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Università di Bologna
40127 Bologna, ITALY

b) Mathematics Department

Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.

c) Mathematics Department
Princeton University

Princeton, NJ 08544, U.S.A.

E-mail: desposti@dm.unibo.it, magno@math.gatech.edu, marco@math.princeton.edu

August 1997

Abstract

A class of non-compact billiards is introduced, namely the infinite

step billiards, i.e., systems of a point particle moving freely in the
domain Ω =

⋃

n∈N
[n, n + 1] × [0, pn], with elastic reflections on the

boundary; here p0 = 1, pn > 0 and pn ց 0.
After describing some generic ergodic features of these dynamical

systems, we turn to a more detailed study of the example pn = 2−n.
What plays an important role in this case are the so called escape

orbits, that is, orbits going to +∞ monotonically in the X-velocity. A

1

http://arxiv.org/abs/chao-dyn/9709006v1


2 M.Degli Esposti, G.Del Magno, M.Lenci

fairly complete description of them is given. This enables us to prove
some results concerning the topology of the dynamics on the billiard.

1 Introduction

Billiards are dynamical systems defined by the uniform motion of a point in-
side a domain with elastic reflections at the boundary, such that the tangen-
tial component of the velocity remains constant and the normal component
changes sign. The aim of this paper is to discuss some topological properties
for a certain class of non-compact, polygonal billiards, like the one depicted
in Fig. 1.

Our main motivations originate from semiclassical quantum mechanics:
for example, it would be interesting to compare classical and quantum lo-
calization for simple models of non-compact systems. More ambitiously, one
might work in the direction of the semiclassical asymptotics for the spectrum
of the Hamiltonian operator: the Gutzwiller trace formula and other semi-
classical expansions [Gu] relate this to the distribution of periodic orbits in
the classical system. In the case of systems with cusps, similar to the ones
with which we are concerned here, these types of approximations become
more complicated, and one hopes to get a better understanding from the
knowledge of the trajectories falling into the cusp (escape orbits; see [Le] and
references therein).

Finally, we believe that the investigation of the dynamical properties of
such kinds of models inherits an intrinsic interest by itself.

In the case of a bounded polygonal billiard with a finite number of sites,
the billiard flow can be studied with the help of some well developed and non-
trivial techniques. We refer to [G2, G3] for the basic definitions and results,
reducing here to a brief and incomplete review of some of them. Usually
one assumes that the magnitude of the particle’s velocity equals one, and
that the orbit which hits a vertex stops there (for our model, we will slightly
modify this last assumption). However, the set of initial conditions whose
orbits are defined for all values of t, always represents a set of full measure
in the phase space.

Among the class of polygonal billiards, a billiard table Ω is a rational
billiard if the angles between the sides of Ω are all of the form πni/mi, where
ni and mi are arbitrary integers. In this case, any orbit will have only a
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finite number of different angles of reflections. Referring to [G3] for a nice
review of the subject, we just note here that this rational condition implies
a decomposition of the phase space in a family of flow-invariant surfaces
Rθ, 0 ≤ θ ≤ π/m, m := l .c.m. {mi}, planar representations of which are
obtained by the usual unfolding procedure for the orbits (see, e.g., [FK, ZK]).
Excluding the particular cases θ = 0, π/m, it is well known that the billiard
flow restricted to any of the Rθ is essentially equivalent to a geodesic flow
φt
θ on a closed oriented surface S, endowed with a flat Riemannian metric

with conical singularities. The topological type of the surface S (tiled by 2m
copies of Ω), i.e., its genus g, is determined by the geometry of the rational
polygon. For example, if Ω is a simple polygon, then

g(S) = 1 +
m

2

∑

i=1,n

ni − 1

mi

. (1)

With the use of this equivalence, a number of theorems regarding the exis-
tence and the number of ergodic invariant measures for the flow have been
proven ([ZK] and references).

More refined results concerning the billiard flows can then be obtained
by exploring the analogies of these flows with the interval exchange transfor-
mations (using the induced map on the boundary) on one hand, and with
holomorphic quadratic differentials on compact Riemann surfaces, on the
other.

The deep connections between these three different subjects have been
proven very useful in the understanding of polygonal billiard flows. In par-
ticular, we can summarize some of the most important statements in the next
proposition (see [G3] and references therein). [Briefly, let us recall that an
almost integrable billiard is a billiard whose table is a finite connected union
of pieces belonging to a tiling of the plane by reflection, e.g, a rectangular
tiling, or a tiling by equilateral triangles, etc.]

Proposition 1 The following statements hold true:

(i) [KMS, Ar] The Lebesgue measure in a (finite) rational polygon is the
unique ergodic measure for the billiard flow, for (Lebesgue-)almost all
directions.

(ii) [ZK] For all but countably many directions, a rational polygonal billiard
is minimal (i.e., all infinite semi-orbits are dense).



4 M.Degli Esposti, G.Del Magno, M.Lenci

(iii) [G1, G2, B] For almost integrable billiards, “minimal directions” and
“ergodic directions” coincide.

(iv) [GK] Let Rn be the space of n-gons such that their sides are either
horizontal or vertical, parametrized by the length of the sides. Then for
any direction θ, 0 < θ < π/2, there is a dense Gδ in Rn, such that for
each polygon of this set the corresponding flow φt

θ is weakly mixing.

(v) [Ka] For any rational polygon and any direction θ, the billiard flow φt
θ

is not mixing.

Moreover, by approximating generic polygons by rational ones, other im-
portant results can be proven (we still refer to [G3] for a more exhaustive
review):

Proposition 2 The following statements hold true:

(i) [ZK] The set of transitive polygons is a dense Gδ.

(ii) [KMS] For every n, there is a dense Gδ of ergodic polygons with n
vertices.

(iii) [G3] For any given polygon, the metric entropy with respect to any
flow-invariant measure is zero.

(iv) [GKT] Given an arbitrary polygon and an orbit, either the orbit is
periodic or its closure contains at least one vertex.

In this paper we are interested in a class of rational billiards, the infinite
step billiards, defined as follows: let {pn}n∈N be a monotonically vanishing
sequence of positive numbers, with p0 = 1. We denote Ω :=

⋃

n∈N
[n, n+ 1]×

[0, pn] (Fig. 1) and we call (X, Y ) the two coordinates on it.
Following all the above considerations, we see that a point particle can

travel within Ω only in four directions (two if the motion is vertical or
horizontal—cases which we disregard). One of these directions lies in the
first quadrant. Therefore, for θ ∈]0, π/2[ and α = tan θ, the invariant surface
is labeled by Rα and is built via the unfolding procedure with four copies
of Ω. It can be represented on a plane (X, Y ) as in Fig.2, with the proper
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side identifications, and the 3π/2 corners represent the non-removable singu-
larities. With the additional condition

∑

n pn < ∞, Rα can be considered a
non-compact, finite-area surface of infinite genus.

