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Abstract

In this paper, we obtain a (p,v)-extensii '« . "~ Appell hypergeometric function
Fi(+), together with its integral representatio. y using the extended Beta function
By (x,y) introduced in [9]. Also, we g. « som. of its main properties, namely the
Mellin transform, a differential formula, rec ‘rsi. 1 formulas and a bounded inequality.
In addition, some new integral represc ...'*~ns ~f the extended Appell functionF; , ,(-)
involving Meijer’s G-function are obtaine.

MSC: 33C60, 33C65, 33B15, 32 _4o, "3C10
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1. Introduction and Preliminaries
In the present paper we c. nloy the following notations:
N={.2..}, No:=Nu{0}, Z; :=7Z U{0},

where the sym ols N (. nd Z denote the set of integer and natural numbers. Also, for the
sake of concisewn ss, wr use the following notation [2, p.33]

Cs :={peC:R(p) >0}

where, . -<nal, the symbol C denotes the set of complex numbers
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In the available literature on hypergeometric series, the hypergeometric ¢ ries and its
generalizations appear in various branches of mathematics associated with . ~lications.
This type of series appears very naturally in quantum field theory, in particula. in the
computation of analytic expressions for Feynman integrals. Such integral- ca. be obtained
and computed in different ways which may lead to identities for Appc’ s ries; see [11].
On the other hand, the application of known relations for Appell . ~vies .~ay lead to
simplifications, help to solve problems or lead to greater insight in -, ~ntu.. field theory.

The Appell hypergeometric series are a natural two-variable ex’ ensj ,n « “ hypergeomet-
ric series, which are treated in detail in Erdélyi et al. [5]. In this pay -. we highlight some
of the most important properties and relations satisfied by thr se series. In the following,
we follow to a great extent the expositions from the classical te <ts of E ailey [1], and Slater
[14] (both contain a great amount of material on hypergeo™ati.. = .1es). There are four
types of Appell functions denoted by Fi, Fb, F3, Fy; in the pre- ¢ study we shall only be
concerned with the first Appell function Fj given by [6. (1v.13.1",

o0
b b b Ty
Fi(b1,ba,b3;cq52,y) = Z (b1)mn(b2)m (b3)n - yi'
m,n=0 (Cl>m’: B rin!
_ f: (bo)m(bs . m+n,ci—b) amy" an
n.m=0 b\,K"Cl _bl) m! n!’ ’

where |z| < 1, |y| < 1. Here (A), (A\,v € C) c.otes the Pochhammer symbol (or the
shifted factorial, since (1), = n!) defined by

N F(/\+U) B 1, (UZO, )\E(C\{O})
(M '_1"(/\)_{ AA+1)..3+n—-1), (v=neN, AeC)

and B(cq, 3) denotes the classical B va . nction defined by [6, (5.12.1)]

/1 o Bl (R(a) > 0,R(8) > 0)
B(a, B) = (1.2)

[‘(04):‘//) _
D, (. 8) ¢ Z).

An integral representati ,u ~f Fy(-) is given by [6, (16.15.1)]

. I'(c1 b1 -1 b b
Fi(by1,bo,b3;c1; T (1 —)r ™ 1 —2t) 2(1 —yt) 3dt
1( 1,02,03;C1;2,1 ) = (bl)F(Cl—bl)/ ) ( x) ( y) )
(1.3)

where R(c1) > $*;) > jarg(l —z)| < m and |arg(l — y)| < 7.

A natural ¢ <tensic  of the Gauss hypergeometric series o F} is the generalized hyper-
geometric series  Fy [1., p.42, Eq.(1)] (see also [5]) with p numerator parameters oy, ..., ap
and ¢ deno .unator parameters 31, ..., 3, defined by

a1y, ad n %2
qu ( 517' 7ﬁq ) > z_: nﬁ ’ (14>
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where a; € C (1 < j<p)and 5 € C\Z;, (1<j<gq)andp, g€ Ny. The seies ,Fy(-) is
convergent for |z| < oo if p < ¢, and for |z| < 1 if p = ¢ + 1. Furthermore, i* - set

q p
w = E ﬁj — E Oz]',
j=1 j=1

it is known that the ,F, series, with p = ¢ 4 1, is absolutely convers -t on "he unit circle
|z| = 1 if R(w) > 0, and conditionally convergent on the unit r.urcle o, = 1,z # 1, if
-1 < R(w) <0.

