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Besicovitch Covering Property on graded groups
and applications to measure differentiation

By Enrico Le Donne at Jyvaskyld and Séverine Rigot at Nice

Abstract. We give a complete answer to which homogeneous groups admit homoge-
neous distances for which the Besicovitch Covering Property (BCP) holds. In particular, we
prove that a stratified group admits homogeneous distances for which BCP holds if and only if
the group has step 1 or 2. These results are obtained as consequences of a more general study
of homogeneous quasi-distances on graded groups. Namely, we prove that a positively graded
group admits continuous homogeneous quasi-distances satisfying BCP if and only if any two
different layers of the associated positive grading of its Lie algebra commute. The validity of
BCP has several consequences. Its connections with the theory of differentiation of measures
is one of the main motivations of the present paper. As a consequence of our results, we get for
instance that a stratified group can be equipped with some homogeneous distance so that the
differentiation theorem holds for each locally finite Borel measure if and only if the group has
step 1 or 2. The techniques developed in this paper allow also us to prove that sub-Riemannian
distances on stratified groups of step 2 or higher never satisfy BCP. Using blow-up techniques
this is shown to imply that on a sub-Riemannian manifold the differentiation theorem does not
hold for some locally finite Borel measure.
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242 Le Donne and Rigot, BCP on graded groups

1. Introduction

Covering theorems are known to be among the fundamental tools in analysis and geom-
etry. They reflect, in a certain sense, the geometry of the space and are commonly used to
establish connections between local and global properties. All covering theorems are based on
the same principle: from an arbitrary cover of a set, one tries to extract a subcover that is as
disjointed as possible. Among classical covering theorems, the Besicovitch Covering Property
(BCP), in which we are interested in the present paper, originates from works of A. Besicov-
itch in connection with the theory of differentiation of measures in Euclidean spaces ([4,5], see
also [11, Section 2.8], [31] and Section 6).

The development of analysis and geometry on abstract metric spaces leads naturally to
the question of the validity of suitable covering theorems on non-Euclidean spaces. Graded
groups provide a natural framework for many developments. A graded group is a Lie group
equipped with an appropriate family of dilations. A homogeneous quasi-distance on a graded
group is a left-invariant quasi-distance that is one-homogeneous with respect to the family
of dilations. Graded groups equipped with homogeneous quasi-distances naturally generalize
finite-dimensional normed vector spaces. Due to the presence of translations and dilations, they
provide a setting where many aspects of classical analysis and geometry can be carried out.
Beyond such a priori considerations, these spaces form an important framework because of
their occurrences in many settings. There is a characterization of positively graduable Lie
groups as connected locally compact groups admitting contractive automorphisms ([36], see
also Theorem 2.8). The interest of E. Siebert for groups admitting contractive automorphisms
was motivated by phenomenon appearing in probability theory on groups. Such groups have
more generally been considered by various authors. In particular, homogeneous groups
equipped with homogeneous quasi-distances as considered in [12] (see also Definition 2.21) fit
within this framework. They have been considered mainly in connection with their applications
in harmonic analysis, complex analysis of several variables, and study of some non-elliptic dif-
ferential operators. We refer to [12] and the references therein for a detailed presentation of
these aspects. A class of homogeneous groups equipped with homogeneous distances of par-
ticular interest are stratified groups equipped with sub-Riemannian distances. They are also
known as Carnot groups according to a terminology due to P. Pansu. See Section 7 where we
use the more explicit terminology sub-Riemannian Carnot groups. One of their occurrences is
as metric tangent spaces to sub-Riemannian manifolds where they play in some sense the role
Euclidean spaces play in Riemannian geometry (see e.g. [3,26]). These structures have also
connections with optimal control theory (see e.g. [1,27]).

In the present paper, we give a complete answer to which graded groups admit contin-
uous homogeneous quasi-distances for which BCP holds, see Theorem 1.2. Characterizations
of homogeneous and stratified groups admitting homogeneous distances satisfying BCP follow
as particular cases of our results on graded groups, see Corollary 1.3 and Corollary 1.4. We
also complete previous results about the non-validity of BCP for sub-Riemannian distances on
stratified groups of step > 2, see Theorem 1.9. Finally, we give applications to measure differ-
entiation which is one of the main motivations for this paper, see Theorem 1.5, Theorem 1.6,
Corollary 1.7, and Theorem 1.10.

To explain these results, we first recall the Besicovitch Covering Property (BCP) in the
general quasi-metric setting. We refer to Section 3 for a more detailed discussion about this
covering property. See also Section 2.5 for our conventions about quasi-metric spaces, which
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are the classical ones. A quasi-metric space (X, d) satisfies BCP if there exists a constant
N > 1 such that the following holds. For any bounded set A C X and any family 8 of balls
such that each point of A is the center of some ball of 8B, there is a finite or countable subfamily
F C B such that the balls in ¥ cover A, and every point in X belongs to at most N balls
in¥.

We briefly recall now the definitions of graded groups and homogeneous quasi-distances.
We refer to Section 2 for a complete presentation. A graded group is a simply connected
Lie group G whose Lie algebra g is endowed with a positive grading g = @te(o, +oo) Vi
where [Vi, Vi] C Vs for all 5,7 > 0. At the level of the Lie algebra, the associated dila-
tion of factor A is defined as the unique linear map &, : g — g such that §; (X) = A’ X for all
X € V;. Denoting also by §, the unique Lie group homomorphism induced by this Lie algebra
homomorphism, a quasi-distance d on G is said to be homogeneous if it is left-invariant and
one-homogeneous with respect to the associated family of dilations (where the latter means
d(6,(p).6,(q)) = Ad(p,q) forall p,q € G and all A > 0).

To state the main results of this paper and for later convenience, we introduce the fol-
lowing definition that will be shown to algebraically characterize the validity of BCP for some
homogeneous quasi-distances.

Definition 1.1 (Graded groups with commuting different layers). Let G be a graded
group and let ), ., V; be the associated positive grading of its Lie algebra. We say that G has
commuting different layers if [Vy, V5] = {0} for all ¢, s > 0 such that ¢ # s.

Our main results read as follows.

Theorem 1.2. Let G be a graded group. There exist continuous homogeneous quasi-
distances on G for which BCP holds if and only if G has commuting different layers.

Homogeneous groups are those graded groups that can be equipped with homogeneous
distances, i.e., homogeneous quasi-distances that satisfy the triangle inequality. Equivalently,
all layers V; with ¢t < 1 of the associated positive grading of their Lie algebra are {0}, see
Definition 2.21 and Proposition 2.22. For such groups, we prove that homogeneous distances
are continuous, see Corollary 2.28, and we get the following corollary.

Corollary 1.3. Ler G be a homogeneous group. There exist homogeneous distances on
G for which BCP holds if and only if G has commuting different layers.

An important class of homogeneous groups are stratified groups, which are those for
which the degree-one layer of the associated positive grading generates the Lie algebra, see
Definitions 2.4 and 2.5. A stratified group has commuting different layers if and only if it has
(nilpotency) step 1 or 2. For such groups, Corollary 1.3 reads as follows.

Corollary 1.4. Let G be a stratified group. There exist homogeneous distances on G
for which BCP holds if and only if G is of step < 2.

One of the main motivations for studying the validity of BCP on graded groups is its
connection with the theory of differentiation of measures. If u is a locally finite Borel measure
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on a metric space (X, d), we say that the differentiation theorem holds on (X, d) for w if

N J _
rlif)n+ i Ba () Loy f(q)du(q) = f(p)

for p-almost every p € X andall f € LllOC

geneous distances, we prove the following characterization.

(). For homogeneous groups equipped with homo-

Theorem 1.5. Let G be a homogeneous group and let d be a homogeneous distance
on G. The differentiation theorem holds on (G, d) for all locally finite Borel measures if and
only if (G, d) satisfies BCP.

This characterization is a consequence of a characterization of the validity of the dif-
ferentiation theorem for all locally finite Borel measures on metric spaces due to D. Preiss,
taking the additional structure into account, namely, using left-translations and dilations, see
Section 6. Together with Corollary 1.3 and Corollary 1.4, we get the following results.

Theorem 1.6. Let G be a homogeneous group. There exists some homogeneous dis-
tance d on G such that the differentiation theorem holds on (G, d) for all locally finite Borel
measures if and only if G has commuting different layers.

Corollary 1.7. Let G be a stratified group. There exists some homogeneous distance d
on G such that the differentiation theorem holds on (G, d) for all locally finite Borel measures
if and only if G is of step < 2.

To put our results in perspective, let us first recall that it is well known since the
works of Besicovitch in the 1940s that BCP holds in Euclidean spaces, and more generally
in finite-dimensional normed vector spaces. It is also known that the Riemannian distance on
a Riemannian manifold of class C? satisfies a property that generalizes BCP, see [11, Sec-
tion 2.8] and Sections 6 and 7. On the contrary, it is also well known that BCP does not hold
on infinite-dimensional normed vector spaces. Until recently only few results were known for
graded groups equipped with homogeneous quasi-distances. It was proved independently and
at the same time in [34] and [17] that BCP does not hold on the stratified Heisenberg groups
equipped with the Cygan—Kordnyi distance. Later it was proved in [33] that BCP also fails for
sub-Riemannian distances on stratified groups under some regularity assumptions on the sub-
Riemannian distance. After these negative answers about the validity of BCP, it was commonly
believed that there would probably not exist homogeneous quasi-distances satisfying BCP on
graded groups.

Let us now recall that any two homogeneous distances on a homogeneous group, and
more generally any two homogeneous quasi-distances on a graded group, are biLipschitz equiv-
alent. However, it turns out that the validity of BCP is not stable under a biLipschitz change of
quasi-distance.

Theorem 1.8 ([20, Theorem 1.6]). Let (X,d) be a metric space. Assume that there
exists an accumulation point in (X, d). Then, for all 0 < ¢ < 1, there exists a distance d. on
X such that ¢ d < d. < d and for which BCP does not hold.
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See also [31, Theorem 3] from which Theorem 1.8 is inspired. Notice that Theorem 1.8
can be extended to quasi-distances. As a consequence the non-validity of BCP for some homo-
geneous quasi-distances cannot give any hint towards the existence or non-existence of some
other homogeneous quasi-distance satisfying BCP. Since for many purposes the choice of
a specific quasi-distance up to biLipschitz equivalence does not really matter, the question
of the existence of some homogeneous quasi-distance for which BCP holds on a graded group
remained meaningful.

The present paper follows two previous papers, [20] and [21]. The existence of some
homogeneous distances that satisfy BCP on the stratified Heisenberg groups is proved in [20].
On the contrary it is proved in [21] that natural analogues of these distances on stratified groups
of step > 3 do not satisfy BCP. These two cases strongly suggested that the structure of the
dilations, which comes from the structure of the grading of the Lie algebra, plays a crucial role.
Theorem 1.2 characterizes precisely in which sense the structure of the grading plays a role for
our purposes.

Let us now say few words about the proof of Theorem 1.2. Among the simplest examples
of positively graduable groups are the Abelian ones, the Heisenberg groups, and free-nilpotent
groups of step 2, see Example 2.10, Example 2.11, and Section 4.1. They play a key role in our
proof of Theorem 1.2. A first step is indeed the study of the validity or non-validity of BCP for
homogeneous quasi-distances relatively to various possible positive gradings on these groups.

To prove the existence of homogeneous quasi-distances satisfying BCP on graded groups
with commuting different layers, we first prove that Hebisch—Sikora’s quasi-distances satisfy
BCP on stratified free-nilpotent groups of step 2, see Theorem 4.5. Hebisch—Sikora’s quasi-
distances are those homogeneous quasi-distances whose unit ball centered at the identity is
a Euclidean ball, see Examples 2.23 and 2.36. Theorem 4.5 extends [20, Theorem 1.14] to
stratified free-nilpotent groups of step 2 and any rank r > 2. Theorem 1.14 in [20] gives indeed
the conclusion for the stratified first Heisenberg group, i.e., the stratified free-nilpotent group
of step 2 and rank 2. The proof of Theorem 4.5 is in spirit inspired by the proof of this previous
result but requires a slightly different approach.

To prove the non-existence of continuous homogeneous quasi-distances satisfying BCP
on graded groups for which there exists two different layers that do not commute, we first
consider the case of the non-standard Heisenberg groups, see Theorem 5.6. A non-standard
Heisenberg group is the first Heisenberg group viewed as a graded group whose Lie algebra
is endowed with a positive grading that is not a stratification, see Example 2.11. As already
mentioned, the fact that there exists no continuous homogeneous quasi-distance satisfying BCP
on non-standard Heisenberg groups was suggested by [21, Theorem 1.6]. However, we stress
that the proof of Theorem 5.6 is not a technical modification of the arguments in [21]. It requires
indeed a completely new approach, see Section 5.

In both cases, the general conclusion, see Theorems 4.1 and 5.2, follows using struc-
ture properties of graded groups, using submetries, that plays a central role here, and using
some constructions on metric spaces that preserve the validity of BCP. These tools are given in
Sections 2 and 3.

In Section 2 we establish preliminary results about graded groups. In Sections 2.1 and 2.2
we fix the definitions and the terminology we shall use throughout the paper for graded and
stratified Lie algebras and Lie groups and for the associated families of dilations. Section 2.3 is
devoted to various examples and to the description of some constructions on graded groups for
later use. In particular, the Heisenberg groups and various positive gradings of their Lie algebra
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246 Le Donne and Rigot, BCP on graded groups

to be used later in the paper are given in Example 2.11. In Section 2.4, we prove some structure
properties for graded groups. Proposition 2.15 gives a description of graded groups with com-
muting different layers. Proposition 2.18 explains how every graded group with some different
layers not commuting gives rise a non-standard Heisenberg group. Section 2.5 is devoted to
homogeneous quasi-distances. The meaning of the terminology homogeneous groups that we
use in this paper is in particular given in Definition 2.21. We stress that working with quasi-
distances rather than with distances naturally occurs in applications but may lead to topologi-
cal issues. In our setting, we prove that homogeneous quasi-distances on graded groups induce
the manifold topology, see Proposition 2.26. As a consequence, homogeneous distances on
homogeneous groups are continuous, see Corollary 2.28. These results seem not to have been
previously noticed in the literature and may be of independent interest. On the contrary we
stress that homogeneous quasi-distances may or may not be continuous and Proposition 2.29
characterizes continuous homogeneous quasi-distances.

In Section 3 we first recall general facts about the Besicovitch Covering Property (BCP)
and one of its variants which we call the Weak Besicovitch Covering Property (WBCP). We
remark that these two variants are not equivalent in general metric spaces, see Example 3.4.
However, in our setting, and more generally on doubling metric spaces, BCP and WBCP are
equivalent, see Proposition 3.7. It turns out that working with WBCP is for our purposes tech-
nically more convenient. Next, we consider some constructions that preserve the validity of
(W)BCP. In particular, products of metric spaces are considered in Theorem 3.16. The role
of surjective morphisms of Lie algebra and submetries is given in Propositions 3.20 and 3.21.
Results in this section will be used together with the structure properties proved in Section 2.4
to deduce Theorem 1.2 from the particular cases mentioned above.

Sections 4 and 5 are devoted to the proof of Theorem 1.2 together with Corollaries 1.3
and 1.4. In Section 4 we prove the existence of continuous homogeneous quasi-distances for
which BCP holds on graded groups with commuting different layers, following the scheme
already described above, see Theorem 4.1. In Section 5 we consider more general quasi-
distances, called self-similar, which are only required to be one-homogeneous with respect
to some dilation, see Definition 5.1. We prove that continuous self-similar quasi-distances do
not satisfy BCP on graded groups for which there exist two different layers of the associated
positive grading that do not commute, see Theorem 5.2. Self-similar, rather than homogeneous,
quasi-distances may occur naturally. We stress that in this case, additional topological issues
have to be taken into account, see Section 5.2.

In Section 6 we give applications to measure differentiation on graded groups. We prove
Theorem 1.5, using the notion of o-finite dimensionality.

In Section 7 we consider sub-Riemannian distances on stratified groups. We complete the
results of [33] with the following general negative answer. We refer to Definition 7.1 for the
definition of sub-Riemannian Carnot groups.

Theorem 1.9. Let (G, d) be a sub-Riemannian Carnot group of step > 2. Then BCP
does not hold on (G, d).

The proof of this result is independent of Theorem 1.2 but uses some techniques devel-
oped in Section 3, in particular Proposition 3.21. Using the fact that sub-Riemannian Carnot
groups appear as metric tangent spaces to sub-Riemannian manifolds, we get the follow-
ing consequence about measure differentiation on sub-Riemannian manifolds. We refer to
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Section 7.2 for the definition of sub-Riemannian manifolds, which in this paper does not
include the Riemannian ones.

Theorem 1.10. Let M be a sub-Riemannian manifold and let d be its sub-Riemannian
distance. Then there exists some locally finite Borel measure for which the differentiation theo-
rem on (M, d) does not hold.

Acknowledgement. The authors would like to thank Tapio Rajala for fruitful conver-
sations and improving feedback.

2. Preliminaries on graded groups

2.1. Graded and stratified Lie algebras and Lie groups. All Lie algebras considered
here are over R and finite dimensional.

Definition 2.1 (Positively graduable Lie algebras). A positive grading of a Lie algebra
g is a family (V7);e(0,400) Of vector subspaces of g, where all but finitely many of the vector
subspaces V; are {0} such that
g = @ Vi

t€(0,+00)

and where [Vy, V3] C Vi forall s,z > 0. Here [V, W] := span{[X,Y]: X € V, Y € W}. We
say that a Lie algebra is positively graduable if it admits a positive grading.

A positively graduable Lie algebra may admit several positive gradings that are not iso-
morphic, see for instance Example 2.11 (and Definition 2.16 for the definition of isomorphisms
of graded Lie algebras). We will use the terminology “graded Lie algebra” when considering
a positively graduable Lie algebra equipped with a given positive grading as stated in the fol-
lowing definition.

Definition 2.2 (Graded Lie algebras). We say that a Lie algebra is graded when it
is positively graduable and endowed with a positive grading called the associated positive
grading.

Given a positive grading g = @, V+ and given ¢ € (0, +00), the subspace V; is called
the degree-t layer of the grading.

Recall that, for a Lie algebra g, the lower central series is defined inductively by g(l) =g,
g+ = [q, g®]. A Lie algebra g is called nilpotent if g+1 = {0} for some integer s > 1.
We say that g is nilpotent of step s if g+t = {0} but g&®) # {0}. Positively graduable Lie
algebras are nilpotent. However, nilpotent Lie algebras that are not positively graduable do
exist. Regarding this last statements and more properties, see [9,12,13,19].

Definition 2.3 (Stratifiable Lie algebras). A stratification of step s of a Lie algebra g is
a direct-sum decomposition g = V; @ Vo @ --- @ Vs for some integer s > 1 where Vs # {0},
[V1,V;] = Vj41 for all integers j € {1,...,s}, and where we have set V511 := {0}. We say
that a Lie algebra is stratifiable if it admits a stratification.
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Equivalently, a stratifiable Lie algebra g is a positively graduable Lie algebra that admits
a positive grading whose degree-one layer generates g as a Lie algebra. A stratification is
uniquely determined by its degree-one layer V1. Moreover, one has ¢ = V1 @ [g, g]. Recall that
the rank of a nilpotent Lie algebra is defined as dim g — dim[g, g]. For a stratified Lie algebra
it coincides with the dimension of the degree-one layer of any of its stratification. However, we
stress that an arbitrary vector subspace V' of a stratifiable Lie algebra g that is in direct sum
with [g, g], i.e., satisfies g = V @ [g, g], may not generate a stratification, see Example 2.12.
Note also that a positive grading of a stratifiable Lie algebra may not be a stratification, see
Example 2.11.

