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Abstract

In this paper, we obtain a (p, v)-extension of the Appell hypergeometric function
F1(·), together with its integral representation, by using the extended Beta function
Bp,v(x, y) introduced in [9]. Also, we give some of its main properties, namely the
Mellin transform, a differential formula, recursion formulas and a bounded inequality.
In addition, some new integral representations of the extended Appell functionF1,p,v(·)
involving Meijer’s G-function are obtained.
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1. Introduction and Preliminaries

In the present paper, we employ the following notations:

N := {1, 2, ...}, N0 := N ∪ {0}, Z−0 := Z− ∪ {0},

where the symbols N and Z denote the set of integer and natural numbers. Also, for the
sake of conciseness, we use the following notation [2, p.33]

C> := {p ∈ C : <(p) > 0}.

where, as usual, the symbol C denotes the set of complex numbers
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A (p, ν) extension of the Appell function 2

In the available literature on hypergeometric series, the hypergeometric series and its
generalizations appear in various branches of mathematics associated with applications.
This type of series appears very naturally in quantum field theory, in particular in the
computation of analytic expressions for Feynman integrals. Such integrals can be obtained
and computed in different ways which may lead to identities for Appell series; see [11].
On the other hand, the application of known relations for Appell series may lead to
simplifications, help to solve problems or lead to greater insight in quantum field theory.

The Appell hypergeometric series are a natural two-variable extension of hypergeomet-
ric series, which are treated in detail in Erdélyi et al. [5]. In this paper, we highlight some
of the most important properties and relations satisfied by these series. In the following,
we follow to a great extent the expositions from the classical texts of Bailey [1], and Slater
[14] (both contain a great amount of material on hypergeometric series). There are four
types of Appell functions denoted by F1, F2, F3, F4; in the present study we shall only be
concerned with the first Appell function F1 given by [6, (16.13.1)]

F1(b1, b2, b3; c1;x, y) =
∞∑

m,n=0

(b1)m+n(b2)m(b3)n
(c1)m+n

xm

m!

yn

n!

=
∞∑

n,m=0

(b2)m(b3)n B(b1 +m+ n, c1 − b1)
B(b1, c1 − b1)

xm

m!

yn

n!
, (1.1)

where |x| < 1, |y| < 1. Here (λ)υ (λ, υ ∈ C) denotes the Pochhammer symbol (or the
shifted factorial, since (1)n = n!) defined by

(λ)υ :=
Γ(λ+ υ)

Γ(λ)
=

{
1, (υ = 0, λ ∈ C\{0})
λ(λ+ 1)...(λ+ n− 1), (υ = n ∈ N, λ ∈ C)

and B(α, β) denotes the classical Beta function defined by [6, (5.12.1)]

B(α, β) =





∫ 1

0
tα−1(1− t)β−1dt, (<(α) > 0,<(β) > 0)

Γ(α)Γ(β)

Γ(α+ β)
, ((α, β) /∈ Z−0 ).

(1.2)

An integral representation of F1(·) is given by [6, (16.15.1)]

F1(b1, b2, b3; c1;x, y) =
Γ(c1)

Γ(b1)Γ(c1 − b1)

∫ 1

0
tb1−1(1− t)c1−b1−1(1− xt)−b2(1− yt)−b3dt,

(1.3)
where <(c1) > <(b1) > 0, | arg(1− x)| < π and | arg(1− y)| < π.

A natural extension of the Gauss hypergeometric series 2F1 is the generalized hyper-
geometric series pFq [12, p.42, Eq.(1)] (see also [5]) with p numerator parameters α1, ..., αp
and q denominator parameters β1, ..., βq defined by

pFq

(
α1, ..., αp ;
β1, ..., βq ;

z

)
=

∞∑

n=0

(α1)n...(αp)n
(β1)n...(βq)n

zn

n!
, (1.4)
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where αj ∈ C (1 ≤ j ≤ p) and βj ∈ C \Z−0 (1 ≤ j ≤ q) and p, q ∈ N0. The series pFq(·) is
convergent for |z| <∞ if p ≤ q, and for |z| < 1 if p = q + 1. Furthermore, if we set

ω =

q∑

j=1

βj −
p∑

j=1

αj ,

it is known that the pFq series, with p = q + 1, is absolutely convergent on the unit circle
|z| = 1 if <(ω) > 0, and conditionally convergent on the unit circle |z| = 1, z 6= 1, if
−1 < <(ω) ≤ 0.