We will denote by Ω(n) the truncated billiard that one obtains by closing
the table at X = n. The corresponding invariant surface will be obviously
denoted by R(n)

α (Fig. 3) and (1) shows that it has genus n. Only to R(n)
α can

we apply the many strong statements of Proposition 1 (see also Proposition
3 below). Hence our interest in trying to extend some of those results to the
non-compact case. This paper gives a contribution in this direction.

After showing that examples can be given of infinite billiards with the
above ergodic properties, we turn to the study of a billiard with exponen-
tially decreasing rational heights (pn = 2−n) and we give some description of
the topological behavior of its orbits. More precisely, we will first describe
the existence and the number of the so-called escape orbits, showing that
generically (in the initial directions) there is exactly one trajectory “travel-
ing directly to infinity” (Theorem 2). This result makes use, among other
more specific computations, of a suitable family of interval maps (rescaled
transfer maps), related to the return map to the first vertical wall. With the
same tools, we then obtain a characterization of the behavior in the past for
these unique escape orbits (Theorem 3). Finally, we analyze some topological
properties for the flow associated to the infinite billiard. The main outcome
concerning this part is that the dynamics of the whole system is driven by the
escape orbit which turns out to be a topologically complex object (Theorem
4).

1.1 General results

Concerning the truncated billiards, we can put together some of the previous
results to state the following:

Proposition 3 Fix n ∈ N and suppose pk ∈ Q, ∀k ≤ n. Consider the billiard
Ω(n). If α ∈ Q, all the trajectories are periodic. If α 6∈ Q, the flow is minimal
and the Lebesgue measure is the unique invariant ergodic measure.

Proof. As already outlined, this proposition can be derived from quite a
number of results in the literature. However, to give an exact reference, [G1],
Theorem 3 contains the assertion, since Ω(n) is an almost integrable billiard
table.
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It may be interesting to remark that the ideas on which the proofs are
based were already known sixty years ago, as [FK] witnesses. The invari-
ant surface R(n)

α is divided into a finite number of strips, that are either
minimal sets or collections of periodic orbits (the two cases cannot occur si-
multaneously for an almost integrable billiard). These strips are delimited by
generalized diagonals, that is, pieces of trajectory that connect two (possibly
coincident) singular vertices of the invariant surface. The above is nowa-
days called the structure theorem for rational billiards, a sharp formulation
of which is found, e.g., in [AG].

Using this, minimality is easily established when, for a given direction,
no generalized diagonals and no periodic orbits are found. Q.E.D.

The above proposition will be used repeatedly during the remainder, be-
ing more or less the only result we can borrow from our (much wider) knowl-
edge of the compact case. One of the first statements we can derive from it is
that we can actually find examples of step billiards which enjoy the ergodic
properties one would expect. The price we pay is that we must let the system
decide, for a given irrational direction, how fast the pn’s should decay.

Theorem 1 Fix α 6∈ Q. For every positive vanishing sequence {p̄n}, there
exists a strictly decreasing sequence {pn} ⊂ Q, with 0 < pn ≤ p̄n, such that
the billiard flow φt

α on Rα, constructed as above according to {pn}, is ergodic
(hence almost all orbits are dense).

The proof of this theorem is postponed to the next section, after we have
established some further notation.

Another useful result can be derived from Proposition 3:

Proposition 4 Let an infinite step billiard Ω with rational heights (pn ∈
Q, ∀n) be given. If α ∈ Q, a semi-orbit can be either periodic or unbounded.
If α 6∈ Q, all semi-orbits are unbounded.

Proof. If α ∈ Q and we had a non-periodic bounded trajectory, this
would naturally correspond to a trajectory of R(n)

α , for some n ∈ N, which has
only periodic orbits. On the other hand, if α 6∈ Q, the dynamics over each
R(n)

α is minimal. Hence, every semi-trajectory reaches the abscissa X = n.
Q.E.D.
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1.2 The Return Map

In our realization of the surface Rα, the first vertical side of Ω becomes the
closed curve L := {0}× [−1, 1[ [(0,−1) e (0, 1) are identified in Fig. 2] which
separates Rα in two symmetric parts. We will occasionally identify L with
the interval [−1, 1[.

Except for the trivial case α = +∞ (vertical orbits—already excluded
at the beginning), every trajectory crosses L at least once. Without loss
of generality, we will always assume to have an initial point (0, Y0) on the
leftmost wall L, uniquely associated to a pair (Y0, α) ∈ [−1, 1[×]0,+∞[. We
then use the Lebesgue measure as a natural way to measure orbits.

The billiard flow along a direction α, which we denote by φt
α (or φt when

there is no means of confusion), induces a.e. on L a Poincaré map Pα that
preserves the Lebesgue measure. We call it the (first) return map. This
discontinuous map is easily seen to be an infinite partition interval exchange
transformation (i.e.t.). On L we establish the convention that the map is
continuous from above: i.e., an orbit going to the singular vertex (n, pn) of
Rα will continue from the point (−n, pn), thus behaving like the orbits above
it, i.e., bouncing backwards. In the same spirit, a trajectory hitting (−n, pn)
will continue from (−n,−pn), while orbits encountering vertex (n,−pn) will
just pass through. This corresponds to partitioning L ≃ [−1, 1[ into right-
open subintervals.

The fact that the number of subintervals is infinite is exactly what makes
the study of the ergodic properties of this system a non-trivial task.

It is now natural to relate Pα to the family of return maps P (n)
α corre-

sponding to the truncated billiards Ω(n). These are finite partition i.e.t.’s
defined on all of L (with abuse of notation, L also denotes the obvious closed
curve on R(n)

α , Fig. 3).

Let E(n)
α ⊂ L be the set of points whose forward orbit starts along the

direction α and reaches the n-th aperture Gn := {n}× [−pn, pn[ without col-
liding with any vertical walls. E(n)

α is union of at most n right-open intervals,
since the backward evolution of Gn can only split once for each of the n− 1
singular vertices (Fig. 4). We denote this by n.i.(E(n)

α ) ≤ n, where n.i. stands
for “number of intervals”. Moreover, |E(n)

α | = 2pn and E(n+1)
α ⊂ E(n)

α . From
this we infer that the family {E(n)

α }n>0 can be rearranged into sequences of
nested right-open intervals, whose lengths vanish as n → ∞. Clearly, the
sequence of i.e.t.’s P (n)

α → Pα a.e. in L as n → ∞.
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The subset of L on which Pα is not defined will be denoted by Eα :=
⋂

n>0E
(n)
α and clearly |Eα| = 0 . Each point of this set is the limit of an

infinite sequence of nested vanishing right-open intervals (the constituents of
the sets E(n)

α ). Elementary topology arguments allow us to assert an almost
converse statement: each infinite sequence yields a point of Eα, unless the
“pathological” property holds that the intervals eventually share their right
extremes.

The orbits starting from such points will never collide with any vertical
side of Rα (or Ω) and thus, as t → +∞, will go to infinity, maintaining a
positive constant X-velocity. We call them escape orbits.

We now give the proof of Theorem 1.

1.3 Proof of Theorem 1

We will construct Rα in such a way that almost every point in L has a
typical trajectory, in the sense that the time average of a function in a dense
subspace of L1(Rα) equals its spatial average. Since L is a Poincaré section,
the same property will hold for a.e. point in Rα. For the sake of notation,
we will drop the subscript α in the sequel.

