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Abstract—When spectral wave integrals, representing the 
radiation and diffraction of electromagnetic (EM) waves, are 
characterized by a first order saddle point and poles in the 
integrand, they can usually be evaluated, in essentially closed form, 
at high frequencies by the leading terms of any of the two well-
known alternative uniformly asymptotic procedures, namely the 
Pauli - Clemmow method (PCM) and the Van der Waerden 
method (VWM), respectively. The PCM has the advantage that its 
leading terms directly yield a solution in the simple ray format of 
the uniform geometrical theory of diffraction (UTD). On the other 
hand, it is commonly noted that it is not the leading terms of the 
PCM but those of the VWM which remain valid for the case of 
complex waves. Nevertheless, it is shown here that the PCM can 
surprisingly work even for some special complex wave cases, only 
if certain conditions are met. Indeed, it is demonstrated here that 
the PCM meets these conditions for the special case of the 
diffraction of a complex source beam (CSB) by a wedge. Also, the 
PCM directly yields a UTD like solution for this case. The latter 
result is significant as it provides a strong justification for 
obtaining a simple UTD type solution for the more general 
problem of the diffraction of a CSB incident from an arbitrary 
direction on a wedge with arbitrary curvature, directly via 
analytic continuation of the corresponding UTD result available 
for a curved wedge illuminated by a point source in real space. It 
is also shown that the VWM solution can be trivially cast in the 
UTD format, by expressing it as a sum of the PCM solution plus a 
UTD like correction term; a similar result was obtained previously 
using a higher order term from a generalization of the PCM 
procedure given elsewhere.  

I. INTRODUCTION 

he present work investigates the behavior and validity of 
the leading terms of two different uniform asymptotic high 
frequency procedures, namely the PCM and the VWM, 

respectively, for analyzing the canonical problem of EM 
diffraction of a CSB field when it is incident on a perfectly 

conducting straight wedge. The motivation for this work is as 
follows.  

Formal solutions to EM canonical radiation and diffraction 
problems are often expressed in terms of spectral integrals 
which rarely lend themselves to an exact solution in analytical 
closed form. However, at high frequencies, they can be 
evaluated in essentially closed form (involving special 
functions characteristic of the radiation/diffraction process), 
using available uniformly asymptotic procedures. Such 
asymptotic approximations typically provide a simple physical 
picture for the wave radiation and diffraction mechanisms. 
When spectral wave integrals are characterized by a first order 
saddle point and poles in the integrand, they can be evaluated 
via two of the well-known, alternative, uniformly asymptotic 
methods, namely the PCM [1]-[4] and the VWM [4]-[7], 
respectively. In the PCM, and the VWM, the original complex 
contour of integration over the spectral variable is deformed 
into the steepest descent path (SDP) through the saddle point in 
the integrand, with a possibility that a pole of the integrand may 
be captured in this contour deformation. The pole typically 
migrates when the observation point moves, and in so doing it 
can cross the SDP either through the saddle point as it usually 
does for real waves, or away from it as in the case of complex 
wave problems, respectively. Some common examples of 
complex waves include complex source beams (CSBs), surface 
and leaky waves, and other types of evanescent waves. Also, it 
is known that a CSB is produced by a point source which is 
positioned in complex space [10]-[12]. Now, the PCM has the 
advantage that it directly yields a solution in the simple ray 
format of the uniform geometrical theory of diffraction (UTD) 
[3],[8],[9]. On the other hand, it is commonly noted that it is not 
the PCM but the VWM which remains valid if the pole crosses 
the SDP away from the saddle point [4], as it usually does in 
the case of complex wave problems. Nevertheless, it is shown 
here that the PCM can work surprisingly well even in such latter 
situations, if certain conditions are met. Indeed, it is 
demonstrated here that the PCM meets these conditions for the 
special case of diffraction of a CSB by a straight wedge which 
is studied in this paper; thus, the PCM is shown to have 
essentially the same accuracy as the VWM in this case. 
Furthermore, the PCM also directly yields a UTD like solution 
for this case. The latter result is quite significant since it 
provides a justification for obtaining a physically appealing 
UTD type solution, in a direct manner, for the more general 
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problem of the diffraction of a CSB incident from an arbitrary 
direction on a wedge with arbitrary curvature, simply via 
analytic continuation of the corresponding UTD solution 
available in [8] for a curved wedge illuminated by a point 
source in real space. Due to space limitations, the latter direct 
generalization to analytically describe the fields around an 
arbitrary curved wedge excited by a CSB, and also to the case 
when it is excited by an astigmatic Gaussian beam (GB), will 
be described with applications in detail in a separate paper. 