The modified Bessel function of the second kind Kν(z) of order ν (also known as the
Macdonald function) is defined by (see [6, p. 251], [10])

Kν(z) =
√
π(2z)νe−z U(ν + 1

2 , 2ν + 1, 2z), (1.5)

where U(a, b, z) is the confluent hypergeometric function [6, p. 322]. The Meijer G-function
is defined by means of the Mellin-Barnes contour integral [6, (16.17.1)]

Gm,np,q

(
z

∣∣∣∣
α1, ..., αn;αn+1, ..., αp
β1, ..., βm;βm+1, ..., βq

)

=
1

2πi

∫ +i∞

−i∞

m∏

j=1

Γ(βj − ζ)
n∏

j=1

Γ(1− αj + ζ)

q∏

j=m+1

Γ(1− βj + ζ)

p∏

j=n+1

Γ(αj − ζ)

zζdζ, (1.6)

where z 6= 0, and m,n, p, q are non-negative integers such that 1 ≤ m ≤ q , 0 ≤ n ≤ p and
p ≤ q. The integral (1.6) converges in the sector | arg z| < πκ, where κ = m+n− 1

2(p+ q)
and it is supposed that κ > 0.

The G-function is important in applied mathematics and formulas developed for the
G-function become master or key formulas from which a very large number of relations
can be deduced for Bessel functions, their combinations and many other related functions.
Thus the following list of some particular cases of Meijer’s G-function associated with the
Bessel function Kν(z) has been obtained mainly from several papers by C. S. Meijer (see
also [5, pp. 219-220, Eq.(47-50)], [12, p.48, Eq.(12)])

Kν(z) =
√
π ez G2,0

1,2

(
2z

∣∣∣∣
1
2
ν , − ν

)
, (1.7)

=
cos(πν)√

π
e−z G2,1

1,2

(
2z

∣∣∣∣
1
2
ν , − ν

)
, (1.8)

= z−µ2µ−1G2,0
0,2

(
z2

4

∣∣∣∣ µ+ν
2 , µ−ν

2

)
, (1.9)

= cos(πν)
(2z)−µez√

π
G2,1

1,2

(
2z

∣∣∣∣
µ+ 1

2
µ+ ν, µ− ν

)
, (1.10)
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=
z−µ4µ−1

π
G4,0

0,4

(
z4

256

∣∣∣∣ µ+ν
4 , 2+µ+ν4 , µ−ν

4 , 2+µ−ν4

)
, (1.11)

where µ is a free parameter and in all these expressions we have z 6= 0.
In 1997, Chaudhry et al. [3, Eq.(1.7)] gave a p-extension of the Beta function B(x, y)

in the form

B(x, y; p) =

∫ 1

0
tx−1(1− t)y−1 exp

[ −p
t(1− t)

]
dt (<(p) > 0),

and they proved that this extension has connections with the Macdonald, error and Whit-
taker functions. Also, Chaudhry et al. [4] extended the Gaussian hypergeometric series

2F1(·) and its integral representations. Recently, Parmar et al. [9], have given a further
extension of the extended Beta function B(x, y; p) by adding one more parameter ν, which
we denote and define by

Bp,ν(x, y) =

√
2p

π

∫ 1

0
tx−

3
2 (1− t)y− 3

2Kν+ 1
2

(
p

t(1− t)

)
dt, (1.12)

where <(p) > 0, ν ≥ 0 and Kν+ 1
2
(·) is the modified Bessel function of order ν + 1

2 .