Take a positive sequence εn ց 0. We are going to build our billiard by
induction: suppose we have fixed pi for 1 ≤ i ≤ n, and we have to determine
a suitable pn+1. Consider R

(n), generated by the pi’s found so far. The flow
φt
(n) on it is ergodic by Proposition 3. For f ∈ L1(R(n)) and z ∈ L define

(

ΞT
(n)f

)

(z) :=
1

T

∫ T

0
f ◦ φt

(n)(z) dt−
1

|R(n)|

∫

R(n)
f dXdY. (2)

Let {f
(n)
j }j∈N be a separable basis of L1(R(n)). For the rest of the proof R(n)

will be liberally regarded as an (open) submanifold of R(m), m > n. As a
consequence, a function defined on the former set will be implicitly extended
to the latter by setting it null on the difference set. With this in mind, let

A
(n)
T :=

{

z ∈ L | ∀ 1 ≤ i, j ≤ n,
∣

∣

∣ΞT
(n)f

(j)
i (z)

∣

∣

∣ ≤ εn
}

. (3)

By ergodicity, since only a finite number of functions are involved in the above
set, we have |A

(n)
T | → |L| = 2 as T → ∞. Take Tn such that |A

(n)
Tn

| ≥ 2−εn/2.
We are now in position to determine pn+1. Choose some

pn+1 ∈ Q; 0 < pn+1 ≤ min
{

p̄n+1,
εn
2Tn

}

, (4)
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and imagine to open a hole of width 2pn+1 in the middle of {n+1}× [−pn, pn[
(same as {−n− 1}× [−pn, pn[ since they are identified at the moment). The
motion on R(n) is not affected very much by this change, during the time
Tn. If we denote by φt the flow on the infinite billiard table (when we are
done constructing it), we can already assert that, taken a point z ∈ L,
φt
(n)(z) = φt(z) ∀t ∈ [0, Tn] unless the particle departing form z hits the hole

in a time less than Tn. We can estimate the measure of these “unlucky”
initial points: they constitute the set

Bn := L ∩





⋃

t∈[−Tn,0]

φt
(n)({n+ 1} × [−pn+1, pn+1[ )



 . (5)

The backward beam (up to time −Tn) originating from the hole cannot hit
L more than Tn/2 times, since between each two successive crossings of L,
the beam has to cover a distance which is at least 2 (see Fig. 3), but the
velocity of the particles was conventionally fixed to 1. Every intersection of
the beam with L is a set of measure 2pn+1, so, from (4), |Bn| ≤ εn/2.

Set Cn := A
(n)
Tn

\Bn, thus |Cn| ≥ 2− εn. So Cn is the set of points which
keep enjoying the properties as in (3), even after the cut has been done in
R(n). Suppose one repeats the above recursive chain of definitions for all n
in order to define the infinite manifold R. Let C :=

⋂

n∈N

⋃

m≥n Cm. Then
|C| = limn→∞ ∪m≥nCm = 2 = |L|. C may be called the event {{Cn} infinitely
often}; it is the “good” set since, fixed z ∈ C, there exist a subsequence {nk}
such that z ∈

⋂

k Cnk
. This means that, taken two integers i, j, ∀nk ≥

max{i, j},

∣

∣

∣

∣

∣

1

Tnk

∫ Tnk

0
f
(j)
i ◦ φt(z) dt−

1

|R(nk)|

∫

R
f
(j)
i dXdY

∣

∣

∣

∣

∣

≤ εnk
. (6)

Comparing this with (2) we notice two differences. First, the flow that ap-
pears here is φt because of the remark after (4). Second, the manifold integral
is taken over all of R: this is so because of the initial convention to extend
with zero all functions defined on submanifolds of R.

Define ΞT in analogy with (2). Since |R(n)| ր |R|, (6) shows that

(ΞTnkf
(j)
i )(z) → 0, as k → ∞, with Tn in general going to ∞ (this is not

indeed guaranteed by the definition of Tn, but one can easily arrange to make
this happen). We would not be done yet, if it were not for Birkhoff’s Theo-
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rem, which states that, for the function f
(j)
i ∈ L1(R), the time average is well-

defined a.e. (in R, hence in L). Summarizing, for every f ∈ span{f
(j)
i }i,j∈N,

there exists a set Cf ⊆ L, |Cf | = 2 such that

lim
T→+∞

(ΞTf)(z) = 0. (7)

This proves the claim we made in the beginning. Since ΞT is a continuous
operator in L1 and span{f

(j)
i } is dense in it, we obtain the ergodicity part in

the statement of Theorem 1. As concerns the density result, this immediately
follows from standard arguments as in [W], Theorem 5.15 (which can be
checked to hold under our hypotheses, as well). Q.E.D.

Remark. The fact that the above result provides ergodic billiards with
rational heights only is merely technical. We decided to use Proposition 3,
which only deals with almost integrable billiards. For a generic finite step
billiard one can as well say that for almost all directions the flow is ergodic,
by [KMS], and a slight generalization of Theorem 1 can be proven in a hardly
different way.

2 The Exponential Step Billiard

Our main example of step billiard, to which we will restrict our attention for
the rest of this paper, is the exponential step billiard, i.e., the case pn = 2−n,
shown in Figs. 1, 2, 3.

We are, of course, interested in getting information about the unbounded
orbits of our non-compact dynamical system over Ω, since bounded orbits
correspond to a billiard Ω(n), for some n ∈ N. Indeed, Proposition 4 applies
here allowing one to conclude that (for almost all α’s) all but a countable set
of initial conditions on L give rise to unbounded orbits, which come back to
L infinitely often.

We will first focus on the escape orbits, as introduced in Section 1.2.
Strictly speaking, we consider only the asymptotic behavior of the forward
semi-orbit. But a glance at Fig. 2 at once shows that the backward semi-
orbit having initial conditions (Y0, α) is uniquely associated, by symmetry
around the origin, to the forward semi-orbit of (−Y0, α).

Remark. The above assertion needs to be better stated: although the
manifold Rα is symmetric around the origin, the flow defined on it is not
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exactly invariant for time-reversal, as Fig. 2 seems to suggest. This is due to
our convention in Section 1.2 about the continuity from above for the flow.
The time-reversed motion on Rα is isomorphic to the motion on a manifold
like Rα with the opposite convention (continuity from below). Nevertheless,
little changes since only singular orbits (a null-measure set) are going to be
affected by this slight asymmetry.

We will characterize the existence and the number of the escape orbits
and we will show that, generically, only one of the two branches of an orbit
can escape (see Section 2.2). Moreover, we borrow some notation from [L]
and call oscillating all unbounded non-escape (semi-)orbits.

