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Abstract

The edge clique cover (ecc) problem deals with discovering a set of (possibly overlapping) cliques in a given graph,
such that each edge is part of at least one of these cliques. This problem finds applications ranging from social
networks to compiler optimization and stringology. We consider classical and new variants of the ecc problem,
addressing the quality of the cliques found and proposing more structured criteria other than traditional measures
(such as minimum number of cliques). We describe fast practical algorithms for implementing some heuristics, the
fastest one taking O(mdG) time for a connected graph with m edges and degeneracy dG ≤ min{∆, 2

√
m} (also known

as k-core number), where ∆ is the maximum node degree. For real-world networks, with millions of nodes, such as
social networks, the possibility of getting a result is constrained to the running time, which should be (almost) linear
in the size of the network. Our algorithm for finding eccs of large networks has linear-time performance in practice
because dG is small, as our experiments show on real-world networks whose number of nodes ranges from thousands
to several millions.

Keywords: Edge Clique Cover, Network analysis, Graph algorithms

1. Introduction

Consider an undirected connected graph G = (V, E) with m = |E| edges and n = |V | nodes. Its cliques are subsets
of nodes C ⊆ V that are pairwise adjacent (i.e. there is an edge {u, v} ∈ E for every pair of nodes u, v ∈ C, u , v):
we equivalently see a clique as its set C of nodes, or its corresponding induced subgraph G[C] = (C, {{u, v} ∈ E |
u, v ∈ C}). The edge clique cover (ecc) problem deals with selecting a set of (possibly overlapping) cliques in G,
such that each edge in E belongs to at least one of these cliques. Figure 1 shows two example of eccs. This prob-
lem and its variants have many applications, such as applied statistics [2, 3], behavioral and cognitive networks [4],
compiler optimization [5], complex networks [6, 7], computational biology [8], computational geometry [9], dynamic
networks [10], email networks [11], financial networks [12], SAT solvers [13], security [14], social networks [15],
and stringology [16].

In the literature, problems related to ecc have been independently addressed in the mid 70’s in social network
analysis [18, 19]. From a computational point of view, the related problem of vertex clique cover, where the cliques
are disjoint and the vertices are to be covered, is one of Karp’s original problems shown to be NP-complete in his
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Figure 1: Graph (i) taken from [17], and two examples of eccs in (ii) and (iii).

famous 1972 paper. The ecc appeared with different terminology such as keyword conflict [20], covering by cliques,
intersection graph basis, or clique partition [21], as discussed in [22]. The latter reports that the problem of finding
an ecc having the minimum1 number of cliques is NP-hard [23], even for planar graphs [24] or graphs with degree
at most 6 [25]. It can be solved polynomially for some restricted classes of graphs [25, 26, 27, 23]. As it can be
seen, the previous work mainly aims at minimizing the number of covering cliques for this NP-hard problem. The
parameterized exact algorithms at the state of the art [28] are probably optimal [22]. However, from the experiments
reported in the paper, it seems that they do not scale well to large graphs. The computational difficulty of the problem
is also due to the fact that it is not approximable within a factor of nε , where n is the number of vertices and ε > 0,
unless P=NP [29].

When considering large real-world networks some heuristic algorithms for cliques work surprisingly well (e.g. [30,
31, 32, 33, 34]), whereas approximation algorithms with some guarantee are still too expensive. Due to the massive
size of available networks, it is convenient to consider algorithms or heuristics taking (almost) linear time in the size
of the network. This comes as an invitation to study the ecc problem on these networks. Looking at the literature from
this point of view, Gramm et al. [35] give an efficient implementation of the original Kellerman heuristics [20], with
the post-processing step of Kou et al. [17]. Interestingly, even if this heuristic dates back to 1973, its effectiveness in
terms of quality of the solution (i.e. the minimal number of cliques found) is still the state of the art. However, these
algorithms do not have linear bounds. For a graph with n vertices and m edges, the original results by Kellerman
finds a clique cover in O(nm2) time. The post-processing of Kou et al. requires at least Ω(nm) time in the worst case.
Gramm et al. show how to obtain the same heuristics solution just in total O(nm) time, using O(n2) space.

In this paper, we present new algorithmic tools for heuristics on eccs that are tailored for large real-word networks.
Our view is well represented by the clique cover graph shown in Figure 2 for the example in Figure 1. This bipartite
graph has nodes representing the cliques of the ecc on the left, and nodes representing the vertices of the input network
on the right. There is an edge to indicate that a given vertex is part of the given clique. On the right, we may represent
the edges of the network rather than the nodes. This graph is reminiscent of the clique representation in intersection
graph theory [36], and its formal definition is given in Section 2.

The classical well-studied measure in the ecc problem is the minimum number of cliques, which corresponds to
having the minimum number of nodes on the left side of the clique cover graph of the candidate eccs. Recently also
the minimum assignment objective has been proposed, which minimizes the sum of the sizes of the cliques [37]:
this corresponds to minimizing the number of edges in the clique cover graph. Further information on the quality
of the solution can be obtained from the cover graph, which suggests using other quality measures when evaluating
heuristics for the ecc problem. For example, we suggest in Section 2 to use also the weight of an ecc, the clique size
distribution, or the cover index distribution.

