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Abstract
Two-way finite-state transducers on words are strictly more expressive than one-way transducers.
It has been shown recently how to decide if a two-way functional transducer has an equivalent
one-way transducer, and the complexity of the algorithm is non-elementary. We propose an alter-
native and simpler characterization for sweeping functional transducers, namely, for transducers
that can only reverse their head direction at the extremities of the input. Our algorithm works
in 2ExpSpace and, in the positive case, produces an equivalent one-way transducer of doubly
exponential size. We also show that the bound on the size of the transducer is tight, and that
the one-way definability problem is undecidable for (sweeping) non-functional transducers.
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1 Introduction

Regular word languages form the best understood class of languages. They enjoy several
characterizations, in particular by different kinds of finite-state automata. For instance,
two-way finite-state automata have the same expressive power as one-way automata. This
result has been established independently by Rabin and Scott [10] and Shepherdson [11].
Besides automata, regular languages have logical and algebraic characterizations, namely
through monadic second-order logic and congruences of finite index.

Transducers extend automata by producing outputs with each transition. A run gener-
ates an output word by concatenating the words produced by its transitions. A transducer
thus defines a relation over words. It is called functional when this relation is a function.
For finite-state transducers, expressiveness is different than for finite-state automata. As an
example, two-way transducers are strictly more expressive than one-way transducers. For
instance, the function that maps a word to its mirror image can be done by a back-and-forth
pass over the input, but no one-way transducer can do it.

As seen above, we lose some robustness when going from automata to transducers. On
the other hand, some of the classical characterizations of regular languages generalize well
to transducers. An important result is the equivalence of functional two-way transducers
and Ehrenfeucht-Courcelle’s monadic-second order transductions [5] over words. Another
characterization of two-way transducers was provided through a new model called streaming
string transducers [1, 2], that process the input one-way and store the output in write-only
registers. Finally, first-order transductions are known to be equivalent to aperiodic streaming
transducers [7] and to aperiodic two-way transducers [4].

The question whether a functional two-way word transducer is equivalent to a one-way
transducer has been solved recently in [6]. The algorithm proposed by [6] takes a two-

∗ This work was partially supported by the ExStream project (ANR-13-JS02-0010) and the Technische
Universität München – Institute for Advanced Study, funded by the German Excellence Initiative and
the European Union Seventh Framework Programme under grant agreement n° 291763.

© Félix Baschenis, Olivier Gauwin, Anca Muscholl, Gabriele Puppis;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/288653682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 One-way definability of sweeping transducers

way transducer S and builds a one-way transducer T that is “maximal” in the following
sense: (1) all accepting runs of T produce correct outputs, and (2) all runs of S that can
be performed one-way are realized by T . As a consequence, the two-way transducer S
has an equivalent one-way transducer if and only if the constructed one-way transducer T
has the same domain as S, which is a decidable problem. The problem is that the upper
bound on both the decision procedure and the size of the constructed one-way transducer
is non-elementary.

The main contribution of this paper is an elementary procedure for deciding whether a
functional two-way word transducer is equivalent to a one-way transducer, for the particular
class of sweeping transducers. While two-way transducers can reverse their head direction
at any position of the input, sweeping transducers can only reverse it at the first and last po-
sition. Unsurprisingly, sweeping transducers are strictly less expressive than two-way trans-
ducers, and the following example shows the difference: on input u1 a u2 a . . . a un−1 a un,
where the words ui contain no occurrence of a, the two-way transducer produces as output
un a un−1 a . . . a u2 a u1 (we assume that the alphabet contains at least two letters).

Our decision procedure works in doubly exponential space and, when it succeeds, it pro-
duces an equivalent one-way transducer of doubly exponential size. We show that the bound
on the size of the transducer is tight for any decision algorithm producing an equivalent
one-way transducer from a sweeping transducer. This improves the PSpace lower bound
from [6]. The non-elementary procedure described in [6] relies on Rabin-Scott’s construction
for automata, and works by eliminating basic zigzags in runs. Our procedure is closer to
the textbook approach (due to Shepherdson) and uses crossing sequences. This requires
a decomposition of runs which is incomparable with the zigzag decomposition of [6]. Fi-
nally, we show that the one-way definability problem becomes undecidable for non-functional
transducers.

Overview

Section 2 defines transducers and related concepts. Section 3 defines decomposition of
runs and gives the construction of a one-way transducer based on such decompositions. In
Section 4 we show that all one-way-definable runs admit a decomposition. Section 5 provides
the lower bound and the undecidability result. Some proofs are deferred to the appendix.

2 Preliminaries

Transducers

A two-way transducer is a tuple (Σ,∆, Q, I, F, δ), where Σ (resp., ∆) is a finite input (resp.,
output) alphabet, Q is a finite set of states, I (resp., F ) is a subset of Q representing
the initial (resp., final) states, and δ ⊆ Q × Σ × ∆? × Q × {left, right} is a finite set of
transition rules describing, for each state and input symbol, the possible output string,
target state, and direction of movement. We talk of a one-way transducer whenever δ ⊆
Q× Σ×∆? ×Q× {right}. The size of a transducer is its number of states.

According to standard practice, the states of one-way automata and transducers are
usually located between the letters of the input word u = a1 . . . an. For this it is convenient
to introduce n + 1 positions 0, 1, . . . , n and think of each position i > 0 (resp., 0) as a
placeholder between the i-th and the i+1-th symbols (resp., just before the first symbol a1).
Moreover, since here we deal with two-way devices, a single position can be visited several
times along a run. Thus, to describe a run of a two-way transducer on input u = a1 . . . an,
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we will associate states with locations, namely, with pairs (x, y) where x is a position among
0, 1, . . . , n and y is an integer representing the number of reversals performed up to a certain
point – for short, we call this number y the level of the location.

A run is a sequence of locations, labelled by states and connected by edges, called tran-
sitions. The state at location ` = (x, y) of a run ρ is denoted ρ(`). The transitions must
connect pairs of locations that are either at adjacent positions and on the same level, or at
the same position and on adjacent levels. In addition, each transition is labelled with a pair
a/v consisting of an input symbol a and an output v. There are four types of transitions:

(i− 1, 2y + 1) (i, 2y + 1) (i− 1, 2y) (i, 2y)

(i, 2y + 1)
(i, 2y + 2)

(i− 1, 2y)
(i− 1, 2y + 1)

a/va/v

a/va/v

Note that the transitions between locations at even levels are all directed from left to right,
while the transitions at odd levels are directed from right to left. More precisely, the upper
left (resp., upper right) transition may occur in a run ρ on u = a1 . . . an if

(
ρ(i, 2y +

1), a, v, ρ(i − 1, 2y + 1), left
)
(resp.,

(
ρ(i − 1, 2y), a, v, ρ(i, 2y), right

)
) is a valid transition

rule of T and a = ai. Similarly, the lower left (resp., lower right) transition may occur if(
ρ(i, 2y + 1), a, v, ρ(i, 2y + 2), right

)
(resp.,

(
ρ(i− 1, 2y), a, v, ρ(i− 1, 2y + 1), left

)
) is a valid

transition rule of T and a = ai. For technical reasons (namely, to enable distinguished
transitions at the extremities of the input word), we will introduce the special fresh symbols
� and � and allow the lower left (resp., lower right) transition also when i = 0 and a = �

(resp., when i = |u| and a = �).
Given a sequence x1, . . . , xn, a factor denotes any contiguous subsequence xi, . . . , xj , for

1 ≤ i ≤ j ≤ n. A run on the input u = a1 . . . an is said to be successful if it starts at
the lower left location (0, 0) with an initial state of T and ends at the upper right location
(|u|, ymax) in a final state of T . The output produced by a run is the concatenation of the
outputs of its transitions, and it is denoted by out(ρ). We denote by dom(T ) the language
of all words u that admit a successful run of T . We order the locations along a run ρ by
letting `1 < `2 if `2 is reachable from `1 following the transitions in ρ. Given two locations
`1 < `2 of a run ρ, we denote by ρ[`1, `2] the factor of the run that starts in `1 and ends in
`2. Note that ρ[`1, `2] is also a run, hence the notation out

(
ρ[`1, `2]

)
is consistent.

Further assumptions

We will mostly work with two-way transducers that are sweeping. This means that on every
successful run, the head can change direction only at the extremities of the input. In other
words, the lower right (resp., lower left) transition is possible only if a = � (resp., a = �).

A transducer T is functional if, for each input word u, all successful runs on u produce
the same output. In this case T (u) denotes the unique output produced on input u.

Unless otherwise stated, we will assume that all transducers are sweeping and functional.
Note that functionality is a decidable property, as stated below. The proof is similar to the
decidability proof of equivalence of streaming string transducers [1] and reduces the problem
to the reachability of a 1-counter automaton of exponential size.

I Proposition 1. Functionality of two-way transducers can be decided in polynomial space.
This problem is PSpace-hard even for sweeping transducers.

Without loss of generality, we can also assume that the successful runs of a functional
transducer are normalized, namely, they never visit two locations with the same position,
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the same state and both either at an even level or at an odd level. Indeed, if this were not
the case, say if a successful run ρ visits two locations `1 = (x, y1) and `2 = (x, y2) such that
ρ(`1) = ρ(`2) and y1, y2 are both even or both odd, then the output produced by ρ between
`1 and `2 is either empty – in which case we could remove ρ[`1, `2] and obtain an equivalent
successful run – or is non-empty – in which case, by repeating ρ[`1, `2], we could obtain
successful runs that produces different outputs on the same input, thus contradicting the
assumption that the transducer is functional.