The modified Bessel function of the second kind K, (z) of .raer 1 (also known as the
Macdonald function) is defined by (see [6, p. 251], [10])

K, (2) =Vm(22)"e *U(v+ 5,20+ 7, 22) (1.5)

where U(a, b, z) is the confluent hypergeometric function 4. p. 227,. The Meijer G-function
is defined by means of the Mellin-Barnes contour integral |v, (16.17.1)]

Gmn (Z A1y ooy Qs Oy, -ny Op >
P By ees By Bmt1, - By

m m,
HFK,W— :: T[F(l—a]+g)

1 +i00 Jale ]‘L:l

" 2mi 2, (1.6)
27 ) oo q \ D
]_[ I\ =8+ H ['(aj —¢)
J=n." 1 j=n+1

where z # 0, and m, n, p, ¢ are non-negative invegers such that 1 <m < ¢, 0 <n < p and
p < q. The integral (1.6) converges "u 1. sector |arg z| < 7wk, where Kk = m+n — %(p—i— q)
and it is supposed that x > 0.

The G-function is importan’ in ap, " :d mathematics and formulas developed for the
G-function become master or <ey .orprulas from which a very large number of relations
can be deduced for Bessel furctic ‘s, t'.eir combinations and many other related functions.
Thus the following list of sr e particular cases of Meijer’s G-function associated with the
Bessel function K, (z) has been htained mainly from several papers by C. S. Meijer (see
also [5, pp. 219-220, Eo 4. 50)], [12, p.48, Eq.(12)])

1
h,2) =1 et Gy (22 LA ) , (1.7)
B cos(mv) _, 21 %
= 7\/7? 12 (22 v, o—v ) (1.8)

2
—pou—1,~20 (%
95 "He? 1
= cos(m/)(z)iﬂe Gié (22 Zii h— ) , (1.10)
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o Z—,u4,u,—1 4,0 2’4
o7 04\ 256
where p is a free parameter and in all these expressions we have z # 0.

In 1997, Chaudhry et al. [3, Eq.(1.7)] gave a p-extension of the Bets fun tion B(z,y)
in the form

ptv  24ptv  p—v 24p—v )7 (1'11)
4 > 4 > 4 4

1
B(x,y;p) = / (1= 6)Y ! exp {_p} dt (Tp) > 0),
0 t(1—1)

and they proved that this extension has connections with the M .. dona.’, error and Whit-
taker functions. Also, Chaudhry et al. [4] extended the Gau isian h; vergeometric series
9F1(-) and its integral representations. Recently, Parmar et a. [9]. ".ave given a further
extension of the extended Beta function B(z,y; p) by addir g on~ more parameter v, which
we denote and define by

20 (Y s I
By (z,y) = ,/:/0 TRV (-f\1p—t)> dt, (1.12)

where R(p) > 0, v > 0 and KV+%(-) is the m~"i¢-" _essel function of order v + 3.
When v = 0, (1.12) reduces to B(z,y;p), since Aé’z) = (7/(22))/2e~*. A different
generalization of the Beta function has been g.en .. (8].

Motivated by some of the above-menticned ¢ tensions of special functions, many au-
thors have studied integral representations «t J~e £(-) function. Our aim in this paper
is to introduce a (p,v)-extension of the *»nell hypergeometric function in (1.1) based on
the extended Beta function in (1.12), whic. we denote by Fi ;. (-), and to systematically
investigate some properties of this extended function. We consider the Mellin transform, a
differential formula, recursion formr ias a.. 1 a bounded inequality satisfied by this function.
Also, we obtain some integral rep..~entat’ons for F1 ,, containing Meijer’s G-function.

