Accepted Manuscript

$\mathrm{A}(p, v)$-extension of the Appell function $F_{1}(\cdot)$ and its properties

S.A. Dar, R.B. Paris

PII: \quad S0377-0427(19)30120-7
DOI: https://doi.org/10.1016/j.cam.2019.03.001
Reference: CAM 12172

To appear in: Journal of Computational and Applied
Mathematics
Received date: 11 September 2018
Revised date: 31 January 2019

Please cite this article as: S.A. Dar and R.B. Paris, A (p, v)-extension of the Appell function $F_{1}(\cdot)$ and its properties, Journal of Computational and Applied Mathematics (2019), https://doi.org/10.1016/j.cam.2019.03.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A (p, ν)-extension of the Appell function $H \cdot(\cdot)$ and its properties

S.A. DAR ${ }^{a}$ and R.B. Paris ${ }^{b}$
${ }^{a}$ Department of Applied Sciences and Humanities, Fr culty حf Engineering and Technology, Jamia Millia Islamia, New Delf. : 110(25, India
E-Mail: showkatjmi34@gmail.rn
${ }^{b}$ Division of Computing and Mathematics, the "as University, Dundee DD1 1HG, UK E-Mail: r.paris@abertay.ac.u.'

Abstract

In this paper, we obtain a (p, v)-extensi, ' $v v^{\prime} \cdot$, Appell hypergeometric function $F_{1}(\cdot)$, together with its integral representatio. jy using the extended Beta function $B_{p, v}(x, y)$ introduced in [9]. Also, we g. . som. of its main properties, namely the Mellin transform, a differential formula, rec ‘rsı a formulas and a bounded inequality. In addition, some new integral represtnns of the extended Appell function $F_{1, p, v}(\cdot)$ involving Meijer's G-function are obtaint.'

MSC: 33C60, 33C65, 33B15, 3? $\sim 45, ~ ` 3 C 10$
Keywords: Appell's hypergeomı ric fi actions; Beta and Gamma functions; Eulerian integrals; Bessel function; N ijer's G-ıunction

1. Introduction and Preliminaries

In the present paper we t. nloy the following notations:

$$
\mathbb{N}=\{, 2, \ldots\}, \quad \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, \mathbb{Z}_{0}^{-}:=\mathbb{Z}^{-} \cup\{0\}
$$

where the sym ols \mathbb{N}, nd \mathbb{Z} denote the set of integer and natural numbers. Also, for the sake of concisen ss, wr use the following notation [2, p.33]

$$
\mathbb{C}_{>}:=\{p \in \mathbb{C}: \Re(p)>0\}
$$

where, roval, the symbol \mathbb{C} denotes the set of complex numbers

In the available literature on hypergeometric series, the hypergeometric s ries and its generalizations appear in various branches of mathematics associated with . nolications. This type of series appears very naturally in quantum field theory, in particula. in the computation of analytic expressions for Feynman integrals. Such integral cas be obtained and computed in different ways which may lead to identities for Appe. ${ }^{1}$ s ries; see [11]. On the other hand, the application of known relations for Appell \neg ries . ay lead to simplifications, help to solve problems or lead to greater insight in ... ntuı. field theory.

The Appell hypergeometric series are a natural two-variable ex ${ }^{\dagger}$ ensi ${ }_{11}{ }^{c}$ hypergeometric series, which are treated in detail in Erdélyi et al. [5]. In this pat $ヶ$. we highlight some of the most important properties and relations satisfied by thr se series. In the following, we follow to a great extent the expositions from the classical te xts of E iley [1], and Slater [14] (both contain a great amount of material on hypergeometı. . . .es). There are four types of Appell functions denoted by $F_{1}, F_{2}, F_{3}, F_{4}$; in the pre study we shall only be concerned with the first Appell function F_{1} given by [6. (1v.13.1)

$$
\begin{align*}
F_{1}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right) & =\sum_{m, n=0}^{\infty} \frac{\left(b_{1}\right)_{m+n}\left(b_{2}\right)_{m}}{\left(c_{1}\right)_{m-1}} \frac{\left(b_{3}\right)_{n}}{r} \frac{x}{n!} \frac{y^{n}}{n!} \\
& =\sum_{n, m=0}^{\infty} \frac{\left.\left(b_{2}\right)_{m}\left(b_{3}\right) \frac{n!}{\left.b_{1} \cdot c_{1}-b_{1}\right)} m+n, c_{1}-b_{1}\right)}{m!} \frac{x^{m}}{m!} \tag{1.1}
\end{align*}
$$

where $|x|<1,|y|<1$. Here $(\lambda)_{v}(\lambda, v \in \mathbb{C})$ ‘s rotes the Pochhammer symbol (or the shifted factorial, since $\left.(1)_{n}=n!\right)$ defined by

$$
(\lambda)_{v}:=\frac{\Gamma(\lambda+v)}{\Gamma(\lambda)}= \begin{cases}1, & (v=0, \lambda \in \mathbb{C} \backslash\{0\}) \\ \left.\lambda(\lambda+1) \ldots{ }^{\prime} \backslash+n-1\right), & (v=n \in \mathbb{N}, \lambda \in \mathbb{C})\end{cases}
$$

and $B(\alpha, \beta)$ denotes the classical $\mathrm{B}, \dot{\mathrm{a}} \cdot \cdot$ nction defined by $[6,(5.12 .1)]$

$$
B(\alpha, \beta)= \begin{cases}\int_{r}^{1} i^{\alpha-1}(\perp-t)^{\beta-1} d t, & (\Re(\alpha)>0, \Re(\beta)>0) \tag{1.2}\\ \frac{\left.\Gamma(\alpha)_{\perp} / f\right)}{\Gamma(\alpha+\beta)}, & \left((\alpha, \beta) \notin \mathbb{Z}_{0}^{-}\right)\end{cases}
$$