Crossing sequences

Consider a run ρ of a transducer on input u = a1 . . . an. For each position x ∈ {0, 1 . . . , n},
we are interested in the sequence of states labelling the locations at position x. Formally,
we define the crossing sequence of ρ at x as the tuple ρ|x =

(
ρ(x, y0), . . . , ρ(x, yh)

)
, where

y0 < . . . < yh are exactly the levels of the locations of ρ of the form (x, y), with y ∈ N (if the
transducer is sweeping, we simply have yi = i). If the considered run ρ is successful, then
the bottom and top locations at position x have even levels, and the outgoing transitions
move rightward. In particular, every crossing sequence of a successful run has odd length.
Moreover, if we assume that the successful run is normalized, then every crossing sequence
has length at most 2|Q| − 1. The crossing number of a run is the maximal length of a
crossing sequence of that run. The crossing number of a transducer is the maximal crossing
number of any of its normalized runs – note that this value is bounded by 2|Q| − 1.

Intercepted factors

An interval of positions has the form I = [x1, x2], with x1 < x2. We say that an interval
I = [x1, x2] contains (resp., strongly contains) another interval I ′ = [x′1, x′2] if x1 ≤ x′1 ≤
x′2 ≤ x2 (resp., x1 < x′1 ≤ x′2 < x2). We say that a factor of a run ρ is intercepted by an
interval I = [x1, x2] if it is maximal among the factors of ρ that visit only positions in I and
that never make a reversal (recall that reversals in sweeping transducers can only occur at
the extremities of the input word).

It is easy to see that distinct factors intercepted by the same interval I visit disjoint
sets of locations. This means that a factor intercepted by I can be uniquely identified by
specifying a location ` in it, e.g., the first or the last one. Accordingly, we will denote by
ρ | I/` the factor intercepted by I that visits the location ` (if this factor does not exist, we
simply let ρ | I/` = ε).

A loop of a run ρ is an interval L = [x1, x2] such that the crossing sequences at positions
x1 and x2 are equal, that is, ρ|x1 = ρ|x2. Loops can be used to pump parts of runs, as
explained below.

Pumping

Given a loop L = [x1, x2] of a run ρ on u and a number m ∈ N, we can replicate m times
the factor u[x1, x2] of the input and simultaneously, on the run, we replicate m times the
loop L. Formally, with β0, . . . , βh denoting the factors intercepted by L, we define the run
obtained by replicating L as a sequence of the form

pumpmL (ρ) = α0 β
m
0 γ0︸ ︷︷ ︸

forward

γ1 β
m
1 α1︸ ︷︷ ︸

backward

α2 β
m
2 γ2︸ ︷︷ ︸

forward

· · · αymax β
m
h γymax︸ ︷︷ ︸

forward

(1)

where h < 2|Q| − 1 is the maximum level visited by ρ, and αy (resp., βy, γy) is the factor
of ρ at level y that is intercepted by the interval [0, x1] (resp., L = [x1, x2], [x2, |u|]). Note
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that each αy βy γy (resp., γy βy αy) is a maximal factor of the run ρ that is forward-oriented
(resp., backward-oriented). We also define

pumpmL (u) = u[1, x1] ·
(
u[x1 + 1, x2]

)m · u[x2 + 1, |u|]

and we observe that pumpmL (ρ) is a valid run on pumpmL (u). We also remark that the above
definition of pumped run works only for sweeping transducers, as for arbitrary two-way
transducers we would need to take into account the possible reversals within a loop L and
combine the intercepted factors in a more complex way.

3 Decompositions of one-way definable runs

The problem we consider in this paper is the one-way definability of functional, sweeping
transducers: given a transducer S, we ask if there exists an equivalent one-way transducer T ,
namely, one such that T (u) = S(u) for all u ∈ Σ?. In the answer is “yes”, then we also want
to compute an equivalent one-way transducer. Of course, there are sweeping transducers
S, like S(u) = u · u, that are not equivalent to any one-way transducer (assuming that the
alphabet Σ is not unary).

Before introducing some technical concepts, let us consider an example that highlights
the main idea of the proof. Fix a regular language R (not containing the empty word) and
consider the transduction that maps a word on the mirror of the rightmost maximal factor
belonging to R. That is, f(u v w) = mirror(v) whenever (1) v ∈ R, (2) there is no v′ ∈ R
such that v′ is prefix of vw, and (3) w has no factor in R. It can be easily seen that f
can be realized by a two-way transducer, but not by a one-way transducer. However, f can
be realized by a one-way transducer for particular regular languages R, like the periodic
language R = (ab)+: we simply guess v and output mirror(v) ∈ (ba)+ from left to right,
then we check w. This example shows that periodicities play an important role in deciding
whether a given transduction can be realized by a one-way transducer.

We introduce in the following some notations and concepts that will help us to state a
sufficient condition for the one-way definability of sweeping transducers. For simplicity, we
fix for the remaining of the paper a functional, sweeping transducer S as input. We first
introduce some constants: hS is the maximum number of levels visited by the normalized
runs of S, cS is the maximum number of symbols produced by a single transition of S, and
eS = cS · |Q|2|Q|, where Q is the state space of S. The constant eS will be used to bound
the lengths or the periods of certain parts of the output produced by S, and is related to
the number of crossing sequences of S (see also Lemma 6 in Section 4).

A word v is said to have period p if v ∈ w∗ w′ for some word w of length p and some
prefix w′ of w. For example, v = abc abc ab has period p = 3. Similarly, we say that v is
almost periodic with bound p if v = w0 w1 w2 for some words w0, w2 of length at most p and
some non-empty word w1 of period at most p.

We will also need to identify sub-sequences of a run ρ of S that are induced by particular
sets of locations. Recall that ρ[`1, `2] denotes the factor of ρ delimited by two locations `1
and `2. Similarly, we denote by ρ | Z the sub-sequence of ρ induced by a set Z of locations
– note that Z does not need to be an interval and, even though ρ | Z might not be a valid
run of S, we can still refer to the number of transitions and the size of the output.

I Definition 2. Let ρ be a run of S on u. We define two types of pairs of locations of ρ:

A floor is a pair of locations (`1, `2) such that `1 ≤ `2 are on the same even level.
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F1

F2

F3

F4

R1

R2

R3

Figure 1 Decomposition of a run into floors and ramps.

A ramp is a pair of locations (`1, `2), with `1 = (x1, y1) and `2 = (x2, y2), such that (i)
x1 ≤ x2, (ii) y1 < y2, (iii) both y1 and y2 are even, (iv) the output produced by ρ[`1, `2]
has length at most (y2 − y1 + 1) · eS or it is almost periodic with bound 2 · eS , and (v)
the output produced by the sub-sequence ρ | Z, where Z = [`1, `2] \ [x1, x2] × [y1, y2],
has length at most 2(y2 − y1) · eS .

Before discussing how the above definitions are used, we give some intuition. The simplest
concept is that of floor, which is essentially a forward-oriented factor of a run. Ramps
connect consecutive floors. An important constraint in the definition of a ramp (`1, `2) is
that the output of ρ[`1, `2] is bounded or almost periodic with small bound. We will see later
how this constraint eases the production of the output of ρ[`1, `2] by a one-way transducer.
The last constraint on a ramp (`1, `2) bounds the length of the output produced by the sub-
sequence ρ | Z, where Z = [`1, `2] \ [x1, x2]× [y1, y2]. As shown by the figure to the right,

`1

`2

this sub-sequence (represented by bold arrows) can be obtained from
the factor ρ[`1, `2] by removing the factors intercepted by [x1, x2]
(represented by the hatched area). The constraint is used for those
parts of the run that are not covered by floors or ramps. In particular,
it guarantees that the size of the output above each floor is bounded
by 2hS · eS .

The general idea for turning S into an equivalent one-way trans-
ducer will be to guess (and check) a decomposition of the run of S
into factors that are floors or ramps.

I Definition 3. A decomposition of a run ρ is a factorization into floors and ramps.

Figure 1 gives an example of a decomposition. Note that, thanks to Definition 2, the
number of symbols produced outside the segments F1, F2, . . . and the rectangles R1, R2, . . . is
small (indeed, bounded by 2hS ·eS); so most of the output is produced inside these segments
and rectangles. We can now state our main result:

I Theorem 4. A sweeping functional transducer S is one-way definable if and only if every
input word has some successful run of S that admits a decomposition.
Moreover, we can construct from S a one-way transducer T that maps u to v whenever there
is a successful run of S on u that outputs v and admits a decomposition. The construction
of T takes doubly exponential time in |S|.
In particular, S is one-way definable if and only if dom(T ) = dom(S). The latter condition
can be tested in polynomial space in |S| and |T |, so in doubly exponential space in |S|.

The first claim of the theorem gives the main characterization, namely, it shows that the
existence of decompositions of successful runs, for all possible inputs in the domain of S, is a
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sufficient and necessary condition for the transduction to be one-way definable. The second
claim shows a property that is slightly more general than sufficiency: it allows to compute a
one-way transducer T that is somehow the “best one-way approximation” of S, in the sense
that the transduction computed by T is always contained in the transduction computed by
S and it is equal when S is one-way definable. The last claim deals with the effectiveness
of the characterization, showing that one-way definability is decidable in 2ExpSpace. For
the sake of presentation, we divide the proof of the theorem into two parts. The first part,
given below, deals with the sufficiency and the effectiveness of the characterization (i.e. the
second and third claims of the theorem). The second part, which is the most technical one
and is deferred to Section 4, deals with the necessary part of the characterization.

Proof of Theorem 4 (sufficiency and effectiveness). We build from S a one-way trans-
ducer T that simulates all successful runs of S that admit a decomposition. Consider one
such run ρ. We begin by observing that a decomposition of ρ can be described by a sequence
of locations `0 < `1 < . . . < `t, where `0 = (0, 0), `t = (xmax, ymax), and, for all 0 ≤ i < t,
(`i, `i+1) is a floor or a ramp. In particular, the one-way transducer T will guess the crossing
sequences of ρ, together with a sequence of locations (`i)i≤t, which are intended to represent
a decomposition of ρ. Below, we show how to check that the guessed sequence of locations
represents a valid decomposition, and how to produce the corresponding output.