For the moment, let us introduce the following construction: suppose
that a trajectory γ on Rα reaches directly, that is monotonically in the X-
coordinate, the opening Gn = {n} × [−2−n, 2−n[. Let us denote with Yn ∈
[−2−n, 2−n[ the ordinate of the point at which γ crosses Gn. Within the box
]n, n + 1[×[−2−n, 2−n[, the motion is a simple translation. Hence

Yn+1 = Yn + α (mod 2−n+1), (8)

with (mod r) meaning the unique point in [−r/2, r/2[ representing the class of
equivalence in R/rZ, rather than the class of equivalence itself. The trajectory
γ will cross Gn+1 if, and only if,

Yn+1 ∈ [−2−(n+1), 2−(n+1)[. (9)

Setting yn := 2n−1Yn, relation (8) becomes

yn+1 = 2yn + 2nα (mod 2), (10)

and the trajectory will cross Gn+1 if, and only if,

yn+1 ∈
[

−
1

2
,
1

2

[

. (11)

The recursion relation (10) can be easily proven by induction to yield

yn+1 = 2n+1y0 + (n+ 1)2nα (mod 2), (12)

where the numbers yk ∈ [−1/2, 1/2[ now represent the (rescaled) intersections
of the trajectory with the vertical openings Gk.

The transformation Tn,α : [−1/2, 1/2[−→ [−1, 1[,

Tn,α(y) := 2y + 2nα (mod 2) (13)

will be called the rescaled transfer map.
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2.1 Escape Orbits

In this section we shall exploit the escape orbits for the exponential step
billiard Ω defined above. Actually, we will give a rather complete description
of what happens to the set Eα, as defined in Section 1.2, for α > 0. We
already know that |Eα| = 0. Among more detailed results, we will show that
Eα can only contain one or two points, the former case holding for almost all
directions α.

We start with some easy statements, using rescaled coordinates, unless
otherwise specified.

Lemma 1 If α = 2k, k ∈ Z, only one escape orbit exists and its initial
condition is y0 = 0.

Proof. Tn,2k = Tn,0 ∀n ∈ N. The sequence {yn} is in this case given by
yn = 2ny0 (mod 2). If y0 = 0, all yn are null and the corresponding trajectory
escapes, according to (11). If y0 6= 0, there exists a k such that |yk| > 1/2.
Q.E.D.

In Fig. 2, designate by Vn the point (n,−2−n), n ≥ 0. For n ≥ 1, this
means that, on the planar representation of Rα, Vn is the one copy of the
n-th singular vertex of Ω, such that its future semi-orbit is going “to the
right”.

Corollary 1 If α = k 2−j, with k odd, j non-negative integer, only one
escape orbit occurs. This orbit intercepts Vj.

Proof. The portion of the manifold Rα at the right of the (j + 1)-th
aperture looks like Rα itself, modulo a scale factor equal to 2−(j+1). Further-
more in that region, and subject to the above rescaling, the transfer map
is equivalent to the one we have seen in the previous lemma. In fact, for
n ≥ j + 1, Tn,α = Tn,0. So, to the part of the escape orbit after Gj+1, we
can apply that lemma and conclude that the escape trajectory is unique and
yj+1 = 0 holds. Now, we know that α is indeed equal to (2k′+1)2−j. Invert-
ing (10) with yj+1 = 0, we get yj = −k′ − 1/2 − p, for some integer p. By
(11) yj ∈ [−1/2, 1/2[. Hence yj = −1/2, which proves the second part of the
lemma. Q.E.D.

In Lemma 1 we have encountered the case in which {Tn,α} is a sequence of
identical maps. Considering the more general case of a periodic sequence of
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maps will yield a useful tool to detect the presence of more than one escape
orbit.

Observe that, when α = 2k/(2m − 1) with k,m positive integers, one
gets 2mα = α (mod 2). In this case we have a periodic sequence of trans-
fer maps of period m, that is, Tpm,α = T0,α for all integer p > 0. For such
directions, then, one method for detecting escape orbits may be the follow-
ing: Let us set Mm,α := Tm−1,α ◦ · · · ◦ T0,α. As in (12) it turns out that
Mm,α(y) = 2my +m2m−1α (mod 2). Let us now find the fixed points of this
map. Consider a trajectory having one of these points as initial datum. If it
crosses all openings between G1 and Gm, then the sequence of crossing points
y0, . . . , ym−1 will be indefinitely repeated and the trajectory will escape.

Let us apply this technique to the case k = 1 and m = 2, that is α = 2/3.
Hence the fixed points of the map M2,2/3 are the points y ∈ [−1, 1[ such that
y = 4y + 8/3 + 2p, p ∈ Z. They are

y(0) = −
8

9
; y(1) = −

2

9
; y(2) =

4

9
. (14)

Since |y(0)| = |M2,2/3 y
(0)| > 1/2, that solution has to be discarded. Instead,

y(1) =: y
(1)
0 is accepted since

y
(1)
1 = 2y

(1)
0 +

2

3
(mod 2) =

2

9
∈
[

−
1

2
,
1

2

[

y
(1)
2 = y

(1)
0 ∈

[

−
1

2
,
1

2

[

. (15)

It turns out that the same holds for y(2).
Thus, for α = 2/3 there are at least two escape orbits whose initial

conditions in the non-rescaled coordinates are Y0 = −4/9 and Y0 = 8/9.
As orbits of Rα they are distinct, but is this still true if we consider the
corresponding orbits in the billiard Ω?

Lemma 2 For α = 2/3, the two escape orbits with initial conditions Y0 =
−4/9 and Y0 = 8/9 have distinct projections on Ω.

Proof. Suppose that the two escape orbits coincide in Ω. Then the
backward part of the orbit, that starts at Y = −4/9, must get to Y =
8/9, after several oscillations. According to the fact that a backward semi-
orbit having initial condition (Y0, α) is associated to the forward semi-orbit



14 M.Degli Esposti, G.Del Magno, M.Lenci

(−Y0, α) (see remark at the beginning of Section 2), the geometry of Rα

implies that

8

9
= −

4

9
+

j
∑

i=1

(

2

3
−

mi

2qi

)

, (16)

where mi, qi are non-negative integers and j is the number of rectangular
boxes visited by the backward semi-orbit before reaching the point with
coordinate Y = 8/9. [We remind that in each box the variation of the
Y -coordinate is α (mod 2−qi).] Rearranging this formula we obtain

4

9
=

2

3
j −

m

2q
, (17)

for some non-negative integers m and q. For any choice of m, q and j, the
two sides are distinct. This contradicts our initial assumption that the two
orbits coincide. Q.E.D.

We will see later in Corollary 2 that, along any direction α, there are no
more than two escape orbits in Rα. We can summarize everything about the
case α = 2/3 in the following assertion.

Proposition 5 Along the direction α = 2/3 there are two distinct escape
orbits.

We now turn to the study of the generic case. Recalling the reasoning
outlined in Section 1.2 about the splitting of the backward beams of orbits
(see also Fig. 4), it comes natural to think that at this point we need to
analyze the forward trajectories starting from the singular vertices Vp =
(p,−2−p). We name them γp.