An integral representati, 1 f $F_{1}(\cdot)$ is given by $[6,(16.15 .1)]$

$$
\begin{equation*}
F_{1}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, \imath\right)=-\frac{\Gamma\left(c_{1}\right)}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \int_{0}^{1} t^{b_{1}-1}(1-t)^{c_{1}-b_{1}-1}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} d t \tag{1.3}
\end{equation*}
$$

where $\Re\left(c_{1}\right)>\Re^{\left(h_{i}\right)}>^{n} \quad|\arg (1-x)|<\pi$ and $|\arg (1-y)|<\pi$.
A natural \in xtensic , of the Gauss hypergeometric series ${ }_{2} F_{1}$ is the generalized hypergeometric series $F_{q}\left[1\right.$, p.42, Eq.(1)] (see also [5]) with p numerator parameters $\alpha_{1}, \ldots, \alpha_{p}$ and q deno .nimator parameters $\beta_{1}, \ldots, \beta_{q}$ defined by

$$
{ }_{p} F_{q}\left(\begin{array}{l}
\alpha_{1}, \ldots, \alpha_{p} ; \tag{1.4}\\
\beta_{1}, \ldots, \beta_{q} ;
\end{array} \quad z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{p}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{q}\right)_{n}} \frac{z^{n}}{n!},
$$

$$
\text { A }(p, \nu) \text { extension of the Appell function }
$$

where $\alpha_{j} \in \mathbb{C}(1 \leq j \leq p)$ and $\beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}(1 \leq j \leq q)$ and $p, q \in \mathbb{N}_{0}$. The se ies ${ }_{p} F_{q}(\cdot)$ is convergent for $|z|<\infty$ if $p \leq q$, and for $|z|<1$ if $p=q+1$. Furthermore, if ${ }^{\text {fo }}$ set

$$
\omega=\sum_{j=1}^{q} \beta_{j}-\sum_{j=1}^{p} \alpha_{j}
$$

it is known that the ${ }_{p} F_{q}$ series, with $p=q+1$, is absolutely conver ${ }^{\circ} \mathrm{t}$ on he unit circle $|z|=1$ if $\Re(\omega)>0$, and conditionally convergent on the unit raclf $\mid \alpha_{i}^{\prime}=1, z \neq 1$, if $-1<\Re(\omega) \leq 0$.

The modified Bessel function of the second kind $K_{\nu}(z)$ of raer 1 (also known as the Macdonald function) is defined by (see [6, p. 251], [10])

$$
\begin{equation*}
K_{\nu}(z)=\sqrt{\pi}(2 z)^{\nu} e^{-z} U\left(\nu+\frac{1}{2}, 2 \nu+1,2 z\right) \tag{1.5}
\end{equation*}
$$

 is defined by means of the Mellin-Barnes contour integral $\left[\mathrm{b},{ }^{(16.17 .1)}\right]$

$$
\begin{align*}
& G_{p, q}^{m, n}\left(\begin{array}{l|l}
z & \begin{array}{l}
\alpha_{1}, \ldots, \alpha_{n} ; \alpha_{n+1}, \ldots, \alpha_{p} \\
\beta_{1}, \ldots, \beta_{m} ; \beta_{m+1}, \ldots, \beta_{q}
\end{array}
\end{array}\right) \\
& \left.=\frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} \frac{\prod_{j=1}^{m} \Gamma\left(,{ }_{i}-{ }_{,}^{\prime} \prod_{j=1}^{n} \Gamma\left(1-\alpha_{j}+\zeta\right)\right.}{\prod_{j=m}^{q}} \Gamma_{1^{1}}-\beta_{j}+\zeta\right) \prod_{j=n+1}^{p} \Gamma\left(\alpha_{j}-\zeta\right) \quad z^{\zeta} d \zeta, \tag{1.6}
\end{align*}
$$

where $z \neq 0$, and m, n, p, q are non-negative incegers such that $1 \leq m \leq q, 0 \leq n \leq p$ and $p \leq q$. The integral (1.6) converges in tı sector $|\arg z|<\pi \kappa$, where $\kappa=m+n-\frac{1}{2}(p+q)$ and it is supposed that $\kappa>0$.

The G-function is importan ${ }^{+}$in $\mathrm{a}_{1}{ }^{1 ;}$ d mathematics and formulas developed for the G-function become master or sey ormulas from which a very large number of relations can be deduced for Bessel furctic \&, t'eir combinations and many other related functions. Thus the following list of sr ne partıcular cases of Meijer's G-function associated with the Bessel function $K_{\nu}(z)$ has been htained mainly from several papers by C. S. Meijer (see also [5, pp. 219-220, Ea , 4, 50)], [12, p.48, Eq.(12)])

$$
\left.\begin{array}{c}
\boldsymbol{\Lambda}_{\nu}^{\prime}(z)=\sqrt{\pi} e^{z} G_{1,2}^{2,0}\left(2 z \left\lvert\, \begin{array}{l}
\frac{1}{2} \\
\nu,-\nu
\end{array}\right.\right) \\
=\frac{\cos (\pi \nu)}{\sqrt{\pi}} e^{-z} G_{1,2}^{2,1}\left(2 z \left\lvert\, \begin{array}{c}
\frac{1}{2} \\
\nu
\end{array}\right.,-\nu\right.
\end{array}\right), ~=z^{-\mu} 2^{\mu-1} G_{0,2}^{2,0}\left(\left.\frac{z^{2}}{4} \right\rvert\, \frac{\mu+\nu}{2}, \frac{\mu-\nu}{2}\right), ~ \begin{gathered}
\mu+\frac{1}{2} \\
=\cos (\pi \nu) \frac{(2 z)^{-\mu} e^{z}}{\sqrt{\pi}} G_{1,2}^{2,1}\left(2 z \left\lvert\, \begin{array}{l}
\mu+\nu, \mu-\nu
\end{array}\right.\right)
\end{gathered}
$$