Traversing the floors of the decomposition does not pose particular problems, as these
are forward-oriented factors of the run ρ, which can be directly simulated by T without
reversing the head. Of course, we need to store the bounded output on the levels above the
floor, and check that the output on the levels below the floor matches some stored output
words. The interesting case happens when T simulates a ramp (`i, `i+1), with `i = (xi, yi)
and `i+1 = (xi+1, yi+1). First of all, it is easy for T to verify the first three conditions of
the definition of ramp, namely, that xi ≤ xi+1, yi < yi+1, and both yi and yi+1 are even.
Checking the remaining conditions is more difficult and requires storing some words for a
total length that does not exceed 8hS ·eS – in particular, this explains the doubly exponential
blowup of the state space of T . More precisely, at the beginning of the computation, T
guesses, for each ramp (`i, `i+1), with `i = (xi, yi) and `i+1 = (xi+1, yi+1):

a word vi that has length at most (yi+1−yi+1)·eS or is almost periodic with bound 2·eS
(in the latter case, in fact, the word is described by a prefix, a suffix, and a repeating
pattern, each one of length at most 2 · eS),
some words �−v y and −�v y, that is, two words for each level y ∈ {yi + 1, . . . , yi+1}, whose
lengths sum up to at most 2hS · eS .

The idea is that each word vi represents the output produced by the factor ρ[`i, `i+1] (this
output is bounded or is almost periodic, thanks to the fourth condition of the definition of
ramp). Note that, by construction, there can be at most hS ramps in the decomposition,
and hence the sum of the lengths of the words used to represent the vi’s does not exceed
6 ·hS · eS . Similarly, each word �−v y (resp., −�v y) represents the output produced by the factor
of the run ρ that is at level y and to the left of the position xi (resp., right of xi+1), where
i is the unique index such that yi < y ≤ yi+1 (resp., yi ≤ y < yi+1). The total length of
these words is at most 2hS · eS . Overall, the sum of the lengths of all the words guessed by
T never exceeds 8hS · eS .

Using the words vi, �−v y, −�v y and some additional pointers, the transducer T can verify that
the guessed ramps satisfy the required conditions and that the decomposition is thus valid.
In the same way, the words vi, �−v y, −�v y can be used to produce the output out(ρ[`i, `i+1])
associated with each ramp (`i, `i+1). For this, it is sufficient to visit the positions of the
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ramp (`i, `i+1) and, at the same time, fetch blocks of symbols of appropriate length in the
word vi, so as to eventually match the length of the desired output out(ρ[`i, `i+1]) – note
that this requires taking into account also the words �−v y and −�v y.

We just described informally a one-way transducer T that simulates any run ρ of S that
admits a decomposition. The size of T is doubly exponential in the size of S and this proves
the second claim of the theorem.

Assuming that the existence of decompositions of successful runs is also a necessary
condition for the one-way definability of S (this will be proved in the next section), we can
easily derive from the above constructions a 2ExpSpace decision procedure for testing
one-way definability. More precisely, given a sweeping transducer S, one constructs T
as above in doubly exponential time, and then tests whether dom(S) ⊆ dom(T ). The
latter problem can be seen as a containment problem between a two-way non-deterministic
finite-state automaton A and a one-way non-deterministic finite-state automaton B. Using
standard constructions, one can turn A into an equivalent one-way non-deterministic finite-
state automaton A′ (which is exponential in S), and finally decide the containment A′ ⊆ B
in polynomial space in A′ and B, that is, in doubly exponential space in S.

J

4 Characterizing one-way definability

In this section we prove the harder direction of the first claim of Theorem 4: if a sweeping
functional transducer is one-way definable, then every accepted input has a successful run
that can be decomposed into floors and ramps.

We begin by identifying some phenomena that prevent a transducer to be one-way defin-
able. A first example is the mirror transduction, where a large number of symbols need to
be generated from right to left. Another example is the doubling transduction S(u) = u · u.
Here, we have an inversion, namely large parts of the input must be generated before other
large parts that are located to their left. We give a formal definition of inversions below.

Fix a successful run ρ of S and consider a loop L = [x1, x2] of ρ. A location `1 of ρ is called
entry point of L if `1 is the first location of the factor intercepted by L at level y, for some
y. Similarly, a location `2 is called an exit point of L if `2 is the last location of the factor
intercepted by L at level k, for some k. Note that `1 belongs to {x1}×(2N)∪{x2}×(2N+1),
and `2 belongs to {x2}× (2N) ∪ {x1}× (2N+ 1). Finally, we say that an intercepted factor
ρ | I/` is captured by a loop L if I contains L (possibly, I = L) and the subfactor intercepted
by L on the same level as `, has non-empty output.

I Definition 5. An inversion of the run ρ is a pair of locations `1 and `2 for which there
exist two loops L1 = (x1, x

′
1) and L2 = (x2, x

′
2) such that:

`1 is an entry point of L1 and `2 is an exit point of L2,
`1 < `2 and x1 ≥ x2 (namely, `2 strictly follows `1 along the run, but the left endpoint
of L2 precedes the left endpoint of L1),
for both i = 1 and i = 2, the intercepted factor ρ | Li/`i is captured by the loop Li, but
it is not captured by any other loop strongly contained in Li.

We say that the above loops L1 and L2 are witnessing the inversion (`1, `2).

The left-hand side of Figure 2 gives an example of an inversion, where the entry point
`1 of L1 and the exit point `2 of are represented by white circles.

The first lemma (proved in the appendix) can be used to bound the lengths of the outputs
produced by the factors ρ | L1/`1 and ρ | L2/`2, where `1, `2, L1, L2 are as in Definition 5:
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L2 L1

`1

`2

X̃
(3,3)
2 X̃

(3,3)
1

v1 v1 v1

v2 v2 v2

Figure 2 To the left: an entry point `1 of L1 and an exit point `2 of L2 forming an inversion.
To the right: the run obtained by pumping the loops L1 and L2.

I Lemma 6. If an intercepted factor ρ | I/` is not captured by any loop L strongly contained
in I, then the length of its output is at most eS .
In particular, for every inversion (`1, `2) witnessed by some loops L1 and L2, we have 1 ≤∣∣out(ρ | Li/`i)

∣∣ ≤ eS , for both i = 1 and i = 2.

The next proposition gives the crucial property for characterizing one-way definability,
as it shows that the transducer S is one-way definable only if for every inversion (`1, `2), the
output of ρ[`1, `2] is periodic.
I Proposition 7. Suppose that the sweeping transducer S is one-way definable. Then, for
all inversions (`1, `2) of the run ρ witnessed by loops L1, L2 and for both i = 1 and i = 2,
the output of ρ[`1, `2] has period

∣∣out(ρ | Li/`i)
∣∣, hence, in particular, at most eS .

A key ingredient for the proof of the above proposition is Fine and Wilf’s theorem [9].
In short, this theorem says that, whenever two periodic words w1, w2 share a sufficiently
long factor, then they have the same periods. Below, we state a slightly stronger variant
of Fine and Wilf’s theorem, which contains an additional claim that shows how to align a
common factor of the two words w1, w2 so as to form a third word containing a prefix of w1
and a suffix of w2. The additional claim will be exploited in the proof of Proposition 7 and
Lemma 11.

I Lemma 8 (Fine and Wilf). If w1 is a word with period p1, w2 is a word with period p2,
and w1 and w2 have a common factor of length at least p1 + p2 − gcd(p1, p2), then w1 and
w2 have also period gcd(p1, p2). If in addition we have w1 = u1 w v1, w2 = u2 w v2, and
|w| ≥ gcd(p1, p2), then w3 = u1 w v2 has also period gcd(p1, p2).

Proof of Proposition 7. Let L1 = (x1, x
′
1), L2 = (x2, x

′
2) be the loops witnessing the inver-

sion (`1, `2). Note that the two loops L1 and L2 might not be ordered exactly as shown in
Figure 2. In fact, two cases can arise: either x2 < x′2 ≤ x1 < x′1 (that is, L1 and L2 are
disjoint and L1 is to the right of L2) or x2 ≤ x1 < x′2 ≤ x′1 (that is, L1 overlaps to the right
with L2).

We begin by pumping the loops L1 and L2 (see the right-hand side of Figure 2). Formally,
for all positive numbers m1,m2, we define

ρ(m1,m2) = pumpm2
L2

(pumpm1
L1

(ρ)) and u(m1,m2) = pumpm2
L2

(pumpm1
L1

(u)) .

We identify the positions of u(m1,m2) that mark the endpoints of the copies of the loops L1
and L2 in the pumped run ρ(m1,m2). Because L2 precedes L1 with respect to the ordering
of positions, it is easier to define first the set of endpoints of the copies of L2:

X̃
(m1,m2)
2 = {x2 + i∆2 | 0 ≤ i ≤ m2} where ∆2 = x′2 − x2 .
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The set of endpoints of the copies of L1 is defined as

X̃
(m1,m2)
1 = {x1 + i∆1 +m2∆2 | 0 ≤ i ≤ m1} where ∆1 = x′1 − x1 .