Some previous publications related to the PCM and VWM 
approaches may be found in [13]-[20]. In [15], a complete PCM 
based expansion is given which is valid for many simple poles 
coalescing with the saddle point. It is noted that calculating 
higher order terms to obtain a complete expansion, beyond just 
the leading terms in the saddle point approximation is tedious, 
and needs considerable effort [15]. In [16], the VWM treatment 
of [6] is generalized to include many simple poles in the spectral 
integrand, but only leading terms are retained. An attempt to 
relate PCM to VWM is described in [17]. It is analytically 
demonstrated that a full equivalence between the PCM and 
VWM can be established only if all terms of the complete 
expansion are retained in both methods [18]. A development 
similar to [18] is presented for the straight edge geometries in 
[19],[20] excited by a real source. In [6], the uniform nature of 
the VWM is made possible through the presence of an error 
function, whereas that in [4] includes a Fresnel type function 
instead, for both PCM and VWM. The latter Fresnel type 
function is the same as that present in the available UTD for 
wedges excited by sources in real space [3]. It is noted that only 
the VWM has been applied previously to treat the problem of 
CSB diffraction by a canonical perfectly conducting straight 
wedge [21], but that solution was not expressed directly in the 
UTD like format. A PCM solution was obtained for the 
diffraction of an inhomogeneous type complex plane wave by 
a conducting wedge in which the next higher order term beyond 
the usual leading terms had to be retained, to make the PCM 
solution work for this case [13],[14]. In this paper, the leading 
terms of both PCM and the VWM are obtained and compared 
for the case of a wedge excited by a CSB, and it is shown that 
the PCM surprisingly remains valid for this special case even 
though in general it is not valid for complex waves.  

The PCM and VWM based leading terms are presented here 
in a complete fashion for application. In this regard, it is noted 
that the PCM as described in an Appendix of [4] is expressed in 
the format of the Sommerfeld half plane type solution which is 
not in UTD form, while the VWM in [4] is also not in UTD like 
form. Here, the VWM solution is expressed as a PCM solution, 
which has a UTD form, plus a UTD like correction term. Thus, 
if a PCM solution fails to be uniform, then the latter UTD like 
correction can be simply added to restore the uniform property; 
a similar result was obtained earlier in [13],[14] using a higher 
order term from a generalized PCM solution developed in [15].  

 The format of the present paper is as follows. Section II 
summarizes the development of the leading terms of the PCM 
and VWM methods. The nature of the pole wave discontinuity 
and its compensation is discussed for both the PCM and the 
VWM in section III. It is seen that the leading terms of the PCM 
will work as well as those of the VWM for the complex wave 
case only if certain conditions are met. In section IV it is shown 
that the above conditions are met in the development of the 

solution to the canonical problem of diffraction of a CSB by a 
straight conducting wedge; in this special case it is shown 
analytically that the difference between the PCM and VWM is 
essentially negligible. While the authors have analyzed both, 
the two and three dimensional problems of complex line and 
point source illumination of the wedge, only the line source case 
is discussed in this paper for the sake of simplicity. Numerical 
results for the CSB diffraction by a wedge obtained here by the 
PCM and VWM are also seen to compare quite well. Some 
conclusions are given in section V. An j te   time convention 
for the source and fields is assumed and suppressed in the 
following. 

II. DEVELOPMENT OF THE LEADING TERMS IN THE PCM AND 

VWM  

Consider a typical spectral radiation/diffraction integral, 
( )I K  given by:  

( )( ) ( ) Kf

C

I K g e d   ,                         (1) 

where K  is a real parameter here, and C is a complex contour 
on which ( )I K  converges. Generally, ( )I K  is not amenable to 

an exact analytical solution in closed form. However, (K)I can 

be approximated in essentially closed form by the leading terms 
of an asymptotic expansion for large K [6]. If one assumes that 

( )f   exhibits a first order saddle point and ( )g  has a simple 

pole (although the methods below can be modified to include 
many poles including higher order poles), then the PCM and 
VWM which are based on a saddle point technique can be 
employed to evaluate ( )I K . The first order saddle point at 

s   satisfies: 

      '( ) 0
s

s

df
f

d  


 

  ; "( ) 0sf   ,                          (2) 

where primes in (2) denote derivatives with respect to  . Let a 

simple pole of ( )g   exist at p  . The PCM and VWM 

begin by deforming the original contour C into a steepest decent 
path (SDP) through s  [6]. It is noted that on the SDP, 

Re ( ) Re ( )sf f   and Im ( ) Im ( )sf f   where Re and Im 

denote the real and imaginary parts. An application of the 
Cauchy residue theorem yields [6]:  

( ) ( )( ) ( ) ( ) 2Kf Kf
p

C SDP

I K g e d g e d jR U     
 

    
 

  ,    (3) 

where it is assumed that no branch cuts are crossed in deforming 
C to SDP. Here, pR  is the residue of the simple pole at p  , 

namely,  

  ( )lim ( )
p

Kf
p pR g e 

 
  


  ,                (4a) 

or 

 ( ) li m ( )p

p

Kf

p pR e g

 
  


  .              (4b) 

The ( 1)   , when [C-SDP] encloses the pole at p  in a 

counter clockwise (CCW)

clockwise (CW)

 
 
 

 sense. Also, the step function  
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1 , if is enclosed by (C-SDP)

0 ,
pU

otherwise

 
  
 

. On the SDP, one notes 

that the phase of ( )Kfe   is a constant ( Im ( ) Im ( )sf f  ), so 

besides the pole of ( )g   at p , the exponential  Re ( )K fe 

controls the topology of the integrand in the vicinity of the SDP. 
The dominant contribution to the SDP integral arises from 

s  ; however, the presence of p  can affect the saddle point 

contribution if p  lies in vicinity of s . The influence of a 

nearby p  on the contribution from s   is accounted by a 

uniform transition function, ( )F  , in PCM and VWM as will be 

evident later. The following transformation maps the SDP onto 
a real axis in a complex   plane [6]  

2( ) ( )sf f    .                              (5) 

The s  maps to 0  ; also, p  maps to p  . Thus, (5) 

yields 
2[ ( ) ]( )( ) ( ) ( ) sK fKf

SDP

SDP

d
I K g e d g e d

d
     


 


   ,   (6a) 

or  
2( )( ) ( )sKf K

SDPI K e G e d  






  ; ( ) ( )
d

G g
d

 


 .         (6b) 

For   near s  (i.e. for   near 0  ), 

2''( )
( ) ( ) ( )

2
s

s s

f
f f


       or 2 2"( )

( )
2

s
s

f 
     . 