When ν = 0, (1.12) reduces to B(x, y; p), since K 1
2
(z) = (π/(2z))1/2e−z. A different

generalization of the Beta function has been given in [8].
Motivated by some of the above-mentioned extensions of special functions, many au-

thors have studied integral representations of the F1(·) function. Our aim in this paper
is to introduce a (p, v)-extension of the Appell hypergeometric function in (1.1) based on
the extended Beta function in (1.12), which we denote by F1,p,ν(·), and to systematically
investigate some properties of this extended function. We consider the Mellin transform, a
differential formula, recursion formulas and a bounded inequality satisfied by this function.
Also, we obtain some integral representations for F1,p,v containing Meijer’s G-function.

The plan of this paper as follows. The extended Appell function F1,p,ν(·) and its
integral representation are defined in Section 2. Some new integral representations for
F1,p,v(·) involving the Meijer G-function are given. The main properties F1,p,v(·), namely
its Mellin transform, a differential formula, recurrence relation and a bounded inequality
are established in Sections 3–6. Some concluding remarks are made in Section 7.

2. The (p, ν)-extended Appell function F1,p,ν(·)

In [7], Özarslan et al. gave an extension of Appell’s hypergeometric function F1(·) together
with its integral representation. Here we consider the following (p, v)-extension of the
Appell hypergeometric function, which we denote by F1,p,ν(·), based on the extended beta
function Bp,ν(x, y) defined in (1.12). This is given by

F1,p,ν(b1, b2, b3; c1;x, y) =

∞∑

n,m=0

(b2)m(b3)n Bp,ν(b1 +m+ n, c1 − b1)
B(b1, c1 − b1)

xm

m!

yn

n!
, (2.1)
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where |x| < 1, |y| < 1 and b1, b2, b3 ∈ C and c1 ∈ C\Z−0 . This definition clearly reduces
to the original function when ν = 0 and p = 0.

An integral representation for the function F1,p,ν(·) is given by

F1,p,ν(b1, b2, b3; c1;x, y) =
Γ(c1)

Γ(b1)Γ(c1 − b1)

×
√

2p

π

∫ 1

0
tb1−

3
2 (1− t)c1−b1− 3

2 (1− xt)−b2(1− yt)−b3Kν+ 1
2

(
p

t(1− t)

)
dt, (2.2)

where <(p) > 0, ν ≥ 0, | arg(1−x)| < π and | arg(1−y)| < π and we impose the condition
<(c1) > <(b1) > 0 for the multiplicative factor 1/B(b1, c1 − b1) to be finite. That this
representation yields (2.1) can be shown by binomially expanding the factors (1− xt)−b2
and (1 − yt)−b3 when |x|, |y| < 1, reversing the order of summation and integration and
evaluating the resulting integral by (1.12).

Theorem 1. Each of the following integral representations of F1,p,ν(·) associated with
Meijer’s G-function holds for p ∈ C>.

F1,p,v(b1, b2, b3; c1;x, y) =
Γ(c1)

√
2p

Γ(b1)Γ(c1 − b1)

∫ 1

0
tb1−

3
2 (1− t)c1−b1− 3

2 (1− xt)−b2(1− yt)−b3

×e
p

t(1−t)G2,0
1,2

(
2p

t(1− t)

∣∣∣∣
1
2
ν + 1

2 ,−ν − 1
2

)
dt (2.3)

=
Γ(c1)

√
2p

Γ(b1)Γ(c1 − b1)
cosπ(ν+ 1

2)

π

∫ 1

0
tb1−

3
2 (1− t)c1−b1− 3

2 (1− xt)−b2(1− yt)−b3

×e
−p

t(1−t)G2,1
1,2

(
2p

t(1− t)

∣∣∣∣
1
2
ν + 1

2 ,−ν − 1
2

)
dt (2.4)

=
Γ(c1)2

µ− 1
2 p−µ+

1
2

Γ(b1)Γ(c1 − b1)

∫ 1

0
tb1+µ−

3
2 (1− t)c1−b1+µ− 3

2 (1− xt)−b2(1− yt)−b3

×G2,0
0,2

(
p2

4t2(1− t)2
∣∣∣∣ 2µ+2ν+1

4 , 2µ−2ν−1
4

)
dt (2.5)

=
Γ(c1)(2p)

−µ+ 1
2

Γ(b1)Γ(c1 − b1)
cosπ(ν+ 1

2)