Our first contribution is a simple, yet very effective, framework to design fast algorithmic tools that scale well for
real-world large graphs and perform well according to a variety of measures based on the clique cover graph, when
compared to the state of the art. They require O(m+n) space and their time cost can be upper bounded as O(mdG) time
for a connected graph G with m edges and degeneracy dG ≤ min{∆, 2

√
m}, where ∆ is the maximum node degree.2

1Finding any ecc is easy, for example the trivial one made up of just the single edges.
2The degeneracy dG (also known as k-core number) of a graph G is the smallest g such that every subgraph of G has a vertex of degree at most
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Figure 2: Clique cover graph for the ecc in Figure 1(ii).

The actual running time is linear in m in our experiments as dG is small in real-world networks. Our algorithms require
O(m + n) space and their time cost can be upper bounded as O(m log ∆+ k ∆ dG), where k ≤ m is the number of cliques
in the ecc. This cost becomes O(m dG) time in some cases, thus improving performance, i.e. time and space needed
to get the solution.

Our second contribution is an experimental study of heuristics for the ecc problem on real-word networks that
is based on the clique cover graph: we do not merely look at the minimization problem as we consider multiple
measures on the cliques emerging from an ecc. We perform an experimental analysis on a set of real-world and
synthetic networks: the comparison among 20 variants of our algorithms and the state of the art involved a data set of
44 networks to select the best variants. We adopted some measures based on the clique cover graph, and compared
with the state of the art on an extensive data set. For example, ecc-rc, one of our most effective algorithms, is faster
than existing methods and it improves in practice the quality of the solution, also according to the traditional measures
such as the minimum number of cliques in ecc.

We hope that our findings can inspire further work on network analysis that uses clique cover graphs, as the latter
ones could be customized to deal with new quality measures that depend on the application domains. The paper is
organized as follows. Section 2 defines the edge clique cover, the clique cover graph and its related quality measures.
Section 3 describes our framework and discuss its correctness and complexity. Sections 4 presents our experimental
study. Conclusions are drawn in Section 5.

2. Clique Cover

For our study, we consider a network as an undirected connected graph G = (V, E), where V is the set of n vertices
and E is the set of m edges. A clique C ⊆ V is a set of vertices that are pairwise connected by edges in E, e.g.,
{u, v} ∈ E for each pair of distinct vertices u, v ∈ C. (Equivalently, the induced subgraph G[C] is complete.) In the
following we will write that an edge x, y ∈ C when both its endpoints x and y are in the clique C. A clique C is
maximal if there is no other clique C′ such that C ⊂ C′. A clique is trivial if it is maximal and contains only two
nodes (i.e. |C| = 2).

An edge clique cover for G (in short, ecc) is a set of cliques C1,C2, . . . ,Ck such that (1) no clique Ci is contained
in another clique C j, where i , j, and (2) for each edge {u, v} ∈ E there is at least one clique Ci such that u, v ∈
Ci [17, 35].3 Note that an ecc always exists (e.g. choose k = m and the individual edges as cliques). Maximality on
each Ci is not required in the definition of ecc, but it is not difficult to see how to transform each Ci into a maximal

g. Equivalently, it is the maximum among the smallest degrees in the induced subgraphs of G. The degeneracy order is very useful for finding
cliques [33, 34].

3Other definitions exist in the literature. In a vertex clique cover, condition (2) is replaced by asking that for each vertex v there is a clique Ci
such that v ∈ Ci. In a clique partition, the cliques C1,C2, . . . ,Ck form a partition of V . Note that storing C1,C2, . . . ,Ck in place of G according to
these definitions make loosing information regarding the edges of G as the single edges connecting Ci to C j with i , j are not stored. We focus on
ecc as we can reconstruct G from it.
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Algorithm 1: General framework
Input: A graph G = (V, E)
Output: A cover C of G
All edges in E are marked as uncovered
C ← ∅
while there are uncovered edges do

u, v← SELECT_UNCOVERED_EDGE()
R← FIND_CLIQUE_OF(u, v)
C ← C ∪ {R}
Mark all edges of R as covered

clique, if this is needed. An ecc is minimal if there is no clique contained in the union of the others, namely, it is
Ci * ∪ j,iC j for 1 ≤ i ≤ k. The clique number of G is the smallest k such that an ecc of k cliques exists for G.

Beside the possible definitions of cliques, the quality of a solution, i.e. a clique set, has been often measured as its
cardinality, that is, the quality of the ecc C1, . . . ,Ck is simply k. Hence, the so called minimum ecc aims at minimizing
the parameter k. Although finding a minimum ecc has been already proved to be hard and not arbitrarily approximable,
heuristics are often satisfying since in practice the quality of a solution could also depend on the application.

2.1. Clique Cover Graph

It is convenient to define a clique cover graph for the given ecc C1, . . . ,Ck to better highlight its properties and
assess its qualities (see Figure 2). It is a bipartite undirected graph G′ = (V ′1 ∪V ′2, E

′), such that V ′1 contains a node for
each clique, hence |V ′1| = k, and V ′2 contains a node for each vertex in V , hence |V ′2| = n. There is an edge u1, u2 ∈ E′,
where u1 ∈ V ′1 represents a clique Ci in the ecc and u2 ∈ V ′2 represents a vertex v ∈ V , if and only if v ∈ Ci.

Depending on the application, we may define a clique cover graph with V ′2 representing the edges in E, where
|V ′2| = m. In general, the choice of V ′2 representing either the vertices in V or the edges in E will be clear from the
context.

While traditional work aims at minimizing the cardinality of V1 (i.e., finding an ecc of minimum cardinality k
or giving an approximation) and E′ (i.e., minimum assignment), other possibilities can be offered. Not only we can
obtain the measures previously known in the literature by looking at the clique cover graphs for the possible eccs of
G, but we can also define some additional ones in a smooth way.

