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Abstract. We consider billiards in non-polygonal domains of the
plane with boundary consisting of curves of three different types:
straight segments, strictly convex inward curves and strictly con-
vex outward curves of a special kind. The billiard map for these
domains is known to have non-vanishing Lyapunov exponents a.e.
provided that the distance between the curved components of the
boundary is sufficiently large, and the set of orbits having collisions
only with the flat part of the boundary has zero measure. Under a
few additional conditions, we prove that there exists a full measure
set of the billiard phase space such that each of its points has a
neighborhood contained up to a zero measure set in one Bernoulli
component of the billiard map. Using this result, we show that
there exists a large class of planar hyperbolic billiards that have
the Bernoulli property. This class includes the billiards in convex
domains bounded by straight segments and strictly convex inward
arcs constructed by Donnay.

1. Introduction

A planar billiard is the mechanical system consisting of a point-
particle moving freely inside a bounded domain Ω ⊂ R2 with piecewise
differentiable boundary, and being reflected off ∂Ω so that the angle of
reflection equals the angle of incidence. This paper concerns hyperbolic
billiards, i.e., billiards for which the corresponding map has no vanish-
ing Lyapunov exponents. Maps with this property are not necessarily
uniformly hyperbolic, but exhibit a weak form of hyperbolicity called
non-uniform hyperbolicity [27].

The study of hyperbolic billiards was initiated by Sinai. In his semi-
nal paper [28], he proved that billiards in 2-dimensional toral domains
containing finitely many obstacles with strictly convex outward bound-
ary are hyperbolic and K-mixing. In fact, Sinai billiards enjoy the
Bernoulli property as well [17].

Later on, Bunimovich proved that also billiards in domains with
boundary formed by strictly convex inward arcs and straight segments
can be hyperbolic [1, 2]. The most celebrated example of such a domain
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is the stadium, the region bounded by two semi-circles connected by
two parallel segments. The only strictly convex inward arcs allowed in
Bunimovich billiards were arcs of circles. This limitation was eventually
overcome by several researchers. Using new techniques for establishing
the positivity of Lyapunov exponents [23, 32], Wojtkowski, Markarian
and Donnay proved independently that besides arcs of circles many
other strictly convex inward arcs can be used to construct hyperbolic
billiards [16, 23, 25, 32]. Similar results were obtained by Bunimovich
for a class of strictly convex arcs related to those of Donnay [5]. All
these results showed that billiards in non-polygonal planar domains
are hyperbolic if three conditions are fulfilled: B1) the strictly convex
boundary components of the domain are of a special type, B2) the
distance between these components and the other curved boundary
components is sufficiently large, and B3) orbits having only collisions
with straight segments of the boundary form a set of zero measure. A
precise formulation of these conditions is given in Section 5.

In this paper, we address the question whether a hyperbolic billiard
has the Bernoulli property (for short, ‘it is Bernoulli’), i.e., whether
it is isomorphic to a Bernoulli shift. The Bernoulli property is the
strongest among the ergodic properties: it implies K-property, mixing
and ergodicity. The Bernoulli property was proved for several billiards,
including the Sinai billiards, the Bunimovich billiards, the Wojtkowski
billiards and other special hyperbolic billiards [4, 11, 12, 13, 22, 24, 30].
Despite that, there remain many planar hyperbolic billiards for which
not even the ergodicity has been proved. Notably, among them, there
are the billiards constructed by Donnay [16]. The goal of this paper
is to fill this gap: we show that there exists a large class of hyper-
bolic billiards, including the Donnay billiards, that have the Bernoulli
property.

The key ingredient in the proof of this result is a local ergodic theo-
rem for hyperbolic planar billiards. Roughly speaking, our local ergodic
theorem states that if a planar billiard satisfies conditions B1-B3 and
the extra condition B4 (see Section 5), then there exists a full measure
set H in the billiard phase space with the property that each element
of H has a neighborhood contained (mod 0) in one ergodic component
of the billiard.

Condition B4 regards the singular set of the billiard, the set formed
by the elements where the billiard map is not defined or is not twice-
differentiable. This set corresponds to the trajectories that hit a corner
of the billiard domain or have a tangential collision with its boundary.
Condition B4 requires the elements of the singular set whose trajec-
tories have eventually collisions only with straight segments to form a
negligible subset (in the measure theoretical sense) of the singular set.

As a matter of fact, the neighborhood in the conclusion of the lo-
cal ergodic theorem belongs (mod 0) to a single Bernoulli component
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of the billiard map (for the definition of a Bernoulli component, see
Theorem A.6 in the appendix). As a consequence, every Bernoulli
component of a billiard satisfying B1-B4 is open (mod 0). We stress,
that although this is a remarkable property, it is not enough to yield
the Bernoulli property.

Our local ergodic theorem for billiards is derived from a local er-
godic theorem for general hyperbolic symplectomorphisms with sin-
gularities [14], which is a generalization of a theorem of Liverani and
Wojtkowski [22]. Whereas in [22], it is assumed the existence of a cone
field that is continuous everywhere on the billiard phase space, in [14],
the existence of such a cone field is required only on an open subset of
the billiard phase space. The billiards considered in this paper admit
in general only an invariant piecewise-continuous cone field, and so the
local theorem in [22] does not apply to all them. The proof of both [14]
and [22] rely on the method developed by Sinai to prove the ergodicity
of dispersing billiards [28]. Refinements of Sinai’s method were also
obtained in [9, 21, 29].

We also mention that the trick used in [30] to prove the ergodicity of
Wojtkowski billiards and based on rescaling a certain semi-metric does
not work with the majority of our billiards. It works with Wojtkowski
billiards, because their invariant cones have the property that G−y =
G+
y = d(x) (for the meaning of these symbols, see Section 4), but this

property is not satisfied in general by our billiards.
The paper is organized as follows. In Section 2, we recall the def-

inition of the billiard map and its main properties. In Section 3, we
give the definition of the focusing times. We also give the definition of
a focusing arc introduced by Donnay, and collect the main properties
of these arcs. Section 4 is concerned with the theory of invariant cone
fields, and their construction for billiards. In this section, we also re-
call further results on focusing arcs. In Section 5, we give a detailed
description of the hyperbolic billiards considered, and state the main
results of this paper. In Section 6, we prove Conditions L1-L3 of the
local ergodic theorem. Section 7 is entirely devoted to the proof of
Condition L4. In Section 8, we introduce the class of billiards in poly-
gons with pockets and bumps, and prove that they have the Bernoulli
property. As a corollary, we obtain that the Donnay billiards have
the Bernoulli property. In the Appendix, we state the local ergodic
theorem for general hyperbolic symplectomorphisms with singularities
from [14] together with relevant concepts and observations.

Sections 2, 3 and the beginning of Section 4 are meant to be an in-
troduction to basic concepts on billiards and geometric optics, Donnay
arcs and the theory of invariant cone fields. The reader already familiar
with these notions may read quickly or skip these sections, and move
directly to the second part of Section 4.
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2. Generalities on billiards

A billiard system can be described either by a flow or a map. In
this paper, we focus on the billiard map. For the relation between the
billiard map and billiard flow, we refer the reader to the book [10]. In
this section, we define the billiard map for a 2-dimensional domain, and
single out its basic properties: regularity, natural invariant probability
and singular sets.

2.1. Billiard domain. Let 0 ≤ k ≤ ∞. A subset Γ ⊂ R2 is called
an arc of class Ck if Γ is the image of a Ck embedding γ : [0, 1]→ R2.
The boundary of Γ is the set ∂Γ = γ(0) ∪ γ(1). A subset Γ ⊂ R2 is
called a closed curve of class Ck if Γ is Ck diffeomorphic to the unit
circle S1. For a closed curve, we set ∂Γ := ∅.

Let Ω be an open bounded connected subset of R2 with boundary
∂Ω consisting of finitely many arcs and closed curves Γ1, . . . ,Γn of class
C3. The set Ω may have a finite number of holes (obstacles), i.e., it
does not have to be simply connected. Let `i be the length of Γi, and
consider the parametrization γi : [0, `i] → R2 of Γi by arc-length with
the property that the interior of Ω remains on the left of the tangent
vector γ′i(s) for s ∈ [0, `i]. We assume that the curvature of each
Γi computed with respect to the parametrization γi is either strictly
negative, or strictly positive, or identically zero at every point of Γi
(even at its boundary points). If Γi has zero curvature, then it is just
a straight segment. We also assume that Γi ∩Γj ⊂ ∂Γi ∩ ∂Γj for i 6= j.

The sets Γ1, . . . ,Γn are called the components of ∂Ω. The union of
all components with positive curvature (focusing components), nega-
tive curvature (dispersing components) and zero curvature (flat compo-
nents) are denoted by Γ+, Γ− and Γ0, respectively. A point of

⋃n
i=1 ∂Γi

is called a corner of Ω.

2.2. Billiard phase space. For each i = 1, . . . , n, define

Mi = [0, `i]× [0, π]

with the elements (0, θ) and (`i, θ) identified if Γi is a closed curve.
Hence Mi is either a rectangle or a cylinder. The billiard phase space
M is the disjoint union of M1, . . . ,Mn. An element x ∈ M specifies
a unit vector of R2 with base point at s ∈ Γi and forming an angle
θ with γ′i(s). It corresponds to the position and the velocity of the
point-particle immediately after a collision with ∂Ω. For this reason,
the elements 1 of M are called collisions. We denote by M+, M−, M0

the subsets of M obtained by taking the disjoint unions of sets Mi with
Γi belonging to Γ+, Γ− and Γ0, respectively.

1There is no one-to-one correspondence between the elements of M and the unit
vectors of R2 attached to ∂Ω. Indeed, two distinct elements x1 = (s1, θ1) ∈ Γi and
x2 = (s2, θ2) ∈ Γj of M may correspond to the same unit vector of R2. However,
this can happen only if γi(s1) = γj(s2) is a corner point of ∂Ω.
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The set M is a smooth manifold with boundary ∂M =
⊔n
i=1 ∂Mi. We

equip M with the Riemannian metric g = {gx}x∈M and the symplectic
form ω = {ωx}x∈M given by gx = ds2 + dθ2 and ωx = sin θ(x)ds ∧ dθ.
The norm generated by g is denoted by ‖ ·‖. The Riemannian metric g
induces in the usual way a distance d on eachMi, which can be extended
to the entire set M by setting d(x, y) = d̄ whenever x ∈Mi and y ∈Mj

with i 6= j, where d̄ > 0 is a sufficiently large constant depending on
∂Ω. Let m be the volume generated by g. Then µ = (2`)−1 sin θ(x)m
is the probability measure generated by ω with ` :=

∑n
i=1 `i being the

total length of ∂Ω.
Finally, we observe that there exists a natural involution I : M →M

given by I(s, θ) = (s, π − θ) whenever (s, θ) ∈Mi.

2.3. Billiard map and singular sets. Given x = (s, θ) ∈ Mi, let
q(x) = γi(s) ∈ Γi, and let v(x) be the unit vector of R2 forming an
angle θ with γ′i(s). Let ρ(x) = {τ > 0: (q(x), q(x)+τv(x)) ⊂ Ω}, where
(q(x), q(x) + τv(x)) is the open segment {q(x) + tv(x) : 0 < t < τ(x)}.
Then, define t(x) = 0 if ρ(x) is empty, and t(x) = sup ρ(x) otherwise.

Now, define

q1(x) = q(x) + t(x)v(x),

and

M ′ = {x ∈M : q1(x) is not a corner of Ω} .
If x ∈ M ′, then there exists a unique i such that q1(x) belongs to the
interior of Γi, and we set s1(x) = γ−1

i (q1(x)). Now, let

v1(x) = −v(x) + 2〈γ′i(s1(x)), v(x)〉γ′i(s1(x)),

where 〈·, ·〉 denotes the usual scalar product in R2. In other words,
v1(x) is the unit vector obtained by reflecting v(x) about the direction
γ′i(s1(x)). Let θ1(x) ∈ [0, π] be the oriented angle between γ′i(s1(x))
and v1(x). The billiard map for the domain Ω is the transformation
T : M ′ →M given by

Tx = (s1(x), θ1(x)), x ∈M ′.

The regularity (continuity, differentiability, etc.) of T depends on
the regularity of the boundary of Ω. To clarify this point, we define:

A1 = {x ∈M : q(x) is a corner of Ω} ,
A2 = {x ∈M : θ(x) ∈ {0, π}} ,
A3 = {x ∈M : q1(x) is a corner of Ω} ,
A4 = {x ∈M ′ : Tx ∈ A2} .

Let S+
1 = A3 ∪A4, and let S−1 = I(S+

1 ). Both S+
1 and S−1 are compact

sets. Next, define

R+
1 = ∂M ∪ S+

1 ,
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and for all j ≥ 1, define iteratively

R+
j+1 = R+

j ∪ T−1R+
j and R−j = I(R+

j ).

The billiard map T is a local Ck−1 diffeomorphism at x ∈M \R+
1 [20,

Theorem 4.1]. Thus, the points where T is not continuous or more
generally is not Ck−1 are contained in R+

1 . Analogously, R+
j (resp.

R−j ) contains the points where T j (resp. T−j) is not Ck−1. We call R+
j

(resp. R−j the singular set of T j (resp. T−j).

The map T : M \R+
1 →M \R−1 is a Ck−1 diffeomorphism preserving

the symplectic form ω and the probability measure µ provided that
k > 1 (see [20, Corollaries 4.1 and 4.4, Part V]). Under proper condi-
tions on the components Γ1, . . . ,Γn, which are satisfied by the billiards
considered in this paper2, the sets R+

j and R−j are unions of finitely

many arcs of class C2 [15]. Hence, µ(R+
j ) = µ(R−j ) = 0 for every

j ≥ 1. Finally, we observe that T is time-reversible, which means that
I ◦ T = T−1 ◦ I on M \R+

1 .

3. Focusing times and focusing components

We now introduce the concept of focusing times. This notion is
borrowed from geometrical optics, and permits to obtain an intuitive
description of the action of the derivative of the billiard map on the
projective line.

3.1. Focusing times. Let x ∈ M and u ∈ TxM \ {0}. There exists
a differentiable curve ϕ : [−δ, δ] → M with δ > 0 such that ϕ(0) = x
and ϕ′(0) = u. This curve defines a 1-parameter family of lines γu in
R2, which is a differentiable variation of the line l(x) through q(x) and
parallel to v(x). In linear approximation, all lines of γu focus at the
point q+ ∈ l(x). If γu consists in linear approximation of parallel lines,
then q+ = ∞. The point q+ depends only on u, and not on the curve
ϕ. By reflecting the lines of γu about the boundary of Ω, we obtain
another differentiable 1-parameter family of lines, which is generated
by the curve I(ϕ). Denote by q− the point where the lines of this
family focus in linear approximation.