Also, differentiating (5) twice with respect to   yields  

2 2

"( ) "( )
s

s

j

s s

d
e

d f f


 


  

 
  ,             (7) 

where the branch of the square root is chosen so that 
arg( )s d   along the descending part of the SDP [6]. From 

(6) and (7), ( )G   at 0   is given by 

2
(0) ( )

"( )
sj

s
s

G g e
f





 .                      (8) 

A measure of separation between p  and s ; i.e., and hence 

between p  and 0s   , is defined in terms of a parameter “a” 

as follows:  
2( ) ( )s p pf f ja      .                         (9) 

Next, the ( )I K  of (3) will be evaluated by PCM in part A, and 

by VWM in part B, below.  

A. The PCM Development  

In the PCM, the pole at p   in ( )G   is split off as a factor, 

namely [1]-[3],[19]  
( )

( ) a

p

G
G




 



      ,                    (10) 

where )(aG  is analytic in the   plane. From (3)  

( ) 2PCM PCM
p SDPI K jR U I   ,                            (11) 

where the superscript PCM on ( )I K  and SDPI  denotes that the 

latter are evaluated in this subsection via PCM, and from (6) 

  2( ) ( )
sKfPCM Ka

SDP
p

G
I K e e d 


 







 .           (12) 

Since )(aG  is analytic near 0  , one may expand )(aG

in a Taylor series as 
0

( ) n
a n

n

G c 




   . Retaining only 0n   

term yields ( ) (0)a aG G  ; thus (12) becomes 

 
2

( )

2 2
(0)s

K
KfPCM

SDP a p
p

e
I K e G d


  

 

 

  .               (13) 

From (8) and (10), one writes (13) as  

 
2

2

( )2
2 2

( )

2 2

(0)

2
( )

"( )

s

s s

K
KfPCM

SDP p
p

K
Kf j

s
s p

e
I K e G d

e
e jag e d

f





 

 
 

 
  

 



 
















,          (14) 

since (0) (0)a pG G   , and 2
p ja     via (9). Further 

rearrangement of (14) yields 

 
2

( )

2 2

2
( )

"( )
s s

K
j KfPCM

SDP s
s p

K e
I K g e e ja d

Kf


  

   

 



 
 

  
   (15a) 

or 

  ( )2
( ) ( ); Im 0

"( )
s sj KfPCM

SDP s p
s

I K g e e F Ka
Kf

  






 ,    (15b) 

where, from the Appendix, the uniform transition function F is:   
2

2 2
( )

K

p

K e
F Ka ja d




  

 



 
 ; Im 0p




,      (16a) 

or 

    2

2 jKa j

Ka

F Ka j Ka e e d 






    ; Im 0p



.   (16b) 

One may rewrite (15) as 

    ( )PCM NU
SDP SDPI K I F Ka ,         (17) 

where  

  ( )2
( )

"( )
s sj KfNU

SDP s
s

I K g e e
Kf

 



 .              (18) 

If Ka    then ( ) 1F Ka   (see Appendix) and 

PCM NU
SDP SDPI I  . It is noted that ( )F Ka   is valid for 

3 / 4 arg / 4

/ 4 arg 5 / 4

Ka

Ka

 

 

   
    

 , i.e., when Im 0p



 , since 

2
p ja     (or / 2 2j

pa e    ), or / 4j
pKa e K  , which 

implies that arg (arg ) / 4pKa     . The ( )PCMI K   of (11) 

together with the asymptotic result in (15b) completes the 
development for the leading terms of PCM.  

B. The VWM Approach 

In the VWM, the pole at p    in ( )G    is split off in an 

additive fashion, namely [4]-[7] 

   
( )

( )
pKf

p
a

p

R e
G H



 
 



 


         ,                (19) 

and it is clear that  aH   is analytic near 0   and its 
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neighborhood. Note that ( ) lim ( ) ( )p

p

Kf

p pR e G

 
  


 

lim ( ) ( )
p

p g
 

  


   as before in (4). Thus, from (3)  

   2 ΛU
SDPp

VWM VWMI jR IK K  ,          (20) 

where the superscript VWM on ( )I K  and ( )SDPI K  denotes the 

latter are being evaluated in this subsection via VWM. From (6) 
and (19) 

 
2

2 ( )( )

2 2
( ) ps

K
KfKfVWM K

SDP a p p
p

e
I K e H e d R e d


    

 

  


 

 
  

  
   

(21)  
Since ( )aH    is analytic at and near 0   , one may use a 

Taylor expansion 
0

( ) n
a n

n

H a 




   , and retain only the 

leading term ( 0n  ) with 0 (0)aa H  as 

2

2
2

( )

( )

2 2

~ (0)
p

s

p

Kf

pKfVWM K
SDP

p

K
K

p p
p

R e
I e G e d

e
R e d


 







 
 

 




 



 
 

  







.     (22) 

Since 2( ) ( )s p pf f ja        via (9), and 
( )

(0) (0)
pKf

p
a

p

R e
H G







    via (19). Also, 
2Ke d

K
 






  . 

