability of the equivalence problem for lambda-free nondeterministic
generalized machines. J. ACM, 15(3):409–413, 1968.

13 Piotr Hofman. Personal communication.
14 Oscar H. Ibarra. The unsolvability of the equivalence problem for e-free NGSM’s with unary

input (output) alphabet and applications. SIAM J. of Comput., 7(4):524–532, 1978.
15 Anca Muscholl and Gabriele Puppis. The many facets of string transducers (invited talk). In

36th International Symposium on Theoretical Aspects of Computer Science (STACS), volume
126 of LIPIcs, pages 2:1–2:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

16 J.C. Shepherdson. The reduction of two-way automata to one-way automata. IBM J. Res.
Dev., 3(2):198–200, 1959.

17 Andreas Weber. Decomposing a k-valued transducer into k unambiguous ones. ITA, 30(5):379–
413, 1996.

https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.1142/S0129054113400339
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.1147/rd.91.0047


S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:15

A Proofs of Section 3

I Theorem 3. For every rational resynchronizer, there is an equivalent 1-bounded regular
resynchronizer.

We fix a one-way transducer R over Σ ⊎ Γ that defines a rational resynchronizer. We
assume without loss of generality that R is letter-to-letter, as well as trimmed, namely,
every state in R occurs in some successful run. Note that R maps synchronized words to
synchronized words. With a slight abuse of terminology, we shall use the terms ‘source’
(resp. ‘target’) to refer to a synchronized word that is an input (resp. an output) of R. When
depicting examples, we will often adopt the convention that source synchronized words are
shown in blue, while target synchronized words are shown in red. On the other hand, we shall
use the terms ‘input’ and ‘output’ to refer to the projections of a synchronized word over
Σ and Γ, respectively (note that, in this case, it does not matter whether the synchronized
word is the source or the target, since these have the same projections over Σ and Γ). The
goal is to construct a 1-bounded, regular resynchronizer R′, with parameters, that defines
the same resynchronization as R.

We begin by introducing the key concept of lag, which represents the difference between
the number of input symbols consumed and number of input symbols produced along a
certain run (not necessarily successful) of R. Formally, given a run of R of the form ρ =
q0 Ð

c1 ∣ d1ÐÐÐ→ q1 Ð
c2 ∣ d2ÐÐÐ→ . . .Ðcn ∣ dnÐÐÐ→ qn, we define its lag lag(ρ) as ∣πΣ(c1 . . . cn)∣ − ∣πΣ(d1 . . . dn)∣,

where πΣ denotes the operation of projection onto the alphabet Σ. Note that, because R
is letter-to-letter, one could have equally defined lag(ρ) by counting the difference between
produced output symbols and consumed output symbols. Further note that the lag of a
successful run is always 0, since R preserves the input projection. Notice that the lag of a
run is a notion distinct of the delay of a rational resynchronizer presented in [10] which is
the maximum distance between the target origin of an output position and its source origin.
The following lemma shows that the lag is in fact a property of the initial and final states of
a run.

I Lemma 15. For every two runs ρ1 and ρ2 of R that begin with the same state and end
with the same state, lag(ρ1) = lag(ρ2).

Proof. Since R is trimmed, both runs ρ1 and ρ2 can be completed to some successful runs
of the form ρ′ρ1ρ

′′ and ρ′ρ2ρ
′′. From lag(ρ′ρ1ρ

′′) = 0 = lag(ρ′ρ2ρ
′′), it immediately follows

that lag(ρ1) = 0 − (lag(ρ′) + lag(ρ′′)) = lag(ρ2). J

In view of the above lemma, we can associate a lag lag(q) with each state q of R as
follows: we choose an arbitrary run ρ that starts with the initial state of R and ends with q,
and let lag(q) = lag(ρ). This is well-defined since lag(q) does not depend on the particular
choice of ρ. For instance, if we consider the letter-to-letter resynchronizer R of Example 1,
the only state with non-zero lag is the bottom one, which has lag 1. Note that, because each
transition of R can only increase or decrease the lag by 1, all lags range over the finite set
{−∣Q∣, . . . ,+∣Q∣}, where Q is the state space of R.

Next, we consider a successful run of R, say ρ = q0 Ð
c1 ∣ d1ÐÐÐ→ q1 Ð

c2 ∣ d2ÐÐÐ→ . . .Ðcn ∣ dnÐÐÐ→ qn, and
define relations omatchρ and imatchρ between positions of ρ. These relations are used later
to define a bijection between source and target origins. The relation omatchρ consists of all
pairs (i, j) of positions of ρ such that ci and dj are output letters and c1c2 . . . ci =Γ d1d2 . . . dj
(the latter is a shorthand for πΓ(c1c2 . . . ci) = πΓ(d1d2 . . . dj)). Note that omatchρ is in fact a
partial bijection. In a similar way, we define imatchρ as the partial bijection that contains all
pairs (i, j) of positions of ρ such that ci and dj are input letters and c1c2 . . . ci =Σ d1d2 . . . dj .

MFCS 2019



55:16 On Synthesis of Resynchronizers for Transducers

I Example 16. Consider the pair of source and target synchronized words over Σ⊎Γ shown
to the right, where Σ = {a} and Γ = {b},
which could be realized by a successful
run ρ of R. For the moment, we overlook
the blue and red arrows. Because R is
letter-to-letter, any position in any of the
two words corresponds precisely to a posi-
tion in the run ρ, so we can represent the

a a b a a a b b a a a b a a b b b a

a b a a a b a a a b b a a b a b b a

relations omatchρ and imatchρ by means of edges between source and target positions. In
the figure, the solid edges represent pairs of omatchρ, while the dashed edges represent some
pairs of imatchρ (precisely, those pairs (i, j) such that the transition at position j produces
an input letter, while the next transition produces an output letter).

Mapping the source to target origins.