The plan of this paper as ollows. [he extended Appell function F,,(-) and its
integral representation are de mer in Section 2. Some new integral representations for
F po(-) involving the Meijer G-1.>ct'on are given. The main properties F j,(-), namely
its Mellin transform, a diff .. ntial formula, recurrence relation and a bounded inequality
are established in Sections 3-6. . ~me concluding remarks are made in Section 7.

2. The (,,v)-extended Appell function Fi,,(-)

In [7], Ozarslan et al. ,~ve an extension of Appell’s hypergeometric function F} (-) together
with its integr . repr sentation. Here we consider the following (p,v)-extension of the
Appell hyperge metric function, which we denote by Fy . (-), based on the extended beta
function By (¢, y) uctined in (1.12). This is given by

o0

Fl”u(bl7l47d3;cl;x7y) = Z

n,m=0

(b2)m(b3)n Bp,u(bl +m+n,cp — bl) ﬁﬁ
B(bl,cl—bl) m! n!’

(2.1)
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where |z| <1, |y| <1 and b1,b2,b3 € C and ¢; € C\Z;. This definition cle rly reduces
to the original function when v =0 and p = 0.
An integral representation for the function Fj () is given by

['(e1)
L(b)I(c1 — b1)

2p ! bi—3 c1—by—3 —bo bs ( b \
x,/w/ot et g K (g a2

-t))
where R(p) > 0, v > 0, |arg(l —x)| < 7 and |arg(1 —y)| < 7 ar « we impose the condition
R(c1) > R(b1) > 0 for the multiplicative factor 1/B(b1,c; — h1) to i e finite. That this
representation yields (2.1) can be shown by binomially expand.. ~ t+ ¢ factors (1 — xt) =2
and (1 — yt)~% when |z, |y| < 1, reversing the order of <umr .'ion and integration and
evaluating the resulting integral by (1.12).

Flpl/(bla b2>b3a C1; T, y)

Theorem 1. Each of the following integral representations of Fiy,(-) associated with
Meijer’s G-function holds for p € Cs.

I'(c1)v/2 1 2 b3 _ _
By po(b1, b2, b3;c152,y) = M/O LT (L — ) (1L — gty

Xet(lpfw G%g ( 2p

ol >dt (2.3)

|28 b) y TV — %
1y 1 :
L(c1)v2p cosm(v+3) / BB TR t)clfblfg(l —at) (1 —yt) ™
Pb)l(cr —by) 7 0

2 1
T G [_2p 21,1 >dt (2.4)
20 Y2

PAt(1- 1)
| T2 ) et (1 -ty (1 — gty

- T (e —b1)

20 [ 2
xGo ——2
=

1
T(ci)(2p) "2 (o8t v+3) /1 byt b3 b b
= : : o= (1 — )0t T o (1 — ) T02(1 — yt) 0
F(b1)r(01—b1) T 0 2( ) 2( 37) ( y)

2 2u+1
2,1 P 5
t(l* Gl 2 <t(]__t) 2M2+§V+1 QM_gu_l > dt (26)

?

Q2041 2u—2w—1 )dt (2.5)
1 ; 1

- F((b )f( bi) / (IR (L= ) (L) (1= yt)
1,0 (e - by
4,0 p4
XGyy | 7| 2 +2u+1 Q245 2u—2w—1  2u—2w+3 >dt7 (2.7)
0’4\(4t)( —t)4| £ , T =, B

where 5.'c1, . (b1) > 0,|arg(l — )| < m,|arg(l —y)| < 7 and p is a free parameter.
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Proof: The above integral representations (2.3)—(2.7) are obtained by using [1.7)—(1.11)
in the expression of the extended Appell function in (2.2). Similarly, other = =w integral
representations of F ,,(-) associated with the confluent hypergeometric function ~an be
obtained using (1.5) in (2.2).

The following transformation formula can be derived from the integ. 1 - epresentation
(2.2) for F1 ().