First of all, we consider those α’s for which γ0 reaches directly Gn, i.e.,
before hitting any vertical wall: we look at Fig. 5, which displays the “un-
folding” of Rα, (where an orbit over Rα is turned into a straight line). A
direct evaluation with a ruler, furnishes the answer, that runs as follows:

n = 1)
1

2
≤ α (mod 2) <

3

2
(18)
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n ≥ 2)



















































1

2
≤ α (mod 2) <

1

2
+

1

n2n
;

1−
1

n2n
≤ α (mod 2) < 1 +

1

n2n
;

3

2
−

1

n2n
≤ α (mod 2) <

3

2
.

(19)

Due to the self-similarity of our infinite billiard, we can write down the
analogous inequalities for every other vertex Vp, p ≥ 1 by rescaling (18) and
(19). Thus γp crosses Gm, m > p if, and only if,

m = p+ 1)
1

2p+1
≤ α (mod 2−p+1) <

3

2p+1

(20)

m ≥ p+ 2)























































1

2p+1
≤ α (mod 2−p+1) <

1

2p+1
+

1

(m−p)2m
;

1

2p
−

1

(m−p)2m
≤ α (mod 2−p+1) <

1

2p
+

1

(m−p)2m
;

3

2p+1
−

1

(m−p)2m
≤ α (mod 2−p+1) <

3

2p+1
.

(21)

Working out these relations is essentially all we need to reach the goal we
have set for ourselves at the beginning of this section. From now on, when
we say that an orbit γp reaches or crosses an aperture Gm, we will always
mean directly.

Lemma 3 If γp is an escape orbit then it is the only escape orbit.

Proof. It follows from (20)-(21) that γp is an escape orbit if, and only
if, α ∈ {2−p, 2−p−1} (mod 2−p+1). But for such α’s, Corollary 1 states that
there is only one escape orbit. Q.E.D.

Lemma 4 Let m, p be two non-negative integers with m ≥ p + 2. If γp
crosses Gm, then either γp+1 does not reach Gp+2 or it crosses Gm, as well.
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Proof. It suffices to prove the statement for p = 0 and the reader can
easily get convinced that the actual result follows by a rescaling. Set

I(1)m :=
⋃

j∈N

[

1

2
+ 2j,

1

2
+

1

m2m
+ 2j

[

,

I(2)m :=
⋃

j∈N

[

1−
1

m2m
+ 2j, 1 +

1

m2m
+ 2j

[

, (22)

I(3)m :=
⋃

j∈N

[

3

2
−

1

m2m
+ 2j,

3

2
+ 2j

[

.

From (19), γ0 crosses Gm if, and only if, α ∈ Im := I(1)m ∪I(2)m ∪I(3)m . If α ∈ I(2)m

then γ1 does not cross G2. In fact, (20) states that γ1 crosses G2 if, and only
if, α ∈ B :=

⋃

k∈N
[1/4 + k, 3/4 + k[. So we have to prove that the sets I(2)m

and B have empty intersection. This is the case, because I(2)m is made up of
intervals of center 2j +1 and radius 1/(m2m), and B is made up of intervals
of center 1/2 + k and radius 1/4, so that

dist(I(2)m , B) ≥
1

2
−
(

1

m2m
+

1

4

)

> 0 for m ≥ 2. (23)

It remains to analyze the case α ∈ C := I(1)m ∪ I(3)m . Relations (21) tell us
that γ1 crosses Gm if, and only if,

α ∈ D :=
⋃

k∈N

( [

1

4
+ k,

1

4
+

1

(m− 1)2m
+ k

[

∪

∪

[

1

2
−

1

(m− 1)2m
+ k,

1

2
+

1

(m− 1)2m
+ k

[

∪ (24)

∪
[

3

4
−

1

m2m
+ k,

3

4
+ k

[

)

.

We have to prove that C ⊆ D. We can visualize the sets C and D as periodic
structures on the line whose fundamental patterns have, respectively, lengths
2 and 1 (with common endpoints). Therefore, defining Ĉ := C ∩ [0, 2] =
[1/2, 1/2+ 1/(m2m)[∪ [3/2− 1/(m2m), 3/2[ and D̂ := D ∩ [0, 2], all we have
to do is to show that Ĉ ⊆ D̂. Deducing the shape of D̂ from (24), the result
follows from the trivial relations:

[

1

2
,
1

2
+

1

m2m

[

⊂

[

1

2
−

1

(m− 1)2m
,
1

2
+

1

(m− 1)2m

[

, (25)
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[

3

2
−

1

m2m
,
3

2

[

⊂

[

3

2
−

1

(m− 1)2m
,
3

2
+

1

(m− 1)2m

[

. (26)

Q.E.D.

Lemma 5 Again m ≥ p+ 2. If γp crosses Gm, then for all p+ 2 ≤ n ≤ m,
γn does not reach Gn+1.

Proof. As before, we give the proof only for the case p = 0. The orbit
γ0 crosses Gm if, and only if, α ∈ Im defined in the proof of the previous
lemma, whereas γn crosses Gn+1 if, and only if,

α ∈ Jn :=
⋃

k∈N

[

1

2n+1
+

k

2n−1
,

3

2n+1
+

k

2n−1

[

. (27)

If Im and Jn have empty intersection, for all 2 ≤ n ≤ m, then the lemma is
proven. Proceeding as in the first part of Lemma 4, we see that Im is strictly
contained in a union of intervals of center q/2 and radius 1/(m2m), while the
intervals constituting Jn have center 2−n + k2−n+1 and radius 2−n−1. Thus,
for 3 ≤ n ≤ m,

dist(Im, Jn) ≥
1

2n
−
(

1

m2m
+

1

2n+1

)

> 0. (28)

If n = 2, (28) becomes an equality, but the fact that our intervals are right-
open ensures nevertheless that Im ∩ J2 = ∅. Q.E.D.

One way to memorize the previous technical lemmas may be as follows.
The fact that γp crosses Gm influences all γn’s, for n between p + 1 and m:
if γp+1 wants to “take off” (that is, reach some apertures), then it is forced
to follow, and possibly pass, γp; while the γn’s with n ≥ p + 2 cannot even
take off.

We now enter the core of the arguments: recall the notation n.i. to des-
ignate the number of disjoint intervals that constitute a set.

Lemma 6 Fix α > 0. Either there exists an integer q such that n.i.(E(n)
α ) =

2 for all n ≥ q, or there is a sequence {nj} such that n.i.(E
(nj)
α ) = 1.
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Proof. The set of α’s with the property that n.i.(E(n)
α ) = 2 for n ≥ q

is not empty. In fact, by direct computation, it is easy to verify that for
α = 2/3 every γn crosses Gn+1 but not Gn+2, so that n.i.(E(n)

α ) = 2 for all
n > 0.

Now, suppose there exists a sequence {mj} with n.i.(E
(mj )
α ) 6= 2. We

can assume n.i.(E
(mj )
α ) ≥ 3, otherwise, maybe passing to a subsequence, we

would have n.i.(E
(mj )
α ) = 1 and we would be done. If we fix an mj there

are at least two singular orbits that cross Gmj
. Let 0 < pj ≤ mj − 2 be the

smallest integer such that γp crosses Gmj
. It follows from Lemma 5 that only

γpj and γpj+1 cross Gmj
. Therefore n.i.(E

(mj )
α ) = 3.