A (p, ν) extension of the Appell function

$$
\begin{equation*}
=\frac{z^{-\mu} 4^{\mu-1}}{\pi} G_{0,4}^{4,0}\left(\left.\frac{z^{4}}{256}\right|_{\frac{\mu+\nu}{4}}, \frac{2+\mu+\nu}{4}, \frac{\mu-\nu}{4}, \frac{2+\mu-\nu}{4}\right) \tag{1.11}
\end{equation*}
$$

where μ is a free parameter and in all these expressions we have $z \neq 0$.
In 1997, Chaudhry et al. [3, Eq.(1.7)] gave a p-extension of the Bets fun tion $B(x, y)$ in the form

$$
\left.B(x, y ; p)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} \exp \left[\frac{-p}{t(1-t)}\right] d t \quad(9)(p)>0\right)
$$

and they proved that this extension has connections with the M . . lonaı', error and Whittaker functions. Also, Chaudhry et al. [4] extended the Gau sian hy pergeometric series ${ }_{2} F_{1}(\cdot)$ and its integral representations. Recently, Parmar et a_{ι}. 「9]. ave given a further extension of the extended Beta function $B(x, y ; p)$ by addir g on \quad more parameter ν, which we denote and define by

$$
\begin{equation*}
B_{p, \nu}(x, y)=\sqrt{\frac{2 p}{\pi}} \int_{0}^{1} t^{x-\frac{3}{2}}(1-t)^{y-\frac{3}{2}} \cdot+\frac{1}{2}\left(-\frac{p}{1-t)}\right) d t \tag{1.12}
\end{equation*}
$$

where $\Re(p)>0, \nu \geq 0$ and $K_{\nu+\frac{1}{2}}(\cdot)$ is the m~Nif essel function of order $\nu+\frac{1}{2}$. When $\nu=0$, (1.12) reduces to $B(x, y ; p)$, since $\left.\Lambda_{\frac{1}{2}}^{\prime} z\right)=(\pi /(2 z))^{1 / 2} e^{-z}$. A different generalization of the Beta function has been g. ren $\left.{ }^{2}{ }^{2}{ }^{2} 8\right]$.

Motivated by some of the above-mentir ned ϵ tensions of special functions, many authors have studied integral representations ${ }^{+} \backsim F_{1}(\cdot)$ function. Our aim in this paper is to introduce a (p, v)-extension of the ${ }^{\wedge}$ nnell 'ypergeometric function in (1.1) based on the extended Beta function in (1.12), whic. we denote by $F_{1, p, \nu}(\cdot)$, and to systematically investigate some properties of this extended function. We consider the Mellin transform, a differential formula, recursion form sas aı \downarrow a bounded inequality satisfied by this function. Also, we obtain some integral repı `entat; ons for $F_{1, p, v}$ containing Meijer's G-function.

The plan of this paper as ollows. The extended Appell function $F_{1, p, \nu}(\cdot)$ and its integral representation are de ner in Jection 2. Some new integral representations for $F_{1, p, v}(\cdot)$ involving the Meijer $G-1 \mathrm{u} \cdot \mathrm{ct}$ ' on are given. The main properties $F_{1, p, v}(\cdot)$, namely its Mellin transform, a diff . n tial formula, recurrence relation and a bounded inequality are established in Sections 3-6. \sim me concluding remarks are made in Section 7.

$$
\text { 2. The }(t, \nu) \text {-extended Appell function } F_{1, p, \nu}(\cdot)
$$

In [7], Özarslan et. al. §`vr an extension of Appell's hypergeometric function $F_{1}(\cdot)$ together with its integr 1 repr sentation. Here we consider the following (p, v)-extension of the Appell hyperge metric function, which we denote by $F_{1, p, \nu}(\cdot)$, based on the extended beta function $B_{r},^{\prime}(x, y)$ uctined in (1.12). This is given by

$$
\begin{equation*}
F_{1 n \nu}\left(b_{1}, \iota_{\llcorner }, v_{3} ; c_{1} ; x, y\right)=\sum_{n, m=0}^{\infty} \frac{\left(b_{2}\right)_{m}\left(b_{3}\right)_{n} B_{p, \nu}\left(b_{1}+m+n, c_{1}-b_{1}\right)}{B\left(b_{1}, c_{1}-b_{1}\right)} \frac{x^{m}}{m!} \frac{y^{n}}{n!} \tag{2.1}
\end{equation*}
$$

$$
\text { A }(p, \nu) \text { extension of the Appell function }
$$

where $|x|<1, \quad|y|<1$ and $b_{1}, b_{2}, b_{3} \in \mathbb{C}$ and $c_{1} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}$. This definition cle rly reduces to the original function when $\nu=0$ and $p=0$.

An integral representation for the function $F_{1, p, \nu}(\cdot)$ is given by

$$
\begin{gather*}
F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)=\frac{\Gamma\left(c_{1}\right)}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \\
\times \sqrt{\frac{2 p}{\pi}} \int_{0}^{1} t^{b_{1}-\frac{3}{2}}(1-t)^{c_{1}-b_{1}-\frac{3}{2}}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} K_{\nu+\frac{1}{2}}\left(\frac{p}{11-t)}\right) d t \tag{2.2}
\end{gather*}
$$

where $\Re(p)>0, \nu \geq 0,|\arg (1-x)|<\pi$ and $|\arg (1-y)|<\pi$ ar a we impose the condition $\Re\left(c_{1}\right)>\Re\left(b_{1}\right)>0$ for the multiplicative factor $1 / B\left(b_{1}, c_{1}-b_{1}\right)$ to e finite. That this representation yields (2.1) can be shown by binomially expandı $r_{1}+2$ factors $(1-x t)^{-b_{2}}$ and $(1-y t)^{-b_{3}}$ when $|x|,|y|<1$, reversing the order of $\mathrm{umr}_{\sim} \cdot$ 'on and integration and evaluating the resulting integral by (1.12).