Theorem 2. The following transformation formula holds:

_ _ x
Fipu(bi,bo,bgseryz,y) = (1 —2) (1 —y) " Fy <C1 —b1.h. b3sey, ——, y) .
r—1y—1
(2.8)
Proof: Put t =1 — ( in (2.2) to obtain

Dle) (I =1 — )"
F(bl)P(cl bl)

2p ! c1—b1—% b1—% x —b2 o —b3 P
X\/:/OC (1-9) <1x_1C) (1 - ‘1C> KVJF%(M)CZC'

Identification of the above integral as a F' p,(-) fu. *ion then yields (2.8).

Fipy(b1,b2,b35¢152,y) =

3. The Mellin t.-.~sfo. m of F ,,(-)

The Mellin transform of a locally integ: ... “n ~tion f(x) on (0,00) is defined by

M{f(a ) = /O’Oxs-lf(a:) dz

when the integral converges.

Theorem 3. The following “ei. ~ tr nsform of the extended Appell hypergeometric func-
tion Fi p4(-) holds true:

MA{F1 (b1, b, 03, 2152,9)} (s) =/ P* P pw(b1, ba, bs ey 2, y) dp
0

251 1
= 7 r (\b?v> r (S+;)+> Fy (b1 + s,b,b3;¢1 + 852, y) (3.1)
where R(s —v) > 2, R. -v) > —1, R(s) >0 and c1 + s € C/Z; .

Proof: Substi uting t 1e extended Appell function (2.1) into the left-hand side of (3.1)

and changir- the _.uer of integration (by the uniform convergence of the integral), we
obtain

e I(Cl) \/5/1 b3 A
0 L (by, ba, bs; 1 = to 1 —¢)r—h
/ 8 ( 1,92, 37017xay)}(5) F(bl)F(Cl bl) ) 2( ) 2
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Ml—ﬂr“u—wr%{lwﬁﬁKuéQu{w)@%dt (3.2)

Application of the result [6, (10.43.19)]

/ WK,y (w)dw = 2°73T (S;O‘) r (”j* 1) (IR(a,) < R(s))
0 2

followed by the substitution w = p/{t(1 —¢)} in (3.2) then yields

251 -+ +1
o(5) = M{Fipu(on b bscnsna} ) = 2= (230 [ )

L 1 bi+s—171 _ p\ei+s—bi—177 _ by by
XF(bﬂF(cl—bl)/ot (1-19) (1- 2y (1 —yt)dt.  (3.3)

Finally, using the definition of the Appell function Fi(-) ™~ (1.2) we obtain the right-hand
side of (3.1).

Corollary: The following inverse Mellin formula to. Fy p,-) holds:

Fipo(b1,b2,b35c15,) - M {p(s)}

oo s—v s+va Ly
r r F; 3; ; 4
47”\/»/ ( > < 9 > < 9 / 1(b1+8,b27b3,01+87$,y) dS, (3 )

where ¢ > v.

4. A differer*iation formula for Fy ) ,(-)

Theorem 4. The following differe. *iatior formula for F ,,(-) holds:

OM+N
WFLP,V(Z’L%, hierc,y)
b b b3); )
= (b1) a4+ (b2)ar(b3)) Fiplt+ M+ N,by+ M, b3+ N;c1 + M + N;z,y), (4.1)
(c1)manN

where M, N € Ny.

Proof: If we differ ntis .e the series for Fi 5, (b1, b2, b3; ci;2,y) in (2.1) with respect to z,
we obtain

0 (b2)m(b3)n Bp (b1 +m+n,ci — by) gmt gy
—F by, L, b: .
or 1pv ( 1 3,1 X y mZ:lnX;] (bl,cl — bl) (m — 1)' n!
Making us - of the ‘act that
B@¢VWQ:%B@+LQ—M) (4.2)
1
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and (b2)m+1 = ba(b2 + 1), we have upon setting m — m + 1

G, biby = (b2 + 1)m(b3)n Bpp(br +1+m+n,cp - ™) a™y"
Fi (b1, b2, b c1; = == : ==
ox 17p’y( 1,72 3,01,$,y) cl i B(bl—l—l,cl—bl) m! n!
b1b
= %FLW(bl+1,b2+1,b3;01+1;$ay)- (4.3)
1

Repeated application of (4.3) then yields for M =1,2,...

oM b1) (b
WFl,p,u(blab27b3§cl§xvy) = W Fipy(by + Mty + M, 35¢1 + M;z,y).