We now explain how the relations imatchρ and omatchρ can be used to define a mapping
from source to target origins. We do so by first using the figure of Example 16. Consider
any output letter at position i in the source synchronized word w (e.g. the first blue letter b).
Let j be the last Σ-labelled position before i, as indicated by the blue arrow. This position j
determines the source origin y = ∣πΣ(w[1, j])∣ of the output letter. To find the corresponding
target origin, we observe that the position i is mapped via the relation omatchρ (solid line)
to some position k in the target synchronized word. Let h be the last Σ-labelled position
before k (red arrow), and map h back to a position ` in the source via the relation imatchρ
(dashed line). The position ` determines precisely the target origin z = ∣πΣ(w[1, `])∣ of the
considered output letter. The above steps describe a correspondence between two positions j
and ` in ρ, with labels over Σ, that is precisely defined by

∃i, k, h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ[j, i] consumes a word in ΣΓ+

(i, k) ∈ omatchρ
ρ[h, k] produces a word in ΣΓ+

(h, `) ∈ imatchρ.

(⋆)

In the above ρ[j, i] represents the part of ρ between positions j, i (both j, i included).
We denote by matchρ the relation of all pairs (j, `) that satisfy Equation (⋆). Note that

match determines an analogous correspondence between source and target origins of the
input projection. However, match has two issues: it is not yet a partial bijection (since
different output positions may have the same source origin), and it needs to be implemented
by means of a regular relation moveγ that only considers positions of the input, plus the
label γ of a single position in the output. Below, we explain how to overcome those issues.

The case of bounded output blocks.

Hereafter, we call output block any maximal factor of a synchronized word that is labelled
over Γ. Intuitively, this corresponds to a maximal factor of the output that originates at
the same input position. We first consider, as a simpler case, a rational resynchronizer R
that reads source synchronized words where the lengths of the output blocks are uniformly
bounded by some constant, say B (a similar property holds for the blocks of the target
synchronized words, using lag-based arguments). In this case we can encode any successful
run ρ of R entirely on the input, by annotating every Σ-labelled position y with a factor ρy



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:17

of ρ that reads the input symbol at position y, followed by the sequence of output symbols
up to the next input symbol. Note that every factor ρy has length at most B + 1. The
correctness of this input annotation can be checked by the regular language ipar. Given a
factor ρy ∈ ΣΓ+, ρy[1] ∈ Σ is the first position of the factor ρy. Likewise, ρy[i, j] denotes the
subfactor of ρy consisting of positions i, i + 1, . . . , j.

In addition, we also annotate the output word with indices from {1, . . . ,B}, called offsets,
in such a way that an output position x is annotated with an offset o if and only if it is the
o-th output position with the same source origin. Note that the correctness of the annotation
cannot be checked by a regular language such as opar that refers only to the output. The
check will be done instead by a combined use of the relations moveγ and nextγ,γ′ .

We first check that, for every pair of consecutive output positions x and x + 1 annotated
with the offsets o and o′, respectively, it holds that o′ = o + 1 or o′ = 1, depending on whether
the source origins of x and x + 1 coincide or not. For this we let (u, z, z′) ∈ nextγ,γ′ , with
γ = (a, o) and γ′ = (a′, o′), if
1. either o′ = o + 1 and there is y = y′ such that (u, y, z) ∈ moveγ and (u, y′, z′) ∈ moveγ′ ,
2. or o′ = 1 and there are y < y′ such that (u, y, z) ∈ moveγ and (u, y′, z′) ∈ moveγ′ .
Recall that the relation nextγ,γ′ must be defined in terms of the target origins of x and x + 1.
So it needs to rely on the relation moveγ in order to determine the source origins from the
target origins. We assume that for every output type γ the relation moveγ , which will be
defined later, determines a partial bijection between input positions (we will see that this is
indeed the case). Based on these assumptions, the above definition of nextγ,γ′ guarantees
that the offsets annotating consecutive positions in the output are either incremented or
reset, depending on whether they have the same origin or not.

It remains to check that maximal offset occurring in an output block with origin y

coincides with number of output symbols produced by the corresponding factor ρy of the
run. Thus, we modify slightly the definition of nextγ,γ′ in case 2., as follows:
2’. or o′ = 1 and there are y < y′ such that (u, y, z) ∈ moveγ and (u, y′, z′) ∈ moveγ′ , and

o = ∣ρy ∣ − 1.
Note that the factor ρy can be derived by inspecting the annotation of the input position y.
The modification suffices to guarantee that the output annotation is correct for all output
blocks but the last one. The annotation for the last output block can be checked by marking
the last output position with a distinguished symbol and by requiring that if γ witnesses the
marked symbol and the offset o, then moveγ can only contain a triple of the form (u, y, z),
with o = ∣ρy ∣ − 1. We omit the tedious definitions in this case.

Now, having the input correctly annotated with the factors ρy of ρ and the output
correctly annotated with the offsets, we can encode any position i of ρ by a pair (y, o) that
consists of a position y of the input and an offset o ∈ {0,1, . . . ,B}. The encoding is defined
in such a way that i = ∑y′<y ∣ρy′ ∣ + o + 1 (in particular, o = 0 when the transition at position i
consumes an input symbol, otherwise o ≥ 1). We use this encoding to translate the relations
omatchρ, imatchρ, and matchρ, to equivalent finite unions of partial bijections between input
positions. We begin by explaining the translation of omatchρ.

Translation of omatchρ.

Consider any pair (i, j) ∈ omatchρ. Since the transition at position i of ρ consumes an
output symbol, it is encoded by a pair of the form (y, o), with o ≥ 1. On the other hand,
the transition at position j may consume either an input symbol or an output symbol (but
does produce an output symbol). In the former case, j is encoded by a pair (y′,0); in the

MFCS 2019



55:18 On Synthesis of Resynchronizers for Transducers

latter case, it is encoded by a pair (y′, o′), with o′ ≥ 1. As an example, in the figure below,
(7,4) ∈ omatchρ. Position 7 of the run is encoded as (5,1) on the input. The transition at
position 4 consumes an input symbol a, and produces the output symbol b, and is encoded
as (3,0).

a
(1,0)

a
(2,0)

b
(2,1)

a
(3,0)

a
(4,0)

a
(5,0)

b
(5,1)

b
(5,2)

b
(5,3)

a b a b a b b a a

In general, we observe that the lag induced just after the o-th transition of ρy must be equal
to the number of output symbols produced between the (o′ + 1)-th transition of ρy′ and the
o-th transition of ρy, both included (when the lag is negative one follows the transitions
in reverse order, counting negatively). As an illustration in the figure, the lag after the
first transition of ρ5 is 2, which is the number of output symbols in the dotted box. The
dotted box consists of the symbols produced between the first transition of ρ3′ and the first
transition of ρ5, and has two output symbols.