π

∫ 1

0
tb1+µ−

3
2 (1− t)c1−b1+µ− 3

2 (1− xt)−b2(1− yt)−b3

×e
−p

t(1−t)G2,1
1,2

(
2p

t(1− t)

∣∣∣∣
2µ+1
2

2µ+2ν+1
2 , 2µ−2ν−1

2

)
dt (2.6)

=
Γ(c1)p

−µ+ 1
2 22µ−

3
2

Γ(b1)Γ(c1 − b1)π
3
2

∫ 1

0
tb1+µ−

3
2 (1− t)c1−b1+µ− 3

2 (1− xt)−b2(1− yt)−b3

×G4,0
0,4

(
p4

(4t)4(1− t)4
∣∣∣∣ 2µ+2ν+1

8 , 2µ+2ν+5
8 , 2µ−2ν−18 , 2µ−2ν+3

8

)
dt, (2.7)

where <(c1) > <(b1) > 0, | arg(1− x)| < π, | arg(1− y)| < π and µ is a free parameter.
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Proof : The above integral representations (2.3)–(2.7) are obtained by using (1.7)–(1.11)
in the expression of the extended Appell function in (2.2). Similarly, other new integral
representations of F1,p,v(·) associated with the confluent hypergeometric function can be
obtained using (1.5) in (2.2).

The following transformation formula can be derived from the integral representation
(2.2) for F1,p,ν(·).
Theorem 2. The following transformation formula holds:

F1,p,ν(b1, b2, b3; c1;x, y) = (1− x)−b2(1− y)−b3F1,p,ν

(
c1 − b1, b2, b3; c1;

x

x− 1
,

y

y − 1

)
.

(2.8)

Proof : Put t = 1− ζ in (2.2) to obtain

F1,p,ν(b1, b2, b3; c1;x, y) =
Γ(c1)(1− x)−b2(1− y)−b3

Γ(b1)Γ(c1 − b1)

×
√

2p

π

∫ 1

0
ζc1−b1−

3
2 (1− ζ)b1−

3
2

(
1− x

x− 1
ζ

)−b2 (
1− y

y − 1
ζ

)−b3
Kν+ 1

2

(
p

ζ(1− ζ)

)
dζ.

Identification of the above integral as a F1,p,ν(·) function then yields (2.8).

3. The Mellin transform of F1,p,ν(·)

The Mellin transform of a locally integrable function f(x) on (0,∞) is defined by

M{f(x)}(s) =

∫ ∞

0
xs−1f(x) dx

when the integral converges.

Theorem 3. The following Mellin transform of the extended Appell hypergeometric func-
tion F1,p,v(·) holds true:

M{F1,p,v(b1, b2, b3; c1;x, y)} (s) =

∫ ∞

0
ps−1F1,p,v(b1, b2, b3; c1;x, y) dp

=
2s−1√
π

Γ

(
s− v

2

)
Γ

(
s+ v + 1

2

)
F1 (b1 + s, b2, b3; c1 + s;x, y) , (3.1)

where <(s− v) > 0, <(s+ v) > −1, <(s) > 0 and c1 + s ∈ C/Z−0 .

Proof : Substituting the extended Appell function (2.1) into the left-hand side of (3.1)
and changing the order of integration (by the uniform convergence of the integral), we
obtain

M{F1,p,v(b1, b2, b3; c1;x, y)} (s) =
Γ(c1)

Γ(b1)Γ(c1 − b1)

√
2

π

∫ 1

0
tb1−

3
2 (1− t)c1−b1− 3

2
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×(1− xt)−b2(1− yt)−b3
{∫ ∞

0
ps−

1
2Kv+ 1

2

(
p

t(1− t)

)
dp

}
dt. (3.2)

Application of the result [6, (10.43.19)]

∫ ∞

0
ws−

1
2Kα+ 1

2
(w)dw = 2s−

3
2 Γ

(
s− α

2

)
Γ

(
s+ α+ 1

2

)
(|<(α)| < <(s))

followed by the substitution w = p/{t(1− t)} in (3.2) then yields

ϕ(s) ≡M{F1,p,v(b1, b2, b3; c1;x, y)} (s) =
2s−1√
π

Γ

(
s− v

2

)
Γ

(
s+ v + 1

2

)

× Γ(c1)

Γ(b1)Γ(c1 − b1)

∫ 1

0
tb1+s−1(1− t)c1+s−b1−1(1− xt)−b3(1− yt)−b2 dt. (3.3)

Finally, using the definition of the Appell function F1(·) in (1.3), we obtain the right-hand
side of (3.1).