A similar reasoning shows that
8M +1

8xMayFl,p,y(bl, ba, bs; c15 2, y)

(b1)ar(b2) ar i i (by + M) (b3)n By (b + M + ..+ nycp —by) a™ gy
1) M

( eowar St Bby+ M o —. ) m! (n—1)!
b bo) arb i
_ G (bo)u S it +M 47 0 Mg+ 1o+ M+1;2,y).  (4.4)
(e1) M1

Repeated differentiation of (4.4) with respe . *o y “hen readily produces the result stated
in (4.1). The result (4.1) has been derived .ssu.aing that |z| < 1, |y| < 1 but can be
extended to all values of z and y satisfy.~v | (1 — z)| < 7, |arg(1 — y)| < 7 by appeal
to analytic continuation.

5. An upe bound for Fi,,(-)

Theorem 5. Let the paramev. ~s 01, 75, b3, c¢1 and the variables x, y be real. Then the
following bound for Fy p,(-) holds:

|F1pw(b1,b2,b3; 002, y))|

2/|p" T (v + 1) 3(b +v,e1 — by +v)
Va(R(p) vt B(b1,c1 —br)
where R(p) > 0.

Fi(b1 + v,ba,b3;¢1 + 2v; 2, y), (5.1)

The integr: | repre. entation of the extension Fi,,(-) in (2.2) is associated with the

modified Besser “unct’,n of the second kind, for which we have the following expression
[6, (10.32.8",

1) T2 poo
Tooale) = */;(;Jr)l)/l e A2 — 1)Vdt, (v>—1, R(z) > 0).
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In our problem we have v > 0, R(z) > 0. Further, we let x = R(2), so that

1 vt 1 vt
ﬁ(ilzD ’ /Ooezt(t2_1)l/dt < ﬁ(§|z‘) ’ /Oo+2uexuut
1 .

LS s Yy T(v+1)

VL) T r + 1 a)
- T(r+1) p2v+l 7

where T'(a, z) is the upper incomplete gamma function [6, (8.2.2)". A’.nc¢. gh this bound
is numerically found to be quite sharp when z is real, it involves t.. incomplete gamma
function which would make the integral for Fy p ., (b1, b2, b3; c1; 7, y) difficalt to bound. We
can simplify (5.2) by making use of the simple inequality I'(2: +1,z) < I'(2v 4+ 1) to find

1\ t3 , i
K,y < L2 IO D 1 N
vta I'(v+1) a2l 2\ .7 )

upon use of the duplication formula for the gamma funcu. u. The bound (5.3) is less
sharp than (5.2) but has the advantage of being e.-ier tc handle in the integral for
By py (b, ba, bg; c1; 2, ).

(5.2)

D(v+3), (5.3)

Proof: Setting z = p/(t(1 — t)), where ¢t € (0,1) a..? R(p) > 0 in (5.3), we obtain

p L2 -0\
‘K”% (tu—t)) <5l R,)? ) P +2)

For ease of presentation we shall assume that \he parameters by, by, b3 and ¢; are real; the
extension to complex parameters is stra._"tio:.card. In addition, we shall consider only
real values of the variables x and y. Then, fro.n (2.2),

|F1p (b1ba, b3 c15 2, )|

N,
= ) /0

= B(by,e1 — by
2V|p‘y+1 (v - %) l ian—1 b4y _ _
=l pyer it (L ) T0 (1 — yt) PRt
2"+ 1) R(by+v,e1 = b+ )
VT (R(p))> B(bi,e1 — bi)
which is the result & ated 1. /5.1).
If we have x < J, v < 0 (resp. > 0, y > 0) and suppose further that by > 0, b3 > 0
(resp. by < 0, b3 < 0, her we obtain the simpler bound
2"|pl" T (v + %) B(by +v,c1 — b1 +v)
VT (R(p))2+1 B(b,c1 —b1)

In Table 1 we pre. »nt some values of the bound (5.1) compared with those of F},,(-) for
several valu s of t'.e parameters p and v.