Any two stratifications of a Lie algebra are isomorphic, see [19]. In particular, they have
equal step that we will call the step of the stratifiable Lie algebra. Note that a stratifiable Lie
algebra of step s is nilpotent of step s. When we fix a given stratification of a stratifiable
Lie algebra, we will use the terminology “stratified Lie algebra” as stated in the following
definition.

Definition 2.4 (Stratified Lie algebras). We say that a Lie algebra is stratified when it is
stratifiable and endowed with a stratification called the associated stratification.

Definition 2.5 (Positively graduable, graded, stratifiable, stratified groups). We say that
a Lie group G is a positively graduable (respectively graded, stratifiable, stratified) group if
G is a connected and simply connected Lie group whose Lie algebra is positively graduable
(respectively graded, stratifiable, stratified).

For the sake of completeness, we will give in Theorem 2.8 below a characterization of
positively graduable groups in terms of existence of a contractive group automorphism. This
characterization is due to E. Siebert.

2.2. Dilations on graded algebras and graded groups.

Definition 2.6 (Dilations on graded Lie algebras). Let g be a graded Lie algebra with
associated positive grading g = @,. V. For A > 0, we define the associated dilation of
factor A as the unique linear map &) : g — g such that §; (X) = A’ X forall X € V;.

Dilations 6, : ¢ — g are Lie algebra automorphisms. Moreover, the family of dilations
(62)2>0 is a one-parameter group of Lie algebra automorphisms, i.e., d; o 8, = 6,, for all
A,n>0.

Throughout this paper, given a Lie group homomorphism ¢ : G — H, we will denote by
¢« . @ — b the associated Lie algebra homomorphism. Recall that, if G is simply connected,
given a Lie algebra homomorphism ¢ : ¢ — [, there exists a unique Lie group homomorphism
¢ : G — H such that ¢« = ¢ (see [37, Theorem 3.27]). This allows to define dilations on
graded groups as stated in the following definition.

Definition 2.7 (Dilations on graded groups). Let G be a graded group with Lie alge-
bra g. Let 6 : @ — g be the associated dilation of factor A > 0. The associated dilation of
factor A on G is the unique Lie group automorphism, also denoted by §, : G — G, such that

(B2)« = 0.
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For technical simplicity, we keep the same notation for both dilations on the Lie algebra
g and the group G. There will be no ambiguity here. Indeed, graded groups being nilpotent
and simply connected, the exponential map exp : ¢ — G is a diffeomorphism (see [7, Theo-
rem 1.2.1] or [12, Proposition 1.2]) and one has 6, o exp = expo§, (see [37, Theorem 3.27]),
hence dilations on g and dilations on G coincide in exponential coordinates.

For the sake of completeness, we give now an equivalent characterization of positively
graduable groups due to Siebert. If G is a topological group with identity e and 7 : G — G is
a group automorphism, we say that t is contractive if, for all g € G, one has

lim ¥ (g) =e.
k—o0

We say that G is contractible if G admits a contractive automorphism.

For graded groups, associated dilations of factor A € (0, 1) are contractive automor-
phisms. Hence positively graduable groups are contractible. Conversely, E. Siebert proved (see
Theorem 2.8 below) that if G is a connected locally compact group and 7 : G — G is a con-
tractive automorphism, then G is a simply connected Lie group and t induces a positive grading
on the Lie algebra g of G. Note however that 7 itself may not be a dilation associated to the
induced grading.

Theorem 2.8 ([36, Corollary 2.4]). A topological group G is a positively graduable Lie
group if and only if G is a connected locally compact contractible group.

2.3. Examples. We first introduce the definition of basis adapted to a positive grading
for later use.

Definition 2.9. Let g be a graded Lie algebra with associated positive grading given by
a =6, Vi.-Letn :=dimgand0 < t; <--- <ty besuchthat V;; # {0} foralli =1,...,]
and V; = {0} for all r & {¢t1,...,1;}. We say that a basis (X1,..., Xp) of g is adapted to the
positive grading if (Xm;_,+1,..., Xm;) is a basis of V;, forall 1 <i <. Here mo = 0 and
m; —mj—1 = dim Vt,--

Example 2.10 (Abelian Lie algebras and Lie groups). Abelian Lie algebras are stratifi-
able Lie algebras of step 1 and any direct-sum decomposition is a positive grading.

In particular, if g is an Abelian n-dimensional Lie algebra, the trivial direct-sum decom-
position g = P, V¢, where Vi = g and V; = {0} for all # # 1 gives the stratification. The
connected and simply connected Lie group with Lie algebra g can be identified with R”
equipped with the Abelian group law. Associated dilations are the usual multiplication by
a scalar positive real number given by x > Ax for A > 0.

More generally, for any real numbers 0 < dy < --- < d,, the maps

(X100, X5) > (/\d‘xl,...,)td”xn),

define a family of dilations on the Abelian group R” associated to some positive grading of its
Lie algebra.

Example 2.11 (Heisenberg Lie algebras and Lie groups). The n-th Heisenberg Lie alge-
bra by, is the (2n 4 1)-dimensional Lie algebra that admits a basis (X1,..., X, Y1,..., Yy, Z)
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250 Le Donne and Rigot, BCP on graded groups

where the only non-trivial bracket relations are [X;,Y;] = Z forall 1 < j < n. We call such
a basis a standard basis of .

The n-th Heisenberg group H” is the connected and simply connected Lie group whose
Lie algebra is b,. Using exponential coordinates of the first kind, we write p € H" as

n
p= exp((z xj Xj + Yij) +ZZ)
j=1

and we identify p with (x1,..., X, ¥1,..., Vn, 2). Using the Baker—Campbell-Hausdorff for-
mula, the group law is given by

(X1s e Xy V1o es Vs 2) = (XL e s X Vs e s Vs 20)

1 n
=1+ X, XX V1V Yz 2+ EZ(xjy} — X))
j=1

Heisenberg Lie algebras are stratifiable of step 2. Using a standard basis,
bh=V1® V2
is a stratification, where
Vi=span{X;,Y; :1 < j <n}, Vp:=spanZ.
Dilations associated to this stratification are given by
(X1 s Xns Vi oo os Vo Z) > (AXT, oo AXp AVL, oo AV, A22).

Heisenberg Lie algebras also admit positive gradings that are not stratifications. We
will in particular consider in this paper such gradings on the first Heisenberg Lie algebra.
Namely, for o € (1, 400), we call non-standard Heisenberg Lie algebra of exponent « the first
Heisenberg Lie algebra equipped with the following non-standard grading of exponent o:

h =W & Wy & Wy,

where
Wy = span{X1}, Wy :=span{Y1}, Wyt := span{Z},

and where (X1, Y1, Z) is a standard basis of §);. Note that up to isomorphisms of graded Lie
algebras (see Definition 2.16) and up to powers (see Example 2.14), these non-standard grad-
ings give all the possible positive gradings of §j; that are not a stratification. Dilations associated
to the non-standard grading of exponent « are given by

(X1, y1,2) = (Ax1, A%p1, A% 2).

We will use the terminology non-standard Heisenberg group (of exponent o) when considering
the first Heisenberg group as a graded group whose Lie algebra is endowed with the non-
standard grading of exponent .

Example 2.12. There are examples of stratifiable Lie algebras g for which one can find
a subspace V' in direct sum with [g, g] but that does not generate a stratification. One can for
instance consider the stratifiable Lie algebra g of step 3 generated by e, e and e3 and with the
relation [ep, e3] = 0. If V := span{e, ex + [e1, ez],e3}, one has g = V & [g, g] but V does
not generate a stratification of g, see [19].
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Example 2.13 (Direct product of graded Lie groups). The direct product of graded
groups is positively graduable. If G and H are graded groups with associated positive grading of
their Lie algebras givenby ¢ = @,.( V: and h = @, , Ws, respectively, then P, o (V:®W;)
is a positive grading of the Lie algebra of G x H. This can be extended to the direct product
of finitely many graded groups in the obvious way. In the rest of this paper, we will always
consider the direct product of graded groups as graded groups with associated positive grading
given by the above mentioned grading.

Example 2.14 (Power of graded Lie algebras and of graded groups). Let g be a graded
Lie algebra with associated positive grading ¢ = ;. Vs and let # > 0 be a real positive
number. Then g = . o Wi, where W;s := Vj is a positive grading of g, which we call the
t-power of the initial positive grading.

For A > 0, let §, denote the dilation of factor A associated to the initial positive grading
and § », denote the dilation of factor A associated to the grading of its z-power. In exponential
coordinates of the first kind associated to a basis adapted to these gradings, we have

Sa(x1, .oy xn) = (A% X1, .., A xn),
S)L(xl,...,xn) = (Atslxl,-..,kts”xn)

forsome 0 <51 <--- <sp.
If G is a graded group, we call t-power of G the group G considered as the graded group
whose Lie algebra is endowed with the z-power of the initial positive grading.

2.4. Structure of graded algebras and graded groups. We give in this subsection
some results about the structure of graded algebras and groups to be used later in this paper.
They may be more generally of independent interest.

First, we consider graded groups with commuting different layers, see Definition 1.1.
Notice that for such graded groups, a layer of the positive grading may not commute with
itself.

Proposition 2.15. Let G be a graded group with commuting different layers. Then G is
the direct product of powers of stratified groups of step < 2.

See Example 2.14 for the definition of powers of a graded group, Example 2.13 for the
definition of direct product graded groups and Definition 2.5 for the definition of stratified
groups.

Proof. Let g denote the Lie algebra of G. Let 0 < 1 < --- < t,, be such that V;, # {0}
forallk =1,...,mand V; = {0} forallt & {t1,...,t,m}. Wehaveg =V;, @V, ®---®V;,,.

If Vi, Vi,] = {0}, then [V3,, g] = {0} since [V;,, V5] = {0} for all s # ¢;. It follows that
h:=V,and ) :=V;, & ... ® V;, are ideals of g. Hence (see [30, p.388]) G is the direct
product of exp(h) and exp(Y). Moreover, exp(}) is the 71-power of an Abelian stratified group.

If [Viy, Ve,] # 10}, we set §:=Vy, @ [Vy), Vi ] © Viy @ Vay,. Then we consider V),
any complement of [V, Vy, ] in Vas,,ie., [Vi, Vi ] @ Vz’t1 = Var,. Weset V/, = {0}, V) = V;
fort # t1,2t; and b := @, V/. We have g = b @ . We prove now that G is the direct
product of exp(§) and exp(h’). As before, to get the conclusion, we prove that both § and b’
are ideals of g.
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To show that § is an ideal, take X € h and ¥ € g. It is enough to consider the following
four cases. First, assume X € V3, and Y € V;,. Then [X, Y] € h by the definition of ). Second,
assume X € V;, and Y € V4, with ¢ # t1. Then [X, Y] = 0 since G has commuting different
layers. Third, assume X = [X4, Xp] with X4, Xp € V3, and Y € Va4, . By Jacobi’s identity and
since 2¢1 # t; and G has commuting different layers, we get

[[Xa. Xp]. Y] = [[Xa. Y], Xp] + [[Y, Xp]. Xa] = 0.

By bilinearity of the Lie bracket, it follows that [X,Y] =0 e b for all X € [V;,, V] and
Y € Vy4, . Finally, assume X € [V;,, V] and Y € V; with t # 2¢;. Then [X, Y] = 0 since G
has commuting different layers. All together it follows that [X,Y] € b for all X € §) and all
Y € g hence }) is an ideal.

To show that b’ is an ideal, we note that if X € V; with ¢t > f; and Y € V, for some
s > 1, we have t + s > 2¢1 and hence

x.vle vi=EP v/ cy.

[>21 [>21

Since b’ C P, Vi and by bilinearity of the Lie bracket, it follows that [§’, g] C b’ hence b’
is an ideal. It follows that G is the direct product of exp(h) and exp(h’). Moreover, exp(h) is
the #;-power of a stratified group of step 2.

Finally, arguing by induction on the dimension of g, we get the conclusion. m)

We will next consider the case where there exist two different layers of the positive asso-
ciated grading that do not commute. We first introduce the notions of morphisms of graded Lie
algebras and of graded subalgebras.

Definition 2.16 (Morphism of graded Lie algebras). Letg = @, Vs, h = D,-0 Ws
be graded Lie algebras. We say that ¢ : ¢ — b is a morphism (respectively isomorphism) of
graded Lie algebras if ¢ is a Lie algebra homomorphism (respectively isomorphism) such that
¢ (V) C Wy forallt > 0.

Letg = ;. V: be a graded Lie algebra with associated dilations (53)4~¢. We say that
a Lie subalgebra § of g is homogeneous if 6, (g) = g for all A > 0. If g is a homogeneous
Lie subalgebra of g, then @, ((V; N g) is a positive grading of § called the induced positive
grading and associated dilations are the restriction of ) to §.

Definition 2.17 (Graded subalgebra). Let g be a graded Lie algebra. We say that g
is a graded subalgebra of the graded algebra g if § is a homogeneous Lie subalgebra of g
endowed with the induced positive grading.

Proposition 2.18. Let g = @,. o V: be a graded Lie algebra. Assume that, for some
t <s, [Vi, V5] # {0}. Then there exist a graded subalgebra § of g and a surjective morphism
of graded Lie algebras from § to Y) where ) is the t-power of the non-standard Heisenberg Lie
algebra of exponent s/t.

See Example 2.11 for the definition of non-standard Heisenberg Lie algebras and
Example 2.14 for the definition of the 7-power of a graded Lie algebra.
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Proof. Let X1 € V; and X5 € Vs be such that [ X1, X3] # 0. Let § denote the Lie sub-
algebra of g generated by X; and X,. We have §,(g) = g for all A > 0, where §, are the
associated dilations on g. Hence g is homogeneous. We endow it with the induced positive
grading § = @, Vi, where Vy, 1= V,, N d to make it a graded subalgebra of g. We have

@:V,@ﬁs@ﬁm@(@ I?u)
u>t+s
with R R R
Vi =span{X1}, Vs =span{Xz}, Viys = span{Xs},
where X3 := [X1, X2]. Let n := dim§ and (X4, ..., X,) be a basis of @, 17,, such that
(X1,...,Xy) is a basis of @ adapted to its positive grading (see Definition 2.9).

Let h := W; & Wy & W, be the t-power of the non-standard Heisenberg Lie algebra
of exponent s/t (see Example 2.11 and Example 2.14). Let Y1 # 0 € Wy, Y # 0 € W, and
set Y3 := [Y1, Y2]. Then Wy, = span{Y3}.

Let ¢ : ¢ — b be the linear map defined by ¢(X;) := Y; fori = 1,2,3 and ¢(X;) :=0
for i > 4. It can easily be checked that ¢ is a Lie algebra homomorphism. It can also easily be
checked that ¢(I7u) = W, for all u > 0. Here we set Wy, := {0} foru & {t,s,s + t}. Hence ¢
is a surjective morphism of graded Lie algebras. |

Remark 2.19. To conclude this subsection, let us mention the following general fact.
For any graded Lie algebra g, there exist a positive grading of a free-nilpotent Lie algebra { and
a surjective morphism ¢ : f — g of graded Lie algebras. We shall use this fact in the simple
case of stratified Lie algebras of step 2 where all what we need can be easily constructed by
hand, see the proof of Theorem 4.24. We refer to [6, Chapter II], [16], [35], [32], [8] for more
details on the subject.

2.5. Homogeneous quasi-distances. Given a nonempty set X, we say that a map
d: X xX — [0,400) is a quasi-distance on X if it is symmetric, d(p, ¢q) = 0 if and only
if p = ¢, and there exists a constant C > 1 such that d(p,q) < C(d(p, p’) + d(p’,q)) for all
p. P’ q € X (quasi-triangle inequality with multiplicative constant C'). We call (X, d) a quasi-
metric space. When speaking of a ball B in (X, d), it will be understood that B is a set of the
form B = B;(p, r) for some p € X and some r > 0, where By (p,r) :={q € X :d(q, p) <r}.
When d satisfies the triangle inequality, i.e., the quasi-triangle inequality with a multiplicative
constant C = 1, then d is a distance on X .

Definition 2.20 (Homogeneous quasi-distances on graded groups). Let G be a graded
group with associated dilations (§)) 1~ o. We say that a quasi-distance d on G is homogeneous
if d is left-invariant, i.e., d(p - ¢, p - ¢') = d(q.q’) forall p, ¢, q' € G, and one-homogeneous
with respect to all dilations (6 )>q, i.€., d(63(p).6x(q)) = Ad(p,q) for all p, g € G and
all A > 0.

Note that, in this definition, we do not require any topological property, and in particular
any continuity property, of a homogeneous quasi-distance with respect to the manifold topol-
ogy on the group. We will discuss these topological issues below, see Proposition 2.26, Corol-
lary 2.28, and Proposition 2.29. Let us stress that we will consider in Section 5 a more general
class of quasi-distances, called self-similar quasi-distances in the present paper. Additional

Brought to you by | Jyvaskylan yliopiston kirjasto / Jyvaskyla University Library
Authenticated
Download Date | 1/30/20 2:08 PM



254 Le Donne and Rigot, BCP on graded groups

topological issues occur for self-similar quasi-distances. For the sake of clarity, we devote the
present subsection to homogeneous quasi-distances. We postpone the discussion about topo-
logical properties of self-similar quasi-distances to Section 5, see especially Section 5.2.

Homogeneous quasi-distances on arbitrary graded groups do exist. One can for instance
follow the arguments in [12, Chapter 1]. Note however that our terminology is slightly different
from the terminology adopted for graded groups in [12]. See also Example 2.25 below for
another construction of homogeneous quasi-distances on arbitrary graded groups.

On the other hand, homogeneous distances do exist if and only if, for all # < 1, degree-¢
layers of the associated positive grading are {0}. These groups are called homogeneous in [15]
and we will follow here this terminology.

Definition 2.21 (Homogeneous groups). We say that G is a homogeneous group if G
is a graded group whose associated positive grading €9,. V; of its Lie algebra is such that
Vi = {0} forallt € (0, 1).

As already mentioned, we have the following proposition.

Proposition 2.22. Let G be a graded group. There exists a homogeneous distance on G
if and only if G is a homogeneous group.

Proof. If some degree-t layer of the positive grading is non-trivial for some ¢ < 1,
amapd : G x G — [0, +00) that is left-invariant and one-homogeneous with respect to some
non-trivial associated dilation cannot satisfy the triangle inequality (i.e., the quasi-triangle
inequality with a multiplicative constant C = 1). On the other hand, W. Hebisch and A. Sikora
proved in [15] the existence of homogeneous distances on homogeneous groups. O

Homogeneous distances considered by Hebisch and Sikora play a central role in Section 4
and we describe them below.

Example 2.23 (Hebisch and Sikora’s homogeneous distances on homogeneous groups).
Let G be a homogeneous group with identity e, associated positive grading of its Lie algebra
given by @ = €P,. V: and associated dilations (63 ). Let n := dim g and let (X1,..., X,)
be a basis of g adapted to the positive grading (see Definition 2.9). Using exponential coordi-
nates of the first kind, we identify p € G with (p1, ..., pn) where p = exp(p1 X1+ -+ pn Xn).

For R > 0, we set
n
AR = {peG:Zpiszz}
i=1
and
dr(p.q) :=inf{A > 0:8;,,(p™" - q) € Ar}.