Thus  

( ) ( ) 1 ( )
jKa

pVWM NU
SDP SDP

R e
I K I K F Ka

Kja



     
,      (23) 

where (9), (16) and (18) have been utilized in (22). The leading 
terms of ( )VWMI K   is given by the expression in (23), thus 

completing the VCM development for the leading terms.  

III. UNIFORM BEHAVIOR OF THE LEADING TERMS OF PCM AND 

VWM AND THEIR RELATIONSHIP 

  An analytical study of the uniform behavior of the PCM and 
VWM, of (11) and (20), is conducted below. The PCM is 
studied first in part A, and the VWM is studied next in part B. 
A relationship between the leading terms of the VWM and 
PCM is simply established in part C as 

( ) ( ) ( )VWM PCMI K I K E K  ,                (24) 

where ( )E K  is a correction to PCM for complex waves and is 

obtained in a trivial fashion by simply taking the difference 
between (20) and (11), respectively and rearranging terms. The 
conditions under which ( ) 0E K   are also described in part C. 

It is shown in section IV that 0E   for the problem of CSB 
diffraction by a straight wedge, which is of special interest in 
this paper.  
   The complete leading terms of PCM and VWM are 
summarized explicitly below for convenience so their 
properties and relationship can be studied. From (11) and (17) 

( ) ~ 2 ( ) ( );  Im 0PCM NU
p SDP pI K jR U I K F Ka 


  


,    (25) 

and likewise from (20) and (23): 

( ) ~ 2 ( )

1 ( ) ;  Im 0

VWM NU
p SDP

jKa
p

p

I K jR U I K

R e
F Ka

Kja



 


 

     

.           (26) 

The uniform nature of PCM and VWM is supposed to provide 
continuity of ( )PCMI K  and ( )VWMI K , respectively, as the pole 

at p   crosses the SDP (along Re    ). 

 
(a) Case (a) 

 
(b) Case (b) 

Fig 1 : Migration of the pole at p   across the SDP ( or Im 0  ) 

Case (a) : pole p  moves from the region Im 0p    to Im 0p   or vice 

versa, and with the contour C shown for pole capture when Im 0p  . 

Case (b): pole p  mores from the region Im 0p   to Im 0p   or vice 

versa,  and with a different contour C as shown for  pole capture when 

Im 0p   

A. Uniform Behavior of PCM 

For case (a) of Fig. 1, where the pole at p   is initially in 

the region Im 0p  , so that it is captured in a clockwise (CW) 

sense in deforming C into SDP in this situation; thus 1    
and 1U   here, consequently, from (25): 

Im 0
( ) ( ) ~ 2 ( ) ( ) ( )

p

PCM PCM NU
p SDPI K I K j R I K F Ka




    ,       

(27) 

where ( )F Ka  is chosen in (27) since Im 0p  . Next, 

when the pole at p   now crosses the SDP (on the Re  

axis) as it moves from the region Im 0p   to the region  

Im 0p  , then in the region Im 0p   a pole is no longer 

captured upon deforming C into SDP. Hence, for Im 0p  , 

0U  , so that from (25): 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5

Im 0
( ) ( ) ~ 0 ( ) ( )

p

PCM PCM NU
SDPI K I K I K F Ka

 
   ,    (28) 

where ( )F Ka  is chosen in (28) since Im 0p  . Now the 

continuity of PCMI  as p  just crosses the SDP requires that  

 
Im 0

lim ( ) ( ) 0
p

PCM PCMI K I K
  

  .                   (29) 

From (27) and (28), it is clear that (29) is true if  

 
Im 0
lim ( ) ( ) ( ) 2

p

NU
SDP pI K F Ka F Ka jR





      .    (30) 

From (9), (10), (18) and (A-6), one may check if (30) is true, 
i.e.,  

( )

(0) ( 2 ) 2
pKf

a p

e
G ja jR

ja



  
 

,              (31) 

or  

  ( ) ( )(0) ( )p pKf Kf

a a pG e G e  .            (32) 

In (32), one employs the relation ( )( ) pKf

p a pR G e   via (4) 

and lim ( ) ( ) lim ( ) ( )
p p

p pg G
   

     
 

   . From (10), 

( ) ( ) ( )a pG G      so that lim ( ) ( ) lim ( )
p p

p ag G
   

   
 

   

( )a pG  , which leads to ( ) ( )pKf

p a pR e G   . Clearly, (32) is 

satisfied only if (0) ( )a a pG G  , or 0p   when Im 0p  ; 

i.e., if p  crosses the SDP exactly through the saddle point (at 

0  ). However, one can obviously summarize the conditions 

under which ( )PCMI K is uniform or continuous in an 

approximate manner such that the discontinuity becomes 
negligible in a practical sense, namely if: 

(i)  (0) ( )a a pG G   as Im 0p  , even if p  does not cross 

the SDP through s  (or 0s   ). 