We then exploit the hypothesis that S is one-way definable and assume that the one-way
transducer T is equivalent to S. In particular, T produces the same output as S on every
input u(m1,m2). Let σ(m1,m2) be a successful run of T on u(m1,m2). Since T has finitely
many states, we can find a large enough number h > 0 and two positions x̃1 < x̃′1 ∈ X̃

(h,h)
1

such that the crossing sequences of σ(h,h) at x̃1 and x̃′1 are the same. Similarly, we can find
two positions x̃2 < x̃′2 ∈ X̃

(h,h)
2 such that the crossing sequences of σ(h,h) at x̃2 and x̃′2 are

the same. This means that L̃1 = (x̃1, x̃
′
1) and L̃2 = (x̃2, x̃

′
2) can be equally seen as loops of

ρ(h,h) or as loops of σ(h,h). In particular, there are constants k1, k2 > 0, 0 ≤ h1 < k1, and
0 ≤ h2 < k2 such that, for all positive numbers m1,m2:

u(k1·m1+h1,k2·m2+h2) = pumpm2
L̃2

(pumpm1
L̃1

(u(h,h)))

and the above word has a successful run in T of the form pumpm2
L̃2

(pumpm1
L̃1

(σ(h,h))). Consider
the outputs v1 and v2 produced by the intercepted factors ρ | L1/`1 and ρ | L2/`2, respec-
tively. By Lemma 6, both v1 and v2 are non-empty. Moreover, by definition of pumped run,
the output produced by ρ(k1·m1+h1,k2·m2+h2) contains k1 ·m1 + h1 consecutive occurrences
of v1 followed by k2 ·m2 + h2 consecutive occurrences of v2 (see again the right-hand side
Figure 2). Formally, we can write

out(ρ(k1·m1+h1,k2·m2+h2)) = v0(m1,m2)·vk1·m1+h1
1 ·v3(m1,m2)·vk2·m2+h2

2 ·v4(m1,m2) (2)

for some words v0(m1,m2), v3(m1,m2), and v4(m1,m2) that may depend onm1 andm2 (we
highlighted in bold the repeated occurrences of v1 and v2 and we observe that v1 precedes
v2).

In a similar way, because the same output is also produced by the the one-way transducer
T , i.e. by the run pumpm2

L̃2
(pumpm1

L̃1
(σ(h,h))), and because the loop L2 precedes the loop L1

according to the natural ordering of positions, we have

out(ρ(k1·m1+h1,k2·m2+h2)) = w0 ·wm2
2 · w3 ·wm1

1 · w4 (3)

where w1 (resp., w2) is the output produced by the unique factor of σ(h,h) intercepted by
L̃1 (resp., L̃2), and w0, w3, w4 are the remaining parts of the output. Note that, differently
from the previous equation, here the first repetition is produced during the loop L̃2 and the
remaining parts w0, w3, w4 do not depend on m1,m2. We now consider the factor

v(m1,m2) = vk1·m1+h1
1 · v3(m1,m2) · vk2·m2+h2

2

of the output produced by S. The following claim shows that this factor is periodic, with a
small period that only depends on S (in particular, it does not depend on any of the indices
h, k1, k2, h1, h2,m1,m2).
I Claim. For all numbers m1,m2 > 0, the word v(m1,m2) = vk1·m1+h1

1 · v3(m1,m2) ·
vk2·m2+h2

2 is periodic with period gcd(|v1|, |v2|).
The idea for the proof of the above claim, detailed in the appendix, is to let m1 and m2 grow
independently. We exploit Equations (2) and (3) to show that vk1·m1+h1

1 · v3(m1,m2) · v2
has period gcd(|v1|, |w1|), and that v1 · v3(m1,m2) · vk2·m2+h2

2 has period gcd(|v2|, |w2|). A
last application of Fine and Wilf’s theorem (Lemma 8) gives the desired periodicity.
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Recall that we aim at proving the periodicity of the output out(ρ[`1, `2]) of the original
run ρ of S between the locations `1 and `2. The previous arguments, however, concern the
outputs v(m1,m2), which are produced by factors of the pumped runs ρ(k1·m1+h1,k2·m2+h2).
By Equation (1) in Section 2, out(ρ[`1, `2]) can be obtained from any v(m1,m2) by deleting
some occurrences of non-empty words produced by factors intercepted by L1 or L2. More
precisely, the words that need to be deleted in v(m1,m2) to obtain out(ρ[`1, `2]) are non-
empty and of the form out(ρ | Li/`′i), for some i ∈ {1, 2} and some location `′i such that
`1 ≤ `′i ≤ `2. Let us denote by v′1, . . . , v′m these words. Note that, as m1 and m2 get larger,
v(m1,m2) contains arbitrarily long repetitions of each word v′i, and hence long factors of
period |v′i|, for i = 1, . . . ,m. Thus, by applying Lemma 8, we get that v(m1,m2) has period
p = gcd(|v1|, |v2|, |v′1|, . . . , |v′m|).

Towards a conclusion, we know that out(ρ[`1, `2]) is obtained from v(m1,m2) by removing
occurrences of the words v′1, . . . , v′m whose lengths are multiple of the period p of v(m1,m2).
This implies that out(ρ[`1, `2]) is also periodic with period p, which divides

∣∣out(ρ | Li/`i)
∣∣

for both i = 1 and i = 2. J

Recall that the proof of the remaining part of Theorem 4 (necessity of the condition
characterizing one-way definability) amounts at constructing a decomposition of the suc-
cessful run ρ under the assumption that S is one-way definable. We begin to construct a
decomposition of ρ by identifying some ramps in it. Intuitively, such ramps are obtained by
considering the classes of a suitable equivalence relation:

I Definition 9. Let be the relation that pairs every two locations `, `′ along the run ρ
whenever there is an inversion (`1, `2) of ρ such that `1 ≤ `, `′ ≤ `2, namely, whenever ` and
`′ occur within the same inversion. Let ? be the reflexive and transitive closure of .

It is easy to see that every equivalence class of ? is a convex subset with respect to
the natural ordering of locations of ρ. The following lemma shows that every non-singleton
equivalence class of ? is a union of a series of inversions that are two-by-two overlapping.

I Lemma 10. If two locations ` ≤ `′ of ρ belong to the same non-singleton equivalence class
of ?, then there is a sequence of locations `1 ≤ `3 ≤ `4 ≤ . . . ≤ `n−3 ≤ `n−2 ≤ `n, for
some even number n ≥ 4, such that

`1 ≤ ` ≤ `4 and `n−3 ≤ `′ ≤ `n,
(`1, `4), (`3, `6), (`5, `8), . . . , (`n−5, `n−2), (`n−3, `n) are inversions.

The next result uses Lemma 6, Proposition 7, and Lemma 10 to show that the output
produced inside a ?-equivalence class is also periodic with small period, provided that S
is one-way definable.

I Lemma 11. If S is one-way definable and ` ≤ `′ are two locations of the run ρ such that
` ? `′, then the output out(ρ[`, `′]) produced between ` and `′ has period at most eS .

Below, we introduce some “bounding boxes” of non-singleton ?-equivalence classes.
Intuitively, these bounding boxes are the smallest possible rectangles that start and end at
some even levels and that cover all the locations forming an inversion inside a non-singleton
?-equivalence class. Subsequently, in Lemma 13 we show that these bounding boxes can

be given the status of ramps in a suitable decomposition of ρ.

I Definition 12. Let K be a non-singleton ?-equivalence class and let H be the subset of
K that contains all the locations `, `′ ∈ K forming an inversion (`, `′).
We define [K] to be the pair of locations `1 = (x1, y1) and `2 = (x2, y2) such that
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x1 (resp., x2) is the position of the leftmost (resp., rightmost) location ` ∈ H,
y1 (resp., y2) is the highest (resp., lowest) even level such that y1 ≤ y (resp., y2 ≥ y) for
all locations ` = (x, y) ∈ H.

I Lemma 13. If K is a non-singleton ?-equivalence class, then [K] is a ramp.

For the sake of brevity, we call ?-ramp any ramp of the form [K], where K is a non-
singleton ?-equivalence class. The results obtained so far imply that every location of the
run ρ covered by an inversion is also covered by a ?-ramp. To complete the decomposition
of ρ, we need to consider the locations that are not strictly covered by ?-ramps, formally,
the set B = {` | @ (`1, `2) ?-ramp s.t. `1 < ` < `2}. We equip B with the natural ordering
of locations induced by ρ. We now consider some maximal convex subset C of B. Note that
the left/right endpoint of C coincides with the first/last location of the run ρ or with the
right/left endpoint of some ?-ramp. Below, we show how to decompose the sub-run ρ | C
into a series of floors and ramps. After this, we will be able to get a full decomposition of
ρ by interleaving the ?-ramps that we defined above with the floors and the ramps that
decompose each sub-run ρ | C.

Let DC be the set of locations ` = (x, y) of C such that there is some loop L = [x, x′],
with x′ ≥ x, whose intercepted factor ρ | L/` lies entirely inside C and produces non-empty
output. We remark that the set DC may be non-empty. To see this, one can imagine the
existence of two consecutive ?-ramps (e.g. R1 and R2 in Figure 1) and a loop between
them that produces non-empty output (e.g. the factor F2). In a more general scenario, one
can find several loops between two consecutive ?-ramps that span across different levels.
We can observe however that all the locations in DC are on even levels. Indeed, if this were
not the case for some ` = (x, y) ∈ DC , then we could select a minimal loop L = [x1, x2] such
that x1 ≤ x ≤ x2 and out(ρ | L/`) 6= ε. Since y is odd, `1 = (x2, y) is an entry point of L and
`2 = (x1, y) is an exit point of L, and hence (`1, `2) is an inversion. Since `1 ≤ ` ≤ `2 and
all inversions are covered by ?-ramps, there is a ?-ramp (`′1, `′2) such that `′1 ≤ ` ≤ `′2.
However, as `′1 and `′2 are at even levels, ` must be different from these two locations, and
this would contradict the definition of DC . Using similar arguments, one can also show that
the locations in DC are arranged along a “rising diagonal”, from lower left to upper right.

The above properties suggest that the locations in DC identify some floors and ramps
that form a decomposition of ρ | C. The following lemma shows that this is indeed the case,
namely, that any two consecutive locations in DC form a floor or a ramp.

I Lemma 14. Let `1 = (x1, y1) and `2 = (x2, y2) be two consecutive locations of DC . Then,
x1 ≤ x2 and y1 ≤ y2 and the pair (`1, `2) is a floor or a ramp, depending on whether y1 = y2
or y1 < y2.