Corollary: The following inverse Mellin formula for F1,p,v(·) holds:

F1,p,v(b1, b2, b3; c1;x, y) =M−1 {ϕ(s)}

=
1

4πi
√
π

∫ +i∞

−i∞

(
2

p

)s
Γ

(
s− v

2

)
Γ

(
s+ v + 1

2

)
F1 (b1 + s, b2, b3; c1 + s;x, y) ds, (3.4)

where c > ν.

4. A differentiation formula for F1,p,ν(·)

Theorem 4. The following differentiation formula for F1,p,v(·) holds:

∂M+N

∂xM∂yN
F1,p,ν(b1, b2, b3; c1;x, y)

=
(b1)M+N (b2)M (b3)N

(c1)M+N
F1,p,ν(b1 +M +N, b2 +M, b3 +N ; c1 +M +N ;x, y), (4.1)

where M,N ∈ N0.

Proof : If we differentiate the series for F1,p,ν(b1, b2, b3; c1;x, y) in (2.1) with respect to x,
we obtain

∂

∂x
F1,p,ν(b1, b2, b3; c1;x, y) =

∞∑

m=1

∞∑

n=0

(b2)m(b3)n Bp,ν(b1 +m+ n, c1 − b1)
B(b1, c1 − b1)

xm−1

(m− 1)!

yn

n!
.

Making use of the fact that

B(b1, c1 − b1) =
c1
b1
B(b1 + 1, c1 − b1) (4.2)
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and (b2)m+1 = b2(b2 + 1)m, we have upon setting m→ m+ 1

∂

∂x
F1,p,ν(b1, b2, b3; c1;x, y) =

b1b2
c1

∞∑

m,n=0

(b2 + 1)m(b3)n Bp,ν(b1 + 1 +m+ n, c1 − b1)
B(b1 + 1, c1 − b1)

xm

m!

yn

n!

=
b1b2
c1

F1,p,ν(b1 + 1, b2 + 1, b3; c1 + 1;x, y). (4.3)

Repeated application of (4.3) then yields for M = 1, 2, . . .

∂M

∂xM
F1,p,ν(b1, b2, b3; c1;x, y) =

(b1)M (b2)M
(c1)M

F1,p,ν(b1 +M, b2 +M, b3; c1 +M ;x, y).

A similar reasoning shows that

∂M+1

∂xM∂y
F1,p,ν(b1, b2, b3; c1;x, y)

=
(b1)M (b2)M

(c1)M

∞∑

m=0

∞∑

n=1

(b2 +M)m(b3)nBp,ν(b1 +M +m+ n, c1 − b1)
B(b1 +M, c1 − b1)

xm

m!

yn−1

(n− 1)!

=
(b1)M+1(b2)Mb3

(c1)M+1
F1,p,ν(b1 +M + 1, b2 +M, b3 + 1; c1 +M + 1;x, y). (4.4)

Repeated differentiation of (4.4) with respect to y then readily produces the result stated
in (4.1). The result (4.1) has been derived assuming that |x| < 1, |y| < 1 but can be
extended to all values of x and y satisfying | arg(1 − x)| < π, | arg(1 − y)| < π by appeal
to analytic continuation.

5. An upper bound for F1,p,ν(·)

Theorem 5. Let the parameters b1, b2, b3, c1 and the variables x, y be real. Then the
following bound for F1,p,ν(·) holds:

|F1,p,ν(b1, b2, b3; c1;x, y)|

<
2ν |p|ν+1Γ(ν + 1

2)√
π(<(p))2ν+1

B(b1 + ν, c1 − b1 + ν)

B(b1, c1 − b1)
F1(b1 + ν, b2, b3; c1 + 2ν;x, y), (5.1)

where <(p) > 0.