(ii) ( )aG   is almost constant or slowly varying in the 

neighborhood of and including the SDP (along Im 0  ) 
so that ' ( ) 0aG    along the SDP. 

Also, if (0) ( )a a pG G  on the SDP, or if ' ( ) 0aG    then the 

PCM is uniformly continuous additionally, as pointed via (32), 
if  ( ) (0)a p aG G   when p  crosses the SDP through the 

saddle point ( 0  ), then the PCM is of course continuous. 
One can likewise conclude the same result if one were to check 
the continuity of ( )PCMI K for case (b) of Fig. 1, where 1    

and 1U   in ( )PCMI K  for Im 0p  , while 0U   in 

( )PCMI K  for Im 0p  . Then, following the above procedure, 

continuity of ( )PCMI K  requires 

Im 0
lim ( ) ( ) 0

p

PCM PCMI K I K
  

    , which again leads exactly to 

the same conclusion as above (for case (a)).  
   All of the above analysis remains valid even when the pole 
trajectory is reversed in Fig. 1(a) and (b), respectively. Also, if 
the original contour, C, is reversed in Fig. 1(a) and (b) so it is 

now the contour 'C C  , the results for ( )I K  defined on 

'C  are simply negative of those for ( )I K defined on C.  

B. Uniform Behavior of VWM 

For the case in Fig. 1(a), when the pole is initially in the region 
Im 0p  , once again (as in part A above), 1    and 1U   

so from (26): 

Im 0
( ) ( ) ~ 2 ( ) ( )

1 ( )

p

VWM VWM NU
p SDP

jKa
p

I K I K j R I K

R e
F Ka

Kja










  

    

,     (33) 

whereas, after the pole at  p  crosses the SDP and enters the 

region Im 0p  , then 0U   in (26) so that  

Im 0
( ) ( ) ~ 0 ( )

1 ( )

p

VWM VWM NU
SDP

jKa
p

I K I K I K

R e
F Ka

Kja









  

   

.     (34) 

The continuity of VWM when p  cross the SDP requires 

 
Im 0

lim ( ) ( ) 0
p

VWM VWMI K I K
  

    ,               (35) 

or 

Im 0
lim ( ) ( ) 2

p

jKa
p

p

R e
F Ka F Ka jR

Kja

 



    

.    (36) 

From (A-6), it is observed that (36) is true since  

2 2
jKa

p jKa
p

R e
jKae jR

Kja

  


   
.             (37) 

Consequently (36) is indeed always satisfied whether or not p  

crosses the SDP through 0s   . Thus, the leading terms 

of ( )VWMI K  are always continuous and hence uniform. The 

above is also true for case (b) of Fig. 1.  

C. Relationship between PCM and VWM 

From (25) and (26) it is evident that one can express ( )VWMI K  

in terms of ( )PCMI K  simply by noting that their difference is 

given by: 
( ) ( ) ( )VWM PCMI K I K E K  ,          (38) 

where  

 ( ) ( ) 1 ( )
jKa

pNU
SDP

R e
E K I K F Ka

Kja

 
    

  
.      (39) 

From (18) and (0) (0)pG G   together with  

( ) ( )p sf ja f   , 

 ( )
( ) (0)

( ) 1 ( ) ; Im 0
0

s a p aKf
p

p

G G
E K e F Ka

K
  


  

   
  

  

(40) 
  In the problem of wedge diffraction of a CSB by a straight, 
perfectly conducting wedge which is solved in section IV, the 
following is true; namely, the factor ( ( ) (0)a p aG G  ) is small 

when p  is in the neighborhood of the saddle point at 0  , 
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whereas (1 )F  is small as p  moves far from 0   so that 

| |Ka  is large. Thus, the product of the two terms in the 

square brackets of (40) is always seen to be negligible even for

p  only moderately far from 0  . The above is also borne 

out numerically where ( ) 0E K   for this special case of CSB 

diffraction by a wedge; however, due to space limits these large 
number of numerical studies are not shown here.  It is noted that 
for p  near the saddle point ( 0  ), the term in the square 

brackets of (40) tends to behave like the derivative (or slope) of 
G . 

IV. APPLICATION OF PCM AND VMM FOR ANALYZING THE 

CANONICAL PROBLEM OF CSB DIFFRACTION BY A WEDGE 

Consider a z-directed uniform line source located at 
),(  


  in real space which illuminates a PEC infinite 

straight wedge as illustrated in Fig. 2. The location of this line 
source in real space is next analytically continued into complex 

space via  jb      to be positioned at )
~

,~(     so that it 

generates a beam field with its beam axis oriented along 

yxb bb ˆsinˆcosˆ    [12] with b  being a real angle. The tilde 

denotes a complex quantity. The CSB field propagates along 
complex ray paths [12]. These complex rays and complex 

parameters )
~

,~(    etc; are illustrated only symbolically in Fig. 