Translation of imatchρ.

The translation of the relation imatchρ is similar. The only difference is that now the pairs
(i, j) ∈ imatchρ are encoded by tuples of the form ((y, o), (y′, o′)), with o = 0 since the
transition at i consumes an input symbol. The transition at position j as before, can consume
an input symbol or an output symbol. Consider the figure below, where (2,3) ∈ imatchρ.
Position i = 2 is encoded as (2, 0). The transition at position 3 consumes an output symbol b
(and produces the input symbol a). Position 3 is encoded as (2,1).

a a b a
(3,0)

a
(4,0)

a b b b

a b a b a b b a a

The only difference here is that one has to relate the lag with the number of input letters
produced between (both positions included) the first transition of ρy and the o′-th transition
of ρy′ . Again, in the figure, the lag after the first transition of ρ3 is 1, which is the number
of input symbols in the dotted box. The dotted box contains the symbols produced between
the first transition of ρ3 and the first transition of ρ4′ , and has one input symbol.

Relations encoding omatchρ and imatchρ.

So we can represent omatchρ as a finite union of relations Oo,o′ ⊆ (Σ ×Σ′)∗ × N × N, each
describing a regular property of annotated inputs with two distinguished positions in it, in
such a way that the positions are bijectively related to one another.

Likewise, we can represent imatchρ as a finite union of relations I0,o′ , each describing a
regular property of annotated inputs with two distinguished positions encoded as (y,0) and
(y′, o′) in it, which are bijectively related to one another.

Translation of matchρ.

We finally turn to the translation of the relation matchρ, which will eventually determine
the relations moveγ of the desired regular resynchronizer R′. This is done by mimicking
Equation (⋆) via the encoding of positions in the run ρ using pairs of input positions and



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:19

offsets, and more precisely, by replacing the variables j, i, k, h, ` of Equation (*) with the
pairs (y,0), (y, o), (y′, o′), (y′′, o′′), (z,0).

Formally, for every offset o ∈ {1, . . . ,B}, we define the set Mo of all triples (u, y, z), where
u is an annotated input and y, z are positions in it that satisfy the following property:

∃y′, y′′ ⋁
0≤o′,o′′≤B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρy[1, o + 1] consumes a word in ΣΓ+

(u, y, y′) ∈ Oo,o′
ρy′′[o′′ + 1, ∣ρy′′ ∣] ρy′′+1 . . . ρy′−1 ρy′[1, o′ + 1] produces a word in ΣΓ+

(u, z, y′′) ∈ I0,o′′ .
(⋆⋆)

Note that the first condition holds trivially by definition of ρy, while the third condition
is easily implemented by accessing the factors ρy′′ , . . . , ρy′ of ρ that are encoded by the input
parameters. For simplicitly, here we assumed that (y′′, o′′) is lexicographically before (y′, o′);
to treat the symmetric case, one has to interpret the definition by considering the sequence
of transitions in reverse. The intended meaning of (u, y, z) ∈Mo is as follows. Suppose that
the input is correctly annotated with the factors ρy of a successful run ρ of R, and that the
output position x of ρ is correctly annotated with an offset o. Assuming that x is the o-th
output position with source origin y, then z is its target origin in ρ.

Continuing with our running example, we determine the target origin for the point b
annotated (5,1), whose source origin is (5,0). We will find the target origin of this b annotated
(5,1). As seen in the computation of omatchρ, we know that (u,5,3) ∈ O1,0. The factor
ρ5 = abbb, and ρ5[1,2] = ab ∈ ΣΓ+, and as we have seen, (u,5,3) ∈ O1,0. Now, consider the
part of the source u annotated with (2, 1)(3, 0). This produces the output ab ∈ ΣΓ+. That is,
for y′′ = 2, o′′ = 1, and y′ = 3, o′ = 0, we have ρy′′[o′′ + 1,2] ρy′[1, o′ + 1] = ρ2[2,2]ρ3[1,1] = ba
produces the output ab ∈ ΣΓ+.

Consider (z,0) = (2,0). The lag after the a at i = 2 annotated (2,0) is 1. Also,
(2,3) ∈ imatchρ. The position 3 consumes an output and produces an input a. Indeed, the
lag after the first transition of ρ2 is 1, which is the number of input symbols between the first
transition of ρ2 and the second transition ((o′ + 1)th transition) of ρ2. That is, (u, 2, 2) ∈ I0,1.
Thus, starting with the b annotated (y, o) = (5,1) such that ρ5[1,2] ∈ ΣΓ+, we first obtain
(y′, o′) = (3, 0) with (u, 5, 3) ∈ O1,0. Further, ρ2[2, 2]ρ3[1, 1] produces a word in ΣΓ+. Finally,
we have (u,2,2) ∈ I0,1, obtaining (u,5,2) ∈M1.

a
(1,0)

a
(2,0)

b
(2,1)

a
(3,0)

a
(4,0)

a
(5,0)

b
(5,1)

b
(5,2)

b
(5,3)

a b a b a b b a a

Definition of moveγ.

It is tempting to define moveγ just as Mo, for every γ = (a, o) ∈ Γ × {1, . . . ,B}. However, we
recall that the correctness of the output annotation is guaranteed only once we are sure that
every relation moveγ defines a partial bijection between input positions y and z (hereafter we
say for short that the relation is bijective), which is not known a priori. Bijectiveness must
then be enforced syntactically, without relying on annotations: for this it suffices to define
moveγ as {(u, y, z) ∈Mo ∣ ∀(u, y′, z′) ∈Mo (y = y′)↔ (z = z′)}, and observe that either Mo

is bijective, and hence moveγ =Mo, or it is not, and in this case moveγ is a subrelation of
Mo that is still bijective. Note that, in the case where moveγ is a subrelation of Mo, there

MFCS 2019



55:20 On Synthesis of Resynchronizers for Transducers

singleton sub-blocksnon-overlapping maximal loops

loops shrinked by lag

Figure 2 Factorization of an output block.

will be no induced pair of synchronized words, since the origins of some output elements
could not be redirected. This is fine, and actually needed, in order to avoid generating with
R′ spurious pairs of synchronized words that are not also generated by R. On the other
hand, observe that the relation moveγ does generate, for appropriate choices of the output
annotations, all the pairs of synchronized words that are generated by R. We finally observe
that the relations moveγ and nextγ,γ′ are regular. We obtain in this way, a 1-bounded, regular
resynchronizer R′ equivalent to R.