30 -0 (1 —at) (- y) K, (7&)‘ o
1 -

<

Fi(b1 4+ v, b, b3; c1 + 2v; 2, y), (5.4)

|Fry (b1, b, bgs ez, y)| <
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Table 1: Values of Fi .. (-) and the bound (5.1) for different p and v when by = 2/3, by = 1, bs = 7/5,
ci=3andz=1/4,y=1/3.

p v  Fipy() Bound | p v Fip,() B.aund

0.05 0.50 1.27094 1.47965 | 0.25 0.50 0.27000 u.74172
0.05 1.00 3.17018 3.34772 | 0.25 1.00 0.39194 < 669
0.05 2.00 379432 38.4515 | 0.25 2.00 1.2064". 7.05.36
0.10 0.50 0.75218 1.04627 | 0.50 0.50 0.07198 46791
0.10 1.00 1.43982 1.67386 | 0.50 1.00 0.07J25 0.33477
0.10 2.00 9.15901 9.61288 | 0.50 2.00 0.1°230 ' .38452

6. Recursion formulas for r, .(-)

In view of the recursion formulas for the Appell furctio.. F+’-) (see [13] and [15]) we give
the following recursion formulas for the extended Appc' function Fy . (-).

Theorem 6. The following recursion formulas for 'he extended Appell function with re-
spect to the numerator parameters by and bg | ...

Fipu(bi,ba +n,b3;c1;2,y)

by
= F1pu(b1,b2,b35 0152, y) + o N ripwp(bi+ 1,02+ 4, b3 + 13 2,y) (6.1)
=1

and

Fipu(bi1,b2,b3 +nsc1;32,y)

= F1,(b1,ba, b3 e 52, + 721%” b+ 1,by,b3 + bye1 + 1;,y)  (6.2)

for positive integer n.

Proof: From (2.1) an  thr result (bg 4+ 1), = (b2)m (1 + m/b2), we obtain

o0
(bg + 1)m(l)3) Bpl,(b1 +m+n,c1 — bl) xm y
F1pu(b1,b2 + 1 b3 1 y) = Z m! !
oo B(by,c1 — by) m! n!
- F (b bo. ot Z Z b2)m b3)n pl/(bl +m+n C1 _bl) xmil g
LR Pt B(by,c1 — by) (m—1)! n

Setting m > m + _ and using (b2)m+1 = ba2(b2 + 1), together with (4.2), we find

Fip, e 01 bgiersz,y)
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b1z > (b2 + 1)m(b3)an u(bl +14+m+n,c - bl) ™ yn
=F v b 7b 7b ;€1 T, : ]
1w (b1, ba, bas e13 2, y) + 1 m;g B(by 4+ 1,¢1 — by) m! n!
bix
= F1p,(b1,b2,b3;c1;2, ) + le Fip,(b1 + 1,004+ 1,b3;¢c1 + 7, 2,7 ). (6.3)
1

From (6.3) we obtain, upon putting by — by + 1,
Fi (b1, b2 + 2,035 ¢152,9)

bix
= Fipu(b1,ba + 1,b3;c152,9) + 017 Fipu(bi +1,ba 2 2,b3; 7 + 1;2,9)
1

2
b1$ -
= Fipu(b1,b2,b3;c152,y) + o > Fipu(bi+1 02+ 100+ 1i3,y).
=1
Repeated application of the recursion (6.3) in this manner "hen immediately leads to the
result stated in (6.1). The proof of (6.2) is obtained _~ the sa ne way by interchanging bo
and b3.

7. Concludi' ; ~emarks

We have introduced the extended Appell I ~erge ymetric function Fjp,(-) given in (2.1)
by use of the extended Beta function defined 1. (1.12). Also, we have described some
properties of this function, namely th. .I:" transform, a differential formula, some
recurrence relations and a bounded inequaw. 7 In addition, we have also obtained some
new integral representations of the ex*~nded Appell function involving Meijer’s G-function
and indicated other possible repr .sentai ons in terms of the confluent hypergeometric
function.
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