The forward focusing time τ+(x, u) of the vector u is equal to length
of (q+− q(x)) multiplied by 1 or −1 depending on whether the vectors
(q+ − q(x)) and v(x) have the same direction or opposite directions.
The backward focusing time τ−(x, u) of the vector u is defined similarly
with q+ and v(x) replaced by q− and v(I(x)), respectively. Note that
τ+(x, u) and τ−(x, u) may be negative numbers.

Define κi(x) to be the curvature of Γi for every x = (s, θ) ∈Mi such
that s ∈ (0, `i). Then extend κi to the entire Mi by continuity. Finally,
let κ : M → R be the function given by κ(x) = κi(x) if x ∈Mi.

2More precisely, for billiards satisfying Conditions B1 and B2 in Section 5.



PLANAR HYPERBOLIC BILLIARDS 7

Let x ∈ M and u ∈ TxM \ {0}. Write u = (us, uθ) ∈ R2 in co-
ordinates (s, θ). Let m(u) = uθ/us ∈ R ∪ {∞}. A straightforward
computation (for example, see [32, Section 2]) shows that

τ±(x, u) =

{
sin θ(x)

κ(x)±m(u)
if m(u) 6= ∓κ(x),

∞ otherwise.
(1)

Let d(x) = sin θ(x)/κ(x). From (1), one can easily derive the well
known Mirror Equation of geometrical optics, relating the focusing
times τ+(x, u) and τ−(x, u):

1

τ+(x, u)
+

1

τ−(x, u)
=

2

d(x)
. (2)

Definition 3.1. Let x ∈ M \ R+
k for some k ∈ N. Then define

τ±k (x, u) = τ±(T kx,DxT
ku) for all u ∈ TxM \ {0}.

3.2. Focusing components. In this paper, we assume that the focus-
ing components of ∂Ω are arcs of the type introduced by Donnay [16],
which for simplicity will be called Donnay arcs.

The first property that a Donnay arc Γi must satisfy is the following:∫ `i

0

κ(s(x))ds ≤ π. (3)

This condition amounts to saying that the tangents to Γi at its end-
points form an angle that is not larger than π. In particular, no Donnay
arc can be a closed curve. Hence, no billiard orbit is trapped by Γi, ex-
cept possibly the periodic orbit of period 2 whose trajectory coincides
with the segment joining the endpoints of Γi [16, Lemma 1.1].

Definition 3.2. Define n : M+ → {0, 1, 2, . . .} ∪ {+∞} by

n(x) =

{
sup

{
j ≥ 0: T kx ∈Mi ∀0 ≤ k ≤ j

}
, x ∈Mi \ A2 ⊂M+,

+∞, x ∈M+ ∩ A2.

The number n(x) is the number of consecutive collisions of x with
Γi before either leaving it or hitting one of its endpoints.

Definition 3.3. For every Γi ⊂ Γ+, define

Ei = {x ∈Mi : n(I(x)) = 0} .
Also, define E+ =

⋃
i : Γi⊂Γ+ Ei.

Equivalently, x ∈ Ei if and only if I(x) either leaves Γi or hits one of
the endpoints of Γi. Note that if x ∈ Ei, then {x, Tx, . . . , T n(x)x} ⊂Mi

is the maximal sequence of consecutive collisions with Γi that cannot
be extended forward or backward.

Definition 3.4. Let x ∈ Ei, and denote by ux ∈ TxM the tangent
vector such that τ−(x, ux) = ∞ or equivalently m(x) = κ(x). In other
words, the variation associated to ux consists of lines parallel to v(x).
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Definition 3.5. We say that x ∈ Ei is focused by Γi if

(1) 0 < τ+
i (x, ux) < t(T ix) for 0 ≤ i < n(x),

(2) 0 < τ+
n(x)(x, ux) < +∞.

The concept of a focused collision is key in the definition of a Donnay
arc. In words, x is focused by Γi if the infinitesimal family of parallel
trajectories focuses between every two consecutive collisions with Γi
and after the last one.

Definition 3.6. A focusing component Γi is a Donnay arc if i) Γi is
of class C∞, ii) Γi satisfies (3), and iii) if every x ∈ Ei is focused by
Γi.

The definition of a Donnay arc is similar to that of an absolutely
focusing arc introduced by Bunimovich [3, 5]. The relation between
the two definitions is discussed in [5].

Billiards in convex regions bounded by Donnay arcs connected by
straight segments sufficiently long have non-zero Lyapunov exponents
almost everywhere [16, Theorem 2]. In this paper, we consider billiard
domains that are more general than those considered by Donnay: our
billiard domains are not necessarily convex, and their boundaries are
allowed to have components with negative curvature.

The key property of Donnay arcs used in the construction of hyper-
bolic billiards is the uniform boundedness of the focusing time τ+

n(x)(x, ux)

for x ∈ Ei [16, Theorem 4.4]. For this property to hold, the arc does
not have to be smooth as required by Donnay. Indeed, Wojtkowski and
Markarian found C4 curves satisfying that property [23, 32].

Examples of Donnay arcs are arcs of circles, arcs of cardioids, arcs
of logarithmic spirals and elliptical arcs. An example of a Donnay arc
that is not one of the arcs discovered by Wojtkowski and Markarian
is the half-ellipse {(x, y) ∈ R2 : x2/a2 + y2/b2 = 1 and x ≥ 0} with
a/b <

√
2 [16, Theorem 7.1].

We mention two interesting facts concerning the existence and ro-
bustness under perturbation of Donnay arcs. The first fact is that given
a smooth arc Γ with positive curvature, every sufficiently short arc con-
tained in Γ is a Donnay arc [16, Theorem 3]. A similar conclusion when
Γ is only of class C4, but satisfies also the condition d2(κ−1/3)/ds2 > 0
was obtained by Markarian [23]. The second fact we want to mention
is that given a Donnay arc Γ, every sufficiently small perturbation of
Γ in the C6 topology is still a Donnay arc [16, Theorem 4].

4. Cone fields for billiards

In this section, we recall the notions of an invariant cone field and a
monotone quadratic form. We restrict ourselves to the 2-dimensional
setting, since we are dealing only with planar billiards in this paper.
Next, we introduce a specific family of cone fields for planar billiards.
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In Section 5, we will show that these cone fields are eventually strictly
invariant if the billiards satisfy certain geometric conditions. The main
reference for Subsections 4.1 and 4.2 is [22].

4.1. Cone fields. Let V be a 2-dimensional vector space with a sym-
plectic form α. Given two linearly independent vectors X1 and X2 of
V , we can write v = v1 + v2 for every v ∈ V with vi ∈ Xi for i = 1, 2.
We call the cone generated by X1 and X2 the set

C(X1, X2) := {v ∈ V : α(v1, v2) ≥ 0}.
The cone C ′(X1, X2) := C(X2, X1) is called the complementary cone of
C(X1, X2). The set intC(X1, X2) := {v ∈ V : α(v1, v2) > 0} is called
the interior of C(X1, X2). To our knowledge, the description of a cone
using symplectic forms first appeared in [31].

Now, consider a billiard in a domain Ω ⊂ R2 with phase space M ,
billiard map T and the symplectic form ω = {ωx}x∈M as in Section 2.
Let U be an open set of M , and let X1 and X2 be two measurable
vector fields on U such that X1(x) and X2(x) are linearly independent
for all x ∈ U . The cone field C on U ⊂M generated by X1 and X2 is
the family of cones {C(x)}x∈U with

C(x) := C(X1(x), X2(x)) = {u ∈ TxM : ωx(u1, u2) ≥ 0} ⊂ TxM

for every x ∈ U , and it is denoted by (U,C).
The cone field (U,C) is called continuous if X1 and X2 are continu-

ous. The cone field (U,C) is called invariant (resp. strictly invariant)
if x ∈ U and T kx ∈ U with k > 0 implies that DxT

kC(x) ⊂ C(T kx)
(resp. DxT

kC(x) ⊂ intC(T kx) ∪ {0}). The cone field (U,C) is called
eventually strictly invariant if it is invariant, and for a.e. x ∈ U , there
exists an integer k(x) > 0 such that T k(x)x ∈ U and DxT

k(x)C(x) ⊂
intC(T k(x)(x)) ∪ {0}.

A crucial property of the 2-dimensional cone C(x) is that it can
be identified with a closed interval of the projective space P(TxM).
Therefore, since m, τ−, τ+ are all projective coordinates, each of the
following provides an alterative definition of the cone field (U,C): for
all x ∈ U ,

C(x) = {u ∈ TxM \ {0} : m(u) ∈ I(x)} ∪ {0},
C(x) = {u ∈ TxM \ {0} : τ+(x, u) ∈ I+(x)} ∪ {0},
C(x) = {u ∈ TxM \ {0} : τ−(x, u) ∈ I−(x)} ∪ {0}

with I(x), I−(x), I+(x) being proper closed intervals of the extended

real line R̂.

4.2. Quadratic forms. Consider a cone field (U,C) generated by the
vector fields X1 and X2. The quadratic form QC = {QC(x, ·) : x ∈ U}
associated to (U,C) is defined by

QC(x, u) = ωx(u1, u2) for x ∈ U and u ∈ TxM.
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The formQC is monotone (resp. strictly monotone) ifQC(T kx,DxT
ku) ≥

QC(x, u) (resp. QC(T kx,DxT
ku) > QC(x, u)) for all u ∈ TxM \ {0}

whenever x ∈ U and T kx ∈ U with k > 0. The form QC is eventually
strictly monotone if it is monotone, and for a.e. x ∈ U , there exists
an integer k(x) > 0 such that QC(T k(x)x,DxT

k(x)u) > QC(x, u) for all
u ∈ TxM \ {0}.

Following [22], to measure the expansion generated by the action of
DxT

k with k > 0 on vectors of Cx, we define

σC(DxT
k) = inf

u∈intC(x)

√
QC(T kx,DxT ku)

QC(x, u)
,

and

σ∗C(DxT
k) = inf

u∈intC(x)

√
QC(T kx,DxT ku)

‖u‖
.

We denote by (U,C ′) the family of cones {C ′(x)}x∈U with C ′(x) being
the complementary cone of C(x). We observe that C is invariant (resp.
strictly invariant) if and only if C ′ is invariant (resp. strictly invariant)
with respect to T−1. The relation between the expansion of DxT

k on
C and the expansion of DTkxT

−k on C ′ is given by σC′(DTkxT
−k) =

σC(DxT
k).

The cone field (U,C) is invariant (resp. strictly invariant) if and
only if the quadratic form QC is monotone (resp. strictly monotone),
and (U,C) is eventually strictly invariant if and only if QC is even-
tually strictly monotone. Furthermore, DxT

kC(x) ⊂ C(T kx) (resp.
DxT

kC(x) ⊂ intC(T kx) ∪ {0}) for x ∈ U such that T kx ∈ U with
k > 0 is equivalent to σC(DxT

k) ≥ 1 (resp. σC(DxT
k) > 1).

4.3. Cone fields for billiards. Let E− =
⋃
i : Γi⊂Γ−Mi, and let E =

E+ ∪ E− (for the definition of E+, see Definition 3.3). In this section,
we introduce a family of continuous cone fields for billiards. The cones
are defined separately for focusing and dispersing components, and to
make their geometrical meaning more transparent, several equivalent
definitions are provided. Rather than considering a single continuous
cone field, as it is common in the literature on hyperbolic billiards, we
consider a family of continuous cone fields {(Ux, Cx) : x ∈ E}. The
reason for using {(Ux, Cx) : x ∈ E} instead of a single continuous cone
field on E is that for most of the billiards considered in this paper, we
do not know whether such a cone field exists3.

As a consequence of this choice, we will be able to apply the Local
Ergodic Theorem (Theorem A.13) only to Ux with x ∈ E. This is not
a serious limitation, because the hypotheses imposed on our billiards
imply that almost every element of M visits E, and so knowing that

3A single continuous cone field on E exists for Bunimovich and Wojtkowski
billiards [1, 31, 32], but these form a subset of the billiards considered here.
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each Ux belongs (mod 0) to an ergodic component of T suffices to
conclude that the same holds true for almost every point of M .

4.3.1. Dispersing components. Let x ∈ Mi ⊂ M− for some i. Then,
define Ux = Mi, and for every y ∈ Ux,

Cx(y) = {u ∈ TyMi \ {0} : m(u) ≤ κ(y)} ∪ {0}.
The resulting cone field (Ux, Cx) is clearly continuous. Each cone

Cx(y) consists of tangent vectors focusing inside the disk tangent to Γi
at q(y) of radius 1/(4|κ(y)|). This can be easily checked by using (1):
if u ∈ Cx(y) \ {0}, then d(y) ≤ 2τ+(y, u) ≤ 0 and 0 ≤ τ−(y, u) ≤ +∞.

4.3.2. Focusing components. To define (Ux, Cx) for every x ∈ E+, we
first recall a result of Donnay.

For every x ∈M+ and every real number g < κ(x), let

D(x, g) = {u ∈ TxM \ {0} : g ≤ m(u) ≤ κ(x)} .

Theorem 4.1. Suppose that Γi is a Donnay arc. Then there exist
positive constants ai,mi, θi, t

−
i , t

+
i , and for every x ∈ Ei, there exist a

neighborhood Ux ⊂Mi \A2 of x and a continuous function gx : Ux → R
with |gx| < κ|Ux such that if x ∈ Ei, y ∈ Ux, j ∈ {0, . . . , n(y)}, yj :=
T jy, u ∈ D(y, gx(y)) and uj := DyT

ju, then

(1) −κ(yj) +mi ≤ m(uj) ≤ κ(yj),

(2) min{θ(y), π−θ(y)} < θi =⇒ |m(uj)| ≤ ai ·min{θ(y), π − θ(y)},
(3) j < n(y) =⇒ d(yj) ≤ 2τ+(yj, uj) < 2t(yj)− d(Tyj),

and if x ∈ Ei and y ∈ Ux, then

(4) infu∈D(y,gx(y)) τ
−(y, u) ≤ t−i ,

(5) supu∈D(y,gx(y)) τ
+
n(y)(y, u) ≤ t+i .

Proof. For the proof of Parts (1) and (2), see the proofs of [16, The-
orems 4.4 and 5.6], whereas for the proof of Parts (3)-(5), see [16,
Proposition 4.1 and Theorem 4.4]. �

Theorem 4.1 has the following geometrical interpretation. Part (1)
states that the iterates along consecutive collisions with Γi of tangent
vectors with initial slope between gx(y) and κ(y) have slopes uniformly
bounded for all x ∈ Ei and all y ∈ Ux. This conclusion is strengthened
in Part (2) provided that θ(y) is uniformly close to 0 or π. In par-
ticular, in this case, the iterates of the vectors remain uniformly close
to the horizontal direction. Parts (3)-(5) implies the every y ∈ Ux is
focused (c.f. 3.5), and that the backward and forward focusing times
of the tangent vectors considered are uniformly bounded by constants
depending only on Γi. In fact, the constants t−i and t+i are continuous
functions of Γi with respect to the C6 topology [16, Theorem 4.4].
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Suppose that x ∈ E+. Let Ux be the neighborhood of x and gx be
the continuous function as in Theorem 4.1. For every y ∈ Ux, define

Cx(y) = D(y, gx(y)) ∪ {0}.