Theorem 1. Each of the following integral representations of $F_{1, p, \nu}(\cdot)$ associated with Meijer's G-function holds for $p \in \mathbb{C}_{>}$.

$$
\begin{align*}
& F_{1, p, v}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)=\frac{\Gamma\left(c_{1}\right) \sqrt{2 p}}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \int_{0}^{1} t^{b}{ }_{-}^{2}(1-t)^{c_{1}-b_{1}-\frac{3}{2}}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} \\
& \times e^{\frac{p}{t(1-t)}} G_{1,2}^{2,0}\left(\left.\frac{2 p}{t(1-)}\right|_{\nu} ^{1}-\frac{1}{2},-\nu-\frac{1}{2}\right) d t \tag{2.3}\\
& \left.=\frac{\Gamma\left(c_{1}\right) \sqrt{2 p}}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \frac{\cos \pi\left(\nu+\frac{1}{2}\right)}{\pi} \int_{0}^{1} \cdot h_{1}-\frac{3}{\eta_{1}}-t\right)^{c_{1}-b_{1}-\frac{3}{2}}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} \\
& \times e^{\frac{-p}{t(1-t)}} G_{1,2}^{2,1}\left(\bar{t}(1-\bar{t}) \left\lvert\, \begin{array}{l}
\frac{1}{2} \\
\nu+\frac{1}{2},-\nu-\frac{1}{2}
\end{array}\right.\right) d t \tag{2.4}\\
& =\frac{\Gamma\left(c_{1}\right) 2^{\mu-\frac{1}{2}} p^{-\mu+\frac{1}{2}}}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \int_{0}^{1} t^{b_{1}+\mu-}(1-t)^{c_{1}-b_{1}+\mu-\frac{3}{2}}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} \\
& \times G_{\Gamma_{乙}^{2 \cdot}}^{2 \cdot}\left(\left.\frac{2}{1 t^{2}(1-t)^{2}} \right\rvert\, \frac{2 \mu+2 \nu+1}{4}, \frac{2 \mu-2 \nu-1}{4}\right) d t \tag{2.5}\\
& =\frac{\Gamma\left(c_{1}\right)(2 p)^{-\mu+\frac{1}{2}}}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \frac{\mathrm{Js}_{\prime}}{} \frac{\left(\nu+\frac{1}{2}\right)}{\pi} \int_{0}^{1} t^{b_{1}+\mu-\frac{3}{2}}(1-t)^{c_{1}-b_{1}+\mu-\frac{3}{2}}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} \\
& \times{ }^{\frac{-p}{t(1-)} G_{1,2}^{2,1}}\left(\frac{2 p}{t(1-t)} \left\lvert\, \begin{array}{l}
\frac{2 \mu+1}{2} \\
\frac{2 \mu+2 \nu+1}{2}, \\
\frac{2 \mu-2 \nu-1}{2}
\end{array}\right.\right) d t \tag{2.6}\\
& =\frac{\Gamma\left(t_{1}\right) p^{-\mu-\frac{1}{2}}}{\Gamma\left(b_{1}, \Gamma\left(c_{1}\right.\right.} \frac{2^{2 \mu-\frac{3}{2}}}{\left.b_{1}\right) \pi^{\frac{3}{2}}} \int_{0}^{1} t^{b_{1}+\mu-\frac{3}{2}}(1-t)^{c_{1}-b_{1}+\mu-\frac{3}{2}}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} \\
& \left.\left.\times G_{0,4}^{4,0}{ }_{\prime}^{\prime} \frac{p^{4}}{(4 t)^{4}(1-t)^{4}} \right\rvert\, \frac{2 \mu+2 \nu+1}{8}, \frac{2 \mu+2 \nu+5}{8}, \frac{2 \mu-2 \nu-1}{8}, \frac{2 \mu-2 \nu+3}{8}\right) d t, \tag{2.7}
\end{align*}
$$

where s, 'c $c_{1}, \quad \xlongequal\left[(]{ }\left(b_{1}\right)>0,|\arg (1-x)|<\pi,|\arg (1-y)|<\pi \text { and } \mu \text { is a free parameter. }\right.$

$$
\text { A }(p, \nu) \text { extension of the Appell function }
$$

Proof: The above integral representations (2.3)-(2.7) are obtained by using '1.7)-(1.11) in the expression of the extended Appell function in (2.2). Similarly, other ow integral representations of $F_{1, p, v}(\cdot)$ associated with the confluent hypergeometric function an be obtained using (1.5) in (2.2).

The following transformation formula can be derived from the intey. 1 . presentation (2.2) for $F_{1, p, \nu}(\cdot)$.

Theorem 2. The following transformation formula holds:

$$
\begin{equation*}
F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)=(1-x)^{-b_{2}}(1-y)^{-b_{3}} F_{1, p, \nu}\left(c_{1}-b_{1},^{l}{ }_{-}, b_{3} ; c_{1}, \frac{x}{x-1}, \frac{y}{y-1}\right) . \tag{2.8}
\end{equation*}
$$

Proof: Put $t=1-\zeta$ in (2.2) to obtain

$$
\begin{gathered}
\left.F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)=\frac{\Gamma\left(c_{1}\right)(1-r)^{--}(1-\jmath)^{-b_{3}}}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}\right.} b_{1}\right) \\
\times \sqrt{\frac{2 p}{\pi}} \int_{0}^{1} \zeta^{c_{1}-b_{1}-\frac{3}{2}}(1-\zeta)^{b_{1}-\frac{3}{2}}\left(1-\frac{x}{x-1} \zeta\right)^{-b_{2}}\left(1-\frac{\cdot}{1} \zeta\right)^{-b_{3}} K_{\nu+\frac{1}{2}}\left(\frac{p}{\zeta(1-\zeta)}\right) d \zeta .
\end{gathered}
$$

Identification of the above integral as a $F_{1, p, \nu}(\cdot)$ fuı + ion then yields (2.8).

3. The Mellin t. . $\mathbf{~ s f o} \mathbf{m}$ of $F_{1, p, \nu}(\cdot)$

The Mellin transform of a locally integ, \quad, \quad firn $f(x)$ on $(0, \infty)$ is defined by

$$
\mathcal{M}\left\{f(x)^{\prime \prime} \varepsilon^{〔}\right)=\int_{0}^{\infty} x^{s-1} f(x) d x
$$

when the integral converges.