1. Finding an ecc of minimum weight
∑k

i=1 |Ci| is equivalent to finding an ecc whose clique cover graph has the
minimum number of edges (see also [37]).

2. Finding the clique size distribution in the given ecc is equivalent to the degree distribution of the nodes in V ′1
for the corresponding clique cover graph.

3. Finding the covering index distribution in the given ecc, namely, computing the number y of elements from V ′2
that are contained in x cliques of the ecc, for all feasible values of x and y, is equivalent to the degree distribution
of the nodes in V ′2 for the corresponding clique cover graph.

We devote a significant part of the paper (Section 4) to an experimental study of the properties of the clique cover
graph in real-world networks.

3. Framework and Variants

Our general approach for finding eccs relies on a simple algorithmic framework, summarized in Algorithm 1,
taking a graph G = (V, E) as input. It begins with an empty ecc C, and during the steps, cliques are added to C. At any
step the edges in E are partitioned into covered and uncovered: edge {u, v} is covered if there exists a clique Ci ∈ C
such that u, v ∈ Ci; it is uncovered otherwise. Initially, all edges in E are uncovered. As long as there are uncovered
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edges, one of them is chosen by SELECT_UNCOVERED_EDGE, described in Section 3.1. Let this edge be {u, v}. We then
find a new clique R that contains u, v using FIND_CLIQUE_OF, described in Section 3.2. Note that the clique R must
be new by definition as {u, v} is uncovered. We then add R to C, and mark all edges x, y ∈ R as covered.

3.1. Operation SELECT_UNCOVERED_EDGE
Given a node u ∈ V , we denote its set of neighbors by N(u) = {v | {u, v} ∈ E} and its degree by d(u) = |N(u)|. We

also denote the set of uncovered edges by U ⊆ E, and define the uncovered neighbors of u ∈ V as NU(u) = {v | {u, v} ∈
U}. Consequently, the uncovered degree of u is dU(u) = |NU(u)|. When dU(u) > 0, we call u eligible.

We consider three variants of SELECT_UNCOVERED_EDGE, denoted by r, m, M, U,4 assuming that the edge set U is
nonempty, as shown in Table 1.

r random: return an uncovered edge {u, v} from U uniformly at random.

m min-degree: choose an eligible node u of minimum degree d(u), and return an
arbitrary edge {u, v} ∈ U (i.e. v ∈ NU(u)).

M max-degree: as above, except that u has maximum degree d(u).

U max-uncovered-degree: choose an eligible node u of maximum uncovered degree
dU(u), and return an arbitrary edge {u, v} ∈ U.

Table 1: Variants of SELECT_UNCOVERED_EDGE

3.2. Operation FIND_CLIQUE_OF
Given an uncovered edge {u, v} in the input graph G, we can find a clique R containing {u, v} by following the idea

of the Bron-Kerbosh (abbreviated bk) technique [38], as illustrated in Algorithm 2.

Algorithm 2: FIND_CLIQUE_OF
Input: A graph G = (V, E), an uncovered edge {u, v} ∈ E
Output: A clique R containing {u, v}
R← {u, v}
P← N(u) ∩ N(v)
z← EXTRACT_NODE(P)
while z , null do

R← R ∪ {z}
P← P ∩ N(z)
z← EXTRACT_NODE(P)

After initializing R with {u, v}, the candidate set P is built by intersecting the neighbors of u and v. Using
EXTRACT_NODE, a node z is suitably extracted from P, if it exists (i.e. z , null), and added to R as z is surely
adjacent to all the vertices in R. Since z is now part of R, the vertices in the candidate set P must be also neighbors of
z, so P is updated with the intersection with N(z). In general, each of the vertices in P is a neighbor of all the vertices
in R. The expansion of R terminates when either P is empty (and thus R is maximal) or z cannot be found in P: in
both cases it is z is null.

The descriptions of the variants of EXTRACT_NODE (P) are shown in Table 2. As it can seen, sometimes z can
be null even if P is nonempty. If P is empty, all variants return z = null, so the descriptions assume without loss of
generality that P is nonempty.

We give some details on the variants. The pivoting variant p is inspired by the result of Tomita et al. [39], originally
aimed at minimizing the number of calls to the bk algorithm. In our scenario we use it as a greedy heuristic to find a

4As it should be clear, it does not seem useful for variant U to choose the minimum degree node.
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r random: return a vertex z uniformly at random.

p pivoting: return any vertex z with maximum |N(z) ∩ P| (as in [39]).

c clean: return any vertex z (if any) with maximum |NU(z) ∩ R| > 0; otherwise, return
z = null.

s semi-clean: return any vertex z (if any) with maximum |NU(z) ∩ R| > 0; else, return
any vertex z (if any) with maximum |NU(z) ∩ P| > 0; otherwise, return z = null.

d dirty: return any vertex z (if any) with maximum |NU(z) ∩ R| > 0; else, return any
vertex z (if any) with maximum |NU(z) ∩ P| > 0; otherwise, return any vertex z.

Table 2: Variants of EXTRACT_NODE to select a vertex z ∈ P

large clique: adding z to the current result set will maximize the size of P at the next step, as P will only retain the
neighbors of z in P. The clean variant c aims at maximizing the number of uncovered edges that will become covered
after adding z to the current clique R. The semi-clean variant s, in case that the clean variant fails, attempts to make
the clean variant successful at the next call, as the candidate set P will meet the condition. Indeed, adding z to R will
cause a node in the resulting P to have uncovered edges to the resulting R (as there is at least one that has has an
uncovered edge to z). Finally, the d variant has the same aim as s, but never returns z = null (unless P is empty).