At this point we have three cases: γpj and γpj+1 are both escape orbits;
one of them escapes and the other is reflected; they are both reflected.

In the first case Lemma 3 ensures that γpj and γpj+1 coincide and Lemma

5 implies that no γn with n > pj +1 can “take off”. Hence n.i.(E(m)
α ) = 2 for

all n ≥ pj + 1, contradicting our assumption. The second case is hardly any
different: call Gnj

the first aperture that γpj cannot reach (in fact Lemma 4
implies that, of the two, γpj+1 must be the escaping trajectory). Therefore,

using again Lemma 5, n.i.(E(m)
α ) = 2 for all n ≥ nj , a contradiction as before.

In the last case, call Gnj
the first aperture which is not reached by γpj+1, and

thus not even by γpj . [Lemma 4 claims that γpj+1 goes farther than γpj .]

Another application of Lemma 5 proves that n.i.(E
(nj )
α ) = 1. Proceeding

inductively we find a sequence of integers nj > mj with the desired property.
Q.E.D.

Corollary 2 For all α’s, #Eα ≤ 2.

Lemma 7 Notation as in the above lemma. In the case n.i.(E(n)
α ) = 2 for

n ≥ q, suppose q ≥ 1 is the minimum integer enjoying that property. Then
there are only two possibilities:

(a) γq−1 is the only escape orbit and α = 21−q (mod 22−q).

(b) γn crosses Gn+1 but not Gn+2 for all n ≥ q−1 so that there are two es-
cape orbits and either α = 22−q/3 (mod 22−q) or α = 23−q/3 (mod 22−q).
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Proof. First, let us see that γq−1 is the only singular orbit crossing
Gq. In fact Gq, by hypothesis, is intersected by only one γk (k ≤ q − 1).
[Actually, the case may occur that both γp and γk cross that aperture, but
only if they coincide. Nothing changes in the argument if we take k to be
the largest integer of the two.] If k ≤ q − 2, then by Lemma 5, no singular
orbit γn, with n ≥ k + 2 can “take off”. Neither can γk+1, which would be
forced, by Lemma 4, to pass Gq, against the hypotheses. The net result is
that n.i.(E(n)

α ) = 2, ∀n ≥ k + 1, which contradicts the minimality of q.
Now suppose that γq−1 reaches Gq+1. We want to prove that it is also an

escape orbit and we are in case (a). In fact, if it stops somewhere after Gq+1

(say right before Gk, k > q+1), then γq either passes it (and n.i.(E(q+1)
α ) = 3)

or γq does not “take off” (and n.i.(E(k)
α ) = 1). Let us see for which directions

this happens: from (21), α ∈ {2−q, 21−q} (mod 22−q); if α = 2−q (mod 22−q),
then n.i.(E(q)

α ) = 1, so that it must be α = 21−q (mod 22−q). Considering
{E(n)

α }n∈N, it is easy to see that it consists of two nested sequences of right-
open intervals. One of the sequences collapses into the empty set, since all
of the intervals share their right endpoint.

So the remaining case is: γq−1 reaches Gq but not Gq+1. We would like to
prove that this also occurs for all n > q−1, i.e., we are in case (b). With the
same arguments as above, one checks that either γq reaches Gq+1, but not
Gq+2, or it escapes to∞. The latter cannot be the case, since we already know
the only direction for which this can happen [namely α = 2−q (mod 21−q)]:
this is the direction for which γq−1 and γq coincide, contrary to our present
assumption. Reasoning inductively, we obtain the assertion.

Here, as before, we see that {E(n)
α }n∈N consists of two nested sequences

of right-open intervals. But now the two intervals, for a given n, share
alternatively [in n] the right and the left endpoint, so that each sequence
shrinks to one point. It remains to find the directions corresponding to this
case. In the sequel, without loss of generality, we assume q = 1.

Let An be the set of directions along which γn crosses Gn+1, for all n ≥
0. According to (20), An =

⋃

k∈N
([2−n−1, 3 2−n−1[+k 21−n). We claim that

A =
⋂

n≥0An is the set of α’s we are looking for. In fact, if α ∈ A then
γn crosses Gn+1 for all n ≥ 0, by definition of A. Moreover γn does not
cross Gn+2, because if it did then, by Lemma 5, γn+2 would not cross Gn+3,
which is a contradiction. We note that every An has a periodic structure
whose fundamental pattern has length 21−n. The least common multiple of
these numbers is 2. Thus, as in the proof of Lemma 4, we only need to
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look at Â := A ∩ [0, 2]. This set consists of two points: α1 and α2. In
fact, let Âp := [0, 2] ∩ (

⋂p
n=0An). Then, referring at Fig. 6, it is clear that

{Âp} is made of two sequences of nested intervals, both having a limit αi.
Furthermore, by the symmetry of the An’s, α2 = 2 − α1. As indicated by
Fig. 6, one way to find α1, and therefore α2, is to compute the limit of the
oscillating sequence 2−1, 2−1+2−2, 2−1+2−2−2−3, 2−1+2−2−2−3+2−4, . . . In
other words, α1 =

∑∞
j=0 2

−1−2j = 2/3 so that α2 = 4/3. Hence, for q = 1, the
directions that generate the behavior described in (b) are α = 2/3 (mod 2)
and α = 4/3 (mod 2). Q.E.D.

This lemma has an important consequence which will be appreciated in
Section 3:

Corollary 3 For almost every α, one can find a sequence {nj} such that

n.i.(E
(nj)
α ) = 1.

To complete the description of #Eα, we give now our last result:

Proposition 6 There are no α’s without escape orbits.

Proof. From the previous lemmas, there may be zero escape orbits

only for those α’s such that there is a sequence {nj} with n.i.(E
(nj )
α ) =

1. Moreover, in order to have no escape orbits, the intervals E
(nj)
α must

eventually share their right extemes. This implies that γnj
connects the

vertex Vnj
to the “upper copy” of Vnj+1

, as illustrated in Fig. 7. Note that
if nj+1 − nj = 1 for some j ≥ 0, then γj is an escape orbit (essentially the
case (a) of Lemma 7). We can assume that n0 = 0, otherwise can always
rescale the billiard. Thus γ0 connects the vertices V0 to Vn1. By looking at
(18)-(19), this happens if, and only if,

α =
1

2
+

1

n12n1
+ 2k1 or α = 1 +

1

n12n1
+ 2k1, (29)

for some integer k1. Now, let us consider γ1. If we rescale vertically the bil-
liard by a factor 2n1, we get the same setting we had for γ0. Since γ1connects
Vn1 to Vn2, we must have, for some k2,

2n1α =
1

2
+

1

(n2 − n1)2n2
+ 2k2 or 2n1α = 1 +

1

(n2 − n1)2n2
+ 2k2. (30)
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Since n2 − n1 > 1 and n1 > 1, a comparison between (29) and (30) shows
that 1/n1 must equal 1/2 + 1/((n1 − n2)2

n2) or 1 + 1/((n1 − n2)2
n2). It is

not hard to see that this cannot be the case. Therefore there are no α’s such
that γ0 intersects Vn1 and Vn2 at the same time. This proves the statement.
Q.E.D.