The general case.

We now aim at generalizing the previous ideas to capture a rational resynchronizer R with
source output blocks of possibly unbounded length. One additional difficulty is that we
cannot anymore encode a successful run ρ of R entirely on the input, as ρ may have arbitrarily
long factors on outputs blocks. Another difficulty is that we cannot uniquely identify the
positions in an output block using offsets ranging over a fixed finite set. We will see that a
solution to both problems comes from covering most of the output by factors in which the
positions behave similarly in terms of the source-to-target origin transformation. Intuitively,
each of these factors can be thought of as a ‘pseudo-position’, and accordingly the output
blocks can be thought of as having boundedly many pseudo-positions. This will make it
possible to apply the same ideas as before. We now state the key lemma that identifies the
aforesaid factors. By a slight abuse of terminology, we call output blocks also the maximal
Γ-labelled factors of a synchronized word.

I Lemma 17. Let ρ be a successful run of R, and let w and w′ be the source and target
synchronized words induced by ρ.

Every output block v of w can be factorized into O(∣Q∣2) sub-blocks v1, . . . , vn such that
if ∣vi∣ > 1 and ρi is the factor of ρ that corresponds to vi, then all states in ρi have the
same lag, say `i, and the factor obtained by extending ρi to the left and to the right by
exactly ∣`i∣ transitions forms a loop of R.
Moreover, for every factorization v = v1 . . . vn as above, each sub-block vi is also a factor
of w′, and hence all positions in vi have the same target origin.

Proof. We prove the first claim of the lemma (Figure 2 provides an intuitive account of the
constructions). Let v be an output block of the source synchronized word w and let ρ′ be the
factor of the run ρ aligned with v. As a preliminary step, we fix a maximal set of pairwise
non-overlapping maximal loops inside ρ′, say ρ′1, . . . , ρ′m. A simple counting argument shows
that m ≤ ∣Q∣ and that there are at most ∣Q∣ positions in ρ′ that are not covered by the loops
ρ′1, . . . , ρ

′

m. The latter positions determine some sub-blocks of v of length 1. The remaining



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:21

sub-blocks of v will be obtained by factorizing the loops ρ′1, . . . , ρ′m, as follows. Consider any
loop ρ′j . By construction, all letters consumed by ρ′j occur in v, so they must be output letters.
Similarly, all letters produced by ρ′j are also output letters, since otherwise, by considering
repetitions of the loop ρ′j , one could get different lags, violating Lemma 15. This means that
the lag associated with the states along ρ′j is constant, say `j (≤ ∣Q∣). If ρ′j has length at
most 2∣`j ∣, then we simply decompose it into 2∣`j ∣ factors of length 1. Otherwise, we cover a
prefix of ρ′j with ∣`j ∣ factors of length 1, and a suffix of ρ′j with ∣`j ∣ other factors of length 1.
The remaining part of ρ′j is covered by a last factor of length ∣ρ′j ∣− 2∣`j ∣. Overall, this induces
a factorization of v into at most ∣Q∣ (the sub-blocks not covered by a loop) + ∣Q∣ ⋅ (2∣Q∣ + 1)
(Each ρ′j is decomposed into (2`j + 1) ≤ (2∣Q∣+ 1) sub-blocks). This gives O(∣Q∣2) sub-blocks
v1, . . . , vn. Moreover, by construction, if ∣vi∣ > 1, then in the corresponding factor ρi of ρ, all
states have the same lag, say `i, and if we extend ρi to the left and to the right by exactly
∣`i∣ transitions, we get back one of the loops ρ′j (recall that each loop ρ′j of length > 2∣`j ∣
is decomposed into ∣`j ∣ blocks of length 1, then a block of length ∣ρ′j ∣ − ∣`j ∣, and finally, ∣`j ∣
blocks of length 1. Clearly, if we extend the middle block on either side by blocks of length
∣`j ∣, then we get back ρ′j . This proves the first claim of the lemma.

As for the second claim, suppose that v1, . . . , vn is a factorization of an output block v
of w satisfying the first claim. Clearly, every sub-block vi of length 1 is also a factor of the
target synchronized word w′. The interesting case is when a sub-block vi has length larger
than 1. In this case, by the previous claim, we know that in the corresponding factor ρi of ρ,
all states have the same lag `i, and the factor ρ′i of ρ that is obtained by expanding ρi to the
left and to the right by ∣`i∣ transition is a loop. In fact, since ρ′i is a loop, we also know that
all states in it have lag `i. Now, to prove that vi is a factor of the target synchronized word
w′, it suffices to show that every two consecutive positions of ρi are mapped to consecutive
positions via the relation omatchρ. This follows almost by construction, since for every pair
(i′, k′) ∈ omatchρ, if i′ occurs inside the factor ρi, then k′ occurs inside the loop ρ′i (recall
that ρ′i consumes and produces only output symbols), and hence k′ = i′ − `i. In addition, if
i′ + 1 also occurs inside ρi, then clearly (i′ + 1, k′ + 1) ∈ omatchρ. This proves that vi is a
factor of the target synchronized word w′, and hence all positions in it have the same target
origin. J

In view of the above lemma we can guess a suitable factorization of the output into
sub-blocks that refine the output blocks, and treat each sub-block as if it were a single
position. In particular, we can annotate every sub-block with a unique offset from a finite set
of quadratic size w.r.t. ∣Q∣. The role of the offsets will be the same as in the previous proof,
where blocks had bounded length, namely, determine some partial bijections Oo,o′ , I0,o′ , and
Mo between positions of the input. In addition, we annotate every sub-block with the pair
consisting of the first and last states of the factor of the successful run that consumes that
sub-block. We call such a pair of states a pseudo-transition, as it plays the same role of a
transition associated with a single output position. Finally, we annotate every input position
y with a sequence of bounded length that represents a single transition on y followed by the
pseudo-transitions on the subblocks with source origin y. The resulting input annotation
provides an abstraction of a successful run of R.