Remark 4.2. The following are alternative descriptions of the cone
Cx(y) for every x ∈ E in terms of the projective coordinates τ+ and
τ−:

Cx(y) =
{
u ∈ TyMi \ {0} : d(y)/2 ≤ τ+(y, u) ≤ G+

x (y)
}
∪ {0}

=
{
u ∈ TyMi \ {0} : G−x (y) ≤ τ−(y, u) ≤ +∞

}
∪ {0},

where G±x (y) := sin θ(y)/(κ(y) ± gx(y)) for all y ∈ Ux if x ∈ E+, and
G±x (y) := 0 for all y ∈ Ux if x ∈ E−. Note that for x ∈ E+, the
numbers G+

x (y) and G−x (y) are, respectively, the forward and backward
focusing times of the vectors with slope equal to gx(y).

5. Results

In this section, we give a detailed description of the billiards that we
want to study, and formulate the main results of the paper.

The billiards in question are characterized by four conditions called
B1-B4. It is well known that B1-B3 are sufficient to guarantee the
hyperbolicity of the billiard map T (see Proposition 5.3). This together
with the Spectral Theorem implies that T has at most countably many
ergodic components of positive measure with respect to µ, with each
ergodic component further decomposed into finitely many Bernoulli
components cyclically permuted by T (see Theorem A.6).

The main result of this paper is the following: if in addition to B1-
B3, a billiard satisfies also Condition B4, then there exists a measurable
set H ⊂ M of full measure such that for every x ∈ H, there is a
neighborhood of x in M contained up to a set of zero measure in a
single Bernoulli component of T (see Theorem 5.6). This result implies
immediately that every Bernoulli component of T is open up to a set
of zero measure. Results of this type are often called Local Ergodic
Theorems.

Local ergodicity alone is not enough to conclude that T is Bernoulli.
This is obtained by imposing on T some extra conditions. It is not an
easy task to formulate these conditions for the generality of the billiards
considered in this paper. Therefore, rather than trying to formulate the
optimal condition for the Bernoulli property of hyperbolic billiards, we
limit ourselves here to give a simple condition, called B5, that yields the
Bernoulli property of interesting subclasses of hyperbolic billiards (i.e.,
billiards with domains without straight boundaries, i.e., Γ0 = ∅). It is
unfortunate that B5 does not hold for Donnay billiards. Nevertheless,
in Section 8, we prove that these billiards and some generalizations
(billiards with pockets and bumps) are Bernoulli, using a proof that
does not require B5.
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5.1. Important sets. Next, we introduce several sets involved in the
formulation of Conditions B1-B5. Recall that R±k are the singular sets
defined in Section 2. Define

• R±∞ =
⋃
k≥1R

±
k ,

• R = R−∞ ∩R+
∞,

• N± =
{
x ∈M \R±∞ : ∃k > 0 s.t. T (±)nx ∈M0 for all n ≥ k

}
,

• N = N− ∩N+,
• N ′ = (R−∞ ∩N+) ∪ (R+

∞ ∩N−),
• H = M \ (R ∪N ∪N ′).

The geometric meaning of these sets is the following: R+
∞ (resp.

R−∞) is the set of collisions with finite positive (resp. negative) semi-
orbit; R is the set of collisions with finite orbit; N+ (resp. N−) is
the set of collisions with positive (resp. negative) semi-orbit visiting
eventually only flat components of ∂Ω; N is the set of collisions with
both semi-orbits visiting eventually only flat components of ∂Ω; N ′

is the set of collisions with one semi-orbit being finite and the other
semi-orbit visiting eventually only flat components of ∂Ω; H is the set
of collisions with one semi-orbit visiting the curved components of ∂Ω
infinitely many times.

5.2. Hyperbolic billiards. We are ready to formulate Conditions B1-
B5.

B1 (Non-polygonal domain): The domain Ω is not a polygon, and
its boundary components can only be of the following type: straight
segments, dispersing arcs of class C3 and focusing arcs.

B2 (Distance between boundary components): For each curved
component Γi, we define λ±i = 0 if Γi is dispersing, and λ±i = t±i with
t±i as in Theorem 4.1 if Γi is focusing. Given two curved components
Γi and Γj, denote by tij ≥ 0 the infimum of the Euclidean length of
all finite billiard orbits {x0, . . . , xn} with n > 0 such that x0 ∈Mi and
xn ∈Mj. We assume that

(1) there exists λ > 0 such that if Γi or Γj is focusing, then

tij ≥ λ−i + λ+
j + λ,

(2) the distance between each focusing component Γi and the set of
corners of ∂Ω formed by two straight segments is greater than
λ−i .

B3 (Neutral orbits): We assume that µ(N−) = 0.

B4 (Singular-Neutral orbits): We assume m−(S−1 ∩N+) = 0, where
m− is the measure induced by the Riemann metric g on S−1 .

B5 (Connectedness): The set H ∩Mi is connected for every com-
ponent Γi of ∂Ω.
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Condition B2 has a couple of obvious consequences for the geome-
try of Ω: i) the internal angle between a focusing component and an
adjacent curved component is greater than π, and ii) the internal an-
gle between a focusing component and an adjacent flat component is
greater than π/2. Also, note that Conditions B1-B4 allow ∂Ω to have
cusps formed by two dispersing components or a dispersing and a flat
component.

Remark 5.1. Since N+ = I(N−) and S+
1 ∩N− = I(S−1 ∩N+), Con-

ditions B3 and B4 imply that µ(N+) = 0 and m+(S+
1 ∩N−) = 0, where

m+ is the measure induced by the Riemann metric g on S+
1 .

From Conditions B1 and B2, it follows that cone field {(Ux, Cx)}x∈E
is strictly invariant along a piece of an orbit connecting two elements
of E. The next lemma is proved in [15, Lemma 5.2].

Lemma 5.2. Suppose that the billiard in Ω satisfies Conditions B1 and
B2. Also, suppose that there exist x1, x2 ∈ E and y ∈ E ∩Ux1 \R+

k for
some k > 0 such that T ky ∈ E ∩ Ux2. Then

DyT
kCx1(y) ⊂ intCx2(T

ky) ∪ {0}.

From the previous lemma, one obtains the hyperbolicity of the bil-
liard map T provided that Conditions B1-B3 are satisfied. This is well
known fact, but we give its proof for completeness.

Proposition 5.3. If a billiard in a domain Ω satisfies Conditions B1-
B3, then the Lyapunov exponents of the map T are non-zero a.e. on
M .

Proof. Let E ′ be the subset of E \ (R+
∞ ∪N+) defined by

E ′ =
{
x ∈ E \ (R+

∞ ∪N+) : ∃nk ↗ +∞ s.t. T nkx ∈ Vx ∀k > 0
}
,

where (Ux, Cx) is the cone field associated to x. Since (Ux, Cx) is strictly
invariant for every x ∈ E ′ by Lemma 5.2, results of Wojtkowski [32]
imply that the Lyapunov exponents of T are non-vanishing at every
point of E ′. By µ(R+

∞) = µ(N+) = 0 and the Poincaré Recurrence
Theorem, we obtain that µ(E ′) = µ(E) > 0. This fact together with
µ(R+

∞) = µ(N+) = 0 gives that the orbit of a.e. point of M visits E ′.
Since the Lyapunov exponents are constant along orbits, we can finally
conclude that the Lyapunov exponents of T are non-vanishing at a.e.
point of M . �

Conditions B1-B3 are sufficient for the hyperbolicity of the map T .
In fact, even part (2) of B2 can be dropped if we are only interested
in the hyperbolicity of T . The extra Condition B4 is required to prove
that T is locally ergodic. This condition is related to the Sinai-Chernov
Ansatz (c.f. Condition L3 of Theorem A.13). Note also that B3 is a
necessary condition for the hyperbolicity of T .
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Remark 5.4. We do not know whether or not, for a domain Ω satis-
fying B1 and B2, B3 or B4 is automatically satisfied. We also do not
know whether B3 and B4 are independent. These questions are strictly
related to the problem of understanding the distribution of orbits in
polygonal billiards.

Lemma 5.5. We have µ(H) = 1 provided that B1 and B3 and are
satisfied.

Proof. Since µ(R+
1 ) = 0 for billiards satisfying B1 (see the end of Sub-

section 2.3), we trivially obtain µ(R) = µ(N ′) = 0. From B3, we obtain
immediately µ(N) = 0. �

5.3. Main results. The central result of this paper is the following
theorem. Its proof is given in Section 6. For the definition of a Bernoulli
component of T , see Appendix A.

Theorem 5.6. If a billiard in a domain Ω satisfies Conditions B1-
B4, then every point of H has a neighborhood contained (mod 0) in a
Bernoulli component of T .

We now prove that the map T is Bernoulli if it also satisfies Condi-
tion B5. As already explained in the introduction to this section, B5
applies only to a small subclass of billiards satisfying B1-B4 (see The-
orem 8.7). We could have weakened considerably B5 for it to include
many more hyperbolic billiards, but at the price of a much more techni-
cal formulation. Instead of attempting to give the weakest formulation
of B5, we opted for a strong condition but with a simple formulation
that allows for a relatively simple proof of the Bernoulli property for
billiards.

Corollary 5.7. If a billiard in a domain Ω satisfies Conditions B1-B4,
then every Bernoulli component of T is open (mod 0).

Proof. Let B be a Bernoulli component. Since µ(B) > 0, we have
µ(B ∩H) > 0. Let x ∈ B ∩H, and let U be the neighborhood of x as
in Theorem 5.6. The set V :=

⋃
n∈Z T

nU is open. Moreover, since V
is invariant and contained (mod 0) in B, it follows that B = V (mod
0). �

Corollary 5.8. If the billiard in a domain Ω satisfies Conditions B1-
B5, then the map T is Bernoulli.

Proof. By Theorem 5.6, every point of H has a neighborhood contained
up to a set of zero measure in a Bernoulli component of T . The same
is true for every connected component of H, and so for every Mi ∩H
such that Mi ⊂ M− ∪M+ by the first part of Condition B5. Since
µ(H) = 1 (see Remark 5.1), we conclude that every set Mi ⊂M−∪M+

is contained (mod 0) in a single Bernoulli component of T .
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We now show that if Γi and Γj intersect, then Mi and Mj are
contained in the same Bernoulli component of T . First, note that
S−1 \ (R+

∞ ∪ N+) is contained in H. Next, since S−1 ∩ R+
k is finite for

every k > 0 (see [15, Propositions 6.17-6.19]), it follows that S−1 ∩R+
∞ is

countable. This together with B4 implies that m−-a.e. element of S−1 is
contained in H. Hence, if p ∈ Γi∩Γj is a corner of ∂Ω, then we can find
x ∈ H ∩S−1 such that the ray emerging from I(x) is arbitrarily close to
`, the line bisecting p. Now, let U be the neighborhood of x contained
(mod 0) in one Bernoulli component of T as stated by Theorem 5.6.
It is clear that T−1U is contained (mod 0) in the same Bernoulli com-
ponent. But, if I(x) is sufficiently close to `, then Mi ∩ T−1U and
Mj ∩ T−1U are non-empty open sets so that Mi and Mj must belong
(mod 0) to the same Bernoulli component.

The previous conclusion implies that q−1(Σ) is contained (mod 0) in
a Bernoulli component for every connected component Σ of ∂Ω. Since
Ω is connected, it follows that all sets Mi belongs to the same Bernoulli
component, i.e., T is Bernoulli. �

6. Local ergodicity

In this section, we prove Theorem 5.6 by applying Theorem A.13
to the billiard map T . Theorem A.13 is a version of a Local Ergodic
Theorem for hyperbolic symplectomorphisms with singularities in ar-
bitrary dimension [14] specialized to planar billiards. Because of its
length, Theorem A.13 is given in the Appendix together with all the
definitions required for its formulation. Its main hypotheses are Condi-
tions L1-L4. This section is devoted to the proof of Conditions L1-L3,
whereas Section 7 is entirely devoted to the proof of Condition L4.

Proof of Theorem 5.6. The wanted conclusion follows at once by apply-
ing Theorem A.13 to points of H. Accordingly, we show that each point
of H is sufficient (see Definition A.1) and satisfies Conditions L1-L4.
This is achieved in Corollary 6.3, Propositions 6.4–6.6 and Proposi-
tion 7.30. �

6.1. Sufficient points. We now prove that every point of H is suffi-
cient (see Definition A.1).

Given x ∈ E and k ∈ N such that T kx ∈ E, define

σ̃x(DyT
k) = inf

u∈intCx(y)

√
QC

Tkx
(T ky,DyT ku)

QCx(y, u)

and

σ̃∗x(DyT
k) = inf

u∈intCx(y)

√
QC

Tkx
(T ky,DyT ku)

‖u‖
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for every y ∈ Ux∩T−kUTkx. The quantity σ̃x (resp. σ̃∗x) is a generaliza-
tion of σC (resp. σ∗C), because if U = Ux = UTkx and C = Cx = CTkx,
then σ̃x = σC (resp. σ̃∗x = σ∗C).

Under the previous hypotheses x, T kx ∈ E, also define

t(x, T kx) =
m−1∑
i=0

t(T ix).

In other words, t(x, T kx) is the sum of the length of the segments
[q(x), q(Tx)], . . . , [q(T k−1x), q(T kx)]. Furthermore, let λ > 0 be the
constant in Condition B2.

Lemma 6.1. There exists a constant c depending only on the billiard
table Ω such that if x ∈ E, Tmx ∈ E for some m ∈ N and T ix /∈ E for
every 0 < i < m, then

σ̃x(DxT
m) ≥

√
1 + cδ +

√
cδ,

where δ = λ if x ∈ M+ or Tmx ∈ M+, and δ = t(x, Tmx) if x ∈ M−

and Tmx ∈M−.

Proof. The hypotheses imply that if x ∈ M+ and m > n(x) + 1, then
T ix ∈ M0 for every n(x) < i < m. Similarly, if x ∈ M− and m > 1,
then T ix ∈ M0 for every 1 < i < m. Define m = n(x) if x ∈ M+, and
m = 0 if x ∈M−.

The cones CTmx(T
mx) and DxT

mCx(x) can be written as follows

CTmx(T
mx) =

{
u ∈ TTmxM \ {0} : a ≤ τ−(Tmx, u) ≤ b

}
∪ {0},

DxT
mCx(x) =

{
u ∈ TTmxM \ {0} : ā ≤ τ−(Tmx, u) ≤ b̄

}
∪ {0},

where

a = G−Tmx(T
mx), b = +∞,

ā = t(x, Tmx)− sup
u∈Cx(x)\{0}

τ+
m(x, u),

b̄ = t(x, Tmx)− inf
u∈Cx(x)\{0}

τ+
m(x, u).