Remark 1. Recall that we are proposing a heuristics for a hard problem. For example, the traditional task of mini-
mizing the number of cliques could benefit by a variant of EXTRACT_NODE (P) that finds the largest clique containing
edge {u, v}, but unfortunately the latter problem is NP-hard. We therefore propose variants that are fast to compute.

In the following, we use the notation ecc-xy to denote the variant of our framework given in Algorithm 1, where
x ∈ {r, m, M, U} encodes one of the edge selection variants described in Table 1, and y ∈ {r, p, c, s, d} encodes one of
the node extraction variants described in Table 2. For example, ecc-rc selects an uncovered edge {u, v} in a uniformly
random fashion, and then it finds the clique containing {u, v} by extracting each time the node z (if it exists) with the
maximum number of uncovered edges to R. Hence, we have a total of 20 variants of our framework, and we expect
just a subset of them to be effective for ecc (e.g. see Table 6 in Section 4).

3.3. Implementation and analysis

In this section we consider the complexity of the variants of our framework, and give some details on the eccs
they find. In the following, we make the fairly standard assumption of being able to iterate adjacency lists in time
proportional to their size, and test adjacency between nodes in constant time.5 First, we show that they correctly
compute an ecc as defined in Section 2.

Lemma 2. All the variants of Algorithm 1 correctly compute an ecc of the input graph G.

Proof Let ecc-xy be any variant of Algorithm 1 where x ∈ {r, m, M, U} and y ∈ {r, p, c, s, d}. Let C1,C2, . . . ,Ck be the
cliques of the ecc in their order of discovery by ecc-xy, namely, Ci is discovered before C j iff i < j. We will prove
that (1) no clique Ci is contained in another clique C j, where i , j, and (2) for each edge {u, v} ∈ E there is at least
one clique Ci such that u, v ∈ Ci. The latter point is easily met by ecc-xy as the while loop in Algorithm 1 terminates
when all edges are covered.

We thus focus on point (1). Suppose by contradiction that Ci ⊆ C j for i , j. First, we observe that it cannot be
Ci = C j as they both must be found from one uncovered edge, and the first discovered of the two would cover all the
edges of the other. Thus, it must be Ci ⊂ C j. Second, it must be i < j for the same reason: if it were j < i, then Ci

would contain only covered edges.

5This second operation is easily achieved by means of, e.g., perfect hashing tables, which may be initialized in the beginning of the algorithm
taking O(m) time and space. Otherwise, performing binary searches on the (ordered) adjacency lists would save the extra memory and only add a
factor O(log ∆) to the final complexity of the approach.
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Now we get a contradiction for different reasons.
When y ∈ {r, p, d}, the cliques in their eccs are all maximal. Indeed, a node z ∈ P is returned as long as P is

nonempty, and the clique found is maximal when P is empty since if it could be incremented with a node, that node
would be in P. As by definition a maximal clique cannot be part of a larger clique, we have Ci 1 C j which contradicts
what previously found.

As for y = s, recall that C j must contain at least one uncovered edge in C j \Ci. Since C j \Ci ⊆ P, one endpoint of
that edge would have been chosen as z in the while loop for Ci, thus further extending Ci by at least one vertex. This
is a contradiction as Ci was returned as it could not be further extended.

Finally, when y = c, returning Ci means that all the edges having one endpoint in Ci and the other endpoint in
C j \ Ci are covered, otherwise Ci could be expanded. Furthermore, all edges in Ci are then covered. Thus C j must
be discovered from an edge with both ends in C j \ Ci. A moment of reflection shows that it is impossible to reach
Ci’s vertices from the endpoints u and v (of that uncovered edge) using other uncovered edges during the execution of
FIND_CLIQUE_OF(u, v) in ecc-xc, as there is no clean edge between C j \ Ci and Ci. Thus it is a contradiction that Ci

is contained in C j.

Remark 3. Looking at the above proof, we can see that it is always k ≤ m (k being the number of cliques in the
covering). Moreover, ecc-xy discovers maximal cliques when y ∈ {r, p, d}, while this is not necessarily true when
y ∈ {c, s}. Note that the resulting ecc is not necessarily minimal, but we can apply the method in [17] to make it so.

We now consider how to implement SELECT_UNCOVERED_EDGE efficiently in ecc-xy (see Section 3.1). We store
the set U of uncovered edges as an unordered array, which supports random access and deletion. Both operations can
be performed in constant time with some bookkeeping: each edge in U knows its position in the array and, whenever
it is selected to be marked as covered and deleted from U, its position is filled with the last entry in the array, and the
array size conceptually decreases by 1.

The above is enough to implement variant x = r in constant time. As for the other variants x ∈ {m, M, U}, we store
the set of eligible nodes in at most ∆ unordered lists L1, L2, . . . , L∆, where ∆ = maxu∈V d(u) is the graph’s maximum
degree. Specifically, eligible node u with d(u) = i is stored in Li. A similar organization is maintained also for the
uncovered degree dU(u) of each eligible node u. With some bookkeeping, it takes constant time to be removed from
a list or move u between lists.

For variants x ∈ {M, U}, we can keep the largest i such that Li is nonempty. Since eligible nodes can be only deleted
or moved to lists with lower indices, the amortized cost is constant for each change. For variant x = m, we maintain a
priority queue on the values i such that Li is nonempty, and each operation takes O(log ∆) time in the worst case.6 We
thus have the following cost.