3 and are not the actual ray paths. In the paraxial region, the 
CSB reduces to a Gaussian beam (GB) whose waist is 

proportional to | |b b   [12]. It can be shown that the total 

electric field, ˆ zE zE   , and the magnetic field, ˆ zH zH   , 

associated with a CSB due to an electric and magnetic line 

source , respectively, at 
~  can be written in terms of a Green's 

function, )~,(, hsu  as 

)'~,()'~,( );'~,()'~,(  hzsz MujHIujE    (41) 

where the real observation location is at ),(  


. Also, 
and   are the permeability and permittivity of the isotropic, 
homogeneous medium (e.g., free space) surrounding the wedge, 
respectively. In (41), I and M are the strengths of the electric 
and magnetic line sources, respectively. The subscripts 's' and 
'h' on the wedge Green's function represent the cases for which 
the line source is 'electric' and 'magnetic', respectively. 

 
Fig. 2: Complex line source beam illumination of the wedge. The beam 

parameter is denoted by b


 and b̂ is the direction of beam axis. Complex ray 
and source locations are drawn only symbolically; these are not actual ray paths 
which are complex. 

 The spectral integral representation of the Green's function 
)~,(, hsu   for z directed electric or magnetic line source 

excitation used here is the one given in [3] for the real source 
case (i.e. for a real source location); this exact result is 
analytically continued to deal with a line source in complex 
space, Thus, 

)
~

;'~,()
~

;'~,()'~,(,
  uuu hs          (42) 

where 
~~   , and for large K with K k  here, 







 

cos'~2'~)(      ;
2

~
cot.      

.
)(28

1
)

~
;'~,(

22

'

)(
2















 






 





n

jk
ed

jn
u

LL

jk





.   (43) 

The exponential in (43) is approximated as by its two term 
binomial expansion as 

)1(cos
'~

'~

)'~()(


 






jk

jkjk eee           (44) 

where
2

2
(cos 1)

( )

 
 








  is assumed to be small; this 

approximation can be justified a posteriori. Therefore, 
incorporating (44) into (43) yields 

  degu
LL

kf 


'

)()
~

,()
~

;'~,(                 (45) 

where 

)'~(
2 2

~
cot

)(28

1
)

~
,( 





 










 
 jke

njkjn
g


         (46) 

and 

)cos1(
'~

'
)( 


 


 jf                (47) 

The saddle points of )(f   are found via 0)(   s
f    , and 

given by  ms   where ,3,2,1,0m . The )
~

,( g  in (46) 

also has branch point singularities at b    which are roots of 

0cos~2~ 22     by
2 2

12 cosh
2b j

  


 
 







 

,...3,2,1,0,    and for    and | ' |   not too small, b   are 

not in the vicinity of the saddle points at  ms  . In order to 

facilitate the Cauchy's theorem in evaluating the integral in (45), 
one has to determine SDPs to form a closed path with C =L - L'. 
The SDPs are obtained by the conditions, )(Im)(Im sff    

and 0)(Re f   as Im    . Thus only SDPs that pass 

through the saddle point  s   need to be considered as 

shown in Fig. 3. The )
~

,( g  also has simple pole-type 

singularities at    nNp 2
~

 , where N   determines 

the pole which is closest to one of saddle points. The superscript 

''  on p   and N pertains to the saddle point  s  . N   is 

defined as the integer that most nearly satisfies the following 
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equation. 

n
N




2

)
~

Re(
)

~
(


                      (48) 

The interior wedge angle is defined as )2( n  in Fig. 2. 

Therefore, the saddle points at  s , and only the poles at 

   nNp 2
~

 that lie within the closed path 

)()(   SDPSDPC , respectively, contribute to the 

integral. It is noted that for sufficiently large k, the major 
contribution to the integrals evaluated over )( SDP  occurs 

only from the "immediate vicinity" of the saddle points 
)(  s . Thus, )1(cos   becomes very small as

  s , which is the sufficient condition for the 

approximation of (44). Therefore, the integral in (45) is 
deformed into SDPs via Cauchy's Theorem as follows 

( )

( )

( , '; ) ( , ) ( , ) ( )

                      ( , ) ( , ) ( )

SDP p PW p p

SDP p PW p p

u u u U

u u U





       

    

  

  


  

 

  

 

  
  ,   (49) 

where 





 

)(

)(
)( ),()

~
,(




 

SDP

kf
pSDP degu              (50) 

and 

)
~

,(2),(     pppPW jRu .              (51) 

In (51), )
~

,(  
ppR  is a residue of the integrand in (43) for 

corresponding poles. The residue contribution in (49) is 
automatically restricted by the Heaviside step function ( )pU    

to be associated with only those poles which lie within the 
closed path of integration formed by LLC   and  

)( SDP . Therefore, the residue contributions represent the 

fields of an incident or reflected CSB produced by the complex 
line source which excites the wedge. The residue pR  is found 

to be 

















 )(

)(

2

42

1
)

~
,( pjk

p
pp e

k

jj

j
R




              (52) 

 
Fig. 3: Steepest descent paths, SDP (  ) and the complex   plane 

topology. The saddle points and poles are located at s  and p  ( Im( ') 0  ), 

respectively. The branch points b  are not enclosed by the closed contour and 

are far from s . Thus, b   are not shown. 