Note that the collisions {Tmx, . . . , Tm−1x} with the neutral boundary
Γ0 only affect the quantity t(x, Tmx).

By Condition B2, we have

sup
u∈Cx(x)\{0}

τ+
m(x, u) ≤ λ+

j .

Next, directly from the definition of the cone Cx(x) when Γj is dispers-
ing, and from Part (3) of Theorem 4.1 when Γj is focusing, it follows
that

d(Tmx)

2
≤ inf

u∈Cx(x)\{0}
τ+
m(x, u).
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Finally, note that G−Tmx(T
mx) ≤ λ−k . By the previous observations,

a ≤ λ−k , t(x, Tmx)− λ+
j ≤ ā, b̄ ≤ t(x, Tmx)− d(Tmx)

2
. (4)

By Lemma 5.2, DxT
mCx(x) ⊂ intCTmx(T

mx) ∪ {0}. Hence, the
expansion σ̃x(DxT

m) can be estimated by using a formula proved by
Wojtkowski [32, Lemma A.4 and Appendix B]. We obtain4

σ̃x(DxT
m) =

√
1 + w +

√
w, where w =

ā− a
b̄− ā

. (5)

From (4), it follows that

w ≥
t(x, Tmx)− λ+

j − λ−k
λ+
j − d(Tmx)/2

.

It is easy to see that there exists a constant c > 0 depending only on
the billiard domain Ω such that

0 < λ+
j −

d(Tmx)

2
<

1

c
.

Hence,

w ≥ c
(
t(x, Tmx)− λ+

j − λ−k
)
.

Now, the wanted conclusion follows from (5) once we have observed
that t(x, Tmx)− λ+

j − λ−k ≥ λ by Condition B2 if Γj or Γk is focusing,

and λ+
j = λ−k = 0 if Γj and Γk are dispersing. �

If x ∈M \ (R+
∞∪N+), the positive semi-orbit of x visits E infinitely

many times. That is, there exists a strictly increasing sequence {rk}k∈N
of non-negative integers such that for every k ∈ N, we have T rkx ∈ E,
and T ix /∈ E for all rk < i < rk+1. Note that r1 = 0 if and only if
x ∈ E. We call {rk}k∈N the sequence of the positive return times to E
of x.

Similarly, if x ∈ M \ (R−∞ ∪ N−), there exists a strictly decreasing
sequence of non-positive integers {rk}k∈N such that for every k ∈ N,
we have T rkx ∈ E and T ix /∈ E for all rk+1 < i < rk. In this case, we
call {rk}k∈N the sequence of the negative return times to E of x.

Proposition 6.2. Suppose that x ∈ M \ (R+
∞ ∪ N+), and let {rk} be

the sequence of the positive return times to E of x. Then

lim
k→+∞

σ̃∗T r1x(DT r1xT
rk−r1) = lim

k→+∞
σ̃T r1x(DT r1xT

rk−r1) = +∞.

Similarly, suppose x ∈M \ (R−∞ ∪N−), and let {rk} be the sequence of
the negative return times to E of x. Then

lim
k→+∞

σ̃∗T rkx(DT rkxT
r1−rk) = lim

k→+∞
σ̃T rkx(DT rkxT

r1−rk) = +∞.

4In general, we have ρ = b−b̄
b−a ·

ā−a
b̄−ā

. Here, we have used b = +∞.
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Proof. We prove the proposition only for x ∈M \ (R+
∞ ∪N+). For the

other case, the proof is similar.
Define xk = T rkx and mk = rk+1 − rk for all k ∈ N. By Lemma 6.1,

Dx1T
r2−r1Cx1(x1) ⊂ intCx2(x2) ∪ {0}, which in turn implies

σ̃∗x1(Dx1T
r2−r1) > 0. (6)

Next, one can easily show that

σ̃∗x1(Dx1T
rk−r1) ≥ σ̃∗x1(Dx1T

r2−r1) · σ̃x2(Dx2T
rk−r2), (7)

and

σ̃x1(Dx1T
rk−r1) ≥

k−1∏
i=1

σ̃xi(DxiT
mi). (8)

It follows from Lemma 6.1 that the sequence
∏k−1

i=1 σ̃xi(DxiT
mi) is

strictly increasing in k. It does not diverge only if xi for every i suf-
ficiently large, and limi→+∞ t(xi, xi+1) = 0. This means that the pos-
itive semi-trajectory of x is eventually trapped inside a cusp formed
by two dispersing components or a dispersing and a flat component.
However, every trajectory entering a cusp leaves it after finitely many
collisions [7, Appendix A1.3]. Hence,

∏k−1
i=1 σ̃xi(DxiT

mi) → +∞ as
k → +∞. By (8), we conclude that

lim
k→+∞

σ̃x1(Dx1T
rk−r1) = +∞.

The same argument applied to x2 shows that σ̃x2(Dx2T
rk−r2) → +∞

as k → +∞. This together with (6) and (7) gives

lim
k→+∞

σ̃∗x1(Dx1T
rk−r1) = +∞.

�

Corollary 6.3. Every element x ∈ H is sufficient, and has a quadruple
(l, N,O,K) such that O ∪ T−NO ⊂ E.

Proof. The set H can be decomposed as follows:

H =
(
M \ (R+

∞ ∪N+)
)
∪
(
M \ (R−∞ ∪N−)

)
.

So if x ∈ H, then x ∈ M \ (R+
∞ ∪ N+) or x ∈ M \ (R−∞ ∪ N−). We

prove the corollary only for the case x ∈ M \ (R+
∞ ∪ N+). The other

case can be proved similarly.
Let {rk}k∈N be the sequences of the positive return times to E of x.

Define xk = T rkx for all k ∈ N. Note that although x ∈ S−1 is allowed,
nevertheless xk /∈ S−1 for all k > 1. It follows that xk is an interior
point of E for every k > 1.

Proposition 6.2 applied to x2 implies that there exists k > 2 such
that σ̃x2(Dx2T

rk−r2) > 3. Set l = rk and N = rk − r2. We need to find
the neighborhood O of xk and the invariant continuous cone field K
on O ∪ T−NO as in Definition A.1.
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Since TN is a local diffeomorphism at x2, and the cone fields (Ux2 , Cx2)
and (Uxk , Cxk) are continuous, the function y 7→ σ̃x2(DyT

N) is contin-
uous at x2. Hence, there exists a neighborhood V of x2 such that
i) V ⊂ Ux2 \ R+

N and TNV ⊂ Uxk , ii) V ∩ TNV = ∅ if x2 6= xk,
iii) σ̃x2(DyT

N) > 3 for every y ∈ V . Since x2 and xk are interior points
of E, we can further choose V so that V ∪ TNV ⊂ E. It is easy to see
that a similar choice can be made for the case x ∈M \ (R−∞ ∪N−).

To construct the cone field (O ∪ T−NO,K), we consider separately
the cases x2 6= xk and x2 = xk. If x2 6= xk, then define O = TNV and

K(y) =

{
Cx2(y) if y ∈ T−NO,
Cxk(y) if y ∈ O.

Note that O ∩ T−NO = V ∩ TNV = ∅, and that Cx2 and Cxk are
continuous. This remark and Lemma 5.2 imply that the cone field K
is continuous, invariant and satisfies

σK(DyT
N) = σ̃x2(DyT

N) > 3 for every y ∈ T−NO.
If x2 = xk (i.e., x is periodic), then let O = TNV . Since Ux2 = Uxk , we
have O∪T−NO = V ∪TNV ⊂ Ux2 . Now, define K to be the restriction
of Cx2 to O∪T−NO. As for the precious case, we see that the cone field
K is continuous, invariant and satisfies σK(DyT

N) = σ̃x2(DyT
N) > 3

for every y ∈ T−NO. �

We can now proceed to prove Conditions L1-L3.

6.2. Proof of Conditions L1-L3. From now on, for every sufficient
point x ∈ H, we will always take as a quadruple (l, N,O,K) the one
constructed in the proof of Corollary 6.3. The choice of this quadruple
is of crucial importance for the proof of Conditions L1-L4, because the
cone (O ∪ TNO,K) is obtained directly from {(Uy, Cy)}y∈E, and the
neighborhood O has the property that O ∪ TNO ⊂ E.

We proved a number of properties concerning the geometry of the
singulars sets R−k and R+

k in [15]. We will use several of these results
in the proof of the following propositions.

Proposition 6.4. Condition L1 is satisfied.

Proof. For billiards satisfying Conditions B1 and B2, the regularity of
the singular sets R−k and R+

k is proved in [15, Theorem 2.2]. �

Proposition 6.5. Every element of H satisfies Condition L2.

Proof. This proposition follows from [15, Proposition 6.2]. For the
convenience of the reader, we give here a more direct proof. We prove
only the first part of Condition L2, because the second one can be
proved similarly.

Let x ∈ H, and let (O ∪ TNO,K) be the cone field for x as in the
proof of Corollary 6.3. Suppose that Σ is a component of R−k ∩ T−NO
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for some k ∈ N. Without loss of generality, we can assume Σ 6⊂ R−k−1.
Let Σ′ = Σ \ ∂Σ. Recall that ∂Σ denotes the set of the endpoints of Σ.

The map T−k+1 : Σ′ → T−k+1Σ′ is a diffeomorphism, and the family
of rays emerging from the points of I(T−kΣ′) focuses in linear approxi-
mation at a corner of ∂Q or at a point lying on a dispersing component
of ∂Q. Hence, if y ∈ Σ′ and u ∈ TyΣ \ {0}, then

τ−(T−k+1y,DyT
−k+1u) = t(I(T−k+1y)). (9)

Let v ∈ K ′(y) \ {0}. By construction, we have K ′(y) = Cx2(y)
for some x2 ∈ T−NO (see the proof of Corollary 6.3). There exists
1 ≤ i < k such that T−iΣ′ ⊂ E, and T−jΣ′ ⊂ M0 for every i < j < k.
Hence, DyT

−iv ∈ intC ′T−iy(T
−iy) by Lemma 5.2. Now, Condition B2

implies

τ−(T−iy,DyT
−iv) <

k−1∑
j=i

t(I(T−jy)).

To obtain this conclusion, we use Part (2) of Condition B2 whenever
the family of rays emerging from the points of I(T−kΣ′) focuses at
a corner of ∂Q. The previous inequality together with the fact that
T−jΣ′ ⊂M0 for every i < j < k implies

τ−(T−k+1y,DyT
−k+1v) = τ−(T−iy,DyT

−iv)−
k−2∑
j=i

t(I(T−jy))

< t(I(T−k+1y)).

By comparing the last conclusion with (9), we infer that u ∈ intK(y).
Finally, let y ∈ ∂Σ, and let u ∈ TyΣ \ {0}. Since Σ is a C2 arc,

there exist two sequence yn ∈ Σ′ and un ∈ TynΣ such that yn → y and
un → u as n → +∞. Since un ∈ intK(y) and K is a continuous cone
field, it follows that u ∈ K(y). This completes the proof. �

Proposition 6.6. Every element of H satisfies Condition L3.

Proof. We only proof the part of Condition L3 concerning S−1 , because
the proof of the other part is similar.

By [15, Propositions 6.17-6.19], the set S−1 ∩R+
∞ is at most countable.

This combined with Condition B4 gives m−(S−1 ∩ (N+ ∪ R+
∞)) = 0.

Hence, we first need to prove that each element of S−1 \ (N+ ∪ R+
∞) is

u-essential.
Let y ∈ S−1 \ (N+ ∪ R+

∞), and let {rk}k∈N be the sequence of the
positive return times to E of y, which exists by Proposition 6.2. Define
yk = T rky for every k ∈ N.

Since T r1 is a local diffeomorphism around y, there exist a neighbor-
hood U of y and a constant c > 0 such that

‖DyT
r1u‖

‖u‖
≥ c (10)
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for all y ∈ U and for all u ∈ TyM \ {0}. Now, let α > 0. By Proposi-
tion 6.2, there is k > 1 such that

σ̃∗y1(Dy1T
rk−r1) ≥ α/c. (11)

The argument that proves the continuity of y 7→ σ̃x2(DyT
N) at

x2 in the proof of Corollary 6.3 also proves the continuity of z 7→
σ̃∗y1(DzT

rk−r1) at y1. Next, since y ∈ S−1 \ (N+ ∪ R+
∞), the point y is

not periodic, and in particular, y 6= yk. These observations imply that
there is a neighborhood V of y1 such that i) V ⊂ Uy1 \ (R−r1 ∪ R

+
rk−r1)

and T rk−r1V ⊂ Uyk , ii) T−r1V ⊂ U , iii) T−r1V ∩ T rk−r1V = ∅, and
iv) σ̃∗y1(DzT

rk−r1) > α/c for every z ∈ V .
Now, define Oy,α = T−r1V and

Ky,α =

{
DT r1zT

−r1Cy1(T
r1z) if z ∈ Oy,α,

Cyk(z) if z ∈ T rkOy,α.

Note that Oy,α ∩ T rkOy,α = T−r1V ∩ T rk−r1V = ∅, the cone fields Cy1
and Cyk are continuous, and T r1 is a diffeomorphism on Oy,α. From the
previous remark, Lemma 5.2 and the construction of Ky,α, it follows
that Ky,α is continuous and invariant. Set ny,α = rk. For every z ∈
Oy,α, we have

σKy,α(DzT
ny,α) = inf

u∈intKy,α(z)

√
QKy,α(T ny,αz,DzT ny,αu)

‖u‖

= inf
u∈intKy,α(z)

‖DzT
r1u‖

‖u‖
·

√
QCyk

(T ny,αz,DzT ny,αu)

‖DzT r1u‖

≥ inf
u∈intKy,α(z)

‖DzT
r1u‖

‖u‖
· σ̃∗y1(DT r1zT

rk−r1),

where the last inequality is a consequence of DzT
r1Ky,α(z) = Cy1(T

r1z)
and T r1z ⊂ U1. By (10) and (11), we obtain

σKy,α(DzT
ny,α) ≥ c · σ̃∗y1(DT r1zT

rk−r1) ≥ c · α
c

= α.

We conclude that y is an u-essential point (see Definition A.2).
To prove that the cone field (O ∪ T−NO,K) for x ∈ H and the cone

field (Oy,α ∪ T ny,αOy,α, Ky,α) just constructed are jointly invariant, we
observe that K is a restriction of the cone fields Cx2 and Cxk for some
x2, xk ∈ E, and that Ky,α is obtained by taking the preimage of Cy1
and the restriction of Cyk for some y1, yk ∈ E. The joint invariance
then follows from Lemma 5.2. �

7. Proof of Condition L4

In Corollary 6.3, we proved that every x ∈ H is a sufficient point
with a quadruple (l, N,O,K) having the property that O∪T−NO ⊂ E.
We recall that l ∈ Z, N ∈ N, O is a neighborhood of T lx, and K is
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a continuous invariant cone field on O ∪ T−NO. We also recall that
{(Uy, Cy)}y∈E is the family of cone fields introduced in Section 4.3.