Hebisch and Sikora proved in [15] that there exists R* > 0 such that for all 0 < R < R*,
dR defines a homogeneous distance on G.

Example 2.24 (Homogeneous quasi-distances on powers of graded groups). If G is
a graded group, d a homogeneous quasi-distance on G and ¢ € (0, +00), then d/? is a homo-
geneous quasi-distance on its #-power (see Example 2.14 for the definition of powers of graded
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groups). Notice that when G is a homogeneous group, d a homogeneous distance and ¢ > 1,
then (G, d'/?) is a snowflake of (G, d).

Example 2.25 (Existence of homogeneous quasi-distances on graded groups). Let G be
a graded group with associated positive grading ., Vs of its Lie algebra. All ¢-powers of G
where ¢ min{s > 0 : Vs # {0}} > 1 are homogeneous groups. If d is a homogeneous distance
on such a t-power of G, it follows from Example 2.24 that d’ is a homogeneous quasi-distance
onG.

A quasi-distance d on a set X induces a topology on X declaring a set O to be open if and
only if for all x € O there exists r > 0 such that B; (x,r) C O. Equivalently a set F is said to
be closed if and only if for all sequences (x;) of points in F such that d(xg, x) converges to 0
for some x € X, we have x € F. In the following proposition, we prove that on a graded group
the topology induced by a homogeneous quasi-distance and the manifold topology coincide.

Proposition 2.26. The topology induced by a homogeneous quasi-distance on a graded
group coincides with the manifold topology of the group. Moreover, a set is relatively compact
if and only if it is bounded with respect to the homogeneous quasi-distance.

Proof. Let G be a graded group with identity e, associated positive grading of its Lie
algebra given by ¢ = @,. V: and associated dilations (63)1~0. Let d be a homogeneous
quasi-distance satisfying the quasi-triangle inequality with multiplicative constant C.

To prove that the topology 7; induced by d and the manifold topology 75, coincide, it
is enough to show that d(e, p) goes to 0 if and only if p converges to e. Here, and in the rest
of this proof, the latter convergence (and more generally the convergence of some sequence of
points) means convergence with respect to the manifold topology on G.

First, we show that the quasi-distance d(e,-) from e is continuous at e with respect
to Tp,. Since graded groups are nilpotent and simply connected, we can consider exponential
coordinates of second kind with respect to a suitable choice of basis of g, see [7]. Namely,
first consider a basis (X1, ..., Xj;) adapted to the grading of g, i.e., foralli = 1,...,n, there
exists d; > 0 such that X; € V., and consequently, 8, (X;) = A% X;. Second, consider the
diffeomorphism p +— (P1(p), ..., P,(p)) from G onto R” such that for all p € G,

p = exp(P1(p)X1)---exp(Pn(p)Xyn).

In particular, P;(e) =0 for all i = 1,...,n. Then, using the quasi-triangle inequality, the
left-invariance and the homogeneity of the quasi-distance, we get

d(e, p) = d(e.exp(P1(p)X1)---exp(Pn(p)Xn))

< ) Cld(e.exp(Pi(p)Xi))

i=1

< Z Cldle. exp(8) p, (p1/4: (sgn(Pi(p))Xi))
i=1

= > C'|Pi(p)|"/ U d(e.sgn(Pi(p)) exp(X:)),

i=1
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where sgn( P; (p)) denotes the sign of P;(p). The last upper bound goes to 0 when p converges
to e and this proves the claim.

Second, we show that if (pg) is a sequence for which d(e, py) goes to 0, then pj con-
verges to e. We set

n
227 Ipll =Y _1Pi(p)l.
i=1
Arguing by contradiction, up to a subsequence, there would exist & > 0 such that | pr|| > ¢
for all k. Since the map A +— |6, (g)| is continuous with respect to 73, for all ¢ € G, we get
that, for all k, one can find A € (0, 1) such that [|6;, (px)|| = . By compactness with respect
to T of {p € G : ||p|l = &}, up to a subsequence, we would get that §,, (pr) converges to
some ¢ € G with ||g|| = . In particular, ¢ # e and hence d(e, g) > 0. However,

0 <d(e.q) < C(d(e, 8, (pr)) +d(8x, (Pr).q))
= C(Akd(e, pr) +d(e.q " -85, (Pr)))
< C(d(e.px) +d(e.q~" - 81, (pr))).

By the continuity of d(e,-) at e with respect to T, and since ¢~ -§ A (Pk) converges to e,
we have that d(e,q~! -8, « (Pk)) goes to 0. Hence the last upper bound in the above inequal-
ities goes to 0. This gives a contradiction and proves the claim. All together we get that both
topologies coincide.

Relative compactness with respect to the manifold topology is equivalent to boundedness
with respect to || - ||. Hence, to show that relative compactness is equivalent to boundedness
with respect to the quasi-distance, we show that boundedness with respect to d and bounded-
ness with respect to || - || are equivalent. By contradiction, assume that one can find a sequence
(px) such that, for some M > 0, d(e, pr) < M for all k, but || pr| goes to +oco. Arguing
as above, one can find a positive sequence (A) converging to O such that ||6,, (pg)|| = 1 for
all k. On the other hand, since d(e, §;, (pr)) = Axd(e. px) < M Ay, d(e, 8, (pk)) goes to 0.
As shown before, this implies that §;, (px) converges to e and gives a contradiction. One shows
in a similar way that boundedness with respect to || - || implies boundedness with respect to the
quasi-distance. O

In the rest of this paper, when not specified, all topological properties on graded groups
will be understood as defined with respect to the manifold topology, or, equivalently in view of
Proposition 2.26, with respect to the topology induced by any homogeneous quasi-distance.

If d is a distance on a set X, then d is continuous on X x X with respect to the topology
it induces and subsets of the form {y € X : d(y, x) < r}, respectively {y € X : d(y,x) <r},
are open, respectively closed, with respect to the topology induced by d. In particular, in view
of Proposition 2.26, we have the following consequence.

Corollary 2.28. Every homogeneous distance on a homogeneous group G is continuous
on G x G with respect to the manifold topology.

On the contrary, we stress that, if d is a quasi-distance on a set X, subsets of the form
{ye X :d(y,x) <r}, respectively {y € X : d(y,x) <r}, may not be open, respectively
closed, for the topology induced by d. Moreover, even when one of these properties holds, the
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quasi-distance may not be continuous on X x X with respect to the topology it induces, see
Remark 2.30 below. In particular, in view of Proposition 2.26, a homogeneous quasi-distance
on a graded group G may not be continuous on G x G with respect to the manifold topology.
The first part of the proof of Proposition 2.26 only says that the quasi-distance d(e, - ) from e is
continuous at e (or equivalently by left-invariance, the quasi-distance d(q, - ) from ¢ is contin-
uous at ¢ for all ¢ € G). In other terms, it only says that a ball B;(p, r) contains its center p
in its interior. We show in the next proposition that a homogeneous quasi-distance on a graded
group G is continuous on G x G if and only if its spheres are closed, or equivalently its unit
sphere centered at e is closed .

Proposition 2.29 (Continuity of homogeneous quasi-distances). A homogeneous quasi-
distance d on a graded group G is continuous on G x G if and only if its unit sphere centered
at e is closed.

Proof. First, note that a homogeneous quasi-distance d : G x G — [0, +00) is contin-
uous on G x G if and only if the quasi-distance d (e, - ) from e is continuous on G. If d(e, ) is
continuous on G, its unit sphere S (e, 1) := {p € G : d(e, p) = 1} is obviously closed. Con-
versely assume that Sy (e, 1) is closed. We already know from the proof of Proposition 2.26 that
d(e,-) is continuous at e. To prove the continuity of d (e, -) at an arbitrary point p with p # e,
it is sufficient to show that for any sequence (py) such that d(pg, p) goes to 0, one can extract
a subsequence whose quasi-distance to e converges to d(e, p). Set A, := d(e, pr). We have
Ar < C(d(e, p)+d(p, pr)) hence the sequence (1) is bounded. Up to a subsequence, one can
thus assume that Az converges to some A > 0. If A = 0, then A, = d(e, pg) goes to 0, hence
Pr converges to e (see Proposition 2.26) and we would have p = e. Since we are considering
p # e, we thus have A > 0. Then [|6;/4, (px) — 61/4(p)|l goes to O (remember (2.27) for the
definition of || - ||),i.e., 814, (pk) converges to 81/, (p). As 81/, (Pr) € Sq(e, 1) and Sy (e, 1)
is closed, we get 81/, (p) € Sq(e,1). Hence A = d(e, p) which concludes the proof. |

Remark 2.30. In view of Proposition 2.29, it is easy to construct examples of homo-
geneous quasi-distances that are not continuous. In such a case, the unit ball centered at the
identity may or may not be closed. For instance, in R? equipped with its trivial Abelian stratifi-
cation, consider the homogeneous quasi-distance d; whose unit ball centered at the origin is the
union of the Euclidean closed unit disk centered at the origin with the interval [—2, 2] x {0} (see
Example 2.31 below for a characterization of homogeneous quasi-distances on graded groups
in terms of their unit ball). Its unit sphere at the origin is the union of two points {(—2, 0), (2, 0)}
with the set {(x, y) € R? : x24y2 = 1}\{(1,0), (=1, 0)}, which is not closed. In this example,
the unit ball (and hence any ball) is (are) closed and sets of the form {p € R? : d1(0, p) < r}
are not open. One can also consider the homogeneous quasi-distance d> whose unit ball cen-
tered at the origin is the Euclidean closed unit disk centered at the origin minus the seg-
ments [—1,—1/2) U (1/2, 1], which is not closed. Its unit sphere at the origin is the union of
two points {(—1/2,0), (1/2,0)} with the set {(x, y) € R? : x2 4+ y% = 1} \ {(1,0), (=1,0)},
which is not closed as well. However, sets of the form {p € R? : d»(0, p) < r} are open. In
both examples, the quasi-distance from the origin is not continuous at points p € R* x {0}.

We conclude this section with a characterization of homogeneous quasi-distances by
means of their unit ball. Together with Proposition 2.29, we get a way to construct continuous
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quasi-distances on graded groups. Finally, we also recall a characterization of homogeneous
distances by means of their unit ball.

Example 2.31 (Characterization of homogeneous quasi-distances by means of their unit
ball). Let G be a graded group with identity e and with associated dilations (53 )3-¢. Let
d be a homogeneous quasi-distance on G. By Proposition 2.26, e belongs to the interior of
Bg(e, 1) and By(e, 1) is relatively compact. By left-invariance, B; (e, 1) is symmetric, i.e.,
p € By(e,1) implies p~! € By (e, 1). Finally, it follows from the homogeneity of d that, for
all p € G, the set {A > 0:81/,(p) € Bg(e. 1)} is a closed subinterval of (0, +o0) (for the
relative topology on (0, +00)).

Conversely, assume that K is a subset of G that contains e in its interior, K is relatively
compact, symmetric, and such that the set {A > 0:8;,,(p) € K} is a closed subinterval of
(0, 400) forall p € G. Then

d(p,q) :==1inf{A > 0:8,,,(p"" -q) € K}

defines a homogeneous quasi-distance on G. It is the homogeneous quasi-distance whose unit
ball centered at e is the set K.

For the sake of completeness, we give below a detailed proof of this claim. Although the
general scheme of the proof is a classical one, we stress that some of the arguments use the
topological properties proved in Proposition 2.26. For p € G, we set

I(p) :={A>0:811(p) € K}
and
p(p) :=inf{dA > 0:6;/5(p) € K}.
Note that since K contains e in its interior and 61/ (p) converges to e when A goes to +o0o,
we have I(p) # 0 and p(p) < +oo for all p € G. Obviously, one has p(e) = 0. Conversely
let p € G with p # e. Then ||§;,,(p)| goes to +oco when A goes to 0 (remember (2.27) for
the definition of || - ||). Since K is relatively compact, and hence bounded with respect to || - ||,

it follows that 81, (p) ¢ K forall A > 0 small enough. Hence p(p) # 0 and consequently, we
get that

(2.32) p(p) =0 ifandonlyif p =e.
Next, since K is symmetric, we have I(p) = I(p~'). Hence

(2.33) p(p) = p(p~ ).

Third, since 8y o 8, = 63, for all A, n > 0, one has /(55 (p)) = AI(p) for all p € G and all
A > 0. Hence

(2.34) p(81(p)) = Ap(p).

Finally, the fact p satisfies the quasi-triangle inequality, i.e., there exists some constant C > 0
such that

(2.35) p(p-q) = C(p(p)+p(q) forall p,qeG,

follows from the fact that p is bi-Lipschitz equivalent to any homogeneous quasi-norm
on G. Indeed, let dyp be a homogeneous quasi-distance on G (remember that homogeneous
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quasi-distances on graded groups do exist, see Example 2.25) and set po(p) := do(e, p). Since
the topology induced by d¢ and the manifold topology coincide (see Proposition 2.26) and since
e belongs to the interior of K, there exists 7 > 0 such that p € K as soon as po(p) < n. By
homogeneity, it follows that 2p¢(p)/n € I(p) for all p # e. Hence p(p) < 2p0(p)/n for all
p € G. On the other hand, since K is relatively compact, it is bounded with respect to pg by
Proposition 2.26. Hence one can find M > 0 such that po(p) < M for all p € K. It follows
that for p # e, 82m/p0(p)(P) & K and hence po(p)/2M & I(p). By assumption, I(p) is closed
subinterval of (0, +00). Moreover, since K contains e in its interior and §;,,(p) converges to
e when A goes to +00, I(p) is an unbounded closed subinterval of (0, +00), i.e.,

I(p) = [p(p), +00)

forall p € G with p # e. It follows that po(p)/2M < p(p) forall p € G. All together we get
that one can find a constant L > 0 such that

L™ po(p) < p(p) < L po(p)

for all p € G. Then the fact that pg satisfies the quasi-triangle inequality implies that p satisfies
the quasi-triangle inequality as well. This proves (2.35).

All together (2.32)—(2.35) imply that d is a homogeneous quasi-distance on G. Finally,
one has p(p) < lifandonlyif 1 € I(p),i.e., p € K, hence K = B;(e, 1).

Example 2.36 (Construction of continuous homogeneous quasi-distances on graded
groups). The characterization given in Example 2.31 together with Proposition 2.29 gives an
effective way to construct continuous homogeneous quasi-distances on arbitrary graded groups.
In particular, one can extend Hebisch and Sikora’s construction of Example 2.23. Namely, fol-
lowing the notations of Example 2.23, we get that, for all R > 0, dr induces a homogeneous
quasi-distance on an arbitrary graded group. It is the homogeneous quasi-distance whose unit
ball centered at the identity is a Euclidean ball of radius R, using exponential coordinates of the
first kind relative to some basis of the Lie algebra adapted to the positive grading. Moreover, its
unit sphere centered at the identity is a Euclidean sphere of radius R hence is closed. It follows
that d g is continuous.

Example 2.37 (Characterization of homogeneous distances on homogeneous groups).
We recall here a characterization, already contained in a slightly different form in [15], of
homogeneous distances on homogeneous groups in terms of their unit ball. Let G be a homo-
geneous group with associated dilations (§) )¢ and with identity element e. If d is a homo-
geneous distance on G, then e belongs to the interior of By (e, 1), B;(e, 1) is compact and
symmetric. Since d satisfies the quasi-triangle inequality with a multiplicative constant C = 1,
we have §;(p) - 81-1(q) € Bg(e, 1) forall p,q € By(e,1)and all A € [0, 1].

Conversely, assume that K is a subset of G that contains e in its interior, K is compact,
symmetric and such that §; (p) - §1_,(q) € K forall p,q € K and all A € [0, 1]. Then

d(p.q):=inf(A > 0:8,/,(p"" - q) € K}

defines a homogeneous distance on G. It is the homogeneous distance whose unit ball centered
at e is the set K. We refer to [15] for the proof of the fact that d satisfies the quasi-triangle
inequality with a multiplicative constant C = 1 and to Example 2.31 for all other properties
that must be satisfied by a homogeneous distance.
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3. Besicovitch Covering Property

3.1. BCP and WBCP. Recall from the introduction the definition of the Besicovitch
Covering Property in the general quasi-metric setting. See Section 2.5 for the definition and
our conventions about quasi-metric spaces.

Definition 3.1 (Besicovitch Covering Property). Let (X, d) be a quasi-metric space.
We say that (X, d) satisfies the Besicovitch Covering Property (BCP) if there exists a constant
N > 1 such that the following holds. Let A be a bounded subset of X and let B be a family of
balls such that each point of A is the center of some ball of 8; then there is a finite or countable
subfamily ¥ C 8B such that the balls in & cover A4, and every point in X belongs to at most N
balls in %, that is,
Ig < Z Ig <N,
Be¥F
where 14 denotes the characteristic function of the set A.

The Besicovitch Covering Property originates from works of Besicovitch in connection
with the theory of differentiation of measures in Euclidean spaces ([4, 5], see also Section 6).
Finite-dimensional normed vector spaces satisfy BCP (see [11, Chapter 2.8]) whereas infinite-
dimensional normed vector spaces do not satisfy BCP.

Definition 3.1 for BCP is a common and classical one, even though one can find var-
ious variants in the literature. In the Euclidean setting, these variants are equivalent. One of
them, called in the present paper the Weak Besicovitch Covering Property (WBCP), see Def-
inition 3.3, turns out to be equivalent to BCP in our setting of graded groups equipped with
homogeneous quasi-distances, and more generally for doubling quasi-metric spaces, see Propo-
sition 3.7. For our purposes, working with WBCP is actually technically more convenient.

For the sake of completeness, we discuss in more details in the rest of this section the
relationships between BCP and WBCP, first pointing out that BCP and WBCP may happen to
be not equivalent for general metric spaces, see Example 3.4. This might be of independent in-
terest, and, to our knowledge, cannot be found explicitly written in the literature. We will next
prove that for doubling quasi-metric spaces, and hence for graded groups equipped with homo-
geneous quasi-distances, BCP and WBCP are equivalent. We first introduce some convenient
terminology.

Definition 3.2 (Family of Besicovitch balls). Let (X, d) be a quasi-metric space. We
say that a family 8 := {B = By(xp,rp)} of balls in (X, d) is a family of Besicovitch balls if
B is a finite family of balls such that, for all B, B’ € 8 with B # B’, one has xg ¢ B’, and
for which (\gcg B # 9.

Definition 3.3 (Weak BCP). Let (X,d) be a quasi-metric space. We say that (X, d)
satisfies the Weak Besicovitch Covering Property (WBCP) if there exists a constant Q > 1
such that Card 8 < Q for every family 8B of Besicovitch balls in (X, d).

If (X, d) satisfies BCP, then (X, d) satisfies WBCP. One can indeed take Q = N, where
N is given by Definition 3.1. Conversely, as already mentioned, WBCP is in general strictly
weaker than BCP, as the following example shows.
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Example 3.4. Here is an example of a metric space that does not satisfy BCP and for
which Card 8 = 1 for every family 8 of Besicovitch balls. Let X = {x1, x2,...} be a count-
able set of points. Let us define d : X x X — [0, +00) as follows. We set d(x;, x;) = 0 for
alli > 1 and

d(xi,xj) =1- ; fori # j.
max(i, j)

We first check that d defines a distance on X. The fact that d(x, y) = 0 if and only if
x = yandd(x,y) = d(y,x) are obvious from the definition. To prove the triangle inequality,
let j <iand k > 1 be fixed. If k < i, we have

1 1 1
d(x;,xj) = l—lT = l—lT +l—m =d(x;, xg) + d(xg, xj).