Lemma 4. Operation SELECT_UNCOVERED_EDGE in ecc-xy can be implemented in linear space, taking (amortized)
constant time for variants x ∈ {r, M, U} and O(log ∆) time for variant x = m, where ∆ is the graph’s maximum degree.

We now discuss how to implement FIND_CLIQUE_OF efficiently in ecc-xy (see Section 3.2). Operation EXTRACT_NODE(P)
takes constant time by storing P as unordered array with random access and deletion with variant y = r (see above for
x = r). For the other variants, we observe that the sizes of P and U decrease while that of R increases, thus the values
of |N(z) ∩ P| and |NU(z) ∩ P| decrease and that of |NU(z) ∩ R| can change. For these values, we thus use unordered
lists L1, L2, . . . , Lδ as discussed above for the variants x ∈ {m, M, U}, where δ = min{d(u), d(v)} ≤ ∆ and {u, v} is the
uncovered edge on which FIND_CLIQUE_OF is launched. We maintain priority queues at the cost of O(log δ) time per
query or deletion. Consequently, EXTRACT_NODE(P) takes constant time for variant y = p, and O(log δ) time for the
remaining variants y ∈ {c, s, d}. As a result, we have the following cost, since both |P|, |R| ≤ δ.

Lemma 5. Operation FIND_CLIQUE_OF(u, v) in ecc-xy can be implemented to find the clique R in linear space, taking
O(|R|min{d(u), d(v)}) time.

6Time can be lowered for instance considering double-linked lists containing increasing indexes of non-empty Li, but in practice this cost is
small.
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Proof Looking at Algorithm 2, let δ = min{d(u), d(v)}. The initialization of R takes constant time and that of P takes
O(δ) time. As we saw, the extraction of z and its addition to R take O(log δ) time, repeated for |R| − 2 times, thus
giving a cost of O(|R| log δ) time. The cost of updating P with N(z) takes O(δ) time, and is repeated for |R| − 2 times,
thus giving a cost of O(|R| δ) time, which is the dominant cost of FIND_CLIQUE_OF.

Finally we can give an upper bound to the cost of ecc-xy in our algorithmic framework.

Theorem 6. For an undirected graph G with n vertices and m edges, Algorithm 1 finds an ecc C1,C2, . . . ,Ck in
O(m + n) space and O(m log ∆ +

∑k
i=1 |Ci|min{d(ui), d(vi)}) time (k ≤ m), where ui, vi is the uncovered edge leading to

the discovery of clique Ci, and ∆ is G’s maximum degree.

Proof Since each Ci corresponds to at least one distinct uncovered edge, we have k ≤ m. We pay O(m log ∆) time
to maintain the set of uncovered edges and choose one of them, by Lemma 4. Furthermore, finding clique Ci, for
1 ≤ i ≤ k, takes O(|Ci|min{d(ui), d(vi)}) time by Lemma 5. The cost follows.

3.4. Improved bound

We finally show that some variants of the algorithm allow for a tighter bound. In particular, we restrict our attention
to ecc-xy with x ∈ {r, M, U}, as they allow for a faster (constant time) SELECT_UNCOVERED_EDGE operation, and y = c

which guarantees a smaller result size.
To refine the bound we will also use the degeneracy dG of the graph G: this is as the smallest number k such that

every subgraph of G has a vertex of degree at most k. Equivalently, this is the highest k which the graph allows a
k-core, i.e., a subgraph in which all nodes have degree at least k. For this reason the degeneracy is also known as core
number. Note that dG ≤ ∆ and that, if C is a clique, dG ≥ |C| − 1 (since C is a (|C| − 1)-core). The degeneracy is of
particular interest in the analysis of graph algorithms since it is often small on real-world networks: this is exemplified
by the values in Tables 3 and 5. It is also well known that graphs allow a degeneracy ordering (see [33, 40]), that is, an
ordering in which every node v has at most dG neighbors occurring after v in the ordering, where dG is the degeneracy
of G. This ordering may be found in linear time, but this is not relevant for our purpose.

Firstly, let us prove the following statement which will be key for the final complexity.

Lemma 7. Given a graph G = (V, E) with n nodes, m edges and degeneracy dG, we have that
∑
{u,v}∈E min{d(u), d(v)} ≤

mdG.

Proof Assume knowledge of the degeneracy ordering of G. Furthermore, for any edge e = {u, v}, assume without
loss of generality u to be the node occurring earlier in the degeneracy ordering (i.e., before v). Consider now the sum∑
{u,v}∈E d(u): if we call t(ui) the number of times that the degree of node ui is added up in the summation, we can

equivalently rewrite this as
∑n

i=1 d(ui) · t(ui). We have that the degree of ui is added up at most as many times as the
neighbors of ui occurring after ui in the degeneracy ordering, since we assumed ui to be the one occurring earlier.
Thus, by definition of degeneracy ordering, t(ui) is at most dG. Finally, we have

∑
{u,v}∈E d(u) =

∑n
i=1 d(ui) · t(ui) ≤

dG
∑n

i=1 d(ui) = dG · m. As, for any edge {u, v}, min{d(u), d(v)} is clearly not larger than the degree of the extreme
occurring earlier in a degeneracy ordering, the statement follows.

Finally, we are ready to give our bound:

Theorem 8. The cost of ecc-xy (Algorithm 1), for x ∈ {r, M, U} and y = c, is O(mdG), where m is the number of edges
and dG the degeneracy of the input graph.