Lemma 6, Lemma 7 and Proposition 6, can be summarized into the fol-
lowing theorem.

Theorem 2 With reference to the step billiard Ω: If there exists a non-
negative integer m such that 2mα = 4/3 (mod 2), then there are two escape
orbit; otherwise there is only one escape orbit.

We osberve that, if there are two escape orbits, they are distinct even in
Ω, by using the same considerations as in the proof of Lemma 2. The core of
the theorem, however, is re-expressed in the following important corollary.

Corollary 4 For all but countably many α > 0 the step billiard has exactly
one escape orbit.

2.2 The backward part of an escape orbit

In this section we explore the behavior of an escape orbit for negative times.
This question turns out to be crucial for the understanding of the dynamics
on the exponential step billiard, as it will explained in Section 3.

As trivial as it is, we point out that the backward part of any escape
orbit cannot be periodic; nor it can be bounded, by Proposition 4. What
about the possibility for it to escape to ∞ as well, having a constant negative
X-velocity for t ∈]−∞, t0[?

Lemma 8 For a.e. α, the backward part of an escape orbit does not intersect
any vertex.

Proof. Fix an α for which the assertion does not hold: we then have
in Rα an escape orbit containing a vertex V before it “takes off” towards
infinity. V can only be (0, 0) or of the form (p,±2−q) (incidentally, Fig. 2
shows that q = |p| or q = |p|+ 1).
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Let us call (0, Y0) the last (in time) intersection point between the orbit
and L. The geometry of Rα implies that

Y0 = m02
−q +

j
∑

i=1

(α−mi2
−qi); (31)

with mi, qi ≥ 0 some integers (m0 = 0 or ±1 depending on V being the
origin or not). The above formula is easily understood thinking that j is
the number of rectangular boxes visited by the orbit before reaching L for
the last time: in each box the variation of the Y -coordinate is α (mod 2−qi).
We turn now to the rescaled coordinates: y0 = Y0/2. Thus, rearranging the
previous equality yields, for some integers m, k,

y0 = m2−k +
j

2
α. (32)

Since the orbit is supposed to escape after leaving (0, Y0), we can apply (11),
(12) with y0 as in (32). If n ≥ k the first term in (32) gets canceled. Therefore
one must have

yn+1 = (n+ j + 1)2nα (mod 2) ∈
[

−
1

2
,
1

2

[

∀n ≥ k. (33)

Consider the increasing sequence {ni}i≥p such that ni + j + 1 = 2i with
np ≥ k. Condition (33) implies in particular that

yni+1 = 2i+niα (mod 2) ∈
[

−
1

2
,
1

2

[

∀i ≥ p. (34)

By looking at the appendix—especially at Lemma 10—one easily sees that
(34) is equivalent to saying that the −(i + ni + 1)-th digit of the binary
expansion of α is a zero for every i ≥ p. The Lebesgue measure makes these
events independent and equally likely with probability 1/2. Hence (34) can
only occur for a null-measure set of α’s. This proves that for almost no α’s
an escape orbit can start from vertex V and pass through j boxes before
taking off to infinity. Since events like this are countably many, we see that
an escape orbit can almost never leave from a vertex . Q.E.D.

Let us call D1 and D2 the sets of directions that satisfy, respectively,
Corollary 3 and Lemma 8. So D := D1 ∩ D2 is the “full-measure” set of
directions that have all the generic properties we have analyzed so far.
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Corollary 5 For a.a. α’s, the billiard flow φt
α over Rα around the escape

orbit ηα is a local isometry. This means that, fixed a z0 ∈ ηα, then ∀T >
0, ∃ε > 0 s.t.

|z − z0| ≤ ε =⇒ |φt
α(z)− φt

α(z0)| = |z − z0| ∀t ∈ [−T/2, T/2].

Proof. Since the billiard flow over Rα is isometric far from the singular
vertices, it suffices to observe that, for α ∈ D, ηα does not intersect any
vertices. As regards the backward part, this is an immediate consequence of
Lemma 8 (since α ∈ D2). The same holds for the escaping part, because a
singular escape orbit would imply n.i.(E(n)

α ) = 2 for n large, and this cannot
occur for α ∈ D1. Q.E.D.

We recall Leontovich’s notation “oscillating”, as introduced in Section 2.

Theorem 3 For almost all α’s, the unique escape orbit is oscillating in the
past.

Proof of Theorem 3. Let us take α ∈ D, again, and consider the
unique escape orbit ηα. Lemma 8 states that it is non-singular, so the sym-
metry arguments outlined in the remark in Section 2 apply. Suppose now
that η−α , some past semi-trajectory of ηα, escapes: this corresponds, by reflec-
tion, to a forward escape semi-orbit. Then the uniqueness hypothesis shows
that the reflected image of η−α must coincide with some η+α . In other words
ηα is symmetric around the origin in Rα, which means that in Ω it is run
over twice, once for each direction. The situation is illustrated, for both Ω
and Rα, in Fig. 8. One gets easily convinced that the only way to realize
this case is that the trajectory has a point in which the velocity is inverted.
This can only be a non-singular vertex. But α ∈ D2 and Lemma 8 claims
that this is impossible. Q.E.D.

3 Dynamics on the Billiard

Throughout this section we fix a direction α ∈ D. As defined in Section 2.2,
this is the set of directions satisfying all the generic properties which we have
explored so far. Hence, for simplicity, we drop the subscript α from all the
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notation. For example, the unique escape orbit will only be denoted by η.
On it, we fix the standard initial condition z0 = (0, Y0) as the last intersection
point with L, before the orbit escapes towards ∞.

Rather unexpectedly, it turns out that the statements in Section 2.1,
mainly intended to analyze the escape orbits, provide, as a by-product, a
certain amount of information about the topology of the flow φt on the bil-
liard. Information which, although certainly incomplete, we believe was not
a priori obvious. The crucial fact, as it will be noticed, is Corollary 3, which
roughly states that not only there is just one initial point that takes a trajec-
tory to infinity, but also there is just one neighborhood—necessarily around
that point—that takes a trajectory far enough. This is the idea behind next
result.

Lemma 9 Let α ∈ D. Taken an orbit γ, two numbers ε, T > 0, there exists
a w ∈ γ ∩ L, such that

|φt(w)− φt(z0)| = |w − z0| ≤ ε ∀t ∈ [−T/2, T/2],

where z0 is the standard initial condition on η. Furthermore, if γ 6= η, w can
be chosen arbitrarily far in the past or in the future of γ. For γ = η, w can
be chosen arbitrarily far in the past.