In this section, we prove Condition L4 for every x ∈ H. This condi-
tion requires the existence of stable and unstable manifolds a.e. on the
neighborhood O, which is guaranteed by Proposition A.3. We derive L4
from the following property:

Non-contraction: there exists β′ > 0 such that if z ∈ E \ R+
m and

Tmz ∈ E ∪ I(E) for some m ∈ N, then

‖DzT
mv‖ ≥ β′‖v‖ for every v ∈ Cz(z), (12)

Since E is the set of the collisions ‘entering’ non-flat boundary com-
ponents, I(E) is the set of the collisions ‘leaving’ non-flat boundary
components.

To prove this property, we decompose the billiard orbits into special
blocks, and study (12) separately for each block. This analysis will
be carried out using certain semi-norms defined in terms of transversal
Jacobi fields.

7.1. Jacobi fields and semi-norms. Jacobi fields for billiards are
special vectors fields defined along trajectories of the billiard flow. For
the definitions of a billiard flow and a Jacobi field for billiards, we refer
the reader to [10, 20] and [16, 33], respectively. Here, we limit ourselves
to recall the main properties of the Jacobi fields for billiards.

The billiard flow Φt on the domain Ω acts on the unit tangent bundle
T1Ω ⊂ T1R2 of the closure of Ω. Let π : T1Ω → Ω be the natural
projection. A billiard trajectory ξ is a piecewise linear curve ξ : (a, b)→
Ω with −∞ ≤ a < 0 < b ≤ +∞ such that ξ(t) = π(Φt(z)) for all
t ∈ (a, b) and for some z ∈ T1Ω. We say that ξ(t) is a collision for
some t ∈ (a, b) if ξ(t) ∈ ∂Ω, or equivalently, if there exists y ∈M such
that ξ(t) = q(y). A collision is called non-tangential provided that
y /∈ A2.

A transversal Jacobi field J along a billiard trajectory ξ is a piecewise
smooth map J : (a, b)→ R2 such that J (t) and its time time derivative
J ′(t) are perpendicular to ξ′(t) every t ∈ (a, b), and satisfy further
properties for which we refer the reader to [16, 33]. It turns out that
for any fixed t, the field J is uniquely determined by the values J (t)
and J ′(t). Let ξ⊥(t) denote the unit vector of R2 orthogonal to ξ′(t)
such that {ξ′(t), ξ⊥(t)} is a positively oriented basis of R2. Since the
vectors J (t) and J ′(t) are always collinear to ξ⊥(t), we can identify
J (t) and J ′(t) with the corresponding orthogonal projections onto
ξ⊥(t), and think of J (t) and J ′(t) as real numbers.

Suppose that there exists 0 < δ < b such that ξ(t) is not a collision
for all t ∈ (0, δ), and ξ(δ) = q(y) is a non-tangential collision for some
y ∈ M \ A2. If J is a Jacobi field along ξ, then the evolution of the
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pair (J ,J ′) is governed by the following equations:(
J (t)
J ′(t)

)
= F (t)

(
J (0)
J ′(0)

)
for 0 ≤ t < δ,(

J (δ)
J ′(δ)

)
= R(y) lim

t→δ−

(
J (t)
J ′(t)

)
,

where

F (t) :=

(
1 t
0 1

)
and R(y) :=

(
−1 0

2
d(y)

−1

)
. (13)

For every y ∈M \ A2 and every u = (us, uθ) ∈ TyM , define

J(u) = sin θ(y)us, J ′(u) = −uθ − κ(y)us, (14)

and observe that the transformation u 7→ (J(u), J ′(u)) is a bijection
between TyM and R2. In particular, the pair (J, J ′) is a system of
coordinates for TyM . Note that J ′ is just a symbol and not the time
derivative of J . Suppose that ξ(0) = q(y) is a non-tangential collision
for some y ∈M \A2, and let u ∈ TyM . Our previous observation com-
bined with the fact that the entire transversal Jacobi field J along ξ is
determined by the choice J (0) = J(u) and J ′(0) = J ′(u) shows that
there is a bijective correspondence between transversal Jacobi fields
along ξ and elements of TyM , and so we can identify elements of TyM
with transversal Jacobi fields. Now, in addition to the previous as-
sumption, suppose that there exists 0 < δ < b such that ξ(0) and ξ(δ)
are consecutive non-tangential collisions. This means that δ = t(y) and
ξ(δ) = q(Ty). Moreover, if u ∈ TyM and u1 ∈ TTyM are the tangent
vectors corresponding to (J (0),J ′(0)) and (J (δ),J ′(δ)), respectively,
one can show that DyTu = u1. It follows that the matrix of DyT in
coordinates (J, J ′) is given by

R(Ty)F (t(y)) =

( −1 −t(y)
2

d(Ty)
−1 + 2t(y)

d(Ty)

)
. (15)

The matrices (13) and (15) have determinant equal to 1, and so DyT
preserves the standard symplectic form J ∧ J ′. Finally, from (14), it
follows immediately that the forward focusing time of a tangent vector
u ∈ TyM in terms of J(u) and J ′(u) is given by

τ+(y, u) =

{
− J(u)
J ′(u)

if J ′(u) 6= 0,

∞ if J ′(u) = 0.
(16)

We now introduce two semi-norms, which will help us prove the
Non-contraction property.

Definition 7.1. For every y ∈M and every u ∈ TyM , define

‖u‖J =
√
J2(u) + J ′2(u) and |u|J ′ = |J ′(u)|.
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In the rest of this subsection, we prove that ‖ · ‖ and ‖ · ‖J are
equivalent on a certain subset of the tangent bundle TM .

Lemma 7.2. There exists a constant α1 > 1 depending only on Ω and
the family of cone fields {(Uy, Cy)}y∈E+ such that if y ∈ E+, z ∈ Uy
and 0 ≤ k ≤ n(z), then

|DzT
ku|J ′ ≤ ‖DzT

ku‖J ≤ α1|DzT
ku|J ′ for u ∈ Cy(z).

Proof. Let y, z, k, u be as in the hypotheses of the lemma. It is clear
that |DzT

ku|J ′ ≤ ‖DzT
ku‖J . By Part (3) of Theorem 4.1, there exists

a constant f > 0 depending only on {(Uy, Cy)}y∈E such that

d(T kz)

2
≤ τ+

k (z, u) ≤ f.

By (16), we then have |J(DzT
ku)| ≤ f |J ′(DzT

ku)|, which gives the
remaining inequality with α1 = (1 + f 2)1/2. �

Lemma 7.3. There exists α2 > 1 such that if y ∈M \ ∂M , then

‖u‖J ≤ α2‖u‖ for u ∈ TyM.

Proof. A straightforward computation gives the wanted inequality with
α2 = 21/2(1 + κ2

1)1/2, where κ1 = maxz∈M |κ(z)|. �

Lemma 7.4. There exists α3 > 0 such that if y ∈ M− and z ∈ Uy,
then

‖u‖ ≤ α3‖u‖J for u ∈ Cy(z).

Proof. Let κ2 = minz∈M− |κ| > 0. By the definition of Cy(z), we have
uθ/us ≤ κ(z) < 0 for all 0 6= u ∈ Cy(z). Hence,

‖u‖2
J ≥ |J(u)|2 = κ2(z)u2

s + u2
θ + 2κ(z)usuθ

≥ κ2
2u

2
s + u2

θ ≥
κ2

2

1 + κ2
2

(u2
s + u2

θ) =
κ2

2

1 + κ2
2

‖u‖2.

�

Lemma 7.5. There exists α4 > 0 such that if y ∈ E+, z ∈ Uy and
u ∈ Cy(z), then

‖DzT
ku‖ ≤ α4‖DzT

ku‖J for 0 ≤ k ≤ n(z).

Proof. Denote by κ3 the maximum of κ on M+, and denote by m the
smallest mi associated to focusing components of ∂Ω as in Theorem 4.1.
Let 0 6= u ∈ Cy(z), and write (uk,s, uk,θ) for the vector DzT

ku. By
Theorem 4.1, if z ∈Mi ⊂M+, then −κ(T kz) +mi ≤ m(uk) ≤ κ(T kz)



26 G. DEL MAGNO AND R. MARKARIAN

for 0 ≤ k ≤ n(z). In particular, |uk,θ| ≤ κ(T kz)|uk,s|. Therefore,

‖DzT
ku‖2

J ≥
(
κ(T kz)uk,s + uk,θ

)2
=
(
κ(T kz) +m(uk)

)2
u2
k,s

≥
(
κ(T kz)− κ(T kz) +mi

)2
u2
k,s ≥

m2
i

1 + κ2(T kz)
‖DzT

ku‖2

≥ m2

1 + κ2
3

‖DzT
ku‖2.

�

Lemma 7.6. There exist constants ε0 > 0 and 0 < θ0 < π/2 such that
θ(M0 ∩ S−1 (ε0)) ⊂ (θ0, π − θ0).

Proof. The lemma is an immediate consequence of the following easy-
to-check fact. Consider a flat component Γi of ∂Ω. If the line containing
Γi contains also a corner p or is tangent to a dispersing component Γj,
then no ray emerging from the elements of Mi ∩ S+

1 contains p or is
tangent to Γj. �

Lemma 7.7. Let ε0 be the constant in Lemma 7.6. There exists α5 > 0
such that if y ∈M0 ∩ S−1 (ε0), then

‖u‖ ≤ α5‖u‖J for u ∈ TyM.

Proof. Since κ(y) = 0, we have ‖u‖2
J ≥ sin2 θ0u

2
s+u2

θ > sin2 θ0‖u‖2. �

Corollary 7.8. There exist two constants 0 < A1 < A2 such that if
y ∈ E, z ∈ Uy, u ∈ Cy(z) or y ∈M0 ∩ S−1 (ε0), u ∈ TyM , then

A1‖u‖J ≤ ‖u‖ ≤ A2‖u‖J .

Proof. The claim follows from Lemmas 7.3-7.7. �

Remark 7.9. It can be easily proved that Corollary 7.8 remains valid
if ‖ ·‖ is replaced by | · |J ′, thus showing that the semi-norms ‖ ·‖, ‖ ·‖J ,
| · |J ′ are equivalent in the sense specified in the corollary. However,
this general equivalence is not needed for the proof of L4.

7.2. Block decomposition. The Non-contraction property is just a
slight modification of a condition with the same name introduced in [22].
Roughly speaking, this property states that the expansion of the iter-
ations of vectors from the cones in {Uy, Cy}y∈E is uniformly bounded
from below along orbits starting at E and ending at E ∪ I(E). This
property implies that there is no loss of expansion along arbitrarily
long sequences of consecutive collisions with focusing components or
between flat components.

We now show that every sequence of collisions {z, . . . , Tmz} as in
the non-contraction property can be decomposed into a finite number
of special subsequences called blocks.
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Definition 7.10. Let z ∈M \ R+
m with m > 0. A sequence of consec-

utive collisions {z, . . . , Tmz} is called a block of type i ∈ {1, . . . , 4} if
the corresponding condition (i) below is satisfied:

(1) z ∈ E+, {T n(z)+1z, . . . , Tm−1z} ⊂M0 and Tmz ∈M−,
(2) z ∈M−, {Tz, . . . , Tm−1z} ⊂M0 ∪M− and Tmz ∈M−,
(3) z ∈M−, {Tz, . . . , Tm−1z} ⊂M0 and Tmz ∈ E+,
(4) z and Tmz belong to E+.

Definition 7.11. A block is called minimal if it does not contain any
other block of the same type. A block included in a sequence of consec-
utive collisions ϕ is called maximal in ϕ if it is not contained in any
other block of the same type in ϕ.

We observe that blocks of type 1 and 3 are always maximal and min-
imal. Also, we observe that every block of type 2 and 4 is a concatena-
tion of finitely many minimal blocks of the type 2 and 4, respectively.

Proposition 7.12. Let ϕ = {z, . . . , Tmz} be a sequence of collisions
such that both z and Tmz belong to E. Then ϕ is the concatenation of
ϕ1, . . . , ϕn with 1 ≤ n ≤ 5 and ϕ1, . . . , ϕn being maximal blocks of type
1-4. Moreover, this decomposition is unique.

Proof. First, suppose that ϕ does not contain blocks of type 2 and
4. Then we see that either ϕ is a block of type 1 or 3, or ϕ is the
concatenation of two blocks: a block of type 3 followed by a block of
type 1.

Now, suppose that ϕ contains blocks of type 2, but does not contain
blocks of type 4. A maximal block of type 2 can only be preceded by
a block of type 1 and followed by a block of type 3. Hence, ϕ can
contain at most two maximal blocks of type 2. Moreover, if ϕ contains
exactly two maximal blocks of type 2, then ϕ is the concatenation of
a maximal block of type 2, a block of type 1, a block of type 3 and a
maximal block of type 2, following one another in this order. Instead,
if ϕ1 contains only a single maximal block of type 2, then there are
three possibilities: ϕ is a block of type 2, ϕ is the concatenation of
a maximal block of type 2 and a block of type 1 or 3, and ϕ is the
concatenation of a block of type 1, a maximal block of type 2 and a
block of type 3, following one another in this order.

Finally, suppose that ϕ contains blocks of type 4. From the definition
of these blocks, we see that there is only one single maximal block of
type 4 in ϕ. Such a block can only be preceded by a block of type 3
and followed by a block of type 1. Moreover, blocks of type 1 and 3
in ϕ can only be adjacent to blocks of type 2 or 4. Since there is only
one maximal block of type 4 in ϕ, besides this block, ϕ can contain
at most a block of type 1, at most a block of type 3 and at most two
maximal blocks of type 2. The blocks of type 1 and 3 are concatenated
to the block of type 4, whereas one block of type 2 is concatenated to
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the block of type 1, and the second block of type two is concatenated
to the block of type 3.

It is not difficult to see that the decomposition of ϕ into blocks of
type 1-4 we have just obtained is unique, because the blocks forming
it are maximal. �

7.3. Proving the Non-contraction property. In view of Proposi-
tion 7.12, it suffices to show that (12) holds along each block of type
1-4 with β′ depending only on the block type. We start with some
preliminary results.