Therefore, incorporating (49) into (42) yields 






, ( )

( )

( )

( )

( , ') ( , ) ( , ) ( )

                   ( , ) ( , ) ( )

                ( , ) ( , ) ( )

                    ( , )

s h SDP p PW p p

SDP p PW p p

SDP p PW p p

SDP p P

u u u U

u u U

u u U

u u









      

    

    

 

    

    


    

 


  

 

 

 

 

 

 

 ( , ) ( )W p pU    

.    (53) 

The first and the second residue terms ( PWu in(53)) contribute 

to the incident CSB electric/magnetic field for the n-face and o-
face illumination, respectively, whereas the third and the forth 
residue terms contribute to the reflected CSB electric/magnetic 
field arising from the n-face and o-face illumination, 
respectively, Since the total beam fields are composed of a 
superposition of the incident CSB, the reflected CSB, and beam 
diffracted fields, respectively, the saddle point contributions in 
(53) must thus correspond to the beam diffracted field, Using 
the solutions developed via PCM and VWM in the previous 
sections, one obtains the beam diffracted field as 

'

, , ,
2

( , ') ;
4 '

jk jk
i i

SDP s h s h
e j j e

u u D u
k

 
 

 

 
  

 



    (54) 

where  denotes either PCM or VWM. The diffraction 

function terms 
hsD ,  in (54) for PCM and VWM are given by 


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


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




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
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
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


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

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









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~

(~
2

~
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~
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2

~
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~
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2

~
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~
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2

~
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,










akF
n

akF

n
akF

n

akF
nkn

e
D

j
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hs

  (55) 

and 

   
   

, , ( ) , ( )

            , ( ) , ( )

VWM
s h p p

p p

D d d

d d

     

     

       

       

   
  

   

   
,        (56) 

respectively, where 
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
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~

(~
2

~
cot

22
)

~
(,

~ 4/


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

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
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nkn

e
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  (57) 

and 





















2

)
~

(
cos

'~
'~2

)(~ 2 

 pa                (58) 

with    being defined in (43). It is noted that iu  represents 

the incident CSB at the edge for large ~k  where 
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)~(
4

)2(
0  kH

j
ui . The PCM

hsD ,  and ,
VWM
s hD  may be viewed as 

the CSB wedge diffraction coefficients found via PCM and 
VWM, respectively. 
 The reflected CSB appears to be emanate from the image of 

the actual complex source located at )'
~

,'~('~  r . The 

incident ( i
zE )and reflected )( r

zE  CSB fields due to a z-directed 

complex electric line source and its image, respectively, are 
represented by their corresponding pole contributions and can 
be written as 

|'~|

2

4
)(

,

|'~|

0
,

,

ri

jk
ri

z

rie

k

jj
CE















 




,     (59) 

where the negative sign for r
zE  is due to the polarization 

change reversal arising from reflection off the PEC planar face. 
Also, IjC 0  in (59) is a complex constant present in (41). 

As discussed in section II, the SBs for ri
zE ,  can be determined 

at points of observation for which the corresponding pole 
crosses the appropriate SDP. In other words, the SBs are found 
by numerically searching for the observation angle      for 

which 0Im p  in the  plane. The p  which allows one to 

find ISB and RSB are given, respectively, as 

4,

2

)
~

(
cos

'~
'~2

)
~

(





jpri
p e






















,     (60) 

where the branch is specified as discussed in section II. It is 
noted that the computational effort to find ISB and RSB is 
negligible. The beam diffracted field can be found via PCM and 
VWM using (54)-(56), respectively, as 

,
,( , ') ( )

jk
d i
z z E s h

e
E E Q D



 



                  (61) 

where again PCMΓ  or VWM, )( E
i
z QE  is the incident CSB 

at the point of diffraction at EQ  which is real for two 

dimensional case and located at the origin in this particular case, 
Therefore, the total CSB field at the presence of a wedge is 
obtained by the superposition of (59) and (61) as 

,( , ') ( ) ( ) ( ) ( ) ( )i r d
z z ISB z RSB zE E U E U E            (62) 

with PCMΓ  or VWM, where ISB  and RSB  are the values 

of   at ISB and RSB, respectively. 

    As an example, consider a line source located at )
~

,~(    or

jb     where ( , )       with  5  and  40      in 

this example where  denotes the wavelength and  225b
which determines the direction of the beam axis. In this 
particular example, the beam axis hits the surface of wedge 
away from the edge. The beam parameter, 10b . The real 
observation point is located at a distance  3  from the edge, 

and the observation angle  covers all aspects external to the 

wedge. Finally, the incident, reflected, diffracted and total 
fields are computed from (59), (61) and (62) via both PCM and 
VWM as shown in Fig. 4. Note the fields are normalized by 

kbeC0  and kbe  is the maximum value of  ~ jke  in the b̂  

direction [12]. The total fields via both PCM and VWM are 
continuous across the ISB and RSB, and PCM VWM

Z ZE E . 

Another example is shown in Fig. 5. In this case, both   and 

'  have been changed to 50  and 20 , respectively. The 

other parameters are 20b , o80'  and o
b 258 . The 

wedge’s angle is oWA 70 . The result in Fig. 5 again shows an 
excellent agreement between the two methods, .i.e, 

PCM VWM
z zE E . Thus, for the CSB wedge diffraction solution 

found via PCM works surprisingly well because the PCM 
condition happens to be valid for this complex wave problem 
as verified by a large number of numerical studies, which 
cannot be presented here due space limitations. Also, one is 
referred to an analytical discussion below (40) which indicates 
the reason for ( ) 0E K   in this special wedge problem.  