Ifi <k,thenk >3,hencei/(i +1)<1<k/2andsol—1/i <2(1 —1/k). Tt follows that

1 1
d(xixp) =1-1 < 2(1 - z) = d(xi.x) + (g x7).
l

Hence d satisfies the triangle inequality.
We claim that BCP does not hold in (X, d). Indeed, set

riz=1—— fori=1,2,....
i

Consider A := {x; : i > 2} and the family 8 := {B;(x;,r;) : i > 2}.Sinced(x;,x;) = r; for
all j <iandd(x;,x;) =r; >r; for j > i, we have

Bi(xi,ri) ={x1,...,x;} fori =2,3,....
It follows that for any subfamily ¥ C B whose balls cover the set A, we have
sup{i > 2: Bi(xj,r;) € F} = +o0,

that is, Card ¥ = +o00. On the other hand, x; € [ peg B. In particular, x; belongs to in-
finitely many balls in & which shows that (X, d) does not satisfy BCP.

Let us now check that Card 8 is equal to 1 for every family B of Besicovitch balls and
hence (X, d) satisfies WBCP. By contradiction, assume that {B; (x;,, ,ol-,)}f=1 is a family of
Besicovitch balls with k > 2. Assume with no loss of generality that i1 < iy < --- < i. We
have d(x,-j,x,-k) = ri;, and x;, & By(xj,,pi)forall j =1,....k —1,s0r; > p;, . Itfollows
that d(x;, , x;) = max(r;,,r7) > ri, > pj, foralll # iy and thus

k—1
Ba(xig. pi) = {xie } € X\ | BCxi; . i)
Jj=1
which contradicts the fact that ﬂ;;l B(xi,, pi,) # 9.

Remark 3.5. If (X, d) satisfies WBCP, then it satisfies a weak form of BCP that can be
stated as follows. There is a constant N > 1 such that the following holds. Let A be a bounded
subset of X. Let B be a family of balls such that each point of A is the center of some ball
of B and such that either sup{rp : B € B8} = +00 or B € B > rp attains only an isolated
set of values in (0, 400). Then there is a finite or countable subfamily ¥ C 8B such that the
balls in ¥ cover A, and every point in X belongs to at most N balls in F (see [31]). Note that
in Example 3.4, the number 1 is an accumulation point of the set {r; : i > 2} in (0, +00).
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As already mentioned, for doubling quasi-metric spaces, BCP and WBCP are equivalent.
Let us recall the definition of doubling quasi-metric spaces.

Definition 3.6 (Doubling quasi-metric space). A quasi-metric space (X, d) is said to be
doubling if there is a constant C > 1 such that for each r > 0, each ball in (X, d) with radius
2r can be covered by a family of at most C balls of radius r.

Proposition 3.7. Let (X,d) be a doubling quasi-metric space. Then (X, d) satisfies
BCP if and only if (X, d) satisfies WBCP.

As a classical fact, graded groups equipped with homogeneous quasi-distances are
doubling. The next corollary hence follows.

Corollary 3.8. Let G be a graded group and let d be a homogeneous quasi-distance
on G. Then (G, d) satisfies BCP if and only if (G, d) satisfies WBCP.

For the sake of completeness, we give below a proof of Proposition 3.7. This proof fol-
lows closely the arguments of the proof of [25, Theorem 2.7] about the validity of BCP in
Euclidean spaces, using the following well-known property of doubling quasi-metric spaces
(see e.g. [24] for more details about doubling (quasi-)metric spaces).

Remark 3.9. If (X, d) be a doubling quasi-metric space, then there are constants ¢ > 1
and s > Osuchthatif x € X, r > 0and A > 1, the cardinality of every setin B, (x, Ar) whose
points are at least r apart is at most cA°.

Proof of Proposition 3.7. Since any quasi-metric space satisfying BCP also satisfies
WBCP, we only need to prove that (X, d) satisfies BCP when (X, d) is a doubling quasi-metric
space satisfying WBCP.

Let A be a bounded subset of X and let B be a family of balls such that each point of A
is the center of some ball of 8. For each x € A choose one ball By (x,r(x)) in B. As A is
bounded, we claim that we may assume that

M := sup r(x) < 4+o0.
x€A
Indeed, otherwise pick some point x in A4 with r(x) > diam A. Then ¥ := {By(x,r(x))} is
obviously a subfamily of 8 which shows that BCP holds in (X, d).
Choose x1 € A with r(x1) > M7 /2 and then inductively

j

. M,

X1 € A\ Ba(xior(xi))  with r(xj41) > >
i=1

as long as possible. Since A is bounded and points x; are at least M1 /2 apart, it follows from
Remark 3.9 that the process terminates and we get a finite sequence xp, ..., Xk
Let

1

ki
M, = sup{r(x) x e A\ U Bd(x,-,r(x,-))},

i=1
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and choose
ki M,
Y1 € AN Bawior () with r (g, 41) 2 =+
i=1
and again inductively
J M,
xje1 € A\ Ba(xi,r(xi) withr(xj41) = ==

i=1
as long as possible.
Continuing this process, we get a finite or infinite increasing sequence of integers

O0=ko<ki <ky<---,

a decreasing sequence of positive numbers M; with 2M;; < M;, and a sequence of
balls B; := B;(x;,r(x;)) € 8 with the following properties. If /; := {k;_; + 1,...,k;} for
j=1,2,..., then

M; .
(3.10) > <r(x;j) <M, fori € I;,
J
(3.11) xjy1€ A\ B for j =1,2,...,,
i=1
(3.12) xieA\ |J U Bj foriel.
m#k j€Ly

The first two properties (3.10) and (3.11) follow from the construction. To prove (3.12),
letm # k,i € Iyand j € I,,.If m < k,thenx; & B; by (3.11).If k < m, then by construction
r(x;) <r(x;),and x; & B; by (3.11), and so x; & B;.

Let us now check that this subfamily of balls satisfies the conditions for BCP to hold. If
the sequence kg, k1, .. . is finite, it follows immediately from the construction that the balls B;
cover A. If the sequence is infinite, then M; converges to 0, (3.10) implies that r (x;) converges
to 0, and it follows as well from the construction that

+o00o
AC U B;.
i=1

To verify the other property for the validity of BCP, assume that a point x € X belongs
to p balls By, ..., Bm,. Since WBCP holds in (X, d), we have by (3.12) that the indices m;
can belong to at most Q different blocks /;, where Q is given by Definition 3.3, that s,

Card{j : I; N{my,...,mp} # 0} < 0.
To conclude, let us check that
Card(I; N{my,....mp}) <M forj =1.2,...

for some constant M depending only on the doubling constant of (X, d). Let j be fixed. The
points x;, [ € I; N {my,...,mp}, are at least M; /2 apart by (3.10) and (3.11) and are all
contained in By (x, M), and so the claim follows from Remark 3.9. O
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Remark 3.13. Note that the subfamily constructed in the previous proof satisfies the
following additional property: By (x;,r(x;)/4) N Bg(x;,r(x;)/4) = @ forall i # j.Indeed,
leti < j.Thenr(x;) <2r(x;)and x; ¢ B; by (3.11), hence

rx) | rx)
4 + 4

d(xj,x;) >r(x;) >

3.2. Preserving BCP. Let us first recall that the validity of (W)BCP is not stable under
a biLipschitz change of (quasi-)distance, see Theorem 1.8. More generally, the validity of
(W)BCP might not be stable under natural operations on quasi-metric spaces. See for instance
the example before Theorem 3.16 about product of quasi-metric spaces. The fact that (W)BCP
holds on a quasi-metric space (X, d) depends indeed on the precise shape of balls in (X, d).
We give in this section cases where the validity of (W)BCP is preserved, to be used later. This
might be more generally of independent interest.

We begin with the following simple remark. If d; and d, are two quasi-distances on
a space X such that any ball with respect to d5 is a ball with respect to d1, with the same center
but possibly with a different radius, then the validity of (W)BCP in (X, d1) implies the validity
of (W)BCP in (X, d»).

For instance if (W)BCP holds in (X, d), then, for any s > 0, d* defines a quasi-distance
on X and (W)BCP holds on (X, d?®). Note that it is well known that a metric space (X, d)
and its snowflakes (X,d"), 0 < s < 1, have for many other purposes significantly different
properties. For graded groups, we get the following proposition, to be used later.

Proposition 3.14. Let G be a graded group and let d be a homogeneous quasi-distance
on G. Let t > 0. If BCP holds on (G, d), then BCP holds on the t-power of G equipped with
the homogeneous quasi-distance d 1/t

See Example 2.14 for the definition of the z-power of a graded group and Example 2.24
for homogeneous quasi-distances on #-powers.

Another simple remark is the fact that a subset of a quasi-metric space that satisfies
(W)BCP also satisfies (W)BCP when equipped with the restricted quasi-distance. We state it
below for later reference.

Proposition 3.15. Let (X, dx) be a quasi-metric space. Let Y C X. If BCP (respec-
tively WBCP) holds on (X, dx), then BCP (respectively WBCP) holds on (Y, dy), where dy
denotes the quasi-distance dy restricted to Y .

Given two quasi-metric spaces (X,dy) and (Y, dy), there are many ways to define
quasi-distances on X x Y. If (X, dx) and (Y, dy) both satisfy WBCP, then WBCP may fail
for classical choices of quasi-distances on X x Y, as the following example shows. We know
that, for s > 1, the set R equipped with the snowflake distance ds(x, x’) := |x’ — x|/ satis-
fies WBCP. Let s > 1, r > 1, and let d; » be the distance on R x R given by

dsr ((x, ), (X, ¥") 1= (d1 (x, ") + ds(y, YY)V

Then, if r € [1,5), WBCP does not hold on (R xR, ds ;). Indeed, d; , is a left-invariant
distance on R x R (equipped with the Abelian group law) and is one-homogeneous with
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respect to the dilations &, (x, y) := (Ax, A%y). Its unit ball centered at the origin is given by
Bg, . (0,1) ={(x,y) e RxR: [x]" + |y|"/S < 1}. It follows from [21, Lemma 3.2] that if
WBCP holds in (R x R, d ), one would have r > s.

However, the following theorem, to be used later, shows that one can always find a quasi-
distance satisfying WBCP on a product of quasi-metric spaces that satisty WBCP.

Theorem 3.16. Let (X,dx) and (Y,dy) be two metric spaces. Assume that WBCP
holds in (X,dx) and in (Y, dy). Then X x Y equipped with the max distance

dxxy ((x.y), (x".y")) 1= max(dx (x.x"), dy (y, "))

satisfies WBCP.

Proof. Let Q € N be such that Card ¥ < Q for any family & of Besicovitch balls
in (X,dyx) orin (Y,dy). Let B := {Bg,, (pi, r,~)}lN=1 be a family of Besicovitch balls in
(X xY,dyxy). Leti,j €{l,...,N},i # j,and let p; := (x;, ;) and p; := (x;,y;). By
the definition of families of Besicovitch balls and by the definition of dy xy, we have

dxxy (pi, pj) = max(dx (xi, x;),dy (yi, y;)) > max(ri,r;)

hence dx (x;,x;) > max(r;,r;) or dy(y;,y;) > max(r;,r;). In other terms, for any pair of
indices (7, j) withi # j, we have

(3.17) Xi € Bgy(xj,r;) and x; & By, (xi,ri)
or
(3.18) Vi € Bay (yj.rj) and y; & Bg, (yi,ri).
Let us consider the graph I" with N verticesi = 1, ..., N and where i is connected to j if

and only if i # j and (3.17) holds. Then, for any complete subgraph y of I' (a complete graph
is a graph where any two vertices are connected), { By, (X;,7;)}icy is a family of Besicovitch
balls in (X, dy). Let I'” be the complementary graph of T, that is, the graph with the same
vertices as I" and where two vertices are connected in I'’ if and only if they are not connected
in I". Since (3.18) holds whenever (3.17) does not, { Bg,, (yi, i) }iey’ is a family of Besicovitch
balls in (Y, dy) for any complete subgraph y’ of I'"'.

As a special case of Ramsey’s theorem stated in the language of graph theory, there
exists a function f(k,[) such that for any given graph I with N > f'(k, [) vertices, then either
I" contains a complete subgraph of order k or its complementary graph I'” contains a complete
subgraph of order / (the order of a complete graph is the number of its vertices). An upper
bounded for f(k,k) for k > 3 has been proved by P. Erd6s and G. Szekeres ([10]), namely
flk. k) < 4k—1,

Going back to the family of Besicovitch balls 8, it follows that if the numbers N of balls
in B is larger than 42 (we may assume with no loss of generality that Q > 2), there would
exist either a family of Besicovitch balls in (X, dy) with cardinality Q + 1 or a family of
Besicovitch balls in (Y, dy ) with cardinality Q + 1. This contradicts the fact that by assump-
tion any family of Besicovitch balls in (X, dy) or in (Y, dy) has cardinality at most Q. Hence
(X x Y, dxyxy) satisfies WBCP. m]
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Submetries, also known as metric submersions, will play a important role in our argu-
ments. They are indeed well adapted tools for our purposes. We first recall the definition.

Definition 3.19 (Submetry). Let (X, dx) and (Y, dy) be quasi-metric spaces. We say
thatw : X — Y is a submetry if 7 is a surjective map such that 7(By, (p,r)) = Bg, (w(p),r)
forall p € X and all r > 0.

We recall the following property of submetries related to WBCP.

Proposition 3.20 ([21, Proposition 2.7]). Let (X,dx) and (Y,dy) be quasi-metric
spaces. Assume that there exists a submetry from (X, dx) onto (Y,dy). If (X, dx) satisfies
WBCP, then (Y, dy) satisfies WBCP.

Proposition 3.20 will be used in the proof of our main results together with Proposi-
tion 3.21 below.

Proposition 3.21. Let G and G be graded groups with graded Lie algebra g and g,
respectzvely Assume that there exists a surjective morphism of graded Lie algebras ¢ : § — g.
Let ¢ : G — G denote the unique Lie group homomorphism such that ¢« = ¢ and let d be
a homogeneous distance, respectively a continuous homogeneous quasi-distance, on G. Then

d(p,q) == d @~ (dph. ¢~ ({g})

defines a homogeneous distance, respectively a continuous homogeneous quasi-distance, on G

and ¢ : (é, c?) — (G, d) is a submetry.

We stress that continuity of the quasi-distance a?, which means global continuity
on G x G, is necessary in order to get that d is a quasi-distance on G, which turns out to
be continuous on G x G as well, and also in order to get that ¢ : 6, d ) — (G, d) is a subme-
try. Indeed, consider the homogeneous quasi-distance dy on R? given in Remark 2.30, which
is not globally continuous. The projection of By, (0, 1) onto the x-axis is the open segment
I :=(—1,1).1fx € R*, wehave {A > 0:x/A € I} = (]x|, +00) which is not a closed subin-
terval of (0, +o00). It follows from Example 2. 31 that 7 is not the unit ball of some homo—
geneous quasi-distance on R. However, when disa homogeneous distance, recall that d is
continuous on G x G (see Corollary 2.28).

Proof of Proposition 3.21. First, we prove that d defines a quasi-distance on G and that
@ (é d) — ) = (G, d) is a submetry. By [21, Proposition 2.8], it is sufficient to prove that for
all p, q € G and all p € =1 ({p}), one can find § €g ~1({g}) such that d(p,q) = d(p q)
Set K := Kerg. We have ¢ “1¢ph) = K- p and k - o Y{g)) = ¢~ ({gq)}) for all k eK.
By left-invariance of d, it follows that

d(p.o g =dk-p.k-97 (gh) = d k- p.o ' (g})

In other words, the function p’ € ¢~ ({p}) — d (p'. ¢ 1({g))) is constant. Hence, by the def-
inition of d, we get

ﬂpm—dwleﬂ»— it d(p.d).
T{a})
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Bounded sets with respect to d are relatively compact (see Proposition 2.26), the set ¢~ ({g})
is closed and d is assumed to be continuous, hence one can find g € ¢~ 1({g}) such that
d(p.q)=__inf d(p.q)=d(p.g).
§'€p~ (g}

This proves that d defines a quasi-distance on G and that ¢ : (G d ) — (G, d) is a submetry.

Note that if d satisfies the quasi-triangle inequality with multiplicative constant C, then
d satisfies the quasi-triangle inequality with the same multlphcatlve constant (see the proof
of [21, Proposition 2.8]). In particular, if d is a distance on G, then d is a distance on G.

Next, one can easily check that d is homogeneous. This follows from the fact that d is
a homogeneous quasi-distance together with the fact that ¢ is a surjective morphism of graded
Lie algebra.

To conclude the proof, it remains to prove that d is globally continuous on G x G. Since
d is left-invariant, it is sufficient to prove that d(e,-) is globally continuous on G. Here e
denotes the identity in G and below é will denote the identity in G. Let p € G and let (px) be
a sequence converging to p. First, let pr € ¢~ ({px}) be such that d (e, py) = d (é, pr)- Since
the sequence (py) is relatively compact, it is bounded with respect to d (see Proposition 2.26).
Hence (py) is bounded with respect to d and, once again by Proposition 2.26, relatively com-
pact. Up to a subsequence, one can thus assume that Pk converges to some peot{p)).
Since d is continuous, it follows that d (é, px) converges to d (é, p) and one gets

de,p)<d@,p)= lim d(, pr)= lim d(e, pr).
k——+o00 k——+o00

Next, let p’ € 1 ({p}) be such that d(e, p) = d(é, p'). Since ¢ = expo ¢ o f:xp_1 is an

open map (see [37, p. 104]), one can find a sequence PrE€Q ~1({px}) converging to p’. Since d
is assumed to be continuous, d (e, pk) goes to d (e p’). On the other hand, we have

Hence .
lim d(e, pr) <d(é,p’) =d(e,p).
k—>+o00

All together we finally get that limg_, 4 o, d(e, px) = d(e, p) which concludes the proof. O

4. Graded groups with commuting different layers

In this section we consider graded groups with commuting different layers, see Defini-
tion 1.1, and we prove the following results.

Theorem 4.1. Let G be a graded group with commuting different layers. There exist
continuous homogeneous quasi-distances on G for which BCP holds.

Corollary 4.2. Let G be a homogeneous group with commuting different layers. There
exist homogeneous distances on G for which BCP holds.

The proof of Theorem 4.1 and Corollary 4.2 is divided into three steps. First, we consider
stratified free-nilpotent Lie groups of step 2. We prove that for such groups, some homogeneous
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268 Le Donne and Rigot, BCP on graded groups

(quasi-)distances that satisfy BCP are those whose unit ball centered at the origin coincides with
a Euclidean ball centered at the origin in exponential coordinates of the first kind associated to
a choice of basis of the Lie algebra, see Theorem 4.5. Next, we prove the existence of homo-
geneous distances satisfying BCP for stratified groups of step 2, see Theorem 4.24. These
homogeneous distances are induced by homogeneous distances satisfying BCP on stratified
free-nilpotent Lie groups of step 2 via submetries. Finally, the general case follows from Theo-
rem 4.24 together with the structure property given by Proposition 2.15, and Theorem 3.16, see
Section 4.3.