Theorem 3. The following "Meı، ' tr nsform of the extended Appell hypergeometric function $F_{1, p, v}(\cdot)$ holds true:

$$
\begin{array}{r}
\mathcal{M}\left\{F_{1, p, v}\left(b_{1}, b^{r}, o_{3},{ }_{1} ; x, y\right)\right\}(s)=\int_{0}^{\infty} p^{s-1} F_{1, p, v}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right) d p \\
\quad=\frac{2^{s-1}}{\sqrt{ }} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+v+1}{2}\right) F_{1}\left(b_{1}+s, b_{2}, b_{3} ; c_{1}+s ; x, y\right) \tag{3.1}
\end{array}
$$

where $\Re(s-v)-\cap$, $\Re(\cdot-v)>-1, \Re(s)>0$ and $c_{1}+s \in \mathbb{C} / \mathbb{Z}_{0}^{-}$.
Proof: Substi uting \dagger ie extended Appell function (2.1) into the left-hand side of (3.1) and changin \sim the . . .er of integration (by the uniform convergence of the integral), we obtain

$$
\left.\jmath \ddots_{E_{1}}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)\right\}(s)=\frac{\Gamma\left(c_{1}\right)}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \sqrt{\frac{2}{\pi}} \int_{0}^{1} t^{b_{1}-\frac{3}{2}}(1-t)^{c_{1}-b_{1}-\frac{3}{2}}
$$

$$
\begin{equation*}
\times(1-x t)^{-b_{2}}(1-y t)^{-b_{3}}\left\{\int_{0}^{\infty} p^{s-\frac{1}{2}} K_{v+\frac{1}{2}}\left(\frac{p}{t(1-t)}\right) d p\right\} d t \tag{3.2}
\end{equation*}
$$

Application of the result [6, (10.43.19)]

$$
\int_{0}^{\infty} w^{s-\frac{1}{2}} K_{\alpha+\frac{1}{2}}(w) d w=2^{s-\frac{3}{2}} \Gamma\left(\frac{s-\alpha}{2}\right) \Gamma\left(\frac{s+\alpha+1}{2}\right) \quad\left(\mid \Re(\alpha)_{\prime}^{\prime}<\Re(s)\right)
$$

followed by the substitution $w=p /\{t(1-t)\}$ in (3.2) then yields

$$
\begin{align*}
& \varphi(s) \equiv \mathcal{M}\left\{F_{1, p, v}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)\right\}(s)=\frac{2^{s-1}}{\sqrt{\pi}} \Gamma\left(\frac{s-v)}{2} \rho \Gamma\left(-\frac{+v+1}{2}\right)\right. \\
& \quad \times \frac{\Gamma\left(c_{1}\right)}{\Gamma\left(b_{1}\right) \Gamma\left(c_{1}-b_{1}\right)} \int_{0}^{1} t^{b_{1}+s-1}(1-t)^{c_{1}+s-b_{1}-1}(1-x t)^{-b_{3}}(1-y t)^{-b_{2}} d t \tag{3.3}
\end{align*}
$$

Finally, using the definition of the Appell function $F_{1}(\cdot)$ ^n (1.9) we obtain the right-hand side of (3.1).

Corollary: The following inverse Mellin formula tu. $\left.F_{1, p, v} \cdot\right)$ holds:

$$
\begin{gather*}
F_{1, p, v}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)-\mathcal{M}^{-1}\{\varphi(s)\} \\
=\frac{1}{4 \pi i \sqrt{\pi}} \int_{-i \infty}^{+i \infty}\left(\frac{2}{p}\right)^{s} \Gamma\left(\frac{s-v}{2}\right) \Gamma\left(\frac{s+v-{ }_{-1}}{{ }^{1}}\right)^{1} F_{1}\left(b_{1}+s, b_{2}, b_{3} ; c_{1}+s ; x, y\right) d s \tag{3.4}
\end{gather*}
$$

where $c>\nu$.

4. A differentiation formula for $F_{1, p, \nu}(\cdot)$

Theorem 4. The following differt, ${ }^{+i}$ atio formula for $F_{1, p, v}(\cdot)$ holds:

$$
\begin{align*}
& \frac{\partial^{M+N}}{\partial x^{M} \partial y^{N}} F_{1, p, \nu}\left(b_{1}, \iota_{\iota} h ; c_{1}: \iota, y\right) \\
&=\left.\frac{\left(b_{1}\right)_{M+N}\left(b_{2}\right)_{M}\left(b_{3}\right)_{I}}{\left(c_{1}\right)_{M+N}} F_{1, p, \nu(\backsim 1}+M+N, b_{2}+M, b_{3}+N ; c_{1}+M+N ; x, y\right), \tag{4.1}
\end{align*}
$$

where $M, N \in \mathbb{N}_{0}$.
Proof: If we differ ntis ve the series for $F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)$ in (2.1) with respect to x, we obtain

$$
\frac{\partial}{\partial x} F_{1, p, \nu}\left(b_{1}, \iota, b_{3} ; c_{1} ; x, y\right)=\sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{\left(b_{2}\right)_{m}\left(b_{3}\right)_{n} B_{p, \nu}\left(b_{1}+m+n, c_{1}-b_{1}\right)}{B\left(b_{1}, c_{1}-b_{1}\right)} \frac{x^{m-1}}{(m-1)!} \frac{y^{n}}{n!}
$$

Making us of the cact that

$$
\begin{equation*}
B\left(b_{1}, c_{1}-b_{1}\right)=\frac{c_{1}}{b_{1}} B\left(b_{1}+1, c_{1}-b_{1}\right) \tag{4.2}
\end{equation*}
$$

$$
\text { A }(p, \nu) \text { extension of the Appell function }
$$

and $\left(b_{2}\right)_{m+1}=b_{2}\left(b_{2}+1\right)_{m}$, we have upon setting $m \rightarrow m+1$

$$
\begin{align*}
\frac{\partial}{\partial x} F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right) & =\frac{b_{1} b_{2}}{c_{1}} \sum_{m, n=0}^{\infty} \frac{\left(b_{2}+1\right)_{m}\left(b_{3}\right)_{n} B_{p, \nu}\left(b_{1}+1+m+n, c_{1}-h_{1}\right)}{B\left(b_{1}+1, c_{1}-b_{1}\right)} \frac{x^{m}}{m!} \frac{y^{n}}{n!} \\
& =\frac{b_{1} b_{2}}{c_{1}} F_{1, p, \nu}\left(b_{1}+1, b_{2}+1, b_{3} ; c_{1}+1 ; x, y\right) \tag{4.3}
\end{align*}
$$