Proof. Since α is typical, we can apply Corollary 5 with z0 fixed as
above. This will return an ε′ (depending on T ) such that all points as close
to z0 as ε

′ remain such under the flow, within a time T . Assume ε′ ≤ ε (if not,
ε′ := ε will do). We need to find a point of γ in the interval [Y0−ε′, Y0+ε′] ⊆
L. Recalling Corollary 3, consider the subsequence {Gnj

} of apertures whose
backward beam of trajectories does not split at any vertex before reaching
L. Take a j such that 2pnj

= 2−nj+1 ≤ ε′. Since γ is unbounded, we can find
a point u ∈ γ ∩Gnj

. Call w the last intersection point of γ with L, before u
is reached. From the non-splitting property of Gnj

, |w − z0| ≤ ε′. Corollary
5 shows that this is the sought w.

Proposition 4 actually states that each semi-trajectory of γ 6= η is os-
cillating: therefore u (and so w) can be chosen with as much freedom as
claimed in the last statement of the lemma. As for η, only the backward
part oscillates (Theorem 3). Q.E.D.

Remark. We stress once again that the above is more than an easy
corollary of Proposition 3: not only γ and η get close near infinity, being
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both squeezed inside the narrow “cusp”, but, to be so, they must have already
been as close for a long time.

A number of trivially checkable consequences of Lemma 9 are listed in the
sequel. Recall the definitions of ω-limit and α-limit of an orbit as the sets of
its accumulation points in the future and in the past, respectively (see, e.g.
[W], Definition 5.4).

Corollary 6 With the same assumptions and notation as above,

(i) The escape orbit η is contained in the ω-limit and in the α-limit of
every other orbit.

(ii) The escape orbit η is contained in its own α-limit.

(iii) Every invariant continuous function is constant.

(iv) The flow is minimal if, and only if, the escape orbit is dense.

Of course, one would like to prove one definite topological property of the
flow φt, such as minimality or at least topological transitivity. Our techniques
do not seem to do this job. However, they do furnish a picture of how chaotic
the motion on the billiard can be. In fact, the attractor that η has been
proven to be is certainly far from simple. Either it densely fills the whole
invariant surface Rα, or it is a fractal set.

Theorem 4 For a typical direction (α ∈ D) consider the corresponding flow
on Rα. Denote Lη := η ∩ L, the “trace” of the escape orbit with the usual
Poincaré section. Then its closure in L (denoted by Lγ) is either the entire
L or a Cantor set.

Proof of Theorem 4. Assume Lγ 6= L. This set is closed. We are
going to show it also has empty interior and no isolated points, that is, it is
Cantor. In the remainder, by interval we will always mean a segment of L.

Suppose the interior of our set is not empty. Then there exists an open
interval I ⊆ Lγ containing a point z of η. Now, in the complementary
set of Lγ , select a point w whose orbit is non-singular. Let w evolve, e.g.,
in the future. By Corollary 6,(i) applied to z, there is a t > 0 such that
φt(w) ∈ I. By the choice of w, we can find an open interval J , such that
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w ∈ J , J ∩ Lγ = ∅ and so small that φt maps J isometrically into I. This
implies that J ⊂ Lγ , which is a contradiction.

To show that there are no isolated points: if z ∈ Lγ \Lγ , there is nothing
to prove; if z ∈ Lγ , then Corollary 6,(ii) does the job. Q.E.D.

4 Conclusions

Although we think we have given a pretty good description of the escape
orbits for our model, the exponential step billiard, and we have concluded
that those objects are central for the dynamics, the results contained in this
paper certainly lack completeness. Even conceding on semiclassical quantum
mechanics, one is not satisfied from the point of view of ergodic theory, either.
Recalling Theorem 4, we do believe that the flow should be minimal for a.e.
α, making the Cantor set case an interesting exception. But this does not
seem to be easily provable with our techniques, which, we readily admit, use
the results for finite polygonal billiards (see Propositions 1 and 2) blindly,
without trying to extend them to our case. Most likely, doing so will provide
a key to more complete statements.

However, there is already something more to say on the escape orbits
for other models of infinite step billiards. Giving up the sharpness of the
statements in Section 2.1, strictly designed for the case pn = 2−n, a result
similar to Theorem 2 is at present available for a variety of cases. This is
based on some elementary measure-theory and has the advantage that it does
not require the exact knowledge of the behavior of the singular semi-orbits γp
as a function of α [as in (20)-(21)]. We refer the interested reader to [DDL].
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A Appendix:

The Binary Expansion of a Number

Let y be a real number. Suppose we want to analyze its binary expansion:
there exist an m ∈ Z such that

y = ±
−∞
∑

j=m

y(j)2−j =: y(m) . . . y(0).y(−1)y(−2) . . . ; (35)

y(j) = 0 or 1. In order for this expansion to be in a one-to-one correspondence
with R, we adopt the following convention: when y > 0 all endless sequences
of the type 0111111 . . . are replaced by 1000000 . . .; if y < 0 the rule is
inverted. So, for instance, 1/2 = 0.100 . . . and −1/2 = −0.0111 . . .

The above convention ensures that numbers in [−1, 1[ are described with
no need of integer digits, i.e. y(j) = 0, ∀j ≥ 0. Recall that y (mod 2) means
the unique real number in [−1, 1[ congruent to y modulo 2.

Lemma 10 Let y ∈ R and {y(j)}j≤m its binary expansion as in (35). Then
2ky ∈ [−1/2, 1/2[ if, and only if, y(−k−1) = 0.

The trivial proof is omitted.

References

[AG] S.H.Aranson and V.Z.Grines, On some invariants of dynami-
cal systems on two-dimensional manifolds (necessary and sufficient
conditions for the topological equivalence of transitive dynamical sys-
tems), Math. USSR Sbornik 19 (1973), 365-393
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Figures

Ω

Figure 1: The infinite billiard table Ω.
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Figure 2: The invariant surface Rα for the infinite billiard.
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Figure 3: The invariant surface R(n)
α for the truncated billiard.
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E

Figure 4: Construction of E(n)
α as the backward evolution of the “aperture”

Gn. The beam of orbits may split at singular vertices.
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Figure 5: Range of directions for which the orbit starting from the left-
most bottom vertex reaches directly aperture Gn (case n = 2 is displayed).
The billiard Ω has been unfolded on the plane, that is, many copies of it
are sketched, in order to draw trajectories as straight lines. Considering
α (mod 2), for each n ≥ 2, three beams occur. Fixing one beam relative to
Gn, the geometry of the billiard implies that one, and only one, sub-beam will
also reach Gn+1. Eventually, for n → +∞, these three beams narrow down
to the values α = 1/2, 1, 3/2, the last of which is rejected for our convention
on the continuation of singular orbits.
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Figure 6: The structure of the sets An, as in the proof of Lemma 7: A =
⋂

n≥0An consists of two points, both limit of a sequence of nested intervals.
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Figure 7: In order to have no escape orbits, E(n1)
α , E(n2)

α , etc. must have
upper (equivalently right) extremes in common. This implies that the beams
of orbits departing from them have upper boundaries in common, whence
the existence of pieces of generalized diagonal. An analysis of the directions
α for which this should happen shows that this is not the case (Proposition
6).
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Ω

Rα

Figure 8: A trajectory can be run over twice only if it contains a non-singular
vertex. For a.a. α’s this is the only possibility to have an orbit which escapes
both in the past and in the future.