We have just shown how to construct a decomposition of the entire run ρ, assuming that
the sweeping transducer S is one-way definable. This completes the proof of the only-if
direction of the first claim of Theorem 4.

5 Lower bound and undecidability

We show now that the doubly exponential blow-up in size stated by Theorem 4, cannot be
avoided.

I Proposition 15. There is a family (fn)n of functions from {0, 1}∗ to {0, 1}∗ such that:

fn can be computed by a sweeping transducer of size quadratic in n,
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fn can be computed by a one-way transducer,
any one-way transducer computing fn has at least 22n−1 states.

We exhibit such a family of function by defining the domain of fn to be the set of words
of the form

a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

where ai ∈ {0, 1} for all i ∈ {0, . . . , 2n}. On those words, we define fn as follows:

fn
(
a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

)
= w · w where w = a0 a1 . . . a2n .

We conclude the section by showing that the one-way definability problem becomes
undecidable for relations computed by sweeping non-functional transducers. Note that
ε-transitions are needed in order to capture the class of one-way definable relations. On the
other hand, for one-way definable functions, ε-transitions can be excluded.

I Proposition 16. The problem of testing whether a sweeping non-functional transducer is
one-way definable is undecidable.

6 Conclusion

In this paper we proposed a new algorithm that decides whether a sweeping transducer is
equivalent to a one-way transducer. Our decision algorithm works in doubly exponential
space and produces one-way transducers of doubly exponential size. The latter bound is
shown to be optimal. An open question is whether the decision problem has lower complexity
if we do not build the one-way transducer.

The main open question is whether our algorithm can be extended to two-way functional
transducers that are not necessarily sweeping. We conjecture that this is the case and that
a similar characterization based on decompositions of runs into floors and ramps can be
obtained. The main difficulty is that (de)pumping loops is more complicated because of
permutations.

One-way definability is also a special case of the following open problem: given an integer
k and a two-way transducer, decide if there is an equivalent k-crossing two-way transducer.
Finally, note that the problem that we considered here becomes much simpler in the origin
semantics of [3]: there, the output of a transducer also includes the origin of each symbol,
i.e., the input position where the symbol was generated. In the origin semantics, the one-
way definability problem is PSpace-complete, and an equivalent one-way transducer has
exponential size.
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A Appendix

I Proposition 1. Functionality of two-way transducers can be decided in polynomial space.
This problem is PSpace-hard even for sweeping transducers.

Proof. Showing that the problem is PSpace-hard for streaming transducers is easy: we
reduce from the emptiness problem of the intersection of NFAs.

Given n NFAs A1, . . . ,An we build a sweeping transducer S which simulates the au-
tomaton Ai on its i-th pass. At the end of the i-th pass, if the simulation of Ai is in an
accepting state, we choose non-deterministically either to stop the computation and output
the number i, or to continue testing if the input is in L(Ai+1). That way, a pair (u, i) is in
the transduction defined by S if and only if Ai accepts the input u. This yields exactly to
the desired property of S: it is functional if and only if

⋂
i≤n L(Ai) = ∅.

To show that the functionality problem is in PSpace for two-way transducers, we use
a reduction similar to [1], to the reachability of 1-counter machines. The latter problem
belongs to Nlogspace and we will obtain an exponential-sized 1-counter machine, that can
be simulated on-the-fly. Altogether this yields PSpace complexity. We recall that N = 2|Q|
is the maximal crossing number of a normalized run in a functional transducer. We first
show the following claim:
I Claim. If S is not functional, then either there exists (1) a successful run with crossing
number at most 2N and non-empty output on some repetition in a crossing sequence, or
(2) two normalized runs on the same input, each with crossing number at most N , and with
different outputs.

Proof. Assume there is a successful run with non-empty output on some repetition in a
crossing sequence. That is, the crossing sequence contains two locations with the same
state and both on even/odd level, such that the output on the factor run delimited by these
locations is non-empty. We can first remove from this run all repetitions that produce empty
outputs. Then, we can also remove the repetitions with non-empty outputs, obtaining other
successful runs, until there remains only one non-empty repetition. The run produced is an
instance of case (1).

On the other hand, if all the repetitions in the crossing sequences of any successful
run produce an empty output, we can find a pair of runs satisfying (2): We know by non
functionality that there is pair (u, v) of outputs produced by different runs on the same input,
such that u 6= v. As we know there is no repetition producing a non-empty output, we can
remove the repetitions of the runs of u and v and obtain new successful runs producing the
same u and v. As those runs do not have any repetition in their crossing sequence, they
have a crossing number ≤ N .

J

To determine non-functionality, the 1-counter machine will guess between the two cases
of the lemma: in (1) it will guess a run of S of crossing number smaller than 2N , and in
(2) it will guess two runs of S on the same input of crossing number smaller than N . In the
second case, we define u and v to be the two outputs of the runs, and S decides if it will
check |u| 6= |v| or the existence of a position i such that ui 6= vi.

In each case, M guesses two locations in the runs and marks locations on the crossing
sequences that will help to identify certain factors of runs.

In the first case M guesses two locations in the run at the same crossing sequence,
that have the same state, and the same movement of the input head, and M marks all
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locations between those two locations. It checks then that the output produced by the
factor containing marked locations is non-empty.

In the second case, when verifying that |u| 6= |, it guesses one location in the second run,
and marks the locations before it in the corresponding crossing sequences. The counter is
incremented by the number of letters produced in the first run, and decremented by those
produced by marked locations of the second. The guessed location represents the moment
in the second run where it has produced an output longer than |u|.

In the second case, when checking the existence of a position such that ui 6= vi, it
guesses one location in each run, and marks the locations before those in the corresponding
crossing sequences. The counter is incremented (resp. decremented) by the number of letters
produced by marked locations of the first (resp. second) run. The machine also checks that
the letters produced at the guessed locations are different, and the counter’s value is 0 at
the end of the run. This guarantees that the letters were produced at the same place. J

I Lemma 6. If an intercepted factor ρ | I/` is not captured by any loop L strongly contained
in I, then the length of its output is at most eS .
In particular, for every inversion (`1, `2) witnessed by some loops L1 and L2, we have 1 ≤∣∣out(ρ | Li/`i)

∣∣ ≤ eS , for both i = 1 and i = 2.

Proof. Let I = [x1, x2] be an interval, ` = (x, y) a location, with x1 ≤ x ≤ x2, and
α = ρ | I/` the intercepted factor. Suppose that there is no loop L strongly contained in I
that captures α. We have to show that |out(α)| ≤ eS .

We first claim that the number of transitions of the factor α that produce non-empty
output does not exceed the number of distinct crossing sequences of the form ρ|x, with
x1 ≤ x < x2. Indeed, if this were not the case, then there would exist two locations
`′ = (x′, y) and `′′ = (x′′, y), with x1 < x′ < x′′ < x2, such that

the crossing sequences at x′ and x′′ are the same,
depending on whether y is even or odd, `′ and `′′ are either targets or sources of two
distinct transitions that produce non-empty output.

From the above, we derive the existence of a loop L′ = [x′, x′′] that is strongly contained in
I and intercepts a factor on level y producing non-empty output, i.e. a contradiction to our
hypotheses on α.

Now, recall that the run ρ is normalized, and hence there are at most |Q|2|Q| distinct
crossing sequences of the form ρ|x, with x1 ≤ x < x2. Together with the previous claim,
this implies that the factor α = ρ | I/` contains at most |Q|2|Q| transitions that produce
non-empty output. To prove the first result stated in the lemma it is thus sufficient to recall
that each of those transitions can produce at most cS symbols and eS = cS · |Q|2|Q|.

We conclude the proof by showing the last claim of the lemma. Consider an inversion
(`1, `2) witnessed by some loop L1 and L2. By definition, we have that, for both i = 1
and i = 2, the intercepted factor ρ | Li/`i is captured by Li, but is not captured by
any loop strongly contained in Li. Together with the previous claims, this implies that
1 ≤

∣∣out(ρ | Li/`i)
∣∣ ≤ eS . J

I Claim (in the proof of Proposition 7). For all numbers m1,m2 > 0, the word v(m1,m2) =
vk1·m1+h1

1 · v3(m1,m2) · vk2·m2+h2
2 is periodic with period gcd(|v1|, |v2|).
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Proof. The proof of this claim is based on Equations (2) and (3), which we recall here:

out(ρ(k1·m1+h1,k2·m2+h2)) = v0(m1,m2) · vk1·m1+h1
1 · v3(m1,m2) · vk2·m2+h2

2 · v4(m1,m2)
(2)

out(ρ(k1·m1+h1,k2·m2+h2)) = w0 ·wm2
2 · w3 ·wm1

1 · w4 (3)

We are going to use the above equations for varying parametersm1,m2. We first fixm1 large
enough so that the prefix v0(m1,m2) ·vk1·m1+h1

1 is longer than |w0|+ |v1|. Then, by letting
m2 grow arbitrarily large and by using the above equations, we get that the periodic word
wm2

2 covers an arbitrarily long prefix of v1 ·v3(m1,m2)·vk2·m2+h2
2 , and in particular an arbi-

trarily long infix of vk2·m2+h2
2 . Hence, by Fine-Wilf’s Theorem (first claim of Lemma 8), the

words wm2
2 and vk2·m2+h2

2 are periodic with period p2 = gcd(|v2|, |w2|). Moreover, because
an arbitrary long prefix of v1 ·v(m1,m2)

3 ·vk2·m2+h2
2 is covered by wm2

2 , we have that the word
v1·v3(m1,m2)·vk2·m2+h2

2 is also periodic with period p2 = gcd(|v2|, |w2|). Symmetrically, by
fixingm2 large enough and lettingm1 grow, we get that the word vh1·m1+h1

1 ·v3(m1,m2)·v2
is periodic with period p1 = gcd(|v1|, |w1|). We can summarize the previous results as fol-
lows:

v(m1,m2) = ︸ ︷︷ ︸
period p1

vk1·m1+h1−1
1 ·

period p2︷ ︸︸ ︷
v1 · v3(m1,m2) · v2 · vk2·m2+h2−1

2 .