 
Fig. 4: Comparison of total field and diffracted field obtained by PCM and 
VWM approaches. The incident and reflected beams are shadowed at the 
incident SB (or ISB) and reflection SB (or RSB), respectively. 

 
Fig. 5: Comparison of total field and diffracted field obtained by PCM and 
VWM approaches. The incident and reflected beams are shadowed at the 
incident SB (or ISB) and reflection SB (or RSB), respectively.  

V. CONCLUSION 

The validity of the leading terms of two uniform asymptotic 
methods, namely the PCM and VWM, is examined analytically 
and via applications. The PCM and VWM are useful for 
providing an analytical closed form solution to spectral wave 
integrals commonly occurring in EM radiation and diffraction 
problem. 

Such wave integrals generally cannot otherwise be 
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evaluated analytically in closed form. Initially, the leading 
terms of PCM and VWM are developed and summarized in a 
complete fashion, and in a user friendly form, for direct 
applications. The typical wave integrals considered are those 
whose integrands contain a first order saddle point and simple 
poles. The leading terms in the asymptotic high frequency 
regime are obtained via the usual SDP method. When the pole 
crosses the SDP the pole wave contribution becomes 
discontinuous since the pole goes from being captured to not 
being captured (or vice versa) in the deformation of the original 
contour of integration into the SDP. The uniform PCM and 
VWM contain a transition function which is supposed to 
provide a compensating discontinuity to keep the total solution 
composed of the pole wave and saddle point contribution 
continuous. However, it is shown that the simple PCM provide 
a continuous solution only if the PCM condition is met, while 
the VWM is always continuous without any restriction. For real 
waves, the PCM condition is usually satisfied, while for 
complex waves it is generally not satisfied. However, there are 
exceptions where the PCM condition can be satisfied even for 
complex waves, as is true for the problem of the CSB diffraction 
try a wedge which has been demonstrated here. On the other 
hand, the PCM condition is not met in the problem of excitation 
of complex waves such as surface and leaky waves on planar 
surfaces, and in this case only the VWM is valid. It is also 
shown that when the PCM condition is met, the difference 
between the VWM and PCM becomes negligible or zero as 
shown in the problem of CSB diffraction by a straight wedge in 
section IV. The latter result is highly significant as it provides a 
strong justification for obtaining a simple UTD type solution 
for the far more general problem of a diffraction of a CSB 
incident from an arbitrary direction on a wedge with arbitrary 
curvature directly by analytic continuation of a UTD result in 
[8] for a curved wedge excited by a point source in real space. 
Furthermore, the UTD result in [8] for the diffraction of an 
incident astigmatic real ray field by an arbitrary wedge cone 
likewise is analytically continued to treat the corresponding 
useful diffraction problem for an obliquely incident astigmatic 
GB. 

APPENDIX : ON THE TRANSITION FUNCTION ( )F Ka  

The transition function ( )F Ka , which occurs in the UTD 

solution is defined as  

 
2

2

KsK e
F Ka ja d

ja


 

 



 
  ,            (A-1) 

From [2], (A-1) can be expressed in the more familiar form as 
[8]: 

  2

2 ;j a j

Ka

F Ka j Kae e d  






        

3 / 4 arg / 4

/ 4 arg 5 / 4

Ka

Ka

 

 

  


 
                 (A-2) 

 

 
(a) Proper (or Top) Sheet in Ka  plane exists where 3 / 2 arg / 2Ka     

Improper (or Bottom) Sheet in a  plane exists where / 2 arg 5 / 2Ka    

 
(b) Proper and Improper Sheets mapped onto the Ka plane 

 
Fig A.1: Branch cut for ( )F Ka  to keep F single valued and choose the 

proper sign on Ka so one always stays on the proper Ka sheet, when the 

pole at p crosses the SDP (at Im 0  ) by moving from Im 0p  to 

Im 0p  (or vice versa). On the proper sheet ( ) 1F Ka   as Ka  . 

  

 From Fig A.1(a) it follows that the proper sheet, or proper 

branch of Ka , is one for which 3 / 2 arg / 2Ka    , and 

the improper branch is one for which / 2 arg 5 / 2Ka   . 

These two sheets are both mapped onto the Ka plane in Fig. 

A.1 (b). Thus, if arg Ka lies on the proper sheet shown shaded 

in Fig. A.1 (b), then one must use + Ka ,i.e. , use (+ )F Ka ; 

however, if arg Ka  lies on the improper sheet in Fig. A-1 (b), 

then one must replace + Ka by Ka  in F , i.e. one must use 

(- )F Ka so that one always stays on the proper branch.  Now 

in [2],  
2

( ) jKa j
C

Ka

F Ka e e d 






   .                    (A-3) 

It follows from (A-2) and (A-3) that  

( ) 2 ( )CF Ka j KaF Ka    .                  (A-4) 

Also, from [2] 
/4( ) ( ) j jKa

C CF Ka F Ka e e     .       (A-5) 

Then from (A-4) and (A-5): 
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( ) ( ) 2 ( ) ( )

                                2

C C

jKa

F Ka F Ka j Ka F Ka F Ka

jKae

       


 (A-6)      

Also, using [2], one can show that the large and small 

argument limits of ( )F Ka are: 

( ) 1F Ka  , as Ka                  (A-7) 

and 

( ) jKaF Ka jKae   , as 0Ka  .        (A-8) 
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