Lemma 7.13. Let 0 ≤ m1 < m2, and suppose that z ∈ E \ R+
m2

and
v ∈ Cz(z) \ {0}. Then

|DzT
m2v|J ′

|DzTm1v|J ′
=

m2∏
k=m1+1

∣∣∣∣τ−k (z, v)

τ+
k (z, v)

∣∣∣∣ .
Proof. Define zk = T kz and vk = DzT

kv for 0 ≤ k ≤ n(z). By the
definition of Cz and its invariance, it is not difficult to see using Theo-
rem 4.1 that J ′(vk) 6= 0 for 0 ≤ k ≤ n(z). Using (15) and Condition B2,
one can further show that J(vk) 6= 0 for 1 ≤ k ≤ n(z). Therefore,

|vm|J ′
|vm1|J ′

=
m∏

k=m1+1

∣∣∣∣J ′(vk)J(vk)

∣∣∣∣ · ∣∣∣∣ J(vk)

J ′(vk−1)

∣∣∣∣ .
Now, the wanted equality follows from τ+(zk, vk) = −J(vk)/J

′(vk) and
τ−(zk, vk) = J(vk)/J

′(vk−1). The first expression for τ+(zk, vk) is just
(16), whereas the one for τ−(zk, vk) can be easily derived from (15) and
(16). �

The following proposition provides an upper bound on the number
of consecutive collisions n(x) along a Donnay arc provided that the
initial angle θ(x) is sufficiently close to 0 or π. For its proof see [16,
Corollary 5.3 and Part (1) of Proposition 6.1].

Proposition 7.14. Suppose that Γi is a Donnay arc, and let θi be the
corresponding constant as in Theorem 4.1. There exist a real number
ci > 0 and a function Ni : (0, π/2)→ N such that if x ∈ Mi \ A2, then
n(x) ≤ ci/min{θ(x), π−θ(x)} whenever θ(x) ∈ (0, θi)∪(π−θi, π), and
n(x) < Ni(θ(x)) whenever θ(x) ∈ [θi, π − θi].

Proposition 7.15. There exists γ1 > 0 such that if z ∈ E+ and 0 ≤
m1 < m2 ≤ n(z), then

‖DzT
m2v‖ ≥ γ1‖DzT

m1v‖ for v ∈ Cz(z).

Proof. In virtue of Lemmas 7.2, 7.3 and 7.5, we can prove the propo-
sition with the norm ‖ · ‖ replaced by the semi-norm | · |J ′ . Let
z ∈ Ei ⊂ E+ for some i, and pick v ∈ Cz(z). Of course, it is enough
to prove the proposition with γ1 depending on the focusing component
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Γi. By taking the minimum of such γ1’s over all focusing components,
we obtain the proposition in its general form. Let θi, ai, ci, Ni be as in
Theorem 4.1 and Proposition 7.14. We define zk = T kz, vk = DzT

kv
for 0 ≤ k ≤ n(z).

Suppose first that θ = θ(z) ∈ (0, θi)∪(π−θi, π). We consider only the
case when θ ∈ (0, θi), because the argument for θ ∈ (π−θi, π) is similar.
By Theorem 4.1, we have m(vk) ≥ −aiθ. Let Ri = maxy∈Mi

1/κ(y).
Using (1), we easily obtain

τ−(zk, vk)

τ+(zk, vk)
≥ 1−Riaiθ

1 +Riaiθ

By Proposition 7.14, we have n(z) ≤ ci/θ, and so Lemma 7.13 implies
that

|vm2|J ′
|vm1|J ′

≥
(

1−Riaiθ

1 +Riaiθ

) ci
θ

.

Since the right hand-side of the previous inequality converges to e−2aiciRi >
0 as θ → 0+, there exists 0 < θ̄ < θi such that

|vm2|J ′
|vm1|J ′

≥ 1

2
e−2aiciRi for θ ∈ (0, θ̄). (17)

Now, suppose that θ(z) ∈ [θ̄, π − θ̄]. By Part (3) of Theorem 4.1,
there exists a constant fi > 0 such that d(zk)/2 ≤ τ±(zk, vk) ≤ fi for
1 ≤ k ≤ m2. Let ri = miny∈Mi

1/κ(y), and let di = ri sin θi. Then

τ−(zk, vk)

τ+(zk, vk)
≥ d(zk)

2fi
≥ di

2fi
for 1 ≤ k ≤ m2.

Using Lemma 7.13 and Proposition 7.14, we conclude that

|vm2 |J ′
|vm1 |J ′

≥ min

{
1,

(
di
2fi

)Ni(θ̄)}
. (18)

The wanted conclusion now follows from (17) and (18). �

Let λ be as in B2, and let fi be as in the proof of Proposition 7.15.
Define f to be the maximum of all fi’s.

Lemma 7.16. Consider a sequence of collisions {z, . . . , Tmz} with
m > 0 such that z, Tmz ∈ E, and T kz ∈ M0 for n(z) < k < m.
Then, for every v ∈ Cz(z) \ {0} and every n(z) ≤ k < m, we have

|DzT
mv|J ′ > δ|DzT

kv|J ′ ,
where δ = λ/f if Tmz ∈M+, and δ = 1 if Tmz ∈M−.

Proof. Let v ∈ Cz(z) \ {0}, and define zk = T kz and vk = DzT
kv for

0 ≤ k ≤ m. From {zn(z)+1, . . . , zm−1} ⊂ M0, it follows that |vk|J ′ =
|vm−1|J ′ for all n(z) ≤ k < m. Then, by Lemma 7.13, we have

|vm|J ′
|vk|J ′

=
|vm|J ′
|vm−1|J ′

=
τ−(zm, vm)

τ+(zm, vm)
for n(z) ≤ k < m.
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If zm ∈ M+, then τ−(zm, vm) = t(zn(z), zm) − τ+(zn(z), vn(z)) > λ by
Condition B2. Since 0 < τ+(zm, vm) ≤ f (see the proof of Proposi-
tion 7.15), we obtain τ−(zm, vm)/τ+(zm, vm) > λ/f . If zm ∈M−, then
we use the Mirror Formula (2) to relate the focusing times τ−(zm, vm)
and τ+(zm, vm). A simple computation using d(zm) < 0 shows that
τ−(zm, vm) < τ+(zm, vm) < 0, and so τ−(zm, vm)/τ+(zm, vm) > 1. �

Lemma 7.17. Consider a sequence of collisions {z, . . . , Tmz} with
m > 0 such that z ∈ M−, Tmz ∈ E and T kz ∈ M0 for 0 < k < m.
Then, for every v ∈ Cz(z) \ {0} and every 0 ≤ k < m, we have

|J(DzT
mv)| > |J(DzT

kv)|.

Proof. Let v ∈ Cz(z) \ {0}. By the definition of Cz (see Subsec-
tion 4.3), it is easy to see that J(v)J ′(v) ≥ 0 and J ′(v) 6= 0. Since
{Tz, . . . , Tm−1z} ⊂M0, we have |J ′(DzT

kv)| = |J ′(v)| for 0 < k < m.
Using (15), we obtain

|J(DzT
kv)| = |J(v)|+ l(z, T kz)|J ′(v)| for 0 ≤ k ≤ m,

where t(z, T kz) is the length of the piece of trajectory starting at z
and ending at T kz (see the beginning of Subsection 6.1). The wanted
conclusion follows immediately from the previous equality. �

Lemma 7.18. There exists a constant δ1 > 0 such that for every se-
quence of consecutive collisions {z, . . . , Tmz} with z ∈ E+, Tmz ∈ E
and T kz ∈M0 for n(z) < k < m, we have

‖DzT
mv‖ ≥ δ1‖DzT

n(z)v‖ for v ∈ Cz(z).

Proof. If we replace ‖ · ‖ with | · |J ′ , then the wanted conclusion with
δ1 = δ follows from Lemma 7.16. To obtain the actual conclusion, use
the obvious fact that ‖ · ‖J ≥ | · |J ′ , apply Lemma 7.3 to ‖DzT

mv‖J ,
and finally apply Lemmas 7.2 and 7.5 to |DzT

n(z)v|J ′ and ‖DzT
n(z)v‖J ,

respectively. �

Lemma 7.19. There exists β′1 > 0 such that every sequence of consecu-
tive collisions {z, . . . , Tmz} such that z ∈ E+, {T n(z)+1z, . . . , Tm−1z} ⊂
M0 and Tmz ∈ E satisfies (12) with β′ = β′1. In particular, the previ-
ous conclusion is true for every block of type 1.

Proof. Let ϕ = {z, . . . , Tmz} be a block of type 1, and choose 0 6= v ∈
Cz(z). By Proposition 7.15, we have ‖DzT

n(z)v‖ ≥ γ1‖v‖. To complete
the proof, use Lemma 7.18. �

Lemma 7.20. There exists β′2 > 0 such that every block of type 2
satisfies (12) with β′ = β′2.

Proof. Note first that every block of type 2 consists of finitely many
minimal blocks of type 2. Next, suppose that {z, . . . , Tmz} is a minimal
block of type 2, and let v ∈ Cz(z)\{0}. In this case, we have T kz ∈M0

for 1 ≤ k ≤ m − 1. It follows that we have |J ′(DzT
mv)| > |J ′(v)|
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by Lemma 7.16, and |J(DzT
mv)| > |J(v)| by Lemma 7.17. Therefore,

‖DzT
mv‖J > ‖v‖J . Of course, the same conclusion extends to a general

block of type 2. To complete the proof, apply Lemmas 7.3 and 7.4 to
‖DzT

mv‖J and ‖v‖J , respectively. �

Lemma 7.21. There exists β′3 > 0 such that every block of type 3
satisfies (12) with β′ = β′3.

Proof. Suppose that {z, . . . , Tmz} is a block of type 3, and let v ∈
Cz(z) \ {0}. Since T kz ∈ M0 for 1 ≤ k < m, we have |J ′(DzT

mv)| >
|J ′(v)|λ/f by Lemma 7.16, and |J(DzT

mv)| > |J(v)| by Lemma 7.17.
Hence, ‖DzT

mv‖J > min{λ/f, 1}‖v‖J . To complete the proof, apply
Lemmas 7.3 and 7.4 to ‖DzT

mv‖J and ‖v‖J , respectively. �

Let {z, . . . , Tmz} be a block of type 4. As before, we define zj = T jz
for all 0 ≤ j ≤ m. We will use this notation throughout the rest
of this section. Note that every block of type 4 consists of finitely
many minimal blocks of type 4. In other words, there exist N > 0
integers 0 = i0 < · · · < iN = m such that {zik , . . . , zik+1

} is a minimal
block of type 4 for each 0 ≤ k ≤ N − 1 (see Fig. 1). Now, recall
that n(zik) denotes the number of consecutive collisions of zik with the
focusing component Γi before leaving it (see Definition 3.2). Define
jk = n(zik) + ik. Then

DzT
m = DzjN−1

T iN−jN−1 ◦Dzj0
T jN−1−j0 ◦Dz0T

j0 .

Proposition 7.22. If N > 1, then the matrix of Dzj0
T jN−1−j0 in co-

ordinates (J, J ′) is given by

Dzj0
T jN−1−j0 = F−1

N−1AN−1BN−2 · · ·B1A1B0F0,

where Ak, Bk, Fk are matrices of the form

Ak = ±
(

1/ζk 0
ηk ζk

)
, Bk = ±

(
1 + ak bk
ck 1 + dk

)
, Fk =

(
1 fk
0 1

)
(19)

with ζk, ηk, fk > 0, ak, ck, dk ≥ 0 and bk > λ.

Proof. For every 0 ≤ k ≤ N − 1, define

s−k = G−zik
(zik) and s+

k = sup
{
τ+
jk−ik(zik , v) : 0 6= v ∈ Czik (zik)

}
,

where G±zik
are defined in Remark 4.2. Recall the definitions of the

matrices F and R in (13). If we define

Ak = F (s+
k )Dzik

T jk−ikR(zik)F (s−k ),

Bk = F−1(s−k )R−1(zik+1
)Dzjk

T ik+1−jkF−1(s+
k ),

Fk = F (s+
k ),

then we easily see that

Dzjk
T jk+1−jk = F−1

k+1Ak+1BkFk.
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zi0 = z

zj0

ziN
= zm

q+
0

q+
1

q�1

zi1

zj1

q�N

Figure 1. Decomposition of a block of type 4. The col-
lisions zik ∈ E+ and zjk ∈ I(E+) are the first and the last
in a sequence of consecutive collisions with a focusing arc,
respectively. The sequence of collisions {zik , . . . , zik+1

} is
a minimal block of type 4. The dashed piece of trajec-
tory between the points q+

1 and q−N represents a sequence
of collisions with finitely many boundary components of
the billiard domain.

Therefore,

Dzj0
T jN−1−j0 =

N−2∏
k=0

Dzjk
T jk+1−jk = F−1

N−1AN−1BN−2 · · ·B1A1B0F0.

The form of the matrices Fk can be immediately derived from (13).
Since fk = s+

k , the positivity of fk follows from s+
k > 0. We now deter-

mine the form of the matrices Ak and Bk. Let vk ∈ TzikM such that

τ+(zik , vk) = G+
zik

(zik), and denote by q−k and q+
k the points along the

trajectory of zik where the vector vk focuses backward, and the vector
Dzik

T jk−ikvk focuses forward, respectively. The matrix Ak governs the
dynamics of transversal Jacobi fields along the trajectory starting at
q−k and ending at q+

k (see Fig. 1). In other words, if a transversal Jacobi
field is equal to (J, J ′) at q−k , then the same field is equal to Ak(J, J

′)T

at q+
k .

By construction of the billiard cone field (see Theorem 4.1), every
transversal Jacobi field focusing at q−k focuses again at q+

k . Since τ+ is
a strictly decreasing function of τ− by the Mirror Formula, it follows
that every transversal Jacobi field obtained from a parallel variation of
the billiard trajectory passing through q−k focuses before reaching q+

k .
Thus, there exist ξk, ζk, ηk > 0 such that

Ak

(
1
0

)
= ±

(
ξk
ηk

)
, Ak

(
0
1

)
= ±

(
0
ζk

)
.
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Since Ak is product of finitely many matrices as in (13), we have
detAk = 1, and so ξk = ζ−1

k . We conclude that

Ak = ±
(

1/ζk 0
ηk ζk

)
.

To derive the form of Bk, we argue similarly. The matrix Bk governs
the dynamics of transversal Jacobi fields along the piece of the billiard
trajectory starting at q+

k and ending at q−k+1 (see Fig. 1). By the defi-
nition of q±k , we see that along this piece of trajectory, there are only
collisions with flat or dispersing components. Hence, it easily follows
from (15) that Bk is a product of finitely many matrices of the form

P = ±
(

1 + a b
c 1 + d

)
(20)

with a, b, c, d ≥ 0 and detP = 1. All the matrices P forms a semi-
group with respect to the standard matrix multiplication. For this
reason, there are ak, bk, ck, dk ≥ 0 such that

Bk = ±
(

1 + ak bk
ck 1 + dk

)
.

Since F and R are upper and lower triangular, respectively, we see
that the entry bk cannot be smaller than the length of the piece of the
trajectory connecting q+

k and q−k+1. This observation combined with
Condition B2 gives bk > λ. �

The notation used in the following proposition is as in Proposi-
tion 7.22 and the paragraph before it.