Finally, we observe that the words vh1·m1+h1
1 ·v3(m1,m2)·v2 and v1 ·v3(m1,m2)·vk2·m2+h2

2
share the factor v1 · v3(m1,m2) · v2 of length at least |v1| + |v2|. Hence, by applying the
second claim of Lemma 8, we conclude that the word v(m1,m2) is periodic with period
gcd(|v1|, |v2|). J

I Lemma 10. If two locations ` ≤ `′ of ρ belong to the same non-singleton equivalence
class of ?, then there is a sequence of locations `1 ≤ `3 ≤ `4 ≤ . . . ≤ `n−3 ≤ `n−2 ≤ `n, for
some even number n ≥ 4, such that

`1 ≤ ` ≤ `4 and `n−3 ≤ `′ ≤ `n,
(`1, `4), (`3, `6), (`5, `8), . . . , (`n−5, `n−2), (`n−3, `n) are inversions.

For the sake of presentation, in Figure 3 we give an intuitive account of the structure
of the series of inversions claimed in the lemma: the thick arrows represent the transitions
within the equivalence class and the hatched areas mark the endpoints of the overlapping
inversions (for example, (`1, `4) overlaps with (`3, `6)).

Proof. We will say that an inversion (`1, `2) covers a location ` when `1 ≤ ` ≤ `2. We prove
the lemma by induction on the distance between the two locations ` and `′. The basic case
is when ` = `′. Because ` belongs to a non-singleton ?-equivalence class, we know that
there is an inversion (`1, `4) that covers `, namely, such that `1 ≤ ` ≤ `4. Thus, the claim
of the lemma holds by simply letting n = 4.

To prove the induction step, we consider two locations `, `′ satisfying the hypothesis of
the lemma and being at distance t > 0, and we assume that the claim holds for analogous
pairs of locations at distance strictly less than t. As before, because ` belongs to a non-
singleton ?-equivalence class, we know that there is an inversion (`1, `4) that covers `.
Without loss of generality we can assume that `4 is the greatest location that forms an
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`1

`3

`4

`5

`6

`7

`8

`n−3

`n−2

`n

Figure 3 A ?-equivalence class seen as a series of overlapping inversions.

inversion covering `. In particular, we have that ` < `4, as otherwise we would have ` = `4:
the latter equality however is impossible, as all the locations in the equivalence class of `
would then occur before `, thus contradicting `′ > ` (recall that ` and `′ are by hypothesis
in the same equivalence class of ?).

If `′ is also covered by (`1, `4), then we are done, namely, the claim holds for n = 4.
Otherwise, we let `′′ = `4 and we observe that `′′ < `′ is a pair of locations satisfying the
hypothesis of the lemma and being at distance strictly less than t. By applying the inductive
hypothesis, we derive the existence of a series of inversions of the form (`3, `6), (`5, `8), . . . ,
(`n−5, `n−2), (`n−3, `n), for some n ≥ 4 and some locations `3 ≤ `5 ≤ . . . ≤ `n−3 ≤ `n−2 ≤
`n. By prepending the pair (`1, `4) to this sequence we get the desired claim. J

I Lemma 11. If S is one-way definable and ` ≤ `′ are two locations of the run ρ such that
` ? `′, then the output out(ρ[`, `′]) produced between ` and `′ has period at most eS .

Proof. The claim for ` = `′ holds trivially, so for the rest of the proof we focus only on the
case ` < `′. By Lemma 10, we know that there is a series of inversions

(`1, `4) (`3, `6) (`5, `8) . . . (`n−5, `n−2) (`n−3, `n)

for some locations `1 ≤ `3 ≤ `4 ≤ . . . ≤ `n−3 ≤ `n−2 ≤ `n, with `1 ≤ `4 and `n−3 ≤ `′ ≤ `n.
For each of the above inversions (`i−3, `i), we denote by Li−3 and Li the two witnessing

loops and by pi−3 and pi the lengths of the outputs produced by the intercepted factors ρ |
Li−3/`i−3 and ρ | Li/`i, respectively. Recall that, by Lemma 6, eS is an upper bound to the
lengths p1, p4, p3, p6, . . . , pn−5, pn−2, pn−3, pn. Therefore, in order to show that out

(
ρ[`, `′]

)
is periodic with period at most eS , it suffices to prove the following claim by induction on i:
I Claim. For all i ∈ {4, 6, . . . , n − 2, n}, the output out(ρ[`1, `i]) produced between `1 and
`i is periodic with period gcd(pi−3, pi).

The base case i = 4 follows immediately from Proposition 7, since (`1, `4) is an inversion.
For the inductive step, we assume that the claim holds for i ≤ n − 2 and we prove it for
i+ 2. First of all, we decompose our word as follows:

out
(
ρ[`1, `i+2]

)
= out

(
ρ[`1, `i−1]

)
out
(
ρ[`i−1, `i]

)
out
(
ρ[`i, `i+2]

)
.

We then observe that, by the inductive hypothesis, the output produced between `1 and
`i has period gcd(pi−3, pi). Similarly, because (`i−1, `i+2) is an inversion, we know from
Proposition 7 that the output produced between `i−1 and `i+2 has period gcd(pi−1, pi+2).
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Now, we focus on the output out
(
ρ[`i−1, `i]

)
. We first verify that (`i−1, `i) is an inversion.

Indeed, we have `i−1 ≤ `i. Moreover, because (`i−1, `i+2) and (`i−3, `i) are inversions, we
know that `i−1 is an entry point of Li−1 and `i is an exit point of Li. In particular, we have
`i−1 < `i and the x-coordinate of `i−1 is greater than that of `i. For the same reasons, the
intercepted factor ρ | Li−1/`i−1 is captured by Li−1, but is not captured by any other loop
strongly contained in Li−1. Analogous properties holds for the intercepted factor ρ | Li/`i
and the loop Li. This proves that (`i−1, `i) is an inversion. Then, by applying Proposition
7 to this inversion, we get that the the output produced between `i−1 and `i has period
gcd(pi−1, pi).

We can summarize the previous results as follows:

out
(
ρ[`1, `i+2]

)
= ︸ ︷︷ ︸

period pi−3 and pi

out
(
ρ[`1, `i−1]

)
period pi−1 and pi+2︷ ︸︸ ︷

period pi−1 and pi︷ ︸︸ ︷
out
(
ρ[`i−1, `i]

)
out
(
ρ[`i, `i+2]

)
.

To head towards the conclusion, we observe that the word out
(
ρ[`i−1, `i]

)
ends with the

output produced by the intercepted factor ρ | Li/`i, and hence it has length at least pi.
Moreover, the same word occurs as a factor of out

(
ρ[`1, `i−1]

)
out
(
ρ[`i−1, `i]

)
. Hence, by

Lemma 8, the two words out
(
ρ[`i−1, `i]

)
and out

(
ρ[`1, `i−1]

)
out
(
ρ[`i−1, `i]

)
have period

gcd(pi−3, pi−1, pi). In a similar way, by observing that out
(
ρ[`i−1, `i]

)
has length at least

pi−1 and occurs as a factor of out
(
ρ[`i−1, `i]

)
out
(
ρ[`i, `i+2]

)
, we derive that out

(
ρ[`i−1, `i]

)
and out

(
ρ[`i−1, `i]

)
out
(
ρ[`i, `i+2]

)
have period gcd(pi−3, pi−1, pi, pi+2). A third applica-

tion of Lemma 8 allows us to conclude that the entire word out
(
ρ[`1, `i+2]

)
has period

gcd(pi−3, pi−1, pi, pi+2), which clearly divides gcd(pi−1, pi+2). This proves the inductive
step of the claim.

Finally, we recall that the lemma follows from the above claim and from Lemma 6 by
letting i = n (note that out

(
ρ[`, `′]

)
is a factor of out

(
ρ[`1, `n]

)
). J

I Lemma 13. If K is a non-singleton ?-equivalence class, then [K] is a ramp.

Proof. Let H be the subset of K that contains all the locations `, `′ ∈ K forming an
inversion (`, `′). Recall from Definition 12 that we have [K] = (`1, `2), where `1 = (x1, y1),
`2 = (x2, y2), x1 = min{x | (x, y) ∈ H}, x2 = max{x | (x, y) ∈ H}, and y1 (resp., y2) is
the even number among min{y | (x, y) ∈ H} and min{y | (x, y) ∈ H} − 1 (resp., among
max{y | (x, y) ∈ H} and max{y | (x, y) ∈ H}+ 1). We verify that [K] = (`1, `2) satisfies all
the conditions of the definition of ramp.

Clearly, we have x1 ≤ x2, y1 < y2, and both y1 and y2 are even. We now prove that the
output produce by the sub-sequence ρ | Z, where Z = [`1, `2] \ [x1, x2]× [y1, y2], has length
at most 2(y2 − y1) · eS .

Suppose, by way of contradiction, that this is not the case, and that
∣∣out(ρ | Z)

∣∣ >
2(y2 − y1) · eS . Since the set Z spans across at most y2 − y1 levels and does not cover the
locations inside the “bounding box” [x1, x2]× [y1, y2], we could find a factor α that produces
an output longer than eS , that lies on a single level y′, and either to the left of x1 or to the
right of x2.