Proof We will prove the statement by refining the bound given in Lemma 5 for the case y = c.
By Lemma 4, the amortized cost of operation SELECT_UNCOVERED_EDGE for the considered variants is just O(1)

per clique, thus is negligible.
Consider now the expansion of the set R in Algorithm 2, starting from edge {u, v}, which is uncovered. Recall that

R is a clique, thus it is fully contained in the neighborhood (N(x) ∪ {x}) of any node x which belongs to it. In the
beginning, this we have to consider min{d(u), d(v)} possible nodes for addition to R. At any step, assume we selected
node z, so we have to restrict the set P to just nodes that are neighbors of z. Since y = s, there is at least one uncovered
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edge {z, x} between z and a node already in R. Furthermore, as x is in R, we have |P| ≤ d(x) + 1. To intersect P and
N(z) we thus need just O(min{d(x), d(z)}) time (note that we do not need to actually find the edge). We also have to
update the priority queues, but this is dominated by the previous cost as it takes O(log |P|) = O(min{d(x), d(z)}) time.

Let E′ be a set containing the edge {u, v} and all edges {z, x} considered during the expansion. We have that the
cost of Algorithm 2 is bounded by

∑
{u,v}∈E′ min{d(u), d(v)}. Furthermore, every edge in E′ was uncovered when it

was considered: this means that, during the whole execution of Algorithm 1 every edge may be considered at most
once in a single execution of Algorithm 2. The total cost of the algorithm is thus O(

∑
{u,v}∈E min{d(u), d(v)}), which by

Lemma 7 is O(mdG).

4. Experimental Evaluation of the Framework

This section presents an analysis of the results provided by our algorithmic framework, describing its quality
and performance. In Section 4.1, we show the performance of one of our variants in particular, which is ecc-rc,
giving a detailed comparison with the state of the art in Section 4.1, and showing that ecc-rc consistently outperforms
the baseline in terms of both running time and quality of the result. In Section 4.2, we further show the behaviour
of our approach, varying the different choices for the operations SELECT_UNCOVERED_EDGE and FIND_CLIQUE_OF.
We show that different variants of ecc-xy may be used to produce covers with different properties (e.g., average or
maximum clique size), which may be desired in different applications.

Datasets. All the networks in our experiments have been collected from LASAGNE [41].7

Real-world networks include autonomous system, biological, citation, collaboration, communication, word-adjacency,
peer-to-peer, social networks, and web networks. Synthetic networks include networks generated using Erdős-
Rényi [43], forest fire [44], and Kronecker [45]. For more details about the graphs used, we refer to Table 3, where we
report for each network the number of nodes, the number of edges, the number of trivial cliques, and the degeneracy.
It is worth observing that, although the degeneracy dG can be up to 2

√
m, its value is much less for these data sets. A

more extensive sample of networks is considered in Section 4.1 in order to study the scalability of one of our variants
(ecc-rc).

Competitors. Looking at the state of the art, we took as a baseline what we call g-alg: this is the heuristic algorithm
by Gramm et al. [35], which corresponds to the original algorithm by Kellerman [20], with the postprocessing step of
Kou et al. [17] to remove redundant cliques, and performance improvements described in [35]. Interestingly, g-alg8

is still the state of the art, as far as we know, in terms of the traditional cost that minimizes the number of cliques
found. For the sake of completeness, it is worth remarking that g-alg was designed for minimizing the number of
cliques and not to optimize the other criteria, for which no algorithm has been specifically provided. Moreover, [37]
pointed out the speed and the quality of g-alg also considering the minimum assignment objective, compared to an
exact (exponential time) algorithm. Gramm et al. [35, 28] consider also an exact parameterized algorithm to find an
ecc with the minimal number of cliques but it does not seem to scale for large graphs due to its larger running time.
Hence we believe that g-alg is the choice to compare with our solutions.

We implemented our variants ecc-xy (Sections 3.1–3.2) and g-alg in Java 1.8.0_25.9 The software is available at
https://github.com/Pronte/ECC. Our computing platform was a 24 core machine with Intel(R) Xeon(R) CPU
E5-2620 v3 at 2.40GHz, with 128GB of shared memory. The operating system was a Ubuntu 14.04.2 LTS, with a
Linux kernel version 3.16.0-30.

We performed a large-scale preliminary selection of these 20 variants and g-alg.

7We remark that LASAGNE stores graphs taken from various sources. Many of the graphs shown in Table 3 are originally from the better
known SNAP repository [42].

8Which is equivalent to Kellerman’s algorithm [20] in terms of quality
9We also considered the OCaml implementation of g-alg kindly provided by the authors: while for small networks we obtained results

consistent with our implementation of g-alg, the performance of the original implementation did not allow us to process large networks in our
dataset.