The integral representation of the extension F1,p,ν(·) in (2.2) is associated with the
modified Bessel function of the second kind, for which we have the following expression
[6, (10.32.8)]

Kν+ 1
2
(z) =

√
π
(
1
2z
)ν+ 1

2

Γ(ν + 1)

∫ ∞

1
e−zt(t2 − 1)νdt, (ν > −1, <(z) > 0).
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In our problem we have ν > 0, <(z) > 0. Further, we let x = <(z), so that

|Kν+ 1
2
(z)| ≤

√
π
(
1
2 |z|
)ν+ 1

2

Γ(ν + 1)

∣∣∣∣
∫ ∞

1
e−zt(t2 − 1)νdt

∣∣∣∣ <
√
π
(
1
2 |z|
)ν+ 1

2

Γ(ν + 1)

∫ ∞

1
t2νe−xtdt

=

√
π
(
1
2 |z|
)ν+ 1

2

Γ(ν + 1)

Γ(2ν + 1, x)

x2ν+1
, (5.2)

where Γ(a, z) is the upper incomplete gamma function [6, (8.2.2)]. Although this bound
is numerically found to be quite sharp when z is real, it involves the incomplete gamma
function which would make the integral for F1,p,ν(b1, b2, b3; c1;x, y) difficult to bound. We
can simplify (5.2) by making use of the simple inequality Γ(2ν + 1, x) < Γ(2ν + 1) to find

|Kν+ 1
2
(z)| <

√
π
(
1
2 |z|
)ν+ 1

2

Γ(ν + 1)

Γ(2ν + 1)

x2ν+1
=

1

2

(
2|z|
x2

)ν+ 1
2

Γ(ν + 1
2), (5.3)

upon use of the duplication formula for the gamma function. The bound (5.3) is less
sharp than (5.2) but has the advantage of being easier to handle in the integral for
F1,p,ν(b1, b2, b3; c1;x, y).

Proof : Setting z = p/(t(1− t)), where t ∈ (0, 1) and <(p) > 0 in (5.3), we obtain

∣∣∣∣Kν+ 1
2

(
p

t(1− t)

)∣∣∣∣ <
1

2

(
2|p|t(1− t)

(<(p))2

)ν+ 1
2

Γ(ν + 1
2).

For ease of presentation we shall assume that the parameters b1, b2, b3 and c1 are real; the
extension to complex parameters is straightforward. In addition, we shall consider only
real values of the variables x and y. Then, from (2.2),

|F1,p,ν(b1b2, b3; c1;x, y)|

≤
√

2|p|/π
B(b1, c1 − b1)

∫ 1

0

∣∣∣∣tb1−
3
2 (1− t)c1−b1− 3

2 (1− xt)−b2(1− yt)−b3 Kν+ 1
2

(
p

t(1− t)

)∣∣∣∣ dt

<
2ν |p|ν+1

√
π(<(p))2ν+1

Γ(ν + 1
2)

B(b1, c1 − b1)

∫ 1

0
tb1+ν−1(1− t)c1−b1+ν−1(1− xt)−b2(1− yt)−b3dt

<
2ν |p|ν+1Γ(ν + 1

2)√
π(<(p))2ν+1

B(b1 + ν, c1 − b1 + ν)

B(b1, c1 − b1)
F1(b1 + ν, b2, b3; c1 + 2ν;x, y), (5.4)

which is the result stated in (5.1).
If we have x < 0, y < 0 (resp. x > 0, y > 0) and suppose further that b2 > 0, b3 > 0

(resp. b2 < 0, b3 < 0) then we obtain the simpler bound

|F1,p,ν(b1, b2, b3; c1;x, y)| < 2ν |p|ν+1Γ(ν + 1
2)√

π(<(p))2ν+1

B(b1 + ν, c1 − b1 + ν)

B(b1, c1 − b1)
.