Suppose that this output is on the left (the right case is symmetric), and that α is a
factor on some level y′ ∈ {y1 + 1, . . . , y2} that is intercepted by the interval I = [1, x1] and
that produces an output of length strictly greater than eS . By the contrapositive of Lemma



20 One-way definability of sweeping transducers

6, the factor α is captured by some loop L′ = [x′1, x′2] that is strongly contained in I = [1, x1],
namely, such that 1 ≤ x′1 < x′2 < x1. Let `′ = (x′, y′) be the exit point of L′, where x′ = x′1
or x′ = x′2 depending on whether y′ is odd or even. Recall that, by the definition of [K],
there is also a location ` = (x, y) that strictly precedes `′ along the run and that belongs
to H. This implies that ` forms an inversion with another location and, without loss of
generality, we can assume that ` is the first element of this inversion. Moreover, recall that
x′1 ≤ x′ ≤ x′2 < x1 and x1 ≤ x ≤ x2, namely, `′ is strictly to the left of ` according to
the ordering of the x-coordinates. This shows that (`, `′) is also an inversion, and hence `′
also belongs to H. However, this contradicts the definition of x1 as the minimum of the
x-coordinates of the locations in H. A similar contradiction can be obtained in the case
where the factor that produces an output of length strictly greater than eS lies at the right
of x2.

By the above arguments, we know that
∣∣out(ρ | Z)| ≤ 2(y2 − y1) · eS , where Z =

[`1, `2] \ [x1, x2] × [y1, y2], namely, that the fourth condition of the definition of ramp is
satisfied.

It remains to verify the five condition, that the output produced by ρ[`1, `2] is almost
periodic with bound 2 · eS . Let `′1 and `′2 be the first and the last locations of the ?-
equivalence class K (note that `1 ≤ `′1 ≤ `′2 ≤ `2). Recall that Lemma 11 already shows
that the output produced between `′1 and `′2 is periodic with period at most eS . Thus, we
just need to show that the prefix out(ρ[`1, `

′
1]) and the suffix out(ρ[`′2, `2]) have length at

most 2 · eS .
Suppose that the length of out(ρ[`1, `

′
1]) exceeds 2 · eS . By the definition of [K], the two

locations `1 and `′1 would be either on the same level, i.e. y1, or on adjacent levels, i.e. y1
and y1 + 1. In the following, we show that none of these cases can happen, thus reaching a
contradiction from the assumption

∣∣out(ρ[`1, `
′
1])
∣∣ > 2 · eS . If `1 were on the same level as

`′1, then clearly the factor out(ρ[`1, `
′
1]) would lie on a single level and to the right of x1, and

would produce an output longer than eS . Then, by using the contrapositive of Lemma 6,
we could find a loop L′ = [x′1, x′2] strongly contained in the interval I = [x1, n], where n is
the rightmost position of the input, that captures the factor out(ρ[`1, `

′
1]) with non-empty

output. We recall that `′1 is the first location of the ?-equivalence class K, and hence there
is an inversion (`′1, `′′), for some location `′′ that follows `′1 along the run. We then define
` = (x′1, y1) and we observe that this location is an entry point of L′ and it strictly precedes
`′′. We thus get that (`, `′′) is also an inversion. This, however, is a contradiction because
the inversion (`, `′′) intersects the ?-equivalence class K, without being contained in it.
Let us now consider the second case, where `1 is on level y1 and `′1 is on level y1 + 1. Since
ρ[`1, `

′
1] spans across two levels and produces an output longer than 2eS , there is a factor

α of out(ρ[`1, `
′
1]) that lies entirely on a single level – either y1 or y1 + 1 – and to the right

of x1, and produces an output longer than eS . Then, by reasoning as in the previous case,
we can get a contradiction by finding an inversion (`, `′′) that intersects K without being
contained in it.

We have just shown that
∣∣out(ρ[`1, `

′
1])
∣∣ ≤ 2 · eS . By using symmetric arguments, we can

also prove that
∣∣out(ρ[`′2, `2])

∣∣ ≤ 2·eS . Finally, we recall that, by Lemma 11,
∣∣out(ρ[`′1, `′2])

∣∣ ≤
eS . All together, this shows that the output produced between the locations `1 and `2 is
almost periodic with bound 2 · eS , and hence [K] = (`1, `2) is a ramp. J

I Lemma 14. Let `1 = (x1, y1) and `2 = (x2, y2) be two consecutive locations of DC . The
pair (`1, `2) is a floor or a ramp, depending on whether y1 = y2 or y1 < y2..
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Proof. Recall that all the locations inDC are on even levels, so the lemma holds in particular
for `1 and `2 If y1 = y2, then (`1, `2) is clearly a floor. So let us assume that y1 6= y1. The
fact that x1 ≤ x2 and y1 < y2 holds follows from the arguments given in part of the body
that just preceded the lemma. The first three conditions of the definition of ramp are also
satisfied because `1 and `2 are consecutive locations in DC .

Below, we verify that the output produced by the factor ρ[`1, `2] has length at most
(y2 − y1 + 1) · eS . Note that this will prove both the fourth and the fifth conditions: for
Z = [`1, `2] \ [x1, x2] × [y1, y2], the sub-sequence ρ | Z produces an output that is clearly
shorter than that of ρ[`1, `2], and in addition we have (y2 − y1 + 1) < 2(y2 − y1).

Suppose, by way of contradiction, that out(ρ[`1, `2]) > (y2 − y1 + 1) · eS . Since between
`1 and `2 there are y2− y1 + 1 levels, there is a factor α of ρ[`1, `2] that produces an output
longer than eS and that lies on a single level y, for some y1 ≤ y ≤ y2. The contrapositive
of Lemma 6 implies that the factor α is captured by some loop L′ = [x′1, x′2] such that
x′1 > x1 if y = y1, and x′2 < y2 if y = y2. In particular, the location `′ = (x′1, y) is an
entry point of L and it belongs to DC . We have just shown that there is `′ ∈ DC such
that `1 < `′ < `2. However, this contradicts the hypothesis that `1 and `2 were consecutive
locations in DC . We must conclude that the output produced by the infix ρ[`1, `2] has length
at most (y2 − y1 + 1) · eS , and hence (`1, `2) is a ramp. J

I Proposition 15. There is a family (fn)n of functions from {0, 1}∗ to {0, 1}∗ such that:

fn can be computed by a sweeping transducer of size quadratic in n,
fn can be computed by a one-way transducer,
any one-way transducer computing fn has at least 22n−1 states.

Proof. In this proof we use the standard binary encodings bini,n of the natural numbers
i ∈ {0, . . . , 2n − 1} (for simplicity, hereafter we write bini in place of bini,n): bin0 = 0n,
bin1 = 0n−11, . . . , bin2n−1 = 1n. Formally, bini is the unique word of length n such that
i =

∑n−1
j=0 bini(n− j) · 2j . Note that the least significant bit is in the rightmost position.

Let fn be the function over the binary alphabet {0, 1} defined as follows. The domain
of fn is the set of words of the form

a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

where ai ∈ {0, 1} for all i ∈ {0, . . . , 2n}. The function fn extracts from the above word the
sub-sequence a0 . . . a2n and copies it twice to form the output, namely,

fn
(
a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

)
= w · w where w = a0 a1 . . . a2n .

We first show that there exists a sweeping transducer Sn that computes fn and has size
quadratic in n. Then, we prove that there is a one-way transducer computing fn. Finally,
we show that every one-way transducer computing fn has at least 22n−1 states.

Let us describe the sweeping transducer Sn that computes fn. A first task of the trans-
ducer Sn is to check that the input contains a sub-sequence of the form bin0 bin1 . . . bin2n−1.
This can be done with n left-to-right passes, which are of course interleaved by n− 1 right-
to-left passes. During the j-th left-to-right pass, with j ∈ {1, . . . , n}, the transducer checks
the j-th bit of each block bini, where i ∈ {0, . . . , 2n−1}. It does so by applying the following
rule: if it reads 0 (resp., 1) at position j of bini and if all bits after position j in bini are
set to 1, then it must read 1 (resp., 0) at position j of bini+1. Dually, if some bits after
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position j in bini are set to 0, then the bit at position j of bini must be the same as the
bit at position j of bini+1. Moreover, the first pass, where j = 1, verifies two additional
constraints, namely, that bin0 = 0n and that, after reading 1n (= bin2n−1), the input con-
tains exactly one letter (this is needed to avoid that the block bin2n−1 is followed by a new
block bin0). The constraints of a single left-to-right pass can be verified with a number of
states that is linear in n. As there are n left-to-right passes, all the checks can be performed
with a quadratic number of states. The second task of the transducer aims at producing
the correct output, namely, two copies of the sub-sequence a0 a1 . . . a2n . This can be done
easily, for example, during the last two passes. The transducer that we just described is
sweeping, input-deterministic, has O(n2) states, and computes the function fn.

Let us now prove the second item, namely that there exists a one-way transducer com-
puting fn. Consider the transducer that performs the two following tasks. The first task is
to store the word a0 . . . a2n (which size only depends on n) in order to output it twice at the
end. The second task is to check that the sub-sequence bin0 . . . bin2n−1 is correct. This can
be done by storing binj−1 and binj when binj is being read and checking that they encode
successive integers (this is regular). It requires to store two words of length n in the state.
The transducer also checks that bin0 follows a0 and that a2n is the last letter (at that point
bin2n−1 is stored in the state). This transducer is one-way and computes fn.

We now prove the claim in the third item. Consider a one-way transducer Tn that
computes the function fn and suppose, by way of contradiction, that Tn has less than 22n−1

states. Let w1, . . . , wN be an enumeration of all the words over {0, 1} of length 2n+1, where
N = 22n+1. For all i ≤ N , let ρi be a successful run of T that produces wi · wi as output
(the corresponding input can be obtained from wi by inserting binj immediately before each
position j). We define �−ρ i to be the maximal prefix of ρi that produces a prefix of wi as
output. We also define (pi, vi, qi) to be the transition that immediately follows �−ρ i in the
run ρi, and −�ρ i to be the remaining part of the run. We finally denote by �−wi (resp., −�wi) the
output produced by �−ρ i (resp., −�ρ i). To sum up, we have:

ρi = �−ρ i (pi, ai, vi, qi) −�ρ i
wi · wi = �−wi · vi · −�wi .