The correctness of the above annotations can be enforced by defining suitable relations
ipar, opar, nextγ,γ′ for the regular resynchronizer R′. We omit the tedious details concerning
these relations, and only observe that, as before, the definition nextγ,γ′ relies on the fact that
moveγ and moveγ′ define partial bijections between input positions.

Finally, we turn to describing the relation moveγ that maps source to target origins for
γ-labelled output positions. The definition is basically the same as before, based on some

MFCS 2019



55:22 On Synthesis of Resynchronizers for Transducers

auxiliary relations Oo,o′ and I0,o′′ that implement omatchρ and imatchρ at the level of input
positions. As before, we guarantee, by means of a syntactical trick, that moveγ determines a
partial bijection between input positions. In conclusion, we get a regular resynchronizer R′,
with input and output parameters, that is equivalent to the rational resynchronizer R.

B Proofs of Section 4

I Theorem 4. Let T1, T2 be two functional one-way transducers. The following conditions
are equivalent, and decidable:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 =o R(T2) for some rational resynchronizer R.

Proof. One implication, from 2. to 1., is trivial, since origin containment implies classical
containment, and since applying an arbitrary resynchronization R to T2 cannot result in
having more input-output pairs (it can however modify the origin, as well as discard some
input-output pairs). The implication from 3. to 2. is also trivial.

For the remaining implication, from 1. to 3., suppose that T1, T2 are functional one-way
transducers such that T1 ⊆ T2. We construct a rational resynchronizer R over the disjoint
union Σ ⊎ Γ of the input and output alphabets of T1, T2, using a variant of the direct
product of T1 and T2. More precisely, let T1 = (Q1, q1,∆1, F1), T2 = (Q2, q2,∆2, F2), and
R = (Q, q,∆, F ), where Q = Q1 ×Q2, q = (q1, q2), F = F1 × F2, ∆ contains all transitions of
the form (s1, s2)Ð

aw2 ∣aw1ÐÐÐÐÐ→ (t1, t2), with si Ð
a ∣wiÐÐÐ→ ti in ∆i for both i = 1 and i = 2. Intuitively,

the transducer R simulates a run of T1 and a run of T2 in parallel, by repeatedly consuming
an input symbol a and the corresponding output w2 produced by T2, and producing the same
input symbol a and the corresponding output w1 of T1. Since T1 and T2 are functional and
classically contained one in the other, we have that R maps strings over Σ⊎Γ to strings over
Σ⊎Γ while preserving the projections on the input and on the output alphabets. This means
that R is indeed a resynchronizer. Finally, T1 is clearly origin equivalent to R(T2). J

I Proposition 9. Synthesis of rational resynchronizers for real-time one-way transducers
with unary output alphabet and language-boundedness of OCA are inter-reducible problems.
Moreover, in the reductions, one can assume that the left hand-side transducer is functional.

Proof. We first prove the reduction from synthesis of rational resynchronizers to language-
boundedness of OCA, and then prove the reduction in the opposite direction.

From synthesis to language-boundedness.

Let T1, T2 be real-time, one-way transducers with unary output alphabet. We suppose in
addition that T1 is trimmed. We construct an OCA A that reads encodings of successful
runs of T1. If the input is not a successful run of T1, then, as soon as an error is detected,
A resets its counter and accepts any continuation of the input. In particular, thanks to
this behaviour and to T1 being trimmed, badly-formed encodings of runs will not cause the
counter of A to be unbounded.

Consider now an input for A that is a correct encoding of a successful run of T1, say ρ1.
In this case, A guesses and simulates a successful run ρ2 of T2 having the same input as ρ1.
The counter of A is used as expected: it is incremented according to the outputs produced
using the transitions of ρ1, and decremented according to the outputs produced using the
transitions of ρ2, or vice versa when one needs to represent a negative value (recall that



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:23

OCA work with counter over natural numbers). The detail regarding which among T1, T2 is
“leading”, resulting in the non-negative counter value can be stored in the finite control of
the OCA.

Intuitively, a configuration of A determines how ahead or behind is the partial output
produced by the encoded run of T1 compared to the partial output produced by the simulated
run T2. The OCA A accepts with empty counter. Note that this construction is close to the
direct product of T1 and T2, the main difference being the treatment of the badly formed
encodings and the role played by the counter.

Let us now prove that the OCA A is language-bounded if and only if T1 ⊆o R(T2) for
some rational resynchronizer R.

Suppose first that the OCA A is language-bounded, namely, that there is some k ∈ N
such that every word is accepted by A with a counter that never exceeds k. We can think
of the successful runs of A that maintain the counter between 0 and k as runs of a k-delay
resynchronizer R. More precisely, we can define a letter-to-letter resynchronizer R, the states
of which are the configurations of A with the value of the counter inside {0, . . . , k}. On
consuming an input letter, R produces the same input letter; on consuming a sequence of j
output letters, depending on the simulated transition of A, R produces an output of length
j +h if the counter is incremented by h. Likewise, if the simulated transition of A decrements
the counter by h, then on reading a sequence of j output symbols, R produces an output of
length j − h. The run of R is successful if an only if the simulated run of A is so. The fact
that A accepts every word with a counter that never exceeds k, immediately implies that
T1 ⊆o R(T2).

Conversely, suppose that T1 ⊆o R(T2) for some rational resynchronizer R. By Theorem 8,
we can assume without loss of generality that R is a k-delay resynchronizer, for some k (that
can be even computed from T1, T2, and R, but this is immaterial here). From this it is easy
to see that A is language-bounded, and precisely, that A accepts every word with a counter
that never exceeds k, as when reading a run ρ of T1, it can guess a run ρ′ of T2 such that
R(ρ′) = ρ.

From language-boundedness to synthesis.

Let A be an OCA. We construct two real-time, one-way transducers T1, T2 that have the same
input alphabet as A, say Σ, and a singleton output alphabet, say Γ = {c}. The transducer T1
reads any word a1 . . . an ∈ Σ∗ and outputs one letter c for each consumed input symbol. In
particular, the synchronization language of T1 is {a1c . . . anc ∶ ai ∈ Σ, n ≥ 0}. Note that T1
is real-time and functional. The transducer T2 does the following: upon reading a1 . . . an,
it guesses a successful run of the OCA A. Whenever the counter is incremented along the
guessed run of A, T2 outputs cc; whenever the counter is decremented, T2 outputs ε; whenever
the counter is unchanged, T2 outputs c. Note that T2 is also real-time, but not necessarily
functional.