In Table 1 we present some values of the bound (5.1) compared with those of F1,p,ν(·) for
several values of the parameters p and ν.
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Table 1: Values of F1,p,ν(·) and the bound (5.1) for different p and ν when b1 = 2/3, b2 = 1, b3 = 7/5,
c1 = 3 and x = 1/4, y = 1/3.

p ν F1,p,ν(·) Bound p ν F1,p,ν(·) Bound

0.05 0.50 1.27094 1.47965 0.25 0.50 0.27000 0.66172
0.05 1.00 3.17018 3.34772 0.25 1.00 0.39194 0.66954
0.05 2.00 37.9432 38.4515 0.25 2.00 1.20640 1.53806
0.10 0.50 0.75218 1.04627 0.50 0.50 0.07198 0.46791
0.10 1.00 1.43982 1.67386 0.50 1.00 0.09025 0.33477
0.10 2.00 9.15901 9.61288 0.50 2.00 0.18230 0.38452

6. Recursion formulas for F1,p,ν(·)

In view of the recursion formulas for the Appell function F1(·) (see [13] and [15]) we give
the following recursion formulas for the extended Appell function F1,p,ν(·).

Theorem 6. The following recursion formulas for the extended Appell function with re-
spect to the numerator parameters b2 and b3 hold:

F1,p,ν(b1, b2 + n, b3; c1;x, y)

= F1,p,ν(b1, b2, b3; c1;x, y) +
b1x

c1

n∑

`=1

F1,p,ν(b1 + 1, b2 + `, b3; c1 + 1;x, y) (6.1)

and

F1,p,ν(b1, b2, b3 + n; c1;x, y)

= F1,p,ν(b1, b2, b3; c1;x, y) +
b1y

c1

n∑

`=1

F1,p,ν(b1 + 1, b2, b3 + `; c1 + 1;x, y) (6.2)

for positive integer n.

Proof : From (2.1) and the result (b2 + 1)m = (b2)m(1 +m/b2), we obtain

F1,p,ν(b1, b2 + 1, b3; c1;x, y) =
∞∑

m,n=0

(b2 + 1)m(b3)nBp,ν(b1 +m+ n, c1 − b1)
B(b1, c1 − b1)

xm

m!

yn

n!

= F1,p,ν(b1, b2, b3; c1;x, y) +
x

b2

∞∑

m=1

∞∑

n=0

(b2)m(b3)nBp,ν(b1 +m+ n, c1 − b1)
B(b1, c1 − b1)

xm−1

(m−1)!

yn

n!
.

Setting m→ m+ 1 and using (b2)m+1 = b2(b2 + 1)m together with (4.2), we find

F1,p,ν(b1, b2 + 1, b3; c1;x, y)
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= F1,p,ν(b1, b2, b3; c1;x, y) +
b1x

c1

∞∑

m,n=0

(b2 + 1)m(b3)nBp,ν(b1 + 1 +m+ n, c1 − b1)
B(b1 + 1, c1 − b1)

xm

m!

yn

n!

= F1,p,ν(b1, b2, b3; c1;x, y) +
b1x

c1
F1,p,ν(b1 + 1, b2 + 1, b3; c1 + 1;x, y). (6.3)

From (6.3) we obtain, upon putting b2 → b2 + 1,

F1,p,ν(b1, b2 + 2, b3; c1;x, y)

= F1,p,ν(b1, b2 + 1, b3; c1;x, y) +
b1x

c1
F1,p,ν(b1 + 1, b2 + 2, b3; c1 + 1;x, y)

= F1,p,ν(b1, b2, b3; c1;x, y) +
b1x

c1

2∑

`=1

F1,p,ν(b1 + 1, b2 + `, b3; c1 + 1;x, y).

Repeated application of the recursion (6.3) in this manner then immediately leads to the
result stated in (6.1). The proof of (6.2) is obtained in the same way by interchanging b2
and b3.

7. Concluding remarks

We have introduced the extended Appell hypergeometric function F1,p,ν(·) given in (2.1)
by use of the extended Beta function defined in (1.12). Also, we have described some
properties of this function, namely the Mellin transform, a differential formula, some
recurrence relations and a bounded inequality. In addition, we have also obtained some
new integral representations of the extended Appell function involving Meijer’s G-function
and indicated other possible representations in terms of the confluent hypergeometric
function.
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