Now, consider the transitions (pi, ai, vi, qi) that we just defined. Note that the corresponding
triples (pi, ai, qi) range over the finite set Q × {0, 1} × Q, which has size smaller than 2 ·(
22n−1)2 = 22n+1 = N . Thus, there must exist two distinct indices i, j ≤ N such that

(pi, ai, qi) = (pj , aj , qj).
Since pi = pj , the sequences �−ρ i and �−ρ j end with the same state and hence we can replace

�−ρ j with �−ρ i inside the run ρj . This results in the successful run �−ρ i (pj , aj , vj , qj) −�ρ j that
produces the output �−wi · vj · −�wj . Moreover, because every output produced by Tn must be
of the form wk ·wk, for some 1 ≤ k ≤ N , and because vj · −�wj contains wj as a suffix, we can
write

�−wi · vj · −�wj = wj · wj = �−wj · vj · −�wj .

From the above equation we immediately derive �−wi = �−wj .
As concerns the pieces vi and vj , we observe the following. By construction, �−wi ·vi (resp.,

�−wj · vj) contains wi (resp., wj) as a prefix. Thus, since wi 6= wj and �−wi = �−wj , we have
that vi 6= vj . We also know that (pi, ai, qi) = (pj , aj , qj). In particular, substituting in the
run ρi the transition (pi, ai, vi, qi) with the transition (pj , aj , vj , qj) would result in a new
successful run on the same input wi ·wi that produces the output �−wi ·vj ·−�wi. However, since
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the latter output is different from wi · wi, this is in contradiction with the functionality of
Tn. We must conclude that every one-way transducer that computes fn has at least 22n−1

states. J

I Proposition 16. The problem of testing whether a sweeping non-functional transducer is
one-way definable is undecidable.

Proof. The proof uses some ideas and variants of constructions provided in [8], concerning
the proof of undecidability of the equivalence problem for one-way non-functional transduc-
ers.

We show a reduction from the Post Correspondence Problem (PCP). A PCP instance is
described by two finite alphabets Σ and ∆ and two morphisms f, g : Σ∗ → ∆∗. A solution
of such an instance is any non-empty word w ∈ Σ+ such that f(w) = g(w). We recall that
the problem of testing whether a PCP instance has a solution is undecidable.

Below, we fix a tuple τ = (Σ,∆, f, g) describing a PCP instance and we show how to
reduce the problem of testing the non-existence of solutions of τ to the problem of deciding
one-way definability of a relation computed by a sweeping transducer. Roughly, the idea is
to construct a relation Bτ between words over a suitable alphabet Γ that encodes all the
non-solutions to the PCP instance τ (this is simpler than encoding solutions because the
presence of errors can be easily checked). The goal is to have a relation Bτ that (i) can
be computed by a sweeping transducer and (ii) coincides with a trivial one-way definable
relation when τ has no solution.

We begin by describing the encodings for the solutions of the PCP instance. We assume
that the two alphabets of the PCP instance, Σ and ∆, are disjoint and we use a fresh symbol
# 6∈ Σ ∪ ∆. We define the new alphabet Γ = Σ ∪ ∆ ∪ {#} that will serve both as input
alphabet and as output alphabet for the transduction. We call encoding any pair of words
over Γ of the form (w · u,w · v), where w ∈ Σ+, u ∈ ∆∗, and v ∈ {#}∗. We will write the
encodings as vectors to improve readability, e.g., as(

w · u
w · v

)
.

We denote by Eτ the set of all encodings and we observe that Eτ is computable by a one-way
transducer (note that this transducer needs ε-transitions). We then restrict our attention
to the pairs in Eτ that are encodings of valid solutions of the PCP instance. Formally, we
call good encodings the pairs in Eτ of the form(

w · u
w ·#|u|

)
where u = f(w) = g(w) .

All the other pairs in Eτ are called bad encodings. Of course, the relation that contains
the good encodings is not computable by any transducer. On the other hand, we can show
that the complement of this relation w.r.t. Eτ is computable by a sweeping transducer. Let
Bτ be the set of all bad encodings. Consider (w · u,w ·#m) ∈ Eτ , with w ∈ Σ+, u ∈ ∆∗,
and m ∈ N, and we observe that this pair belongs to Bτ if and only if one of the following
conditions is satisfied:

1. m < |u|,
2. m > |u|,
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3. u 6= f(w),
4. u 6= g(w).
We explain how to construct a sweeping transducer Sτ that computes Bτ . Essentially, Sτ
guesses which of the above conditions holds and processes the input accordingly. More
precisely, if Sτ guesses that the first condition holds, then it performs a single left-to-right
pass, first copying the prefix w to the output and then producing a block of occurrences
of the symbol # that is shorter than the suffix u. This task can be easily performed while
reading u: it suffices to emit at most one occurrence of # for each position in u, and at
the same time guarantee that, for at least one such position, no occurrence of # is emitted.
The second condition can be dealt with by a similar strategy: first copy the prefix w, then
output a block of # that is longer than the suffix u. To deal with the third condition, the
transducer Sτ has to perform two left-to-right passes, interleaved by a backward pass that
brings the head back to the initial position. During the first left-to-right pass, Sτ copies the
prefix w to the output. During the second left-to-right pass, it reads again the prefix w, but
this time he guesses a factorization of it of the form w1 aw2. On reading w1, Sτ will output
#|f(w1)|. After reading w1, Sτ will store the symbol a and move to the position where the
suffix u begins. From there, it will guess a factorization of u of the form u1 u2, check that
u2 does not begin with f(a), and emit one occurrence of # for each position in u2. Note
that the described behaviour does not immediately guarantee that u 6= f(w). Indeed, it
may still happen that u = f(w), but in this case the length of u will not match the number
m of occurrences of # produced in output. However, this case is already covered by the
first and second condition, so the computation is still correct in the sense that it produces
only bad encodings. On the other hand, if the number m of occurrences of # produced in
output happens to be the same as u, then the computation of Sτ guarantees that u 6= f(w).
A similar behaviour can be used to deal with the fourth condition.

We have just shown that there is a sweeping non-functional transducer Sτ that computes
the relation Bτ containing all the bad encodings. Note that, if the PCP instance τ admits
no solution, then all encodings are bad, i.e., Bτ = Eτ , and hence Bτ is one-way definable.
It remains to show that when τ has a solution, Bτ is not one-way definable. Suppose that
τ has solution w ∈ Σ∗ and let

(
w · u, w ·#|u|

)
be the corresponding good encoding, where

u = f(w) = g(w). Note that every exact repetition of w is also a solution, and hence the
pairs

(
wn · un, wn ·#n·|u|) are also good encodings, for all n ≥ 1.

Suppose, by way of contradiction, that there is a one-way transducer T that computes
the relation Bτ . For every n,m ∈ N, we define the encoding

αn,m =
(
wn · um
wn ·#m·|u|

)
and we observe that αn,m ∈ Bτ if and only if n 6= m (recall that w is the solution of the
PCP instance τ and u = f(w) = g(w)). Below, we consider bad encodings like the above
ones, where the parameter n is supposed to be large enough. Formally, we define the set I
of all pairs of indices (n,m) ∈ N2 such that (i) n 6= m (this guarantees that αn,m ∈ Bτ ) and
(ii) n is larger than the number |Q| of states of T .

We consider some pair (n,m) ∈ I and we choose a successful run ρn,m of T that witnesses
the membership of αn,m in Bτ , namely, that reads the input wn ·um and produces the output
wn ·#m·|u|. We can split the run ρn,m into a prefix �−ρn,m and a suffix −�ρn,m in such a way
that �−ρn,m consumes the prefix wn and −�ρn,m consumes the remaining suffix um. Since n is
larger than the number of state of T , we can find a factor ρ̂n,m of �−ρn,m that starts and ends
with the same state and consumes a non-empty exact repetition of w, say wn1 , for some
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1 ≤ n1 ≤ |Q|. We claim that the output produced by the factor ρ̂n,m must coincide with the
consumed part wn1 of the input. Indeed, if this were not the case, then deleting the factor
ρ̂n,m from ρn,m would result in a new successful run that reads wn−n1 · um and produces
wn−n2 ·#m·|u| as output, for some n2 6= n1. This however would contradict the fact that,
by definition of encoding, the possible outputs produced by T on input wn−n1 · um must
agree on the prefix wn−n1 . We also remark that, even if we do not annotate this explicitly,
the number n1 depends on the choice of the pair (n,m) ∈ I. This number, however, range
over the fixed finite set J =

[
1, |Q|

]
.

We can now pump the factor ρ̂n,m of the run ρn,m any arbitrary number of times. In
this way, we obtain new successful runs of T that consume inputs of the form wn+k·n1 · um
and produce outputs of the form wn+k·n1 ·#m, for all k ∈ N. In particular, we know that
Bτ contains all pairs of the form αn+k·n1,m. Summing up, we can claim the following:
I Claim. There is a function h : I → J such that, for all pairs (n,m) ∈ I,{

(n+ k · h(n,m),m)
∣∣ k ∈ N

}
⊆ I .

We can now head towards a contradiction. Let ñ be the maximum common multiple of
the numbers h(n,m), for all (n,m) ∈ I. Let m = n + ñ and observe that n 6= m, whence
(n,m) ∈ I. Since ñ is a multiple of h(n,m), we derive from the above claim that the pair
(n + ñ,m) = (m,m) also belongs to I. However, this contradicts the definition of I, since
we observed earlier that αn,m is a bad encoding if and only if n 6= m. We conclude that Bτ
is not one-way definable when τ has a solution. J
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