Let us now prove that A is language-bounded if and only if T1 ⊆o R(T2) for some rational
resynchronizer R.

Suppose first that A is language-bounded, with bound k. We obtain from this a k-delay
resynchronizer R that reads a synchronized word a1c

i1 . . . anc
in of T2, where ij ∈ {0,1,2}

for all j. The resynchronizer R simulates a counter taking values in [−k, k], and outputs
a1c . . . anc, accepting if and only if the counter is 0. Each time an aic2aj is encountered, it
corresponds to an increment in the OCA; then R outputs aic, and the simulated counter
decreases by 1 in R; likewise, each time an aicaj is encountered, R outputs aic with no
change in the simulated counter value, and finally, when two consecutive input symbols aiaj

MFCS 2019



55:24 On Synthesis of Resynchronizers for Transducers

are read by R, R outputs aic and the simulated counter value increases by 1. Since the
counter value is bounded by k in the OCA, the simulated counter in R is within [−k, k].
Clearly, T1 ⊆o R(T2).

Conversely, suppose that T1 ⊆o R(T2) for some rational resynchronizer R. We argue
as before, using Theorem 8: we assume without loss of generality that R is a k-delay
resynchronizer, for some k, and derive from this that A is language-bounded. J

I Theorem 10 ([13]). The language-boundedness problem for OCA is undecidable.

Proof. The reduction is from the boundedness problem for multi-counter (Minksy) machines.
Such a machine M can increment, decrement and test for zero. The question is whether
there exists some bound k such that all computations of M (not necessarily accepting) from
the initial configuration with all counters zero, have all counters stay below k. One can
assume w.l.o.g. that if M is not bounded then for every k there is some initial run of M
where all counters exceed k.

The OCA A reads sequences of transitions of M . At the beginning, A guesses a counter
index j of M and starts simulating the sequence of transitions on counter j. If the sequence
of transitions is incorrect because of counter j, the OCA accepts and stops after emptying
counter j. Note that there are two types of error: either the counter is zero but should be
decremented, or the counter is tested for zero, but is not zero. Both kinds of error can be
checked by the OCA. Otherwise, if the simulation goes through for counter j, then the OCA
accepts with empty counter at the end.

Assume that M is bounded, with bound k. If a sequence ρ of transitions is a run of M ,
then all simulations on any counter will be bounded by k. If ρ is not a run, then there is a
first position of ρ where an error occurs, for instance because of counter j. Then the run of
A simulating counter j will accept ρ within bound k.

If M is unbounded then for every k there is a run ρ where all counters exceed k. In this
case all runs of A on ρ exceed k, so A is not language-bounded. J

I Theorem 12. Let T1, T2 be two unambiguous two-way transducers. The following conditions
are equivalent:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 =o R(T2) for some 1-bounded Parikh resynchronizer R whose target set coincides with

that of T1 and where, each relation nextγ,γ′ is regular if moveγ and moveγ′ are regular.

Proof. The implications from 2. to 1. and from 3. to 2. are as in the proof of Theorem 4.
The only interesting implication is from 1. to 3, where we suppose that T1 ⊆ T2 and we aim at
constructing a 1-bounded Parikh resynchronizer R such that T1 =o R(T2), and with the same
target set as T1. The proof exploits some constructions based on crossing sequences, which
are classically used to translate two-way automata to equivalent one-way automata [16], as
well as to reduce containment of functional two-way transducers to emptiness of languages
recognized by Parikh automata [15]. We briefly recall the key notions here, by adapting them
in a way that is convenient for the presentation (notably, considering transitions instead of
states).

A crossing sequence of a two-way automaton or a functional two-way transducer is a tuple
t = (t1, . . . , tn) of transitions such that the source states of t1, t3, . . . are right-reading and the
source states of t2, t4, . . . are left-reading. The tuple is meant to describe the transitions along
a successful run that depart from configurations at a certain position y. Formally, given a
run ρ, the crossing sequence of ρ at input position y, denoted ρ[y], consists of the quadruples



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:25

(q, a, v, q′) such that (q, y)Ða ∣ vÐÐ→ (q′, y′) is a transition of ρ, where the occurrence order on
transitions induces a corresponding order on the quadruples of the crossing sequence. Without
loss of generality, for two-way automata, as well as for functional two-way transducers, one
can restrict to successful runs that never visit the same state twice at the same position.
Accordingly, we can assume that the length of a crossing sequence never exceeds the total
number of states of the device. Moreover, when the two-way automaton or transducer is
unambiguous, the crossing sequences are uniquely determined by the input and the specific
position in it. More precisely, there are regular languages Lt, one for each possible crossing
sequence, that contains precisely those inputs u with a specific position y marked on it (for
short, we denote such words by ⟨u, y⟩), such that the crossing sequence at y of the unique
successful run on u is precisely t.

We now turn to the main proof, which is divided into several steps.

Encoding output positions.

We begin by describing a natural encoding of arbitrary output positions by means of their
origins. Of course, the encoding depends on the given input, denoted u, and on the transducer
we consider, either T1 or T2, which here is generically denoted by T . Now, let ρ be the unique
successful run of T on u, and let G be the induced origin graph. To simplify the notations,
hereafter we tacitly assume that T produces at most one letter at each transition — the
assumption is without loss of generality, since long outputs originating at the same input
position can be produced incrementally by exploiting two-way head motions. Let n be the
number of states of T . Since T is unambiguous, G contains at most n output positions with
the same origin (otherwise, the same configuration would be visited at least twice along the
successful run ρ, which could then be used to contradict the assumption of unambiguity).
This means that every position x in out(G) can be encoded by its origin yx = orig(G)(x)
together with a suitable index ix ∈ {1, . . . , n}, describing the number of output positions
x′ ≤ x with the same origin yx as x. Moreover, we recall that yx can be represented as an
annotated input of the form ⟨u, yx⟩.

Decoding by Parikh automata.