9
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Category Graph Nodes Edges Trivial Cliques Degeneracy
autonomous system itdk0304_rlinks_undirected 192 244 609 066 248 035 32
biological Drosophila_melanogaster 10 625 40 781 33 300 14
biological Homo 1 027 1 166 980 3
biological hprd_pp 9 465 37 039 17 657 14
biological ppi_gcc 37 333 135 618 71 734 25
citation cit-HepPh 34 546 420 876 24 986 30
citation cit-HepTh 27 770 352 284 15 467 37
citation citeseer 259 217 532 040 343 466 9
citation hep-th-citations_MAX 27 400 352 021 15 289 37
collaboration Newman-Cond_mat_95-99 22 015 58 578 58 350 8
collaboration advogato 7 418 42 892 5 100 28
collaboration ca-AstroPh 18 771 198 050 2 236 56
collaboration ca-CondMat 23 133 93 439 3 888 25
collaboration ca-GrQc 5 241 14 484 1 606 43
collaboration ca-HepPh 12 006 118 489 2 588 238
collaboration ca-HepTh 9 875 25 973 3 558 31
communication email-Enron 36 691 183 830 14 069 43
communication email-EuAll 265 214 364 480 253 357 38
word-adj darwinBookInter_st 7 381 44 207 4 714 37
word-adj frenchBookInter_st 8 325 23 841 9 683 17
word-adj japaneseBookInter_st 2 704 7 998 2 916 15
word-adj spanishBookInter_st 11 586 43 065 8 177 30
p2p p2p-Gnutella31 62 586 147 891 142 503 6
social soc-Slashdot0811 77 360 469 180 231 064 55
social soc-Slashdot0902 82 168 504 230 247 909 56
social trust 49 288 381 036 64 870 72
social wiki-Vote 7 115 100 761 8 655 53
synthetic Gnp_1e4 10 000 59 849 59 061 8
synthetic Gnp_2e3 2 000 8 994 8 698 6
synthetic Gnp_5e3 5 000 24 809 24 307 7
synthetic forest1e4 10 000 49 354 2 698 36
synthetic forest1e4_2 10 000 153 925 2 967 101
synthetic forest5e4 50 000 243 441 13 740 40
synthetic kron14 8 156 24 482 21 016 6
synthetic kron16 30 429 65 494 63 790 6
synthetic ud_1e3 1 000 16 727 9 77
synthetic ud_1e4 10 000 313 726 16 285
synthetic ud_2e3 1 999 35 697 30 108
synthetic ud_5e3 4 998 97 027 41 165
synthetic us_1e3 1 000 14 334 0 23
synthetic us_1e4 10 000 242 533 0 33
synthetic us_2e3 2 000 37 928 0 30
synthetic us_5e3 5 000 135 833 0 35
web GoogleNw 15 763 148 585 6 756 102

Table 3: A summary of our datasets

10



measure goal vs g-alg
number of cliques MIN 5%

maximum clique size MAX 2%
average clique size MAX -5%

(a) clique size distribution

measure goal vs g-alg
maximum node covering MIN 23%
average node covering MIN 11%

(b) node covering index distribution

measure goal vs g-alg
maximum edge covering MIN 29%
average edge covering MIN 12%

(c) edge covering index distribution

measure goal vs g-alg
average time MIN 62%

coefficient of variation — 0.57
(d) speedup

Table 4: Summary of the direct comparison between ecc-rc and g-alg for each measure and for the speed

Quality guidelines and results. Our quality guidelines for the experiments are based on the clique cover graphs
G′ = (V ′1 ∪ V ′2, E

′) for the graphs G = (V, E) in the datasets, as described in Section 2.1. In particular we considered
the following ones.

(a) Clique size distribution: for each feasible value t, we compute the number of cliques in the ecc that have size t.
In the clique cover graph, this is equivalent to the degree distribution of V ′1. With this information, we also get
the number of cliques, the maximum clique size, and the average clique size.

(b) Node covering index distribution: given a node u in G, let c(u) be the number of cliques containing u in the ecc.
For each feasible value t, we compute the number of nodes u having c(u) = t. In the clique cover graph where
V ′2 = V , this is equivalent to the degree distribution of V ′2. With this information, we also get the maximum c(u)
and the average value.

(c) Edge covering index distribution: as in (b), except that the cover index c(u, v) is the number of cliques containing
edge {u, v} in the ecc. In the clique cover graph where V ′2 = E, this is equivalent to the degree distribution of V ′2.

For the sake of completeness, for each distribution we have also considered the coefficient of variation, in short
CV. The CV is a measure of dispersion of a distribution and it corresponds to the standard deviation divided by the
mean. This measure is used as a normalized way to evaluate the variability of a covering (the closer to 0, the better
is).

4.1. Evaluation of ecc-rc
In this section, we focus on evaluating our variant ecc-rc, comparing it to the state of the art (g-alg). Recall that

the ecc-rc uses the clean extraction of nodes where the uncovered edge selection uses the random variant. We chose
evaluate specifically this variant as it seems to be the one offering the best trade-off between running time and quality
of the result, also in terms of the “standard” quality measure, i.e., the number of cliques found, as it will be shown in
Section 4.2. The take-home lesson of this section is that ecc-rc is usually the best choice for computing a small ecc,
especially in large graphs.10

For the comparison, we used the graphs in Table 3. Moreover, in order to show the ability of ecc-rc to efficiently
process large graphs, we also ran it on a larger set of 160 graphs, with up to 783 million edges.

10If, however, the goal is maximizing one specific measure among the ones considered, we refer the reader to Section 4.2.
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4.1.1. Quality of the cover
Our results are shown in Table 4, which can be read as follows. The first column indicates the measures described

above11 while the second column indicate whether it is good to minimize or maximize the measure in the correspond-
ing row. The third column reports how our ecc-rc compared to g-alg: a value of p% for the minimization indicates
that the measure found by our algorithm is p% smaller than that provided by g-alg; for the maximization, it indicates
that the measure is p% larger than that by g-alg.12

It is worth observing that ecc-rc finds a cover with slightly fewer cliques than g-alg, i.e., smaller by 5%. The
improvement of ecc-rc for node and edge covering indexes is more significant: Minimizing the average covering
corresponds to minimizing the assignments, and the solutions of g-alg have been observed to be often close to the
optimum [37] for this metric. However, ecc-rc improves on the average assignments by 11%, and on the maximum
node covering (i.e., assignments of the most assigned node) by 23%. As for the edge covering, we improve the average
by 12% and the maximum by 29%.