4.1. Free-nilpotent groups of step 2. Let r > 2 be an integer. We denote by FF;, the
stratified free-nilpotent Lie group of step 2 and rank r whose Lie algebra f,, is endowed with
a given stratification f,, = V' @& W, where [V, V] = W and where
r(r—1)

—

We set n := dim f,,. We fix a basis (X1,..., X;) of V and we set X;; := [X;, X;]. Then

(Xij)1<i<j<r is a basis of W. Using exponential coordinates of the first kind associated to the

dmV =r, dmW =

basis (X1, ..., Xr, (Xij)1<i<j<r) adapted to the given stratification of f,», we write p € [,
as
-
P = exp (ZpiXi + Z Pinij)
i=1 1<i<j<r
and we identify p with (p1,..., pr. (pij)1<i<j<r) = [Vp, Wp], Where v, := (p1,..., pr) and

wp 1= (pij)i<i<j<r-
The group law is given by vp.q = vp + wg and wp.q = ((p - 9)ij)1<i<j<r, Where

1
4.3) (p-q)ij = pij +qij + E(pin —qipj)

for 1 <i < j <r. The identity element is the origin.
The associated dilations are given by

8, (p) = (Avp, A%wp).

In this section we denote by |- | and (-,-) the Euclidean norm and scalar product
in R”, R” and R"™" with respect to our choice of coordinates. Equivalently, we equip {2 with
a Euclidean structure for which our chosen basis ((X1, ..., X;), (Xij)1<i<j<r) is orthonormal
and we consider on V' and W the induced Euclidean structures.

For R > 0, we consider the homogeneous quasi-distance d on [F,, whose unit ball
centered at the origin is given by

(4.4) B4(0.1):={p € Fp : | p|I* < R?}.

Such a quasi-distance is well defined and is continuous, see Example 2.36 (we drop here the in-
dex R for simplicity of notations). Recall also that it follows from [15] (see also Example 2.23)
that d is a distance whenever R < R* for some R* > 0.

This subsection is devoted to the proof of the validity of BCP on FF;, equipped with such
a quasi-distance.

Theorem 4.5. Let R > 0 be fixed. Let d be the homogeneous quasi-distance on .o
whose unit ball centered at the origin is given by (4.4). Then BCP holds on (Fy2, d).
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Le Donne and Rigot, BCP on graded groups 269

From now on in this subsection, we let R > 0 be fixed and d denotes the homoge-
neous quasi-distance on F,, whose unit ball centered at the origin is given by (4.4). We set
B := B;(0, 1). We begin with a series of remarks for later use.

First, for p € IF,2, we define the function A4, : ;> — R by

1
4.6) Ap(@) == llgI*—2(p.a)+ Y (pij—qzj)(piqj—Qipj)+z(piqj—qipj)2-

1<i<j<r
Lemma4.7. Let p € 0B. Thengq € By (p,1) ifand only if Ap(q) < 0.

Proof. Let p € 0B. We have | p[|* = |lvp||*> + |lwp > = R? and ¢ € By(p, 1) if and
only if [ p™' - ¢||* = |[vy—1,41* + [ w,—1.4]I* < R?. Then the lemma follows from the specific
form of the group law given in (4.3). ]

Next, we denote by Z(-,-) the (non-oriented) angle € [0, 7] between two vectors in
a Euclidean space. In the proof of Theorem 4.1, we are going to look at points p, ¢ for which
the angles Z(v,, vg) and Z(wp, wy) are small. These two angles are dilation invariant. Namely,
we have

48)  L(vs;(p) V55(9)) = £(Vp,vg) and  L(ws; (p), W5,(g) = £(Wp, Wg)
for all p,q € IF,, and all A > 0. Note that, on the contrary, the angle Z(p, q) is not dilation
invariant.

Lemma 4.9. For all ¢ > 0, there exists a constant § > 0 such that, for all p,q € Fy,,
if Z(vp,vg) < 8 and L(wp, wy) < 8, then

(4.10) |pigj — qipjl < ellvpllllvgll foralll <i <j <r,
4.11) (p,vg) = (1 = &)|lvpllllvgll,
(4.12) (wp, wg) = (1 —&)lwplllwgll-

Proof. To prove (4.10), note that | p;q; — gq; p;| represents the area of the planar quadri-
lateral generated by the two-dimensional vectors (p;, p;) and (g;, ¢;). For fixed length of these
vectors, this area goes to zero when the angle between the two vectors goes to zero. This angle
is smaller than Z(vp, vg), and the length of the two vectors is bounded by |v,|| and |Jvg ||,
respectively. This implies (4.10). To prove (4.11) and (4.12), note that if @ and b are two vec-
tors in a Euclidean space such that Z(a, b) < 7 /2, then (a, b) is positive and represents the
product between ||a| and the norm of the orthogonal projection of b onto a. In particular, if
Z(a, b) goes to 0, this product converges to ||a||||]|. |

Lemma 4.13. Let ¢ > 0 and p, g € B be such that (4.10), (4.11) and (4.12) hold. Let
Ap(q) be defined by (4.6). Then we have

(4.14) Ap(@) = Ivgll” + llwg > = 2(1 = &) [[vp lvg ]l = 2(1 = &) [[wp llllwg |
2
-
+2r* Re||vp |l vgll + TSZRzllvpll log l
(4.15) < llugl? + llwgllI> = 2(1 = &)llvpllvg | = 2(1 = &) [wp [l [lwgll

2
-
+ 212 R?%e|vg || + T82R3||vq||.
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270 Le Donne and Rigot, BCP on graded groups

Proof. By the definition of 4,(q), we have
Ap(q) = ||Uq||2 + ||wq||2 — 2(vp, vg) — 2{wp, wq)

1
+ Y (P —ai)(pidj —qip) + 1(Pidj — qipj)*.

1<i<j<r

Then (4.14) and (4.15) follow from (4.10), (4.11) and (4.12) together with the following simple
observations. First, dim W < r2, which is used to bound the number of terms in the sum.
Second, since p, g € B, we have |vp ][, [wp]l. vgll. |wgll < R, which is used to bound some
of the terms. ]

Next, we will consider in the proof of Theorem 4.5 the following parabolic regions.
Fora > 0, we set
Pa = {p € Fra: Rllwpll > alvp||?}.

These regions, as well as their complement, are invariant under dilations. Namely,
(4.16) 5 (Pa) = Pa and 5, (P)) = PS

foralla > 0andall A > 0.

Lemma 4.17. We have the following bounds.
(1) Let p e B. If p ¢ $4. Then

R
(4.18) lwpll < Z(\/l + 442 —1).
(ii) Let p € 0B. If p € Py, then
R
(4.19) lwpll = - (V1 +4a> = 1).

(ili) Let p € 0B. If p ¢ Pa, then

R [VT+4a? -1
(4.20) lopll = —\| ————

Proof. (i) From the assumptions, we have
>, R 2 2 2
[wpll +;||wp|| =< llwpI” + llvp[I* = R

Hence allwp ||? + R||wp|| —aR? < 0 and ||wp|| > 0, which is equivalent to

R
0 < |wpll < —(=1+ V1 + 4a?)

2a

and gives (4.18).
(i1) From the assumptions, we have

R
2 2 2 2
lwpll” + —llwp Il > wp = + llvp 7 = R
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Hence a|wp|? + R|wp | —aR? > 0 and ||wp|| > 0, which is equivalent to

R
wpll > %(—1 + V1+ 4a?)
and implies (4.19).
(iii) From the assumptions, we have
a’ 4 2 2 2 2
ﬁvaH + vpll” = lwplI” + [lvplI” = R”.

Hence a?||vp||* + R?|vp||? — R* > 0, which is equivalent to

R2
||Up||2 > ?(—l + v 1 + 4612)

and gives (4.20). O

To prove Theorem 4.5, we are going to partition [F,, into three disjointed regions,
Fro = P U (Pa \ Par) U PS,

for some suitable choice of 0 < a < a’.

The next three lemmas show that, for a suitable choice of 0 < a < a’, if p and ¢ are
two points for which the angles Z(vp, vq) and Z(wp, wy) are small and both belong to one of
these regions, then either ¢ € By (p, d(0, p)) or p € By(q,d (0, q)). We first consider the case
where p, g € P£.

Lemma 4.21. Let a = 0.9. There exists a constant § > 0 such that, if p,q € P are
such that Z(vp,vg) < & and L(wp, wy) < 6, then g € By (p,d(0, p)) or p € Bg(q.d(0, q)).

Proof. The value a has been chosen in such a way that

VItaaZ—1 VIt daZ—1
a

Hence, we can fix some & > 0 so that

V1 +4a2 -1 V1+4a2 -1 2
1+++—2(1—8) +2—Z+2r2R8+%82R2<0.
a

Let p,q € $5. Assume that Z(vp,vy) < § and Z(wp, wy) < § where § > 0 is given by
Lemma 4.9, i.e., is such that (4.10), (4.11) and (4.12) hold for our choice of €. Using dilations
together with (4.8) and (4.16), and exchanging the role of p and ¢ if necessary, one can assume
with no loss of generality that p € 0B and g € B.

Then let us prove that g € B;(p,1). By Lemma 4.7, this is equivalent to A,(g) < 0.
By (4.15), we have

Ap(q) = vl + lwglI* — 2(1 — &) [vpllllvg |l — 2(1 — &) wp || [lwy |l
2
r
+ 2rsz<9||Uq|| + ZSZR?’”Uq”-

To bound the first term, we use that ||vy|| < R since g € B. To bound the second one, we use
that ¢ ¢ & both through (4.18) and the fact that [[wg|| < %lvg [ < allvg||. In the third term,
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272 Le Donne and Rigot, BCP on graded groups

we use that p ¢ &P, through (4.20). Since the fourth term is not positive, we get

R R |[N144a?—1
Ap(q)SRllvquZ( 1+4a2—1)allvqll—2(1—8)z fllvqll
2
-
+2r2 R%ellvg|| + 782R3||Uq||
V1+4a2 -1 V1+4a? -1 2
— Rlvgll 1+ 2T ey R 2 Re 4+ D22
2 2a2 4
<0
by the choice of ¢. O

Next, we consider the case where p,q € .

Lemma 4.22. Let a’ = 1.9. There exists a constant § > 0 such that if p,q € Py are
such that Z(vp,vq) < § and L(wp, wg) < 6, then g € By(p,d(0, p)) or p € By(q,d(0,q)).

Proof. The value a’ has been chosen in such a way that

1 Vitda? -1 _

; +1- o 0.
Hence, we can fix some ¢ > 0 so that
1 V1+4a? -1 2
—,+1—(1—e)+—,a<0 and —2(1—8)+2r2R8+%82R2<0.
a a

Let p,q € Py . Assume that Z(vp,vq) < § and Z(wp, wy) < § where § > 0 is given by
Lemma 4.9, i.e., is such that (4.10), (4.11) and (4.12) hold for our choice of e. Arguing as in
the proof of Lemma 4.21, one can assume with no loss of generality that p € 0B and ¢ € B.

Let us prove thatg € B4 (p, 1). By Lemma 4.7, this is equivalent to A,(q) < 0. By (4.14),
we have

Ap(q) < llvgl* + lwgll? = 2(1 = &) vyl lvgll — 2(1 — &) [wp [ [[wg I
2
r
+ 2r2Re||vp||||vq|| + TEZRZHUp”HUq”-

To bound the first term, we use that ¢ € Py, i.e., [|vg]|> < § |wg||. To bound the second one,
we use that ||wg|| < R since g € B. In the fourth term, we use that p € $,/ through (4.19).
This gives

R R
Ap(q) = —llwgll + Rllwgll —2(1 — &) [vp llvgll — 21 —S)ﬁ(\/ L+ 4a —1)|lwg

2
.
+ 212 Relvp | [lvg]l + T&’ZRZHUP””UC]”

1 V1 +4a2 -1
— R||wq||(—, +1-—(1 —e)—,)
a a
}’2
+ llvplllvg | (—2(1 — &)+ 2r’Re + ZezR2)

<0
by the choice of ¢. m)
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Finally, we consider the case where p, g € $y \ Pu.

Lemma 4.23. Let a = 0.9 and a’ = 1.9. There exists a constant § > 0 such that if
D.q € Pa \ Pur are such that L(vp,vg) < § and L(wp, wy) < 6, then g € By(p,d(0, p)) or
P € Bi(q.d(0,9)).

Proof. The values of a and a’ have been chosen in such a way that

1 V1+4a?2—-1 2 [J1+4a2—-1 1 1 Vda?2+1-1
- Y /<0 and — - —— <.
2 4 a’ 2 2a 2 a
Hence, we can fix some & > 0 so that
1 V1+4+4a? -1 1 [V1+4a?-1 2
LR e [ T T 0 Re+ 2R < 0
2 4 a’ 2 4
and
1 1 Va2 +1-1
2—+——(1—8)L<0.
a

Let p,q € Py \ Por. Assume that L(vp,vy) <6 and L(wp, wy) < § where 6 > 0 is
given by Lemma 4.9, i.e., is such that (4.10), (4.11) and (4.12) hold for our choice of ¢. Ar-
guing as in the proof of Lemma 4.21, one can assume with no loss of generality that p € 0B
and g € B.

Let us prove thatg € B;(p, 1). By Lemma 4.7, this is equivalent to 4, (g) < 0. By (4.15),
we have

1 1 1 1
Ap(q) < §||Uq||2 + §||Uq||2 + §||wq||2 + E”“’q”2 —2(1 = &)||vpllllvgl

2
-
—2(1 = &)|wp | gl + 21 R?e||vg | + 782R3llvqll-

To bound the first term, we use that ¢ € Py, i.e., [|vg]|> < % |wg||. To bound the second term,
we use that ¢ € B, hence [|vg|| < R. To bound the third term, we use that g & $,/ through
both (4.18) and the fact that ||wg|| < ‘I’Q/llvq||2 < a'||vg |- In the fourth one, we use that ¢ € B,
hence ||wy|| < R. In the fifth term, we use that p ¢ £, through (4.20) and in the sixth one we
use that p € $, through (4.19). This gives

R R
Ap(a) = 5 Nl + 3 gl + 15 (/T + 4 = Dalog ] + 3 g

JVi+4
20— R A 20— K (Va1 1)

r
+2r* R2|lvg | + 782R3||vq||

A

1 V1+4d?-1 1 [V1+44a?—1
= Rlogll 2+ Y2770 (g VIHda2 =1 e g2
2 4 a 2 4
1 1 Vda?z +1-1
# Rl +5 -0 -0 )
<0
by the choice of €. |
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274 Le Donne and Rigot, BCP on graded groups

We are now going to conclude the proof of Theorem 4.5.

Proof of Theorem 4.5. Let a = 0.9, a’ = 1.9 and let § > 0 be small enough so that
Lemmas 4.21, 4.22 and 4.23 hold. Let N be an upper bound of the maximum number of vectors
in a max(r, n — r)-dimensional Euclidean space that pairwise make an angle larger than §/2.
Such a bound exists and is finite by compactness of finite-dimensional Euclidean spheres.

We are going to prove that a family of Besicovitch balls in (IF,5, d) cannot have a car-
dinality larger than 3N 2. This will imply that WBCP, and hence BCP by Corollary 3.8, holds
in (F2,d). Let {Bg(pi,ri)}ier be a family of Besicovitch balls. Using left-translations and
shrinking balls if necessary, one can assume with no loss of generality that0 € ();c; Bg(pi. i)
and r; = d(0, p;) for all i € I. If Card I > 3N?2, by the pigeonhole principle one can find
Iy € I with Card Iy > Card//N > 3N such that Z(vp;,vp;) < 6 for all i, j € I;. Then,
once again by the pigeonhole principle, one can find I/, C I; with Card I, > Card I /N > 3
such that Z(wp,, wp;) < 4 for all i, j € I>. Finally, there exists at least two distinct points p;
and p; with i, j € I, that both belong either to £y, or Py \ Py or . Then Lemmas 4.21,
4.22 and 4.23, lead to a contradiction since by the definition of a family of Besicovitch balls,

we have p; € By (pj.rj) = Bg(p;.d(0, p;)) foralli # j € I. D

4.2. Stratified groups of step 2. This subsection is devoted to the proof of Corol-
lary 4.2 in the case of stratified groups of step 2 as restated below.

Theorem 4.24. Let G be a stratified group of step 2. There exist homogeneous distances
on G for which BCP holds.

Proof. Let G be a stratified group of step 2 and rank  whose Lie algebra is endowed
with a given stratification g = V; @ V5. Let (Y1, ..., Y;) be a basis of Vj. Let [F;; be the free-
nilpotent Lie group of step 2 and rank r. With the conventions and notations of Section 4.1,
let ¢ : ;2 — g denote the unique morphism of graded Lie algebras such that ¢ (X;) = Y; for
i =1,...,r, which is surjective. Let ¢ : F,, — G denote the unique Lie group homomor-
phism such that ¢, = ¢. Let d be a homogeneous distance on [F,, for which BCP holds. Such
distances exist by Theorem 4.5 and [15] (see also Example 2.23). Recall also that homogeneous
distances are continuous. It follows from Proposition 3.21 that

(4.25) dg(p.q) :=d(e~ ' ({p}). ¢~ (g}

defines a homogeneous distance on G and
¢ : (Fr,d) — (G,dg)

is a submetry. To conclude the proof, the fact that WBCP holds on (G, dg ) follows from Propo-
sition 3.20. Hence BCP holds on (G, dg) by Corollary 3.8. m]

Remark 4.26. More generally, arguing as in the proof of Theorem 4.24, one gets that,
if d is a continuous homogeneous quasi-distance satisfying BCP on [;5, then (4.25) defines
a continuous homogeneous quasi-distance for which BCP holds on the stratified group G
of step 2 and rank r. In particular, all homogeneous quasi-distances on [F,, whose unit ball
centered at the origin are given by (4.4) are continuous and hence induce on G continuous
homogeneous quasi-distances for which BCP holds.
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Remark 4.27. It can be checked that if d is a homogeneous quasi-distance on [F,,
whose unit ball centered at the origin is given by (4.4) for some R > 0, then the unit ball
centered at the origin for the quasi-distance dg given by (4.25) on the stratified group G of
step 2 can be described as a Euclidean ball centered at the origin in exponential coordinates
of the first kind relative to a suitable choice of basis of g adapted to its stratification. More
precisely, one can find a basis (£, ..., Z,) of V; and a basis (Z;+1, ..., Zy) of V3 such that,
in exponential coordinates of the first kind relative to the basis (Z1, ..., Z,) of g, we have

n
By, (0,1) = {peG:prng}.

i=1

One can reasonably expect that for any choice of basis of g adapted to its stratification, homo-
geneous quasi-distances on G whose unit ball centered at the origin is a Euclidean ball in
exponential coordinates of the first kind relative to the chosen basis satisfy BCP. This would
require technical modifications of our arguments and we do not wish here to go further about
these technicalities.

4.3. Arbitrary groups with commuting different layers. We conclude in this section
the proof of Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1 and Corollary 4.2. Let G be a graded group with commuting dif-
ferent layers. By Proposition 2.15, G can be written as a direct product of powers of stratified
groups of step < 2.

For an Abelian Lie group with trivial associated positive grading (i.e., stratified of step 1),
the Euclidean distance (and more generally any distance induced by a norm) is a homogeneous
distance that satisfies BCP. For a stratified group of step 2, we know by Theorem 4.24 that there
exist homogeneous distances that satisfy BCP. Next, if d is a homogeneous distance for which
BCP holds on a graded group, then d tisa homogeneous quasi-distance on its 7-power (see
Example 2.24) that satisfies BCP by Proposition 3.14. In addition, since d is a distance, it is
continuous (see Corollary 2.28), and hence d 1/t {5 a continuous quasi-distance.

Hence, on each factor of the decomposition of G, there exist continuous homogeneous
quasi-distances for which BCP, and hence WBCP, holds. Then Theorem 4.1 follows from
Theorem 3.16.