We now show that there are Parikh automata that compute the inverse of the encoding
x ↦ (yx, ix) described above. More precisely, there are unambiguous Parikh automata
A1, . . . ,An such that each Ai receives as input a word ⟨u, y⟩ having a special position marked
on it, and outputs the unique output position x such that (y, i) = (yx, ix), if this exists,
otherwise the output is undefined. Each automaton Ai can be constructed from T and i
by unambiguously guessing the crossing sequences of the unique run of T on u, and by
counting the number of output symbols emitted until a productive transition at the marked
position y is executed for the i-th time — a productive transition is a transition that produces
non-empty output.

Redirecting origins.

We now apply the constructions outlined above in order to obtain the desired Parikh
resynchronizer R from T1 and T2. Let u be some input and G1,G2 be the origin graphs
induced by the unique successful runs of T1, T2 on u. Since T1 ⊆ T2, we can further let
v = out(G1) = out(G2). Consider any output position x ∈ dom(v). According to G2, x is
encoded by an input position yx and an index ix ∈ {1, . . . , n2}, where n2 is the number of
states of T2. In a similar way, according to G1, the same position x is encoded by some input

MFCS 2019



55:26 On Synthesis of Resynchronizers for Transducers

position zx and an index jx ∈ {1, . . . , n1}, where n1 is the number of states of T1. Moreover,
based on the previous constructions, there are unambiguous Parikh automata A2,i and A1,j
such that

A2,i(⟨u, y⟩) = x if and only (y, i) = (yx, ix),
A1,j(⟨u, z⟩) = x if and only (z, j) = (zx, jx).

Since unambiguous Parikh automata are closed under pointwise difference, there is a unam-
biguous Parikh automaton Ai,j that recognizes precisely the language of annotated words
⟨u, y, z⟩ such that

A2,i(⟨u, y⟩) −A1,j(⟨u, z⟩) = 0 (⋆)

Note that the above language defines a partial bijection between pairs of positions y, z in the
input u in such a way that y and z are the origins of the same output position x according to
the unique origin graphs G1,G2 of T1, T2 such that in(G1) = in(G2) = u. This property can
be used to define the component moveγ of the desired resynchronizer R, by simply letting

moveγ = {(u, y, z) ∣ Ai,j(⟨u, y, z⟩) = 0}

where γ = (a, i, j) ∈ Γ × {1, . . . , n2} × {1, . . . , n1}.
For the correctness of the above definition we rely on guessing the correct pairs of indices

(i, j) as annotations of output positions. More precisely, we have that:
for every output position x with source origin y = orig(G2)(x) and with label γ = (a, ix, j),
there is at most one input position z such that (u, y, z) ∈ moveγ ; in addition, if we also
have j = jx, then z = orig(G1)(x) is the target origin of x; symmetrically,
for every output position x with target origin z = orig(G1)(x) and with label γ = (a, i, jx),
there is at most one input position y such that (u, y, z) ∈ moveγ ; in addition, if we also
have i = ix, then y = orig(G2)(x) is the source origin of x.

Based on the above properties, we need to guess suitable output parameters that associate
with each position x, a correct pair (ix, jx). We explain below how this is done using the
components opar and nextγ,γ′ of the resynchronizer.

Constraining output parameters.

We first focus on the indices jx related to T1; we will later explain how to adapt the
constructions to check the indices ix related to T2. As usual, we fix an input u and the unique
successful run ρ1 of T1 on u. The idea is that each index jx corresponds to a certain element
of the crossing sequence of ρ1 at the target origin zx, and knowing the correct index for x
determines the correct index for the next output position x + 1. Based on this, correctness
can be verified inductively using the guessed crossing sequences and the relation nextγ,γ′ of
the resynchronizer, as follows. For the base case, we check that the first output position is
correctly annotated with the index j = 1: this is readily done by a regular language opar.

For the inductive step, we consider an output position x and assume that it is correctly
annotated with j = jx. Let j′ be the annotation of the next position x+ 1. To check that j′ is
also correct, we consider pairs of productive transitions in the crossing sequences associated
with the target origins of x and x+1, and verify that they are connected by a non-productive
run. More precisely, let z and z′ be the target origins of x and x + 1, respectively, and let tz
and tz′ be the crossing sequences of ρ1 at those positions. We have that j′ = jx+1 if and only
if the j-th productive transition of tz and the j′-th productive transition of tz′ are connected
by a factor of the run that consists only of non-productive transitions. The latter property
can be translated to a regular property nextγ,γ′ concerning the input annotated with two



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:27

specific positions, z and z′, assuming that γ = (a, i, j) and γ = (a′, i′, j′) are the letters of the
output positions x and x + 1.

It now remains to check the correctness of the output annotations w.r.t. the indices i for
the second transducer T2. We follow a principle similar to the one described above for T1.
The only difference is that now, in the inductive step, we have work with the source origins
y and y′ of consecutive output positions x and x + 1. The additional difficulty is that, by
definition, the relation nextγ,γ′ can only refer to target origins. We overcome this problem by
exploiting the partial bijection between target and source origins, as defined by the relations
moveγ and moveγ′ . Formally, we first define a relation nextsourceγ,γ′ as before, that constrain
the indices i and i′ associated with two consecutive output positions x and x + 1 labeled by
γ and γ′, respectively. We do this as if nextsourceγ,γ′ were able to speak about source origins.
We then intersect the following relation with the previously defined relation nextγ,γ′ :

{(u, z, z′) ∣ ∃y, y′ (u, y, y′) ∈ nextsourceγ,γ′ , (u, y, z) ∈ moveγ , (u, y′, z′) ∈ moveγ′}.

Since in the inductive step we assume that x is correctly annotated with the pair (i, j) and
x + 1 is annotated with (i′, j′), where j′ = jx is correct by the previous arguments, there are
unique y, y′ that satisfy (u, y, z) ∈ moveγ and (u, y′, z′) ∈ moveγ in the above definition, and
these must be the source origins of x and x+ 1. This means that the above relation, which is
definable by a unambiguous Parikh automaton, correctly verifies the correctness of the index
i′ associated with x + 1.