Proposition 7.23. There exists β′′4 > 0 such that

|FN−1DzT
jN−1v|J ′ ≥ β′′4 |F0DzT

j0v|J ′ for v ∈ Cz(z).

Proof. The inequality holds trivially if N = 1. Therefore, we assume
that N > 1. Given a matrix L, denote by |L| the matrix obtained by
replacing each entry of L with its absolute value. Given two square
matrices L1 and L2 of the same order, we write L1 ≥ L2 if each entry
of L1 is greater than or equal to the corresponding entry of L2. Let
ζ = ζ1 · · · ζN−1 > 0. By the properties the matrices Ak and Bk, it
follows that

|AN−1BN−2 · · ·A1B0| = |AN−1||BN−2| · · · |A1||B0|
≥ |AN−1||AN−2| · · · |A1||B0|

≥
(

1/ζN−1 0
0 ζN−1

)
· · ·
(

1/ζ1 0
0 ζ1

)(
1 λ
0 1

)
=

(
1/ζ λ/ζ
0 ζ

)
.
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Let v ∈ Cz(z). Also, define vk = DzT
kv for 0 ≤ k ≤ m, w0 = F0vj0

and w1 = FN−1vjN−1
. By Proposition 7.22, we have

w1 = AN−1BN−2 · · ·B1A1B0w0.

From the construction of the cone field {(Uy, Cy)}y∈E and the definition
of Fk, we easily see that 0 ≤ J(wi)/J

′(wi) ≤ f for i = 0, 1, where f is
the positive constant in the proof of Lemma 7.2. The fact that J(wi)
and J ′(wi) have the same sign implies that

|J(w1)| ≥ 1

ζ
|J(w0)|+ λ

ζ
|J ′(w0)| and |J ′(w1)| ≥ ζ|J ′(w0)|. (21)

From 0 ≤ J(wi)/J
′(wi) ≤ f and the inequality on the left hand-side

of (21), we obtain

|J ′(w1)| ≥ 1

f
|J(w1)| ≥ λ

ζf
|J ′(w0)|,

which together with the inequality on the right-hand sides of (21) gives

|J ′(w1)| ≥ 1

2

(
ζ +

λ

ζf

)
|J ′(w0)|.

But x+ c2/x ≥ 2c for every x > 0 and every c ∈ R, and so

|J ′(w1)| ≥
(
λ

f

)1/2

|J ′(w0)|.

The wanted inequality holds with β′′4 = (λ/f)1/2. �

Let z, . . . as before Proposition 7.22.

Lemma 7.24. Let β′′4 > 0 be the constant in Proposition 7.23. Then

‖DzT
jN−1v‖ ≥ β′′4

α1α2α4

‖DzT
j0v‖ for v ∈ Cz(z).

Proof. By Lemmas 7.2, 7.3 and 7.5, it suffices to prove the inequality
with ‖ · ‖ replaced by | · |J ′ . From the form of the matrices Fk, we see
at once that |vj0|J ′ = |w0|J ′ and |vjN−1

|J ′ = |w1|J ′ . The notation here is
as in the proof of Proposition 7.23. The wanted conclusion now follows
from Proposition 7.23. �

Proposition 7.25. There exists β′4 > 0 such that every block of type 4
satisfies (12) with β′ = β′4.

Proof. The notation is an in the proof of Proposition 7.22 and the
paragraph before it. Accordingly, a block ϕ of type 4 is given by ϕ =
{zi0 , . . . , ziN}. We write ϕ = ϕ1 ∪ ϕ2, where ϕ1 = {zi0 , . . . , zjN−1

} and
ϕ2 = {zjN−1

, . . . , ziN}. It is easy to see that there are 2 integers jN−1 <
k1 ≤ k2 ≤ iN such that ϕ2 = ψ1 ∪ ψ2 ∪ ψ3 with ψ1 = {zjN−1

, . . . , zk1}
being an orbit starting at zjN−1

∈ I(E+) and ending at M− after a
sequence of collisions with M0, ψ2 = {zk1 , . . . , zk2} being a block of
type 2, and ψ3 = {zk2 , . . . , ziN} being a block of type 3.



PLANAR HYPERBOLIC BILLIARDS 35

Proposition 7.15 and Lemma 7.24 give ‖vj0‖ ≥ γ1‖vi0‖ and ‖vjN−1
‖ ≥

β′′4‖vj0‖, respectively. By Lemma 7.18, we obtain ‖vk1‖ ≥ δ1‖vjN−1
‖

with δ1 independent of ψ1 and v0. Since ψ2 and ψ3 are blocks of type 2
and 3, we have ‖vk2‖ ≥ β′2‖vk1‖ and ‖viN‖ ≥ β′3‖vk2‖ by Lemmas 7.20
and 7.21. Putting all together, we obtain the wanted conclusion with
β′4 = β′2β

′
3β
′′
4γ1δ1/(α1α2α4). �

Corollary 7.26. If Tmz ∈ E, then (12) is satisfied.

Proof. If Tmx ∈ E, then (12) follows from Lemmas 7.19-7.21 and
Proposition 7.25. �

Proposition 7.27. There exists a constant γ2 > 0 such that if z ∈
E \ R+

m with m > 1, {T n(z)+1z, . . . , Tm−1z} ⊂ M0, T jz ∈ S−1 (ε0) for
some n(z) < j < m, and Tmz ∈ E, then

‖DzT
mv‖ ≥ γ2‖DzT

jv‖ for v ∈ Cz(z).

Proof. Let 0 6= v ∈ Cz(z), and define zk and vk for 0 ≤ k ≤ m as in the
proof of Lemma 7.13. We study separately the two cases: J(vj)J

′(vj) ≥
0 and J(vj)J

′(vj) < 0. By Lemmas 7.3 and 7.7, it is enough to prove
the desired inequality with ‖ · ‖ replaced by ‖ · ‖J .

Suppose that J(vj)J
′(vj) ≥ 0. By Lemma 7.16, we have |J ′(vm)| >

δ|J ′(vj)|, and by arguing as in the proof of Lemma 7.17, one can easily
prove that |J(vm)| ≥ |J(vj)|. It follows at once that there exists c > 0
independent of the sequence {z, . . . , Tmz} as in the hypotheses of the
proposition and v ∈ Cz(z) such that ‖vm‖J ≥ c‖vj‖J .

Suppose now that J(vj)J
′(vj) < 0. This means that vj is focus-

ing (τ+(zj, vj) > 0), and so z ∈ M+. By Theorem 4.1, we have
τ+(zn(z), vn(z)) ≤ f . Recall that f = maxi fi (see the paragraph be-
fore Lemma 7.16). From zk ∈ M0 for n(z) < k ≤ j, it follows
that |J ′(vj)| = |J ′(vn(z))|, and it is not difficult to see that |J(vj)| ≤
|J(vn(z))| ≤ f |J ′(vj)|. Thus ‖vj‖J ≤ δ1|vj|J ′ , where δ1 = (1+f 2)1/2. On
the other hand, by applying Lemma 7.16 to {z, . . . , Tmz}, we obtain
|vm|J ′ ≥ δ|vj|J ′ . Therefore, using the trivial fact ‖vm‖J ≥ |vm|J ′ , we
obtain ‖vm‖J ≥ δδ−1

1 ‖vj‖J . This completes the proof, because δ and
δ1 do not depend on the sequence {z, . . . , Tmz} and v ∈ Cz(z). �

Proposition 7.28. The Non-contraction property is satisfied.

Proof. Let ϕ = {z, . . . , Tmz} with z ∈ E and Tmz ∈ I(E). Since
M− ⊂ E and I(M−) = M−, it is enough to prove the lemma for the
case Tmz ∈ I(E+). If Tmz ∈ E+ ∩ I(E+), then the Non-contraction
property is proved in Corollary 7.26. So, suppose that Tmz /∈ E+.
There are two cases: ϕ ⊂ Mi ⊂ M+ for some i, and ϕ 6⊂ Mi for every
i such that Mi ⊂M+. In the first case, we have z ∈ Ei and m = n(z).
By Proposition 7.15, it follows that (12) is satisfied with β′ = γ1. In
the second case, we can write ϕ = ϕ1 ∪ ϕ2, where ϕ1 = {z, . . . , T kz}
with z, T kz ∈ E, and ϕ2 = {T kz, . . . , Tmz} with T kz ∈ E+ and Tmz ∈
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I(E+). Since ϕ2 is an orbit of the type considered in the first case,
we have ‖DTkzT

m−kv‖ ≥ γ1‖v‖ for v ∈ CTkz(T
kz). Note that ϕ1

is a piece of orbit as in (12) so that by Corollary 7.26, there exists
β′5 > 0 independent of ϕ1 such that ‖DzT

kv‖ ≥ β′5‖v‖ for v ∈ Cz(z).
Hence, we see again that (12) is satisfied with constant β′5γ1. This
together with the fact that β′5 and γ1 do not depend on ϕ completes
the proof. �

7.4. Conclusion of the proof of Condition L4. Since the billiard
map T is time-reversible, it is easy to check that the stable part of L4 for
x is equivalent to the unstable part of L4 but with O replaced by I(O).
Also, note that by Proposition 5.3, the invariant set Λ ⊂ M where T
admits a local stable and an unstable manifold has full measure. For
the definition of these manifolds, see Proposition A.3. The local stable
manifold (resp. local unstable manifold) of y ∈ Λ is denoted by V s(y)
(resp. vu(y)).

In view of the time-reversibility of T , we have I(V s(y)) = V u(I(y))
and I(V u(y)) = V s(I(y)) for every y ∈ Λ. Hence Λ = I(Λ). From
these considerations, it follows that the unstable part of L4 with O
replaced by E ∪I(E), and Λx replaced by Λ implies the full L4 (stable
and unstable parts).

We will also need the following technical lemma. Its proof is exactly
as the one of [14, Lemma 3.6]. The sets W s(y) and W u(y) are defined
in Definition A.5.

Lemma 7.29. The set Λ can be chosen so that it satisfies the follow-
ing property: if y ∈ Λ ∩ E and z ∈ W u(y) (resp. z ∈ W s(y)), then
TzW

u(y) ⊂ Cy(y) (resp. TzW
u(y) ⊂ C ′y(y)), where {(Uy, Cy)}y∈E is

the family of cone fields defined in Subsection 4.3.

Proposition 7.30. Every point x ∈ H satisfies Condition L4.

Proof. Suppose that x ∈ H, and let (l, N,O,K) be the quadruple of
x as specified at the beginning of Subsection 6.2. Also, let ε0 as in
Lemma 7.6. We will prove the unstable part of L4 with O replaced by
E ∪I(E), Λx replaced by Λ and ε = ε0. As explained at the beginning
of this subsection, this implies L4.

Suppose that y ∈ Λ∩(E∪I(E)), z ∈ (E∪I(E))∩W u(y)∩T kS−1 (ε0)
for some k > 0. We study separately the cases T−kz ∈ E and T−kz /∈
E. For simplifying the notation, we will write Di,j for the restriction
of DT izT

j to the tangent subspace of W u(T iy) at T iz with i, j ∈ Z.
Before continuing with the proof, we need to make a remark. First,

that the cone field (O,K) is equal to (Uy, Cy) for a proper y ∈ E.
Then, note that by Lemma 7.29 and the invariance of the cone fields
{(Uy, Cy) : y ∈ E}, the tangent space of any unstable manifold consid-
ered in this proof at a point z ∈ E is always contained in the cone
Cz(z). This property is essential for applying Propositions 7.27 and
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7.28, and will be used implicitly in this proof every time that one of
the two propositions is applied.

We can now resume the proof. First, suppose that T−kz ∈ E. Using
Proposition 7.28, we immediately obtain that ‖D−k0 ‖ ≤ 1/β′, where β′

is the constant appearing in (12).
Now, suppose that T−kz /∈ E. Then, there are 2 possibilities, either

T−kz ∈ M0 ∩ S−1 (ε0) or T−kz ∈ M+ \ E. We analyze each possibility
individually. First, define m∓ = inf{i > 0: T−k∓iz ∈ E}. Assume
that T−kz ∈ M0 ∩ S−1 (ε0). Applying Proposition 7.27 to T−k−m−z
with m = m− + m+ and j = m−, we obtain ‖D−k+m+,−m+‖ ≤ 1/γ2.
Also, note that ‖D0,−k−m+‖ is trivially equal to 1 if m+ = k, and is
not larger than 1/β′ if m+ < k by Proposition 7.28. Combining the
previous observations, we conclude that ‖D0,−k‖ ≤ 1/(γ2 min{1, β′}).

Finally, assume that T−kz ∈M+\E. Let n = n(T−kz). By breaking
the sequence {−k, . . . , 0} into {−k, . . . ,−k+n}, {−k+n, . . . ,−k+m+}
and {−k +m+, . . . , 0}, we see that

D0,−k = D−k+n,−n ◦D−k+m+,−m++n ◦D0,−k+m+ .

By Proposition 7.28, Lemma 7.18 and Proposition 7.15, we then obtain
‖D−k+m+

0 ‖ ≤ 1/β′, ‖D−k+m+,−m++n‖ ≤ 1/δ1 and ‖D−k+n,−n‖ ≤ 1/γ1.
Combining these inequalities, we conclude that ‖D0,−k‖ ≤ 1/(β′γ1δ1).

To complete the proof, we observe that the upper bounds of ‖D0,−k‖
for the different cases studied above do not depend on the data y, z, k
of Condition L4. �

8. Donnay billiards and their generalizations

We now apply Theorem 5.6 to a large class of hyperbolic billiards.
The purpose of this section is to provide concrete examples of new
billiards with the Bernoulli property. For the definition of Bernoulli
component, see Appendix A.

Definition 8.1. A polygon with pockets and bumps is a planar domain
Ω obtained from a polygon P by replacing a sufficiently small neighbor-
hood of each vertex with internal angle less than π with a focusing arc
(pocket) or a dispersing arc (bump), and of each vertex with internal
angle greater than π by a dispersing arc so that the vertex lies outside
the closure of Ω (see Fig. 2).

Stadium-like domains with either parallel or non-parallel segments
can be considered degenerate polygons with pockets. These domains
correspond to quadrilaterals with a pocket or a bump replacing two
vertexes instead of one. The results proved in this subsection apply
also to billiards in stadium-like domains.

Note that polygons with pockets and bumps satisfy B1 by definition.
In the rest of this section, we will assume that billiards in polygons
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Figure 2. Polygon with pockets and bumps (solid
curve) and original polygon (dashed curve).

with pockets and bumps satisfies Condition B2. This can achieved, for
example, by using sufficiently short focusing arcs as pockets.

Proposition 8.2. If a billiard in a polygon with pockets and bumps
satisfies Condition B2, then it satisfies Conditions B3 and B4 as well.
In particular, T has non-zero Lyapunov exponents a.e. on M .