Repeated application of (4.3) then yields for $M=1,2, \ldots$

$$
\frac{\partial^{M}}{\partial x^{M}} F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)=\frac{\left(b_{1}\right)_{M}\left(b_{2}\right)_{M}}{\left(c_{1}\right)_{M}} F_{1, p, \nu}\left(b_{1}+M, \ell_{2}+M,{ }_{3} ; c_{1}+M ; x, y\right)
$$

A similar reasoning shows that

$$
\begin{gather*}
\frac{\partial^{M+1}}{\partial x^{M} \partial y} F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right) \\
\left.=\frac{\left(b_{1}\right)_{M}\left(b_{2}\right)_{M}}{\left(c_{1}\right)_{M}} \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{\left(b_{2}+M\right)_{m}\left(b_{3}\right)_{n} B_{p, \nu}\left(b_{1}+M\right.}{B\left(b_{1}+M r_{1}-\cdots\right)}+n, c_{1}-b_{1}\right) \\
=\frac{\left(b_{1}\right)_{M+1}\left(b_{2}\right)_{M} b_{3}}{\left(c_{1}\right)_{M+1}} F_{1, p, \nu}\left(b_{1}+M+!i_{2}, M, b_{3}+1 ; c_{1}+M+1 ; x, y\right) \tag{4.4}
\end{gather*}
$$

Repeated differentiation of (4.4) with respt . +o $y{ }^{\text {then }}$ headily produces the result stated in (4.1). The result (4.1) has been derived, ssu.ning that $|x|<1,|y|<1$ but can be extended to all values of x and y satisfy to analytic continuation.

5. An $\mathbf{u}_{\mathbf{t}}$. $\mathbf{e}^{\text {r }}$ bound for $F_{1, p, \nu}(\cdot)$

Theorem 5. Let the paramen ' $\jmath_{1}, 1_{2}, b_{3}, c_{1}$ and the variables x, y be real. Then the following bound for $F_{1, p, \nu}(\cdot)$ holds:

$$
\begin{align*}
& \left|F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; \kappa_{1}: x, y\right)\right| \\
< & \frac{2^{\nu}|p|^{\nu+1} \Gamma\left(\nu+{ }^{1}\right)}{\sqrt{\pi}\left(\Re(p)^{\top}\right.} \frac{3\left(b_{1}+\nu, c_{1}-b_{1}+\nu\right)}{B+1} \frac{3\left(b_{1}, c_{1}-b_{1}\right)}{\nu} F_{1}\left(b_{1}+\nu, b_{2}, b_{3} ; c_{1}+2 \nu ; x, y\right), \tag{5.1}
\end{align*}
$$

where $\Re(p)>0$.
The integr: 1 reprt ontation of the extension $F_{1, p, \nu}(\cdot)$ in (2.2) is associated with the modified Besseı ${ }^{\text {runct }}$, n of the second kind, for which we have the following expression [6, (10.32.8)

$$
\pi \quad 1(z)=\frac{\sqrt{\pi}\left(\frac{1}{2} z\right)^{\nu+\frac{1}{2}}}{\Gamma(\nu+1)} \int_{1}^{\infty} e^{-z t}\left(t^{2}-1\right)^{\nu} d t, \quad(\nu>-1, \Re(z)>0)
$$

$$
\text { A }(p, \nu) \text { extension of the Appell function }
$$

In our problem we have $\nu>0, \Re(z)>0$. Further, we let $x=\Re(z)$, so that

$$
\begin{align*}
\left|K_{\nu+\frac{1}{2}}(z)\right| \leq \frac{\sqrt{\pi}\left(\frac{1}{2}|z|\right)^{\nu+\frac{1}{2}}}{\Gamma(\nu+1)} & \left|\int_{1}^{\infty} e^{-z t}\left(t^{2}-1\right)^{\nu} d t\right|<\frac{\sqrt{\pi}\left(\frac{1}{2}|z|\right)^{\nu+\frac{1}{2}}}{\Gamma(\nu+1)} \int^{\infty}+2 \nu e^{-x_{v}} u t \\
= & \frac{\sqrt{\pi}\left(\frac{1}{2}|z|\right)^{\nu+\frac{1}{2}}}{\Gamma(\nu+1)} \frac{\Gamma(2 \nu+1, x)}{x^{2 \nu+1}}, \tag{5.2}
\end{align*}
$$

where $\Gamma(a, z)$ is the upper incomplete gamma function $\left[6,(8.2 .2)^{\top}\right.$. A^{\prime}.nu gh this bound is numerically found to be quite sharp when z is real, it involves t_{1}. incomplete gamma function which would make the integral for $F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; \prime, y\right)$ difficult to bound. We can simplify (5.2) by making use of the simple inequality $\Gamma(2 \iota+1, x)<\Gamma(2 \nu+1)$ to find

$$
\begin{equation*}
\left|K_{\nu+\frac{1}{2}}(z)\right|<\frac{\sqrt{\pi}\left(\frac{1}{2}|z|\right)^{\nu+\frac{1}{2}}}{\Gamma(\nu+1)} \frac{\Gamma(2 \nu+1)}{x^{2 \nu+1}}=\frac{1}{2}\left(: \frac{\Omega z \mid \backslash}{x^{2}}\right)^{\nu+\frac{1}{2}} \Gamma\left(\nu+\frac{1}{2}\right) \tag{5.3}
\end{equation*}
$$

upon use of the duplication formula for the gamma funcı. n. The bound (5.3) is less sharp than (5.2) but has the advantage of being t. ier tc handle in the integral for $F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)$.