We conclude by observing a few properties of the defined Parikh resynchronizer R. As
already explained, the relation moveγ defines a bijection between pairs of input positions, so R
is a 1-bounded Parikh resynchronizer. As concerns its target set, that is the set of pairs (u, z)
such that (u, y, z) ∈ moveγ for some z ∈ dom(u) and some γ ∈ Γ × {1, . . . , n2} × {1, . . . , n1},
it coincides by construction with the target set of T1. Finally, since the relation nextγ,γ′ is
defined by conjoining a regular property with the properties defined by the relations moveγ
and moveγ′ , we have that nextγ,γ′ is regular if moveγ and moveγ′ are regular. J

I Theorem 13. Let T1, T2 be two unambiguous two-way transducers such that T1 ⊆ T2,
and let R̂ be the bounded Parikh resynchronizer obtained from Theorem 12. The following
conditions are equivalent:
1. R̂ is a regular resynchronizer,
2. T1 ⊆o R(T2) for some bounded regular resynchronizer R,
3. T1 ⊆o R(T2) for some 1-bounded regular resynchronizer R,
4. T1 =o R(T2) for some 1-bounded regular resynchronizer R with the same target set as T1.

Proof. We prove the following implications in the order: 1. → 2. → 3. → 4. → 1.

From 1. to 2.

This is trivial since R̂ is bounded and satisfies T1 =o R̂(T2), and hence T1 ⊆o R̂(T2).

From 2. to 3.

Let R be a k-bounded regular resynchronizer. The goal is to construct an equivalent 1-
bounded regular resynchronizer R′ (note that this part of the proof does not depend on
T1 and T2). For this, we introduce a parameter ix ∈ {1, . . . , k} associated with each output
position x, and require that for all output positions x,x′ having the same label γ, and for
all input positions y, z such that (u, y, z) ∈ moveγ , if ix = ix′ , then x = x′. The existence of
such a mapping x↦ ix follows easily from the assumption that R is k-bounded. The relation

MFCS 2019



55:28 On Synthesis of Resynchronizers for Transducers

move′
(γ,i) of the new resynchronizer R′ redirects origins of output positions based on their

annotations (γ, i) ∈ Γ × {1, . . . , k}, as follows:

move′
(γ,i) = {(w,y, z) ∣ (w,y, z) ∈ moveγ , ∃!iy′ y′ < y ∧ (w,y′, z) ∈ moveγ}

where ∃!iy′ is an abbreviation for “there exist exactly i positions y′ such that. . . ”. As for
the relation next′

(γ,i),(γ′,j), this coincides with nextγ,γ′ , so it does not take into account the
new annotations. Thus, the defined resynchronizer R′ is 1-bounded, regular, and defines the
same resynchronization as R.

From 3. to 4.

Suppose that R is a 1-bounded regular resynchronizer with input alphabet Σ and output
alphabet Γ, such that T1 ⊆o R(T2). The goal is to construct a 1-bounded regular resynchro-
nizer R′ with the same target set as T1 and such that T1 =o R′(T2). For the sake of simplicity,
we assume that R has no input parameters, and similarly T1 has no common guess (the
more general cases can be dealt with by annotating the considered inputs with the possible
parameters and the common guess). The idea for defining the desired resynchronizer R′ is
as follows. We first restrict each relation moveγ so as to make it a partial bijection, that is,
for every input u, and every source origin y ∈ dom(u), there is an annotation w of the input
and at most one target origin z that corresponds to y in u⊗w (and conversely, since R is
1-bounded, for every target origin z there is a unique source origin y that corresponds to z).
This step requires the use of appropriate input parameters that determine a unique target
origin z from any given source origin y. Then, we restrict further the relation moveγ so that
every target origin z is witnessed by T1. Formally, we introduce input parameters ranging
over BΓ and work with annotated inputs of the form u ⊗ w, with u ∈ Σ∗ and w ∈ (BΓ)∗.
Given u ∈ Σ∗, we define Ou as the set of all positions z = orig(G)(x) where G is an origin
graph of T1, x ∈ dom(out(G)), and in(G) = u. The new relation move′γ that redirects source
origins to target origins is defined as the following restriction of moveγ :

move′γ = {(u⊗w,y, z) ∣ (u, y, z) ∈ moveγ , w(z)(γ) = 1, z ∈ Ou }.

Clearly, the above relation is regular and contained in moveγ . However, it is still possible
that move′γ associates multiple target origins with the same source origin.

To get a partial bijection from move′γ we need to constrain the possible annotated input
u ⊗ w. We do so by requiring that, for every output letter γ ∈ Γ and every position y

in u ⊗ w, if there is z satisfying (u, y, z) ∈ moveγ , then there is exactly one z′ satisfying
(u, y, z′) ∈ moveγ and w(γ)(z) = 1. Note that the latter property is again regular, and thus
could be conjoined with the original relation ipar to form the new relation ipar′. Accordingly,
the relation next′γ,γ′ of the desired resynchronizer R′ defines the same language as nextγ,γ′ ,
but expanded with arbitrary input annotations over BΓ.

It is now easy to see that the the resulting resynchronizer R′ is 1-bounded, and in fact, on
each input, defines a partial bijection between source and target origins in such a way that the
target set coincides with that of T1. By pairing this with the containments R′(T2) ⊆o R(T2)
and T1 ⊆o R(T2), we obtain T1 =o R′(T2).

From 4. to 1.

Knowing that R̂(T2) =o T1 =o R(T2) for two 1-bounded resynchronizers R, R̂ with the same
target sets as T1 implies that the relations moveγ and move′γ , from R and R̂ respectively,



S. Bose, S. Krishna, A. Muscholl, V. Penelle, G. Puppis 55:29

coincide. Moreover, since the relation moveγ of R is assumed regular, this means that move′γ
is regular too. Finally, we recall that R̂ is such that next′γ,γ′ is regular whenever moveγ and
moveγ′ are. We can then conclude that the relations next′γ,γ′ from R̂ are also regular, and
hence R̂ is a regular resynchronizer. J

MFCS 2019


	Introduction
	Preliminaries
	Resynchronizations
	Synthesis of Resynchronizers
	Resynchronizing functional, one-way transducers
	Resynchronizing arbitrary one-way transducers
	Resynchronizing unambiguous, two-way transducers

	Conclusions
	Proofs of Section 3
	Proofs of Section 4