Note that if G is a homogeneous group, all #-powers in its decomposition as a direct
product are ¢-powers with ¢ > 1. This implies the existence of homogeneous distances on G
for which BCP holds and proves Corollary 4.2. m|

5. Graded groups with two different layers not commuting

In this section we consider graded groups for which there are two different layers of the
associated positive grading of their Lie algebra that do not commute, and we consider a more
general class of quasi-distances defined as follows.

Definition 5.1 (Self-similar quasi-distances on graded groups). Let G be a graded group
with associated dilations (83)>¢. We say that a quasi-distance d on G is self-similar if it is

Brought to you by | Jyvaskylan yliopiston kirjasto / Jyvaskyla University Library
Authenticated
Download Date | 1/30/20 2:08 PM



276 Le Donne and Rigot, BCP on graded groups

left-invariant and one-homogeneous with respect to some non-trivial dilation, i.e., if there exists
A >0, # 1, such that

d(8y(p).dxr(q)) = Ad(p.q)
forall p,g € G.

Note that d(8,(p),82(q)) = Ad(p,q) implies d(§,x(p),8;x(q)) = Akd(p,q) for all
k € Z. In particular, the previous definition is equivalent to the existence of some 0 < A < 1
such that d (8« (p), 8,k (q)) = Akd(p.q) forall p,q € G andall k € Z.

We prove the following result.

Theorem 5.2. Let G be a graded group and let @,. Vi be the associated positive
grading of its Lie algebra. Assume that [Vy, V| # {0} for some t # s. Let d be a self-similar
quasi-distance on G that is continuous with respect to the manifold topology. Then WBCP, and
hence BCP, does not hold in (G, d).

Remark 5.3. Although we will not use it here, it can be noticed that self-similar quasi-
distances on graded groups are doubling, hence BCP and WBCP are equivalent in this context
(see Proposition 3.7).

Since homogeneous quasi-distances are in particular self-similar, we get the following
corollary.

Corollary 5.4. Let G be a graded group whose associated positive grading of its Lie
algebrais given by @, o Vi. Assume that [Vy, V] # {0} for somet # s. Let d be a continuous
homogeneous quasi-distance on G. Then BCP does not hold in (G, d).

Homogeneous distances on homogeneous groups are continuous with respect to the
manifold topology, recall Corollary 2.28. Hence, in such a case, one can drop the continuity
assumption and we get the following corollary.

Corollary 5.5. Let G be a homogeneous group whose associated positive grading of
its Lie algebra is given by EBtzl Vi. Assume that [V, Vs] # {0} for some t # s. Let d be
a homogeneous distance on G. Then BCP does not hold in (G, d).

The proof of Theorem 5.2 is divided into two steps. First, we prove that there does
not exist continuous self-similar quasi-distances that satisfy WBCP on the non-standard
Heisenberg groups, see Theorem 5.6. Next, we deduce Theorem 5.2 from Theorem 5.6 together
with Proposition 2.18 and the use of submetries via a generalization of Proposition 3.21 to
continuous self-similar distances, see Proposition 5.26. Let us stress that one of the main dif-
ferences between homogeneous and self-similar quasi-distances are topological issues that we
will explain in Section 5.3.

5.1. Non-standard Heisenberg groups. This subsection is devoted to the proof of
Theorem 5.6 below. To simplify notations, we denote here by [) the first Heisenberg Lie
algebra, by (X, Y, Z) a standard basis of fj), and by H the first Heisenberg group. Recall from
Example 2.11 that for o > 1, the group H is called the non-standard Heisenberg group of expo-
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nent @ when considered as a graded group whose Lie algebra is endowed with the non-standard
grading of exponent «, i.e., the grading given by

h=W & We ® Wyy1,

where Wy := span{X}, Wy := span{Y}, Wy := span{Z}, and where the only non-trivial
bracket relationis [X, Y] = Z.

Theorem 5.6. Let o > 1. There exists no continuous self-similar quasi-distances for
which WBCP holds on the non-standard Heisenberg group of exponent o.

In this statement, continuity of self-similar quasi-distances means continuity with respect
to the manifold topology. We refer to Section 5.3 for the study of topological properties of
self-similar quasi-distances.

From now on in this subsection, we fix @ > 1. Following Example 2.11, we use exponen-
tial coordinates of the first kind, we write p € H as p = exp(x X +yY 4z Z) and we identify p
with (x, y, z). Recall that dilations (6 )30 relative to the non-standard grading of exponent «
are given by

(5.7) Su(x.y.2) = (Ax. A%y, A% 1z),

To prove Theorem 5.6, we argue by contradiction. We let d be a self-similar quasi-
distance on the non-standard Heisenberg group of exponent «. Hence d is left-invariant and,
for some fixed 0 < p < 1, we have

(5.8) d(8,(p). 8,k (q)) = p* d(p.q)

forall p,q € Handall k € Z.

Next, we assume that d is continuous on H x H with respect to the manifold topology.
We set B := B;(0, 1). The continuity of d implies in particular that B is closed and that its
boundary 0B is givenby 0B = {p € H : d(0, p) = 1}.

Finally, arguing by contradiction, we assume that WBCP holds on (H, d).

To get a contradiction, we first prove a series of lemmas, Lemma 5.9 to Lemma 5.22
below. The final conclusion will follow from these lemmas and is given at the end of this
subsection.

First, the assumption about the validity of WBCP has the following consequence.

Lemma 5.9. Forall p € B and all 1> 0, there exists a constant 0 < A < A such that
p-8(p~") e B.

Proof. We first prove that for all points p € 0B, there exist arbitrarily large values of
J such that d(p,$8,; (p)) < 1. By contradiction, assume that one can find p € 0B and k > 0
such that d(p,$8,;(p)) > 1 forall j > k. For [ > 0, set r; := o'* and ¢; 1= 8r,(p). We have
d(0,g;) = r; by (5.8) hence 0 € ();- Bg(g;. 7). We also have

d(qj.q1) = d@r;(p).ér,(p)) = rj d(p,dpu—px(p)) > rj = max(r;, ry)

forall0 < j < [.Hence q; & By(q;,r;) forall j # [. It follows that for all finite set / C N,
{Ba(qj,rj)}jes is a family of Besicovitch balls, which contradicts the validity of WBCP
in (H, d).
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To conclude the proof, let p € 0B. Then p~! € 0B by left-invariance of d and it follows
thatd(p~—!,$ i ( p~ 1) < 1 for arbitrarily large values of j. Hence, by left-invariance of d, we
get that p - §; (p~!) € B for arbitrarily small values of A. If p belongs to the interior of B, the
claim follows from the continuity of the map A — p - §; (p~1). m]

As a consequence of Lemma 5.9, we prove in Lemma 5.10 a geometric property of the
unit ball B. Namely, starting at a point p € 0B with x, # 0, there is segment that is all con-
tained in B. This segment is a part of the flow line of the vector field — X starting at p € 0B.

Lemma 5.10. Forall p = (xp, yp,zp) € 0B with x, # 0, the segment

Gy = {((1 —)Xp. VpZp + 1 x”zyp) 1 e o, 1]}

is contained in B.

Proof. The segment G, is a part of the flow line of the vector field —X . For technical
convenience, we will thus use in this proof exponential coordinates of the second kind in which
X is a constant vector field. Namely, for p € H, we write

p = exp(x3(p)Z) - exp(x2(p)Y) - exp(x1(p)X)

and we identify p with [x1(p), x2(p), x3(p)]. The relation between exponential coordinates of
the second kind [x1(p), x2(p), x3(p)] and exponential coordinates of the firstkind (xp, yp, zp)
when p is written as exp(x, X + y,Y + z,Z) (which are used elsewhere in this subsection) is
given by x1(p) = xp, x2(p) = yp and x3(p) = z, + xpyp/2. In exponential coordinates of
the second kind, the group law is given by

x1(p-p) =x1(p) + x1(p),
x2(p - p') = x2(p) + x2(p'),
x3(p - p') = x3(p) + x3(p") + x1(p) x2(p"),

the vector field X is the constant vector field X = 0y, , and the segment 6, writes as

6p = {[(1 = )x1(p), x2(p), x3(p)] : ¢ € [0, 1]}.

Let 60 € (0,77/2) be fixed. For p = [x1(p), x2(p), x3(p)] with x1(p) > 0, we define
Cp.¢ as the portion of the half-cone with vertex p, axis {exp(—x1X) : x; > 0} and aperture 26
contained in the half space {x; > 0}. If p = [x1(p), x2(p), x3(p)] with x1(p) <0, then C,, g
is defined as the portion of the half-cone with vertex p, axis {exp(x; X); x; > 0} and aperture
20 contained in the half space {x; < 0}. Namely, if x;(p) > 0,

Cpo :={[x1.x2,x3] € H:0 < x1 < x1(p) and
((x2 — x2(p)* + (x3 — x3(p)H V2 < (x1(p) — x1) tan 0}
and, if x;(p) <0,

Cpo :={[x1.x2,x3] € H: x1(p) < x1 <0and
((x2 — x2(p)? + (x3 — x3(p)HV? < (x1 — x1(p)) tan 6}.
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For p € H, we set
yp(A) == p-Su(p7 ).

Noting that, in exponential coordinates of the second kind,

p~h = [=x1(p). —x2(p). —x3(p) + x1(p)x2(p)].

we have

x1(yp(A) = (I = A)x1(p),
(5.11) x2(yp(1)) = (1 = A%)x2(p),
3(rp(V) = (1= 2% Hxs(p) + AT =A%) x1(p)x2(p).
If x1(p) # 0, we get

d
T M=o = —x1(p)X

hence y,(A) € Cp g for all A > 0 small enough. Since C, g9 C C, ¢ for all g € C, g with
x1(q) # 0, it follows that, for all ¢ € C, g with x1(g) # 0,

(5.12) Yq(A) € Cp g forall A > 0 small enough.

For p € H with x1(p) # 0 and 6 € (0, 7/2) fixed, one can find L, g > 0 such that all
curves (y4(A))aefo,1] for ¢ € Cp g are L, g-Lipschitz. This can be easily checked from the
explicit expression of y,4(A), see (5.11).

For ¢ € [0, 1], we define £, g(t) as the intersection of C, ¢ with the two-dimensional
plane {[x1, x2, x3] € H;x1 = (1 —#)x1(p)},

E,g(t) :=CppoN{lx1,x2,x3] € H:x1 = (1—1)x1(p)}.
Let p € 0B with x1(p) # 0,5 € (0,1) and 6 € (0, r/2) be fixed. We first prove that
E, ()N B # 0.
Weset L := (1 — S)_le’g and
I :={t €0,s] : there exists y : [0,7] — C, ¢ L-Lipschitz, y(0) = p, y(t) € E, ¢(t) N B},

and we actually prove that s € [ from which the claim follows.

First, 0 € I hence I is nonempty. Second, C, ¢ and E, ¢(f) N B being closed, I is
closed by the Ascoli—Arzela Theorem. Hence, we have sup I € I. By contradiction, assume
that z ;= sup / <. Since ¢ € I, one can find a L-Lipschitz curve y : [0, 7] — C, g such that
y(0) = p and y(t) € E, () N B. Set ¢ := y(t). Since g € Cp, g with x1(g) # 0, it follows
from (5.12) that y4(A) € Cp ¢ for all A > 0 small enough. Since ¢ € B, it follows from Lem-
ma 5.9 that y,(A) € B for arbitrarily small positive values of A. Hence, one can find A > 0
such that y4(A) € Cpg forall 0 < A < A and Yq (A) € B. It follows that one can find n > 0
such that the curve ¢ defined on [0, + 5] by

v () ifu e0,1].

c(u) = u—t\ .
va\ 1, ifueltt+n),
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satisfies ¢([0,7 +n]) C Cp 9 and c( + 1) € B. Since y4 is L, g-Lipschitz, the curve ¢ is
(1-n"'L p,6-Lipschitz, and hence L-Lipschitz, on [, + 7]. Finally, by the definition of y,
(recall (5.11)) and since x1(¢) = (1 —)x1(p), we have

xi(c(t +n) = (1 - 1_Z)m(q) =1 =@+n)x1(p)

and hence c(¢ + 1) € E, ¢(¢ + n). This shows that z + 1 € I, which gives a contradiction.
Hence, for all points p € 0B with x1(p) # 0 and s € (0, 1), we have E, g(s) N B # @
for all 8 € (0,/2). Letting 6 | 0 and since B is closed, it follows that

[(1 —=s)x1(p). x2(p). x3(p)] € B

for all s € (0,1). Using once again the fact that B is closed, we finally get that the closed
segment 0, is contained in B as wanted. O

Lemma 5.13 to Lemma 5.20 below are successive consequences of Lemma 5.10. In
addition to Lemma 5.10, the only properties used to prove these lemmas are the left-invariance

of the quasi-distance d and topological properties of the unit ball B.

Lemma 5.13. Forall p = (xp, yp,zp) € 0B with x, # 0, the segment

is contained in B.

Proof. By the left-invariance of d, we have ¢! € B forall ¢ € B. Then it follows from
Lemma 5.10 that for p € 0B with x, # 0,0, = (6'17—])_1 C B. o

Given p = (0, yp, zp) € H and w > 0, we set
D(p.w) :={(—t,yp.zp —tw +u) :t >0, u >0}

It is the two-dimensional region in the plane {y = y,} above the half-line starting at p with
direction (—1, 0, —w).

Lemma 5.14. Let y > 0 be such that (0,y,z) € B for some z > 0. Furthermore, set
Z:=max{z >0:(0,y,z) € B} and p := (0,5,Z2). Then p € 0B and for all 0 < w <y/2,
we have

(5.15) D(,w)N B = {p}.

Proof. By contradiction, assume that there is some pointg € D(p,w) N B with g # p.
Then, by the definition of D(p, w), we have ¢ = (—t,7,Z — tw + u) for some u, ¢ > 0. Since
g # p and by the choice of z, we have ¢ > 0 and hence x; = —¢ # 0. By Lemma 5.13, it
follows that o, C B. In particular, the end point (0,y,Z —tw + u + ty/2) of o4 belongs to
B. By the choice of z, we must then have —tw + u + ¢ty /2 < 0, and hence

t(w—z)zuzo.
2

This contradicts the assumption 0 < w < /2 and concludes the proof. m)
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Given p = (0, yp,zp) € H with y,,z, > 0and v > 0, we set
S(p,v) :={0,1—=5)yp,zp +sv+u):sel0,1], u >0}

It is the two-dimensional region in the plane {x = 0} above the segment from the z-axis to p
with slope —v/yp.

Lemma 5.16. There exists a point p = (0, yp,zp) € OB with y,,z, > 0 and v > 0
such that

S(p.v) N B ={p}
and such that, for all0 <y < y,, (0,y,z) € B for some z > 0.

Proof. The only property of the unit ball B used in this proof is the fact that B is
a compact neighborhood of the origin. Let pg = (0, yo, zo) With yg, z¢ > 0 be a point in the
interior of B such that (0, y,z) € Bforall0 <y < ypandall0 < z < zg. Forqg = (0, yq4.,z4)
with yg,z4 > 0, let
1(q) :=1{(0,y.29) : 0= y = yq}

denote the horizontal segment from the z-axis to ¢ and let
I+(Q) = {(O,J’azq +u) OE y fyq» u >O}

denote the two-dimensional infinite rectangular strip strictly above /(g) in the plane {x = 0}.
Set
Z:=inf{z > zo : I7((0, y9.2)) N B = @}.

Since B is bounded and pg belongs to the interior of B, we have zg <z < +00. We set
7 :=(0,y0.,%Z). We have I *(g) N B = @ and, since B is closed, I(g) N B # @.

If there is some point p = (0, y,,Z) € I(g) N B with y, > 0, then, for any v > 0, we
have S(p,v) \ {p} C 17(g) hence S(p,v) N B = {p}. Note that p € dB.

Otherwise I(g) N B = {(0,0,2)}. For g = (0, yo, z4) with z4 > 0, let

J(q) = 0. (1 =) yo.2q +1(Z —z0) : 1 € [0, 1]}
denote the segment in the plane {x = 0} from the z-axis to ¢ with slope —(Z — z¢)/yo and let
JT(q) := {0, (1 — 1)y0.2qg +1(Z—2z9) +u:t €[0,1], u > 0}
the two-dimensional region strictly above J(g) in the plane {x = 0}. Set
2 :=inf{z > zo : JT((0, yo,2)) N B = B).

Arguing as above, we have zg < 2 <Z. We set § := (0, yo,2). We have JT(§) N B = @ and
J(@) N B # @. Since Z — z¢p > 0, J(q) meets the z-axis at (0,0,Z 4+ Z — z9) which belongs
to 17 (g). Hence it cannot belong to B and there is some point p = (0, y,,zp) € J(§) N B
with y, > 0. Note that z,, > 0 and that p belongs to 0B. Then for any v > (Z — z9) yp /Yo, We
have S(p,v) \ {p} C JT(§) hence S(p,v) N B = {p}.

Finally, in both cases, we have y, < y¢. Then, forall0 <y < y,,wehave 0 <y < yo
and, by the choice of pg, we get that (0, y,z) € B forall 0 < z < zg. In particular, (0, y,z) € B
for some z > 0, which concludes the proof. o

Brought to you by | Jyvaskylan yliopiston kirjasto / Jyvaskyla University Library
Authenticated
Download Date | 1/30/20 2:08 PM



282 Le Donne and Rigot, BCP on graded groups

Lemma 5.17 below is a consequence of Lemma 5.14 together with Lemma 5.16. Given
p = (0,yp,zp) € Hwith y,,z, > 0and v > 0, we set

t(1—=5)yp
4

It is the three-dimensional region obtained by the following union. For s € [0, 1], let

R(p,v) = {(—Z,(l —8)Yp.Zp + SV — +u) cu,t>0,s €0, 1)}.

ps = (0,(1 =5)yp, zp + sv).

Note that the set {ps : s € [0, 1]} is the lower boundary of S(p, v). Then, for s € [0, 1), the set
D(ps, (1 —s)yp/4) is the intersection of R(p, v) with the plane {y = (1 —s)y,} and we have

R(p.v)= |J D(ps,(1—9)%).

s€[0,1)

Lemma 5.17. There exists a point p = (0, yp,zp) € 0B with yp,zp, > 0 and v > 0
such that R(p,v) N B = {p}.

Proof. Let p = (0, yp,zp) € 0B with yp,z, > 0 and v > 0 be given by Lemma 5.16.
Since S(p,v) N B = {p}, we have z, = max{z > 0: (0, y,, z) € B}. Then it follows from
Lemma 5.14 that

(5.18) D(p.22)N B = {p}.

Recall that D(p, yp,/4) is the intersection of R(p, v) with the plane {y = y,}.

Fors € (0, 1), setgs := (0, (1—5)yp, z5), where zg := max{z > 0: (0, (1—s)yp,z) € B}.
Note that z, is well defined since for all s € (0, 1), we have (0, (1 —s)y,,z) € B for some
z > 0 by Lemma 5.16. We have g5 € 0B and it follows from Lemma 5.14 that

D(gs, (1 =5)%) N B = {gs}.