Proof: Setting $z=p /(t(1-t))$, where $t \in(0,1)$ a $_{\star}{ }^{\text {J }} \Re(p)>0$ in (5.3), we obtain

$$
\left|K_{\nu+\frac{1}{2}}\left(\frac{p}{t(1-t)}\right)\right|<\frac{1}{2}\left(\frac{\left.2\right|_{\mu}{ }^{\prime} t(1-\iota)}{\left(\Re\left(\Re^{\prime}\right)\right)^{2}}\right)^{\nu+\frac{1}{2}} \Gamma\left(\nu+\frac{1}{2}\right) .
$$

For ease of presentation we shall assume that , he parameters b_{1}, b_{2}, b_{3} and c_{1} are real; the extension to complex parameters is stra ${ }_{\iota}{ }^{\text {htion }}$ ard. In addition, we shall consider only real values of the variables x and y. Then, fru.n (2.2),

$$
\begin{align*}
& \left|F_{1, p, \nu}\left(b_{1} b_{2}, b_{3} ; c_{1} ; x, y\right)\right| \\
\leq & \frac{\sqrt{2|p| / \pi}}{B\left(b_{1}, c_{1}-b_{1}\right)} \int_{0}^{1} \left\lvert\, t^{b_{1}-\frac{3}{2}}\left(\left.1-t^{c_{1}-\cdots}-\frac{3}{2}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} K_{\nu+\frac{1}{2}}\left(\frac{p}{t(1-t)}\right) \right\rvert\, d t\right.\right. \\
< & \frac{2^{\nu}|p|^{\nu+1}}{\sqrt{\pi}(\Re(p))^{2 \nu+1}} \frac{\Gamma(\nu}{B\left(b_{1}\right.} \frac{\left.\frac{1}{2}\right)}{\left.b_{1}\right)} \int_{0}^{\prime} t^{b_{1}+\nu-1}(1-t)^{c_{1}-b_{1}+\nu-1}(1-x t)^{-b_{2}}(1-y t)^{-b_{3}} d t \\
& <\frac{2^{\nu}|p|^{\nu+1} \Gamma\left(\nu+\frac{1}{\sqrt{\pi}(\Re(p))^{2 L_{-}}}-\frac{?\left(b_{1}+\nu, c_{1}-b_{1}+\nu\right)}{B\left(b_{1}, c_{1}-b_{1}\right)} F_{1}\left(b_{1}+\nu, b_{2}, b_{3} ; c_{1}+2 \nu ; x, y\right)\right.}{} \tag{5.4}
\end{align*}
$$

which is the result s^{\prime} ated ${ }_{1 .}$ (5.1).
If we have $x<\mathrm{J}, y<0$ (resp. $x>0, y>0$) and suppose further that $b_{2}>0, b_{3}>0$ (resp. $b_{2}<0, b_{3}<0$, her we obtain the simpler bound

$$
\left|F_{1, \ldots},\left(b_{1}, b_{c}, b_{3} ; c_{1} ; x, y\right)\right|<\frac{2^{\nu}|p|^{\nu+1} \Gamma\left(\nu+\frac{1}{2}\right)}{\sqrt{\pi}(\Re(p))^{2 \nu+1}} \frac{B\left(b_{1}+\nu, c_{1}-b_{1}+\nu\right)}{B\left(b_{1}, c_{1}-b_{1}\right)} .
$$

In Table 1 we pre nt some values of the bound (5.1) compared with those of $F_{1, p, \nu}(\cdot)$ for several valu 's of \dagger ' e parameters p and ν.

Table 1: Values of $F_{1, p, \nu}(\cdot)$ and the bound (5.1) for different p and ν when $b_{1}=2 / 3, b_{2}=1, b_{3}=7 / 5$, $c_{1}=3$ and $x=1 / 4, y=1 / 3$.

p	ν	$F_{1, p, \nu}(\cdot)$	Bound	p	ν	$F_{1, p, \nu}(\cdot)$	B und
0.05	0.50	1.27094	1.47965	0.25	0.50	0.27000	U. ${ }^{617 \%}$
0.05	1.00	3.17018	3.34772	0.25	1.00	0.39194	6690'
0.05	2.00	37.9432	38.4515	0.25	2.00	1.2064	1.03ヶう6
0.10	0.50	0.75218	1.04627	0.50	0.50	0.07198	' 46791
0.10	1.00	1.43982	1.67386	0.50	1.00	0.0 ' 225	0.33477
0.10	2.00	9.15901	9.61288	0.50	2.00	$0.1 \stackrel{230}{ }$	1.38452

6. Recursion formulas for $r_{1_{2}},(\cdot)$

In view of the recursion formulas for the Appell furctio. F_{1}^{\prime}) (see [13] and [15]) we give the following recursion formulas for the extended Appt. ${ }^{1}$ function $F_{1, p, \nu}(\cdot)$.

Theorem 6. The following recursion formulas for 'he extended Appell function with respect to the numerator parameters b_{2} and b_{3} ?

$$
\begin{align*}
& F_{1, p, \nu}\left(b_{1}, b_{2}+n, b_{3} ; c_{1} ; x, y\right) \\
& \qquad=F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)+\frac{b_{1}}{c_{1}} \sum_{\ell=1}^{n} \Gamma_{1, p, \nu}\left(b_{1}+1, b_{2}+\ell, b_{3} ; c_{1}+1 ; x, y\right) \tag{6.1}
\end{align*}
$$

and

$$
\begin{align*}
& F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3}+n ; c_{1} ; x, y\right) \\
& \qquad=F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{;} ; x, y^{\prime}+{ }^{\prime} \frac{{ }^{\prime} y}{c_{1}} \sum_{\ell=1}^{n} F_{1, p, \nu}\left(b_{1}+1, b_{2}, b_{3}+\ell ; c_{1}+1 ; x, y\right)\right. \tag{6.2}
\end{align*}
$$

for positive integer n.
Proof: From (2.1) an th result $\left(b_{2}+1\right)_{m}=\left(b_{2}\right)_{m}\left(1+m / b_{2}\right)$, we obtain

$$
\begin{aligned}
& F_{1, p, \nu}\left(b_{1}, b_{2}+1 b_{3}:{ }_{1} ; x y\right)=\sum_{m, n=0}^{\infty} \frac{\left(b_{2}+1\right)_{m}\left(b_{3}\right)_{n} B_{p, \nu}\left(b_{1}+m+n, c_{1}-b_{1}\right)}{B\left(b_{1}, c_{1}-b_{1}\right)} \frac{x^{m}}{m!} \frac{y^{n}}{n!} \\
= & F_{1, p, \nu}\left(b_{1}, b_{2}, \therefore c_{1}:, y\right)+\frac{x}{b_{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{\left(b_{2}\right)_{m}\left(b_{3}\right)_{n} B_{p, \nu}\left(b_{1}+m+n, c_{1}-b_{1}\right)}{B\left(b_{1}, c_{1}-b_{1}\right)} \frac{x^{m-1}}{(m-1)!} \frac{y^{n}}{n!} .
\end{aligned}
$$