Proof. A general result for polygonal billiards states that every semi-
orbit of a polygon billiard is either periodic or accumulates at least at
one vertex of the polygon [18]. From this result and the assumption
on the geometry of Ω, it follows that if x ∈ N− ∪N+, then x has to be
periodic. Hence, N− = N+ = N consists of periodic orbits. In a polyg-
onal billiard, every periodic orbit is contained in a family of parallel
orbits having the same period. This family consists of finitely many
segments contained in horizontal segments (θ = const) with endpoint
belonging to R. Since the number of distinct strips in a polygonal
billiard is countable, we immediately obtain µ(N) = 0. Hence, B3 is
satisfied. The fact that N consists of periodic orbits implies also that
N ′ = ∅. Thus, S−1 ∩N+ ⊂ N ′ = ∅, and so Condition B4 is satisfied as
well.

The second part of the proposition follows from Proposition 5.3. �

Chernov and Troubetzkoy proved that a billiard in convex polygons
with pockets Ω is ergodic if the pockets are arcs of circles with the full
circles contained in Ω [11]. Here, we consider the more general situation
of polygons with pockets and bumps. The condition in Definition 8.1
that each vertex with internal angle greater than π is replaced by a
dispersing arc so that the vertex lies outside the closure of the polygon
plays a crucial role in the proof of the next theorem.

Theorem 8.3. The map T of a billiard in a polygon with pockets and
bumps that satisfies Condition B2 has the Bernoulli property.

Proof. Conditions B3 and B4 are satisfied by Proposition 8.2. By The-
orem 5.6, every point of H has neighborhood contained (mod 0) in one
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Bernoulli component. Now, suppose that Mi ⊂ M− ∪M+. Since R is
countable (see [15, Propositions 6.17-6.19]), N ′ = ∅ and N ∩Mi = ∅,
the set H ∩Mi is connected. Hence, every set Mi ⊂M− ∪M+ is con-
tained (mod 0) in one Bernoulli component. We cannot claim the same
for sets Mi ⊂ M0, because in this case5, N may disconnect H ∩Mi.
Thus, to prove that T is Bernoulli, we cannot use Corollary 5.8.

The alternative approach that we take is quite simple: we prove
that the entire set M− ∪ M+ is contained (mod 0) in one Bernoulli
component. This together with µ(N) = 0 implies that T is Bernoulli.
Indeed, by Theorem A.6, the number of Bernoulli components of T is
equal to the minimum integer n > 0 such that T nB = B for some
Bernoulli component B. By the geometry of Ω, it is always possible to
find two distinct curved components Γi and Γj such that µ(Mj∩TMi) >
0. Thus, if B is the Bernoulli component containing M− ∪M+, then
TB = B, and so n = 1.

To prove that M− ∪M+ is contained (mod 0) in a single Bernoulli
component, we start by observing that the polygon P decomposes into
finitely many triangles with pairwise disjoint interiors. The fact that
this decomposition is not unique is irrelevant for our purposes. Let
∆ be one of triangles of the decomposition. By construction of Ω,
every vertex with internal angle greater than π lies outside Ω. Then,
we claim that the union of the sets Mi corresponding to the pockets
and bumps attached to the vertexes of ∆ are contained (mod 0) in the
same Bernoulli component. In fact, let Γi, Γj, Γk be the pockets or
bumps attached at the vertexes of ∆. If B is the Bernoulli component
containing Mi, then by Theorem A.6 states that there exists a Bernoulli
component B′ such that TB = B′. It is easy to see that µ(Mj ∩
TMi) > 0 and µ(Mk ∩ TMi) > 0. Thus, Mj and Mk must belong
to B′. By symmetry of the configuration, also Mi and Mj belong the
same Bernoulli component. We can then conclude that Mi, Mj, Mk

belong to the same Bernoulli component. In a stadium-like domain,
the previous argument does not work, because there are only 2 curved
components Γi and Γj attached to the 3 vertexes of ∆. However, in
this case, we have i) µ(Mj ∩ TMi) > 0 and µ(Mj ∩ TMi) > 0, and
ii) µ(Mj ∩ T 2Mi) > 0. Claim i) is obvious. Claim ii) follows from
the fact that there is a positive measure set of orbits starting at Mi

and reaching Mj after one collision with flat components of ∂Ω. Since
each Mi and Mj is contained in a Bernoulli component, and all the
Bernoulli components are cyclically permuted with the same period
n > 0 by Theorem A.6, claim i) implies that n ≤ 2, whereas claim ii)
implies that n is either 3 or one of its divisors. Hence n = 1. The
same conclusion is clearly true for all the sets Mi corresponding to
pockets and bumps attached to vertexes of two adjacent triangles ∆1

5This is indeed the case whenever the polygon P has two parallel sides facing
each other.
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and ∆2. Hence, the entire set M−∪M+ belongs (mod 0) to a Bernoulli
component. �

Donnay billiards are billiards in convex polygons with pockets [16].
The next result then follows directly from Theorem 8.3.

Corollary 8.4. Donnay billiards have the Bernoulli property.

The conclusion of Theorem 8.3 is robust for sufficiently small per-
turbations of the pockets and bumps.

Definition 8.5. Two polygons with pockets and bumps Ω1 and Ω2 are
ε-close if Ω2 is obtained from Ω1 by replacing each pocket (resp. bump)
with another pocket (resp. bump) of the same length, ε-close in the
C6-topology (resp. C3-topology) and ε-close in the Hausdorff distance.

Proposition 8.6. Suppose that the billiard in a polygon with pockets
and bumps Ω1 satisfies B2. Then there exists ε > 0 such that if Ω2 is
ε-close to Ω1, then the billiard in Ω2 is Bernoulli.

Proof. Condition B2 is an open condition. Thus, if ε is sufficiently
small, then the billiard in Ω2 satisfies B2, and so it is Bernoulli by
Theorem 8.3. �

We conclude this section with a result concerning hyperbolic bil-
liards with domains for which Γ0 = ∅, i.e., without straight boundary
components. For these billiards, the Bernoulli property follows quite
directly from Corollary 5.8. We observe that Sinai billiards [28] – those
with domains bounded only by strictly convex outwards arcs – belong
to this class of billiards. For them, the Bernoulli property was first
proved in [17].

Theorem 8.7. Let Ω be a billiard domain without straight boundary
components, and suppose that its map T satisfies Conditions B1-B4.
Then T is Bernoulli.

Proof. For billiards satisfying the hypotheses of the theorem, the set
R is countable (see [15, Propositions 6.17-6.19]), and we trivially have
N = NR = ∅. Thus, each set H ∩Mi is connected, and B5 is satisfied.
The wanted conclusion now follows from Corollary 5.8. �

Appendix A. Local Ergodic Theorem

We state the Local Ergodic Theorem proved in [14], and recall the
relevant definitions. The formulation of this theorem in its general
form requires a series of technical definitions, which are not needed
for 2-dimensional billiards. Thus, to avoid unnecessary technicali-
ties, we specialize the presentation of the Local ergodic Theorem to
2-dimensional billiards. Accordingly, T will denote the billiard map for
some planar domain Ω throughout this appendix.

The definition of a cone field and related notions are given in Sec-
tion 4.
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Definition A.1. A point x ∈M \ ∂M is called sufficient if there exist

i) an integer l such that T l is a local diffeomorphism at x,
ii) a neighborhood O of T lx and an integer N > 0 such that O and

R−N are disjoint,
iii) an invariant continuous cone field K on O ∪ T−NO such that

σK(DyT
N) > 3 for every y ∈ T−NO.

Every time we need to emphasize the role of the data l, N,O,K in
this definition, we will write that x is a sufficient point with quadruple
(l, N,O,K).

Definition A.2. A point x ∈M \ ∂M is called u-essential if for every
α > 0, there exist nx,α ∈ N, a neighborhood Ox,α of x with Ox,α ∩
R+
nx,α = ∅ and a continuous invariant cone field (Ox,α∪T nx,αOx,α, Kx,α)

such that σ∗Kx,α(DyT
nx,α) > α for every y ∈ Ox,α. Analogously, a point

x ∈ M \ ∂M is called s-essential if, in the previous definition, T and
R+
nx,α are replaced by T−1 and R−nx,α, respectively.

The cone field (O,K) in Definition A.1 is eventually strictly invari-
ant. By a well-known result [23, 31, 32], it follows that all the Lya-
punov exponents of T are non-zero a.e. on the set

⋃
k∈Z T

kO. This fact
combined with the Katok-Strelcyn theory [20] gives Proposition A.3
below (Part (3) is proved in [14, Proposition 5.3]). For the definition
of absolute continuity of a foliation, we refer the reader to [10, 20].

Proposition A.3. Let x ∈M \∂M be a sufficient point with quadruple
(l, N,K,O). Then there exist an invariant set Λx ⊂

⋃
k∈Z T

kO with
µ(Λx) = µ(

⋃
k∈Z T

kO) > 0 and two families V s = {V s(y)}y∈Λx and
V u = {V u(y)}y∈Λx consisting of C2 submanifolds such that for every
y ∈ Λx, we have

(1) V s(y) ∩ V u(y) = {y},
(2) V s(y) and V u(y) are embedded open intervals,
(3) TyV

s(y) ⊂ K ′(y) and TyV
u(y) ⊂ K(y) provided that y ∈ O ∪

T−NO,
(4) TV s(y) ⊂ V s(Ty) and T−1V u(y) ⊂ V u(T−1y),
(5) d(T ny, T nz) → 0 exponentially as n → +∞ for every z ∈

V s(y), and the same is true as n→ −∞ for every z ∈ V u(y),
(6) V s(y) and V u(y) vary measurably with y ∈ Λx,
(7) the families V s and V u have the absolute continuity property.

Definition A.4. The submanifolds forming the families V s and V u are
called local stable manifolds and local unstable manifolds, respectively.

Definition A.5. Let x be a sufficient point of M \ ∂M , and let Λx be
the set in Proposition A.3. For every y ∈ Λx, we denote by W u(y) the
connected component of ⋃

k≥0

T kV u(T−ky)



42 G. DEL MAGNO AND R. MARKARIAN

containing y. Analogously, denote by W s(y) the set obtained by replac-
ing T with T−1 and V u with V s in the definition of W u(y).

We now recall the Spectral Decomposition Theorem. It applies to a
larger class of hyperbolic system with singularities than billiards, but
here we formulate it only for billiards. For its proof, one has to combine
two results: [20, Theorem 13.1, Part II], which extends Pesin’result for
smooth systems [27] to systems with singularities, and [9, Theorem 3.1].
See also [26], for results similar to those of [9].

Theorem A.6. Suppose that the billiard map T has non-vanishing
Lyapunov exponents a.e. on M . Then there exist at most countably
many pairwise disjoint measurable subsets E0, E1, . . . of M such that

(1) M =
⋃
iEi,

(2) µ(E0) = 0, and µ(Ei) > 0 for every i,
(3) TEi = Ei, and (T |Ei , µ|Ei) is ergodic for every i,
(4) for every i, there exist mi ∈ N pairwise disjoint measurable

subsets Bi,1, . . . , Bi,mi , Bi,mi+1 = Bi,1 of M such that Ei =⋃mi
j=1Bi,j, TBi,j = Bi,j+1 and (Tmi |Bi,j , µ|Bi,j) is Bernoulli for

every j = 1, . . . ,mi.

The sets Ei and Bi,j are called an ergodic component of T and a
Bernoulli component of T , respectively. These sets are uniquely de-
fined up to a set of zero measure.

We need one last definition before formulating the Local Ergodic
Theorem.

Definition A.7. Let (O1, C1) and (O2, C2) be two cone fields. We
say that (O1, C1) and (O2, C2) are jointly invariant if DxT

kC1(x) ⊂
C2(T kx) for every x ∈ O1 and k > 0 such that T kx ∈ O2, and
DxT

kC2(x) ⊂ C1(T kx) for every x ∈ O2 and k > 0 such that T kx ∈ O1.

Note that in the previous definition, we neither require that the sets
O1 and O2 are disjoint nor that the cone fields C1 and C2 are invariant.
However, it is easy to see that C1 and C2 are invariant in the following
sense: if x ∈ O1 and k2 > k1 > 0 such that T k1x ∈ O2 and T k2x ∈ O1,
then DxT

k2C1(x) ⊂ C1(T k2x). The same is true for C2, once O1 has
been replaced by O2.

Definition A.8. A subset Σ ⊂ M is called regular if it is a union
of finitely many arcs Σ1, . . . ,Σk of class C2 that can only intersect at
their boundaries. The arcs Σ1, . . . ,Σk are called the components of Σ.

Definition A.9 (Regularity). We say that T satisfies Condition L1 if
the singular sets R+

k and R−k are regular for every k > 0.

In the rest of this subsection, we assume that x ∈M \ ∂M is a suffi-
cient point with quadruple (l, N,O,K). Let Λx be the subset associated
to x as in Proposition A.3.
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Definition A.10 (Alignment). We say that x satisfies Condition L2 if
the sets O∩R+

k and O∩R−k are regular for every k > 0, and the tangent
subspace6 TyΣ is contained in K(y) (resp. K ′(y)) for every k > 0, every
component Σ of O∩R−k (resp. O∩R+

k ) and every y ∈ Σ∩T−NO (resp.
Σ ∩O).

Let m+ and m− be the 1-dimensional Riemannian volume on S+
1 and

S−1 ), respectively.

Definition A.11 (Ansatz). We say that x satisfies Condition L3 if the
set of u-essential points of S−1 (resp. s-essential points of S+

1 ) has full
m−-measure (resp. m+-measure), and if y is any of such points, then
the cone fields (O,K) and (Oy,α, Ky,α) are jointly invariant for every
α > 0.

Given A ⊂ M and ε > 0, we call the set A(ε) = {x ∈ M : d(x,A) <
ε} the ε-neighborhood of A.

Definition A.12 (Contraction). We say that x satisfies Condition L4
if there exist β > 0 and ε > 0 such that∥∥DzT

−k|TzWu(y)

∥∥ ≤ β
(
resp.

∥∥DzT
k|TzW s(y)

∥∥ ≤ β
)

for every y ∈ O ∩ Λx and every z ∈ O ∩ W u(y) ∩ T kS−1 (ε) (resp.
O ∩W s(y) ∩ T−kS+

1 (ε)) with k > 0.

Theorem A.13 (Local Ergodic Theorem). Suppose that L1 is satisfied,
and that x ∈M \∂M is a sufficient point satisfying L2-L4. Then there
exists a neighborhood of x contained up to a set of zero µ-measure in a
Bernoulli component of T .
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[18] G. Galperin, T. Krüger and S. Troubetzkoy, Local instability of orbits in
polygonal and polyhedral billiards, Comm. Math. Phys. 169 (1995), no. 3,
463–473.

[19] E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer
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