On the other hand, g; & S(p. v) since S(p,v) N B = {p} and hence z; < z, + sv. It follows
that, for all s € (0, 1),

D(ps,(1=5)7) N B C (D(gs, (1 —5)%) N B) \ {gs},
where pg := (0, (1 —)yp.zp + sv). Hence,
(5.19) D(ps.(1—5)22)N B = 0.
Recalling that D(ps, (1—5)yp/4) is the intersection of R(p, v) with the plane {y = (1—5)y,},
the lemma finally follows from (5.18) and (5.19). D

Lemma 5.20. There exists a point ¢ = (0, y4,z4) € 0B with y4,z4 <0 and v > 0
such that R(q,v) N Bg(q,1) = {0}, where

. 13—
G20 R(g.v) = {(—t,syq,sv + % n u) w0 >0, s €0, 1)}.

Proof. Let p = (0,y,,zp) € 0B with y,,z, > 0 and v > 0 be given by Lemma 5.17
and set ¢ := p~!. By left-invariance of d, we have

q-R(g~".v)NBa(q.1) = p~' - (R(p.v) N B) = {0}.
Noting that g - R(g~!,v) = p~! - R(p,v) = ﬁ(q, v), we get the required conclusion. m]
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The next lemma gives a geometric property of dilations of the region ﬁ(q, v).
Lemma 5.22. Letq = (0,y4,z4) € Hwith yg,z4 <0, v > 0and let ﬁ(q, v) be given
by (5.21). Then, for all § = (x4, y4,24) with x5, s < 0, there exists A > 0 such that, for all
A> A, g€ (R(q,v)).

Proof. Let g = (x4, y4.,25) With x5, y5 < 0 be given. To prove that § € §; (R(g.v)),
we have to find# > 0, u > O and s € [0, 1) such that

)’(\:q - _tA.,
N o
(5.23) Vg = A%syq. X
t —_
fq = A’Ol‘f‘l(sv _|_ % _|_ u)
From the first equation, we get = —X;/A > 0 since X; < 0. From the second equation, we

gets = )L_"‘)?qu_l. We have s > 0 since y; < 0and y,; < 0. We also have s < I forallA > 0
large enough. The third equation gives

1B —=9)yg

— A,_a_l,\
U — sV + Zq
— YaYq (3 - )r“y—q) e L
4x Yq Yq

B 3%qyq 1 1

=4 1 + 0( )L)'
It follows that u > 0 for A > 0 large enough. All together, we get that, for all A > 0 large
enough, one can find ¢ > 0, u > 0 and s € [0, 1) such that (5.23) holds as wanted. O

We are now going to conclude the proof of Theorem 5.6.

Proof of Theorem 5.6. Recall that we are arguing by contradiction. We consider a con-
tinuous self-similar quasi-distance d on the non-standard Heisenberg group of exponent o and
we are assuming that d satisfies WBCP. To get a contradiction, we are going to construct with
the help of Lemma 5.20 and Lemma 5.22 families of Besicovitch balls with arbitrarily large
cardinality.

Let us choose a point ¢; = (x1, y1,2z1) with x1, y; < Oandsetry := d(0,¢1). By induc-
tion assume that ¢; = (X1, ¥1,21),---,9m = (Xm, Ym, Zm) have already been chosen so that
Xi,yi <0 foralli =1,...,m and so that {Bg(g;,r;)}7L, is a family of Besicovitch balls
where r; := d(0, g;).

Let ¢ = (0,y4,24) € 0B with y;,z4 <0 and v > 0 be given by Lemma 5.20. For all
k > 1, we have

8,k (R(g,v)) N By (8,-x(q). p~%) = 8 -1 (R(q.v) N Ba(g. 1)) = {0}.

On the other hand, it follows from Lemma 5.22 that g; € §,-« (Ié(q, v))foralli =1,...,m
and all k > 1 large enough. Hence g; & B4 (8,-+(q), p*)foralli =1,...,mandall k > 1
large enough.
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Next, by continuity of d with respect to the manifold topology, we have
lim  d(8,x(gi).q) = d(0,q)
k—+o00
foralli = 1,...,m. It follows that
lim d(qi,8,-x(q)) = lim p*d(8,x(q),q) = +o0
k—+o00 k—+o00
foralli = 1,...,m. Hence we can also choose k > 1 large enough so that

d(qi.8,c(q)) > ri

foralli =1,...,m.

All together, we have proved that we can find an integer k > 1 large enough so that the
balls By(q1,71), .- Ba(qm,m), Ba(8,~x(q), p %) form a family of Besicovitch balls. We
have

8ok (q) = (0. p7 ¥ yg p~H@* Dz
with p—ke Yq <0, and p* =d,s o~ (¢)). Then, using Remark 5.24 below, we can choose
qm+1 = (Xm+1, Ym+1, Zm+1) With Xpmy1, ym+1 < O close enough to §,-« (¢) so that, setting
Fm+1 := d(0,gm+1), the family {By(q;, ri)};”_Jrl1 is a family of Besicovitch balls. m]

Remark 5.24 (Being a family of Besicovitch balls is an open condition). Let us assume
that {Bg(g;.r;)}7L, is a family of Besicovitch balls, where r; := d(e, ¢;) in a graded group
G with identity e and equipped with a continuous self-similar quasi-distance d. One can
find Uy, ..., U, open neighborhoods of ¢,...,¢m, respectively, such that, for all points
(@} qp) € Ur X --- x Up, {Bg(q;,r})}7-, is a family of Besicovitch balls. Here we have
set 1/ :=d(e,q;). Indeed, we have d(q;.q;) —d(e,q;) > 0 for all i # j. By the continu-
ity of d on G x G with respect to the manifold topology, one can find Uy,..., U, open
neighborhoods of ¢1, ..., ¢m, respectively, such that, if (¢].....q,,) € Up x - X Up, then
d(q;, qj’.) —d(e,q;) > Oforalli # j.Hence {Bg(g;,r/)}7, is a family of Besicovitch balls.

5.2. Topological properties of self-similar distances. As already mentioned, one of
the main differences between self-similar and homogeneous quasi-distances are their topolog-
ical properties. One cannot extend Proposition 2.26 to self-similar quasi-distances. There are
indeed examples of self-similar distances on homogeneous groups such that the distance from
the identity e is not continuous at e with respect to the manifold topology. Hence the topology
induced by such self-similar distances does not coincide with the manifold topology.

One such example is the following. We consider R equipped with the usual addition as
a group law and the dilations §, (x) := Ax. We take (v;);es a basis of R viewed as a vector
space over Q and we choose it in such a way that some sequence v;; converges to 0 as j goes
to +oo for the usual topology of R. For x € R, we write x = ) _ x;v;, where x; € Q and all
but finitely many of the points x; are 0 and we consider the left-invariant distance d such that
d(0,x) = )_ |x;|. This distance is Q-homogeneous, i.e., d(§4(x), §4(y)) = gd(x, y) for all x,
y € R and all ¢ € Q, and hence self-similar. We have d(0,v;) = 1 foralli € I. In particular,
d(0,v;;) = 1 for all j whereas v;; converges to 0 as j goes to +oo for the usual topology
of R. Hence d(0, - ) is not continuous at 0 with respect to the manifold topology on R.

However, with the additional assumption of the continuity of d(e, -) at e with respect to
the manifold topology, one can extend Proposition 2.26 in the following way.
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Proposition 5.25. Let G be a graded group with identity e. Let d be a self-similar
quasi-distance on G. Assume that d (e, -) is continuous at e with respect to the manifold topol-
0gy. Then the topology induced by d coincides with the manifold topology. Moreover, a set is
relatively compact if and only if it is bounded with respect to d.

Proof. First, the fact that d(e,-) is assumed to be continuous at e with respect to the
manifold topology 7, implies that 7; C 77, where J; denotes the topology induced by d .

Then the proof can be completed with technical modifications of the proof of Propo-
sition 2.26 that we briefly sketch below. In the rest of this proof, the convergence of some
sequence of points means convergence with respect to the manifold topology.

Let 0 < A < 1 be such that d(6;(p),08,(q)) = Ad(p,q) for all p, g € G. Let (py) be
a sequence such that d(e, py) goes to 0 and let us prove that p; converges to e. Using the
conventions and notations introduced in the proof of Proposition 2.26, we argue by contra-
diction and assume that, up to a subsequence, there exists & > 0 such that || pg || > ¢ for all k
(see (2.27) for the definition of || - ||). For each fixed k, ||8;:(pg)| converges to 0 when / goes
to +00. Hence one can find a sequence of integers [ > 1 such that, for all &,

1850 (PNl < & < 18301 (pr)I-

Then

n n
18,06 (pi) | = D A% | Pi(p)] = A% D 24D | Py (p)] = A%)|85 001 (pr) | = eA,
i=1 i=1

where @ := max;<;<p d;. Hence
e < 18,4 (Pl <&

for all k. By compactness with respect to the manifold topology of {p € G : skaif lpll < e},
we get that, up to a subsequence, d,, (px) converges to some p € G such that eA% < ||p|| < e.
In particular, p # e and d(e, p) > 0. On the other hand, we have

0 <d(e,p) = C(d(e,8;1 (pr)) +d(S4 (px). p))
= C(\kd(e, pr) +d(e, p™' 8,1 (1))
< C(d(e. px) +d(e.p~" - 8,1 (pr))).

Since d(e, pr) converges to 0 and since d(e, -) is assumed to be continuous at e with respect
to the manifold topology and p~! - § 2k (px) converges to e, we get that the last upper bound
in the above inequalities goes to 0, which gives a contradiction. It follows 7, C 75 and, all
together, we get that 7, = 7.

The proof that a set is relatively compact if and only if it is bounded with respect to d
can be achieved with similar technical modifications of the arguments of the proof of Proposi-
tion 2.26. |

Proposition 5.25 implies the following generalization of Proposition 3.21 to self-similar
quasi-distances. In the statement and the proof of Proposition 5.26 continuity means continuity
with respect to the manifold topology.
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Proposition 5.26. Let G and G be graded groups with graded Lie algebra § and g,
respectzvely Assume that there exists a surjective morphism of graded Lie algebras ¢ : § — g.
Let ¢ : G — G denote the unique Lie group homomorphism such that ¢ = ¢ and let d be
a continuous self-similar quasi-distance on G. Then

d(p,q) = d @~ dph. ¢~ ()

defines a continuous self-similar quasi-distance on G and ¢ : (G d ) = (G, d) is a submetry.

Proof. One proves that d is a self-similar quasi-distance on G and that
¢:(G.d) — (G.d)

is a submetry with the same arguments as in the proof of Proposition 3.21. To prove that d is
continuous on G x G, we first prove that d(e, -) is continuous at e. Here e denotes the iden-
tity in G and below ¢ will denote the identity in G. Let (pr) be a sequence converging to e
(with respect to the manifold topology). Since ¢ is an open map and since é € ¢~ !({e}), one
can find a sequence pi € ¢ 1({pk}) converging to é. We have d (e, pi) < d(e Pr). Since d is
assumed to be continuous, d (e, pr) converges to 0. It follows that d (e, pr) converges to 0 as
well and hence d(e,-) is continuous at e. The proof can now be completed using Proposi-
tion 5.25 and following the arguments of the proof of Proposition 3.21. O

5.3. Arbitrary graded groups with two different layers not commuting. We con-
clude in this subsection the proof of Theorem 5.2.

Proof of Theorem 5.2. Let G be a graded group with associated positive grading
g = @,- Vs of its Lie algebra. Let ¢ < s be such that [V;, V5] # {0}. Let d be a continu-
ous self-similar quasi-distance on G. We argue by contradiction and assume that WBCP holds
on (G,d).

By Proposition 2.18, there exists a graded subalgebra § of g and a surjective morphism
of graded Lie algebras from g onto §j, where } is the z-power of the non-standard Heisenberg
Lie algebra of exponent s/¢.

We denote by G = exp(g) the graded group whose Lie algebra g is endowed with the
positive grading induced by the given positive grading of g. The restriction of d to G, still
denoted by d, is a continuous self-similar quasi-distance on G. Since we assume that WBCP
holds on (G, d), WBCP also holds on (é, d) by Proposition 3.15.

Next, it follows from Proposition 5.26 that there exists a continuous self-similar quasi-
distance dg on the ¢-power, denoted by H, of the non-standard Heisenberg group of exponent
s/t, and a submetry from (G, d) onto (H, dp). Since WBCP holds on (G, d), WBCP holds
on (H,dp) by Proposition 3.20. Finally, we get that WBCP would hold for the continuous
self-similar quasi-distance (dz )’ on the non-standard Heisenberg group of exponent s/¢. This
contradicts Theorem 5.6 and concludes the proof. O

6. Differentiation of measures

In this section, we give applications to differentiation of measures. In particular, we prove
Theorem 1.5.
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Following the terminology of [31], if (X, d) is a metric space, we say that d is finite
dimensional on a subset Y C X if there exist C* € [I,+00) and r* € (0, +00] such that
Card B < C* for every family 8 = {B = By (xp,rp)} of Besicovitch balls in (X, d) such
that xg € Y and rg < r* for all B € B (see Definition 3.2 for the definition of families of
Besicovitch balls). If we need to specify the constants C* and r*, we say that d is finite
dimensional on Y with constants C* and r*. We say d is o-finite dimensional if X can be
written as a countable union of subsets on which d is finite dimensional. Note that WBCP
holds on (X, d) if and only if d is finite dimensional on X for some constant C* € [1, +00)
and with r* = +o0.

For homogeneous distances on homogeneous groups, we first prove the following equiv-
alence between o -finite dimensionality and validity of (W)BCP.

Proposition 6.1. Let G be a homogeneous group and let d be a homogeneous distance
on G. Then BCP holds on (G, d) if and only if d is o-finite dimensional.

Proof. 1f BCP holds on (G, d), then WBCP holds as well and it follows from the def-
initions that d is finite dimensional on G. To prove the converse, let m denote the Hausdorff
dimension of (G, d) and let i denote the m-dimensional Hausdorff measure on (G, d). It is
well known that  is a Haar measure on G. Since the distance d from which this m-dimensional
Hausdorff measure is constructed is homogeneous, i is moreover m-homogeneous with respect
to the associated dilations (§;);~¢ on G, i.e., u(53(A)) = A" u(A) for all A C G and all
A > 0. In particular, u is a doubling outer measure on (G, d). It follows that for every subset
A C G, p-a.e. point p € A is a u-density point for 4, i.e.,

(AN Ba(p.r) _
0 w(Ba(p.r)

Assume that d is o-finite dimensional, i.e., G = |, cpy Gn, Where d is finite dimensional on
each Gy. Then one can find n € N such that £(G,) > Oand we set A := G,.Let C* € [1, +00)
and r* € (0, +00] be such that d is finite dimensional on A with constant C* and r*. Since
u(A) > 0, one can find a point p € A that is a u-density point for A. Up to a translation, one
can assume that p = e where e denotes the identity in G. Next, by homogeneity, for every
A > 1, d is finite dimensional on § (A) with constants C* and r*.

Let us prove that WBCP, and hence BCP by Corollary 3.8, holds in (G, d). We consider
{Bs(pi, r,-)}f.‘=1 a family of Besicovitch balls in (G, d). Up to a dilation, one can assume with
no loss of generality that r; < r* for all i = 1,...,k. Up to a translation, one can further
assume that e € ﬂ;;l Ba(pi, ri). Shrinking balls if necessary, one can also assume that, for
alli =1,...,k, ri =dl(e, pi).

By Remark 5.24 (recall that homogeneous distances on a homogeneous group are
continuous, see Corollary 2.28), one can find a constant ¢* > 0 such that { By (qi,sl-)}f.‘=1 is

a family of Besicovitch balls in (G, d) as soon as d(p;.q;) < ¢* foralli = 1, ...,k and where
s; 1= d(e, q;). Moreover, one can choose £* small enough, namely ¢* < r* — max; <; < 7, S0
that d(e,q) < r* assoon as d(q, p;) < &* forsomei € {1,...,k}.

Fix R > 1 such that R > 2max;<;<x 7; and &€ > 0 such that ¢ < min(e*, max; <; < ;).

Let r < 1 be such that
u(AN By(e,r)) o1 (8)'"
w(Bg(e,r)) '

R
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Then we claim that By (p;, &) Ng/r(A) # @ foralli =1,..., k. Indeed, arguing by contra-
diction, assume that By (p;, &) N g/ (A) = @. By the choice of R and &, we have the inclusion
Ba(pi,e) C Bg(e, R). Using the left-invariance and the homogeneity of y, it follows that

- (3)"’ _ WANBgle.r)
R n(Bg(e,r))

_ uGrr(A) N Bgle, R)

a n(Bg(e, R))

_ M(Ba(e,R)\ By(pi,¢))

B p(Bg(e, R))

_ 1(Ba(e, R)) — n(Ba(pi.¢))

p(Bg(e, R))

(&)
=1-(=) .
R
which gives a contradiction.

Hence one can find ¢; € By(pi.e) N8g/r(A) for all i =1,... k. Since ¢ < &*, we
get that {By (qi,si)}fle is a family of Besicovitch balls in (G,d) with ¢; € §g;,(A) and
si:=d(e,qj) <r* foralli =1,...,k. By the choice of R and r, we have R/r > 1 and
it follows that k < C*. Hence WBCP holds in (G, d). O

Recall now that if (X, d) is a metric space and p is a locally finite Borel measure on X,
we say that the differentiation theorem holds on (X, d) for the measure p if

N J _
rlif)n+ Ba ) L5y f(q)du(g) = f(p)

for p-almost every p € X and all f € Llloc(u).
The connection between o-finite dimensionality and measure differentiation in the gen-

eral metric setting is given by the following result due to D. Preiss.

Theorem 6.2 ([31]). Let (X,d) be a complete separable metric space. The differenti-
ation theorem holds on (X, d) for all locally finite Borel measures if and only if d is o-finite
dimensional.

The proof of Theorem 1.5 can now be completed using Theorem 6.2 and Proposition 6.1.

7. Sub-Riemannian distances

In this section we consider sub-Riemannian distances on stratified groups, and more gen-
erally on sub-Riemannian manifolds. We prove Theorem 1.9 and Theorem 1.10. The proofs
of these results are independent of the main result in this paper, namely independent of Theo-
rem 1.2, but use some of the techniques developed here, in particular Proposition 3.21.

7.1. No BCP in sub-Riemannian Carnot groups. Let G be a stratified group with
associated stratification of its Lie algebra given by ¢ = V1 & --- @& V. We say that an abso-
lutely continuous curve y : I — G is horizontal if one has y(s) € span{X(y(s)); X € V;} for
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a.e. s € 1. For a given scalar product inducing a norm || - || on the first layer V; of the stratifi-
cation, we define the length, with respect to || - ||, of a horizontal curve y by

() = /I 17 ()1l ds.

We say that d is a sub-Riemannian distance on G if there exists anorm || - || induced by a scalar
product on V; such that

d(p.q) = inf{l}(y) : y horizontal curve from p to g}.

It is well known that such a d defines a homogeneous distance on G.

Definition 7.1 (Sub-Riemannian Carnot groups). We say that (G, d) is a sub-Riemann-
ian Carnot group if G 1is a stratified group equipped with a sub-Riemannian distance d .

It is proved in [33] that BCP does not hold on sub-Riemannian Carnot groups of step at
least 2 under some assumptions on the regularity of length-minimizing curves and of the sub-
Riemannian distance (see [33, Theorem 1]). This result applies in particular to sub-Riemannian
distances on the stratified first Heisenberg group as we recall now.

Theorem 7.2 ([33]). Let d be a sub-Riemannian distance on the stratified first
Heisenberg group H'. Then BCP does not hold on (H', d).

We extend in Theorem 1.9 the results of [33] to any sub-Riemannian Carnot group of
step > 2 without any further regularity assumptions.