Setting $m \rightarrow m+$. and using $\left(b_{2}\right)_{m+1}=b_{2}\left(b_{2}+1\right)_{m}$ together with (4.2), we find

$$
\left.F_{1, p, \nu \backslash}{ }^{\prime} 1, v: 1, b_{3} ; c_{1} ; x, y\right)
$$

$$
\begin{gather*}
=F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)+\frac{b_{1} x}{c_{1}} \sum_{m, n=0}^{\infty} \frac{\left(b_{2}+1\right)_{m}\left(b_{3}\right)_{n} B_{p, \nu}\left(b_{1}+1+m+n, c_{1}-b_{1}\right)}{B\left(b_{1}+1, c_{1}-b_{1}\right)} \frac{x^{m}}{m!} \frac{y^{n}}{n!} \\
=F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)+\frac{b_{1} x}{c_{1}} F_{1, p, \nu}\left(b_{1}+1, b_{2}+1, b_{3} ; c_{1}+1, x, ?\right) \tag{6.3}
\end{gather*}
$$

From (6.3) we obtain, upon putting $b_{2} \rightarrow b_{2}+1$,

$$
\begin{aligned}
F_{1, p, \nu}\left(b_{1}\right. & \left., b_{2}+2, b_{3} ; c_{1} ; x, y\right) \\
& \left.=F_{1, p, \nu}\left(b_{1}, b_{2}+1, b_{3} ; c_{1} ; x, y\right)+\frac{b_{1} x}{c_{1}} F_{1, p, \nu}\left(b_{1}+1, b_{2}\right\lrcorner 2, b_{3} ; 1+1 ; x, y\right) \\
& =F_{1, p, \nu}\left(b_{1}, b_{2}, b_{3} ; c_{1} ; x, y\right)+\frac{b_{1} x}{c_{1}} \sum_{\ell=1}^{2} F_{1, p, \nu}\left(b_{1}+1 \jmath_{2}+,{ }_{3} ; c_{1}+1 ; x, y\right) .
\end{aligned}
$$

Repeated application of the recursion (6.3) in this manneı hen immediately leads to the result stated in (6.1). The proof of (6.2) is obtained \because the sa ne way by interchanging b_{2} and b_{3}.

7. Concludi a momarks

We have introduced the extended Appell 1 , vergt metric function $F_{1, p, \nu}(\cdot)$ given in (2.1) by use of the extended Beta function defint ${ }^{1}$ 1. (1.12). Also, we have described some properties of this function, namely th $\quad \approx 11$ ir transform, a differential formula, some recurrence relations and a bounded inequan In addition, we have also obtained some new integral representations of the extnnded Appell function involving Meijer's G-function and indicated other possible repr sentat ons in terms of the confluent hypergeometric function.

References

[1] Bailey, W.N., Generalize Hy rneometric Series. Cambridge Math. Tract No. 32, Cambridge Univ. Press, Cambridge, 1935. Reprinteu by Stechert-Hafner, New York, 1964.
[2] Carlson, B.C. Specia Fun iions of Applied Mathematics. Academic Press, New York, 1977.
[3] Chaudhry, M.A., Ladir, A., Rafique, M., and Zubair, S.M., Extension of Euler's beta function. J. Comput. Appl. 'ath , 78, 1)(1997), 19-32.
[4] Chaudhry, $M_{\text {..., Qadı, A., Srivastava, H.M., and Paris, R.B., Extended hypergeometric and con- }}$ fluent hyper ;eometrı functions. Appl. Math. Comput., 159, (2)(2004), 589-602.
[5] Erdélyi, ^ Mı. , W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions. Vol. 1. AcGra: Hill, New York, Toronto and London, 1953.
[6] Olver, F. 'v.J.. '.ozier, D.W., Boisvert, R.F. and Clark, C.W. (eds.), NIST Handbook of Mathematical Fu linns. Cambridge University Press, Cambridge, 2010.

$$
A(p, \nu) \text { extension of the Appell function }
$$

[7] Özarslan, M. A., and Özergin, E. Some generating relations for extended hypergeom iric functions via generalized fractional derivative operator. Math. Comput. Modelling, 52(2010), 1 ค5-1833.
[8] Özarslan, M.A., Some remarks on extended hypergeometric, extended confluent herergeomerric and extended Appell's functions. J. Comput. Anal. Appl. 14:6(2012), 1148-1153.
[9] Parmar, R.K., Chopra, P., and Paris, R.B., On an Extension of Extended Be ${ }^{+}$a ank Hypergeometric Functions. arXiv:1502.06200 [math.CA], 22, 2015. [to appear in J. Classical Anu. ${ }^{1}$
[10] Rainville, E.D., Special Functions. Macmillan Company, New York, 1 60; iur ; inted by Chelsea Publishing Company, Bronx, New York, 1971.
[11] Shpot, M.A., A massive Feynman integral and some reduction relatic is for A rpell functions. J. Math. Phys. 48(12), 123512, 13pp. (2007).
[12] Srivastava, H.M. and Manocha, H.L., A Treatise on Generatine runctions Halsted Press (Ellis Horwood Limited, Chichester, U.K.) John Wiley and Sons, New Yc k, C ıch ster, Brisbane and Toronto, 1984.
[13] Schlosser, M.J., Multiple hypergeometric series-Appell series and ь vond. arXiv: 1305.1966v1 [math CA], 2013, 1-17.
[14] Slater, L.J., Generalized Hypergeometric Functions. Cambrı` ve University Press, Cambridge, 1966.
[15] Wang, X., Recursion formulas for Appell functions. Inu_ ral Transforms and Special functions, 23(6), 2012, 421-433.