Theorem 1.9 will be proved by showing that from any such sub-Riemannian Carnot
group, there exists a surjective morphism onto the stratified n-th Heisenberg group for some
n € N*, Moreover, the distance on the n-th Heisenberg group induced by this morphism is
a sub-Riemannian distance (see Proposition 3.21 for the definition of this induced distance).
Then the conclusion will follow from Theorem 7.2 and Lemma 7.4 below. Lemma 7.4 gives
the existence of an isometric copy of a sub-Riemannian first Heisenberg group inside every
sub-Riemannian n-th Heisenberg group. We refer to Example 2.11 for the definition of the
n-th Heisenberg Lie algebra fy, and the stratified n-th Heisenberg group H". We first prove the
following preliminary result.

Proposition 7.3. Let (G, d) be a step 2 sub-Riemannian Carnot group with associated
stratification of its Lie algebra given by ¢ = V1 @ V». Assume that dim V, = 1 and that V; is
the center of g. Then g is the n-th Heisenberg Lie algebra Y,,. Moreover, there exist positive
real numbers ay, . ..,a, and a standard basis (X1,..., Xn, Y1.....Yn, Z) of by, such that d
is the sub-Riemannian distance with respect to the norm induced by the scalar product on Vy
Sfor which (a; X;,a;Y;)1<i<n is orthonormal.

Proof. Let Z € V; be fixed so that V, = RZ. Since V} is the center of g, the Lie bracket
restricted to V7 x V1 can be identified with a non-degenerate skew-symmetric bilinear form
on Vi. Then the following facts follow from classical results of linear algebra. First, dim V;
is even, dim V; = 2n for some n € N*. Second, considering V; equipped with the scalar
product with respect to which the sub-Riemannian d is defined, one can find an orthonormal
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basis ()?1, X Y, fn) of V1 such that [X;, Y;] = §;;; Z for some positive real num-
bers aq,...,a,. We set X; := (m_l)?i. Then (X1,...,Xn,Y1,...,Yy, Z) is a basis of
g with the only non-trivial bracket relations [X;, Y;] = Z for 1 <i <n. It follows that g
is the n-th Heisenberg Lie algebra b, and (Xi,...,X,,Y1,...,Yy, Z) is a standard basis
of b,. Moreover, setting a; := ,/o;, we get that the sub-Riemannian distance d is the sub-
Riemannian distance for which (a; X;, a; Y;)1<i<pn is orthonormal. O

Lemma 7.4 below relies on classical results from sub-Riemannian geometry and more
specifically on a classical study of length-minimizing curves in the sub-Riemannian Heisenberg
groups. In particular, length-minimizing curves can be explicitly computed using Pontryagin’s
maximum principle and the fact that there are no strictly abnormal curves. Also each horizontal
curve can be recovered from its projection on the first layer of the stratification via the lift of
the spanned area in each coordinate plane.

Lemma 74. Let (X1,...,Xn,Y1,...,Yn, Z) be a standard basis of b,,. Further, let
0 <ay <--- <ay be positive real numbers and let d denote the sub-Riemannian distance
on H" for which (a; Xi,a;Yi)1<i<n is orthonormal. Then H := exp(span{Xy,, Y, Z}) is
geodesically closed and the distance d restricted to H is the sub-Riemannian distance on H
for which (an Xy, anYy) is orthonormal.

Proof. Inthe statement H is geodesically closed means that for any two points p,q € H
there exists a length-minimizing curve, i.e., a horizontal curve y such that d(p,q) = [|.(¥),
joining p and ¢ and whose image is contained in H. Here | - || denotes the norm induced by
the scalar product for which (a; X;, a; Y;)1<i<n is orthonormal. Then the fact that the distance
d restricted to H is the sub-Riemannian distance on H for which (a, X}, a,Yy) is orthonormal
follows immediately.

We use in this proof exponential coordinates (x1, ..., Xn, Y1, - -, Yn, 2) of the first kind
with respect to the basis (a1 X1,...,anXn,a1Y1,...,an Yy, Z) and V; denotes the first layer
of the stratification, V; = span{X;,Y; : 1 <i < n}. By left-invariance, it is enough to show
that given any point p € H, there exists a length-minimizing curve joining O to p whose
image is contained in H. As already said, the proof below relies on classical results from
sub-Riemannian geometry. We refer to, e.g., [28] or [23] for more details.

Let us first consider p = exp(Z) = (0,...,0,1). Writing down the normal geodesic
equation, one can see that if y : I — H”" is a length-minimizing curve from O to p with
y(s) = (x1(8), ..., xn(8), ¥1(5), ..., yn(s),z(s)), then its projections s — (x;(s), y;i(s)) on
each (x;, y;)-plane is a circle passing through the origin. Moreover, if we denote by (v;, Vs +;)
the center of each one of these circles, we have

2n 1/2
lia(y) = 2 (Z ”iz) :

i=1

On the other hand, since y is a horizontal curve, the last coordinate of its end point is equal
oY ", (11.271(1)1.2 + ”5+i)' Hence we must have

n
Zaizzr(vi2 + vﬁ_ﬂ-) =1

i=1
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Notice that the minimum of v 3 72, v? on the ellipsoid {>/_, a?x(v? + vi ) =1} is
attained on the smallest axis of the ellipsoid. It follows that the horizontal curve y contained
in H and whose projection on the (x5, y,)-plane is a circle passing through the origin and
centered at (1/ay, /7, 0) is a length-minimizing curve between 0 and p.

Next, from the above length-minimizing curve between 0 and exp(Z) and using dilations
and rotations in H around the z-axis, it can be seen that one can join the origin to any point in
H \ exp(V7) with a length-minimizing curve that stays in H.

Finally, it can be checked that for p € H N exp(V1), the segment from O to p is the length
minimizing curve from 0 to p and that this segment stays obviously inside H . |

We now conclude this section with the proof of the non-validity of BCP on sub-Riemann-
ian Carnot groups of step > 2.

Proof of Theorem 1.9. 'We argue by contradiction and we assume that (G, d) is a sub-
Riemannian Carnot group of step > 2 on which BCP holds. We prove that it is enough to
consider the case of a sub-Riemannian distance on the stratified first Heisenberg group.

To prove this claim, we will perform a series of quotients. At the level of the Lie alge-
bras, these quotients are surjective morphisms of stratified Lie algebras. Moreover, if we start
from a sub-Riemannian distance, the distance induced by each one of these morphisms (as
in Proposition 3.21), and for which BCP also holds by Propositions 3.20 and 3.21, will still
be a sub-Riemannian distance. Indeed, if the stratification of the source Lie algebra is given
by V1 & --- ® V, we will only consider morphisms of stratified Lie algebras whose kernel is
contained either in V> @ --- @ V; or in the center of the source Lie algebra.

By a first quotient we can assume that the step of G is exactly 2. Note that in view of
Corollary 1.3, we could have skipped this first step. However this first quotient gives a proof
of Theorem 1.9 that is independent of our other results about more general graded groups. By
a second quotient we can assume that the second layer of G is one-dimensional. By a third
quotient we can assume that the center of the Lie algebra of G is the second layer of its strati-
fication.

By Proposition 7.3 we know that the Lie algebra of the group G is the n-th Heisenberg Lie
algebra. We also know that there exist a standard basis (X1,..., X, Y1,...,Ys, Z) of b,
and positive real numbers ay,...,a, such that d is the sub-Riemannian distance for which
(ai Xi,a;Y;i)1<i<n is orthonormal. Up to reordering the numbers a;, it follows from Lemma 7.4
that there is a stratified subgroup H of G isomorphic to the stratified first Heisenberg group and
such that the sub-Riemannian distance d restricted to H is a sub-Riemannian distance on H.
Since we started from a sub-Riemannian distance on G for which BCP holds, it follows from
Proposition 3.15 that BCP should hold for some sub-Riemannian distance on the stratified first
Heisenberg group. This contradicts Theorem 7.2 and concludes the proof. |

7.2. Differentiation of measures on sub-Riemannian manifolds. In this subsection
we prove that sub-Riemannian distances on sub-Riemannian manifolds are not o-finite dimen-
sional, see Theorem 7.5. Then Theorem 1.10 follows from Theorem 7.5 and Theorem 6.2. We
refer to Section 6 for the definition of o-finite dimensionality and its connection with measure
differentiation. The proof of Theorem 7.5 follows from the fact that at regular points, the metric
tangent space to a sub-Riemannian manifold is isometric to a sub-Riemannian Carnot group of
step > 2 together with Theorem 1.9.
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To state our result, we first recall well-known facts about sub-Riemannian manifolds (see
e.g. [27]). A sub-Riemannian manifold is a smooth Riemannian n-manifold (M, g) equipped
with a smooth distribution A of k-planes, where k < n. We also assume that M is connected
and that the distribution satisfies Hormander’s condition. Namely, for all p € M, we assume
that, if Xq,..., Xy is a local basis of vector fields for the distribution near p, these vector
fields, along with all their commutators, span 7, M. We denote by V; (p) the subspace of 7, M
spanned by all the commutators of the X;’s of order < i evaluated at p. Then the distribution
satisfies Hormander’s condition if, for all p € M, there is some i such that V;(p) = T, M.
Next, an absolutely continuous curve in M is said to be horizontal if it is a.e. tangent to the
distribution A. Then the sub-Riemannian distance d between two points p, ¢ € M is defined
by

d(p,q) := inf{length, (y) : y horizontal curve from p to g}.

We say that p € M is aregular point if, for each i, dim V; (p) remains constant near p. Regular
points form an open dense set in M .
Our main result in this section reads as follows.

Theorem 7.5. Let M be a sub-Riemannian manifold and let d be its sub-Riemannian
distance. Then d is not o -finite dimensional.

Notice that our definition of sub-Riemannian manifolds does not includes Riemannian
ones. We recall that it is known that the Riemannian distance on a Riemannian manifold of
class C? is o-finite dimensional (see [11, Section 2.8]).

Sub-Riemannian manifolds equipped with their sub-Riemannian distance include sub-
Riemannian Carnot groups of step > 2. Besides, as said before, the following fact plays
a crucial role for our purposes.

Theorem 7.6 ([3, Theorem 7.36] and [26, Theorem 1]). A sub-Riemannian manifold
equipped with its sub-Riemannian distance admits a metric tangent space in Gromov’s sense
at every point. At regular points, this space is isometric to a sub-Riemannian Carnot group of
step > 2.

A metric tangent space in Gromov’s sense at a point p in a metric space (X, d) is defined
as a Hausdorff limit of some sequence of pointed metric spaces (X, d/A;, p) with ; — 0 as
i — +o00. We refer to [14] for more details about metric tangent spaces.

Proof of Theorem 7.5.  'We first prove that one only needs to consider the case where all
points in M are regular and moreover, for each i, dim V;(p) remains constant in M. Indeed,
since regular points form a nonempty open set, one can find a connected open set O in M such
that, for each 7, dim V; (p) remains constant in O. We equip O with the distribution of k-planes
which is the restriction to O of the given distribution on M, thus making O a sub-Riemannian
manifold. We denote by do the associated sub-Riemannian distance on O. By definition we
have for all p,q € O,

do(p,q) = inf{length, (y) : y horizontal curve from p to g in O}.

In particular, we have d(p,q) < do(p,q) for all p, g € O, with possibly strict inequality.
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However, it can easily be checked that, for all p € O and all r < dist(p, M \ O)/3, one has
By(p,r) = By, (p.r). It follows that if d is o-finite dimensional on M, then do is o-finite
dimensional on O as well. Indeed, assume that M can be written as M = UneN M,,, where d
is finite dimensional on each M, with constants C,’ and r,;. Set

1
Oy := {pe O :dist(p, M \ O) > E}

Then B, (p.r) = By, (p,r) for all p € O and all r < 1/3k. It follows that, for each k
and n, do is finite dimensional on Oy N M, with constants C,’ and min(r,;, 1/3k). Since
0= Uk,neN(Ok N M), this shows that do is o-finite dimensional on O.

Hence, from now on in this proof, let us assume that the distribution on M is such
that, for each i, dim V;(p) remains constant in M and let dim V; denote its constant value.
Such distributions are called generic in [26]. Arguing by contradiction we also assume that the
sub-Riemannian distance d on M is o-finite dimensional, M = | J,cpy M, where d is finite
dimensional on each M,,.

We let m:= ) ;i(dimV; —dimV;_;) denote the Hausdorff dimension of (M,d)
(see [26, Theorem 2]) and let u denote the m-dimensional Hausdorff measure in (M, d).
It is proved in [26] that p is doubling on each compact set. This implies in particular that
for any subset A C M, p-a.e. point p € A is a pu-density point for A. On the other hand since
w(M)>0and M = |J,cpn Mn, one can find n € N such that ;4 (M,) > 0, and hence one can
find some p-density point p € My for M,,. Then [18, Proposition 3.1] and Theorem 7.6 imply
that (M}, d ) admits a metric tangent space in Gromov’s sense at p and this space is isometric to
a sub-Riemannian Carnot group (G, do) of step > 2. In particular, by the definition of a metric
tangent space, there exist a sequence (A;) with A; — 0 as i — +o0 and maps ¢; : G — M,
such that, for all p, q € G,

1
)T,-d(d’i (p). %i(q)) T doo(p, q)-

Since d is finite dimensional on M,,, Lemma 7.7 below implies that de is a finite-dimensional
sub-Riemannian distance on G. This contradicts Proposition 6.1 and Theorem 1.9 and con-
cludes the proof. m]

Lemma 7.7. Let (X,d) and (Xoo,doo) be metric spaces. Assume that there exist
a sequence (A;) with A; — 0 as i — +oo and maps ¢; : Xoo — X suchthatforallx,y € Xoo,

1
—d($i().91 () ——> doo(x. ).
i 1 —>+00
Assume that d is finite dimensional on X. Then d is finite dimensional on X .

Proof. Assume that d is finite dimensional on X with constant C* € [I, +00) and
r* €[0,4o00]. Let{Bg__ (x1,71)...., Ba_(xn,rN)}, N € N, be a family of Besicovitch balls
in (Xoo.doo) Withr; <r*foralll =1,...,N.Letxo € (\;<;<n Ba. (x;.77). Lete > 0 be
small enough so that, forall [,k = 1,..., N with [ # k, doo(_xk_, x7) > max(rj, rr) + 2¢ and
sothatr; + e <r*foralll = 1,..., N.Leti be large enough so that A; < 1 and

1
1 4@i(x1). b (X)) — doo (X1, Xp) | < &
i
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forall/,k =0,...,N.Thenforall/,k = 1,..., N with [ # k, we have
1
rd((ﬁi (x1), $i (X)) > doo(x7, X)) — & > max(ry, 1i) + &
l

and, forall/ =1,..., N,
1
Ai
Hence {By (¢i(x1), Ai(r1 +¢)),..., Bg(pi(xn), i (rny + €))} is a family of Besicovitch balls
in (X, d) with radii < r*. It follows that N < C* which proves that d is finite dimensional
on Xeo. O

d(¢i(x0), ¢i (x1)) < doo(x0,x7) + & =17 +&.

Remark 7.8. One can relax the hypothesis of constant rank for the distribution A and
the proof of Theorem 7.5 can be generalized provided there exists a regular point p € M such
that dim A, < dim M.

8. Final remarks

8.1. Assouad’s embedding theorem and BCP. Assouad’s embedding theorem for
snowflakes of doubling metric spaces has the following consequence in connection with the
Besicovitch Covering Property.

Proposition 8.1. Ler (X, d) be a doubling metric space. Then there exists a continuous
quasi-distance p on X that is biLipschitz equivalent to d and such that (X, p) satisfies BCP.

Proof. By Assouad’s embedding theorem (see [2]), the snowflaked metric space
(X.d'/?) admits a biLipschitz embedding F : (X,d!/2) — R" into some Euclidean space.
Since Euclidean spaces satisfy BCP, it follows that F(X) equipped with the restriction of the
Euclidean distance satisfies BCP (see Proposition 3.15). Set

p(x,y) = [IF(x) = F)|?

for x, y € X. This defines a continuous quasi-distance on X that satisfies BCP. Finally, if L
is the biLipschitz constant of the embedding F, then p is L2-biLipschitz equivalent to the
distance d . m

In particular, if (G, d) is a homogeneous group equipped with a homogeneous distance,
Proposition 8.1 gives the existence of a continuous quasi-distance biLipschitz equivalent to d
and for which BCP holds. In case G is a homogeneous group for which there are two different
layers of the grading that do not commute, it follows from Theorem 1.2 that such a quasi-
distance cannot be homogeneous, i.e., cannot be both left-invariant and one-homogeneous with
respect to the associated dilations. What is not known is whether one can find one such p with
one of these properties. It is not known either whether one can find a distance, rather than
a quasi-distance, biLipschitz equivalent to d and for which BCP holds.

Notice that there are examples of non-doubling metric spaces satisfying BCP. Hence the
doubling assumption in Proposition 8.1 is not a necessary condition to get the existence of
biLipschitz equivalent (quasi-)distances satisfying BCP.
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8.2. Metric spaces of negative type. For the stratified Heisenberg groups H", J. Lee
and A. Naor proved in [22] that the homogeneous distance d such that

1/4

n 2 n 2
d(O,p)=(<Zx}+y}) + (Zx}ﬂ}) +1622)
j=1 Jj=1

in exponential coordinates of the first kind relative to a standard basis of by, is of negative type
(see Example 2.11 for the definition of standard basis of b,). Up to a multiplicative constant,
this distance turns out to coincide with the Hebisch—Sikora’s distance dg when R = 2, namely,
dy = 8144 (see Example 2.23 for the definition of dg).

Recall that a metric space (X, d) is said to be of negative type if (X, /d) is isometric
to a subset of a Hilbert space. One could wonder whether the validity of BCP and the property
of being of negative type may have some connections. One can for instance wonder whether
Corollary 1.3 could give some hints towards the existence of homogeneous distances of neg-
ative type on homogeneous groups with commuting different layers, such as stratified groups
of step 2. One can also wonder whether Corollary 1.3 could give some hints towards the non-
existence of homogeneous distances of negative type on a homogeneous group for which there
are two different layers of the grading that do not commute, such as stratified groups of step 3
or higher. Unfortunately, it turns out that one can find subsets in a Hilbert space that, when
equipped with the restriction of the Hilbert norm, are doubling metric spaces for which BCP
does not hold. Hence it is not clear whether one can easily find connections between the validity
of BCP and the property of being of negative type.

8.3. Finite topological dimension and an open problem. It is simple to show that
if a metric space X satisfies BCP, then X has finite topological dimension. Here, topological
dimension means Lebesgue covering dimension. Indeed, let N be the constant in the definition
of BCP, see Definition 3.1. Without loss of generality we may assume that X is bounded. Then,
given an open cover U of X, we shall prove that there is a refinement of U with multiplicity
at most N, deducing that the topological dimension is at most N — 1. For every point a in X
take a ball of small enough radius so that it is included in one element of U. By the BCP this
family of balls has a subfamily with multiplicity N covering the space X .

If a metric space is assumed to be separable, then by the last argument, together with
Remark 3.5, we have that WBCP implies finite topological dimension. With a longer argument,
J. Nagata showed in [29] that also WBCP implies finite topological dimension, even if the space
is not separable. Moreover, because of Lemma 7.7 a space with WBCP has the property that
also the topological dimensions of its tangents are uniformly finite. Doubling spaces have such
a property.

To our knowledge, there is no known example of a doubling metric space (X, d) for
which there is no distances biLipschitz equivalent to d satisfying BCP.
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