We can also note how ecc-rc ran faster than g-alg by 62% on average. However, we will show in the following
how the difference becomes much more dramatic on large graphs.

4.1.2. Performance
Figure 3 shows the performance comparison between ecc-rc and g-alg for the graphs in Table 3. For each graph

in the dataset (ordered by number of edges) we draw a red cross which is the ratio between the time needed by g-alg
and the one needed by ecc-rc, as a function of the number of the edges. In other words, a point at height 1 on the
y-axis (green line) means that g-alg took the same time as ecc-rc to process the corresponding graph, and a point at
height 10 means that g-alg was 10 times slower.

The average time used by ecc-rc to obtain the covering is 62% smaller than the one used by g-alg, as also shown
in Table 4. This means that our algorithm employs on average almost one third of the time employed by g-alg to
complete the task. For the sake of completeness, in Table 4 we report also the CV of the speedup which is equal
to 0.57, as it can varies significantly. However, looking at Figure 3 we can see that, in the case of larger graphs,
the situation is much worse for g-alg: the plot shows that very often the performance of g-alg is several orders of
magnitude worse than that by ecc-rc. The variability seems to dramatically affect the performance of g-alg as the
number of edges increases.

Figure 3: Ratio between the time used by g-alg and ecc-rc for each graph, as a function of the number of the edges (y-axis is in log-scale).

Finally, we considered the performance of ecc-rc on larger graphs: we took a collection of 160 real and synthetic

11Except for the coefficients of variation, for which an upper bound is provided in Table 6.
12In other words, let a be the measure found by our best performing algorithm and b be the measure found by g-alg; in the case of minimization

we report p = (1 − a/b) · 100, while in the case of maximization we report p = (a/b − 1) · 100.
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networks from SNAP [42] and LASAGNE [41], including those in Table 3 and several larger ones. For brevity, rather
than reporting all 160 graphs, we show just the largest ones in Table 5.
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Figure 4: Time used by ecc-rc to compute clique covers for 160 real-world graphs as a function of the number of edges.

Figure 4 reports the time used by ecc-rc to compute clique covers as a function of the number of edges in the
graph. In other words, for each graph in our dataset, we have run ecc-rc placing a red cross in position (x, y) whether
the graph has x edges and ecc-rc spent y milliseconds to finish the computation. Looking at the plot, the red crosses
seem to be disposed over a line which is parallel to the line y = x suggesting a linear running time of our algorithm.
This hypothesis is confirmed by the results of a linear regression over the original data (not in log scale): the time y
can be related to the number of edges x by using y = a · x + b, where a = 0.041 and b = −71005.486; these estimates
have respectively p-value 7.563 · 10−136 and 0.0174 (the correlation is 98.961%). Due to the statistical significance
of our tests, we argue that ecc-rc is linear when dealing with large real-world networks. It is reasonable to assume
that this is due, at least partly, to the degeneracy, which may be linear in the worst case, but is in practice small in
real-world graphs.

This feature clearly emerges with the largest networks we considered (see Table 5): for the largest one, a snapshot
of the web, our algorithm terminates after approximately 9 hours, which is reasonable if we consider the size of the
network and the fact it has been processed on a single core, and in line with the performance obtained on the rest of
the dataset.

Finally, it is worth remarking that, while this algorithmic framework is designed for —typically sparse— real-
world graphs, ecc-rc was tested in [46] and shown to perform remarkably well on dense graphs too.13

Category Graph Nodes Edges Degeneracy Time (s)
col. imdb 913 201 37 588 613 1 297 202
web enwiki 13 834 640 42 336 692 208 526
social LiveJournal1 4 847 571 42 851 236 372 225
P2P p2p 5 792 297 142 038 401 853 1 845
web web 39 454 463 783 027 125 588 32 734

Table 5: Sample of the largest networks we considered with the running time of ecc-rc.

4.2. Comparison of our Approaches
In this section, we report our comparison concerning the quality of the results provided by our variants. Our results

are reported in Table 6, which has the same format of Table 4, reporting also which algorithms ecc-xy resulted the
best performers according to the measure in the row.

As shown in Table 6, the following variants emerged from the rest when considering various quality measures.

13For context, the description of ecc-rc was taken by the authors of [46] from the preliminary version of this paper available at [1].
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measure goal best algs vs g-alg
number of cliques MIN ecc-rs, ecc-ms 12%,12%

maximum clique size MAX ecc-Mp, ecc-Up 6%,6%
average clique size MAX ecc-Mp, ecc-mp 26%,27%
coefficiente of variation — range: 0.013–0.016

(a) clique size distribution

measure goal best alg. vs g-alg
maximum node covering MIN ecc-Ms 37%
average node covering MIN ecc-rc 11%

coefficient of variation — range: 0.026–0.035
(b) node covering index distribution

measure goal best alg. vs g-alg
maximum edge covering MIN ecc-Ms 87%
average edge covering MIN ecc-rc 23%

coefficient of variation — range: 0.021–0.026
(c) edge covering index distribution

Table 6: Summary of the best-performing algorithms for each measure

• ecc-xp: the pivoting extraction of nodes where the uncovered edge selection uses the variant x ∈ {M, m, U} of
max degree, min degree, or max uncovered degree.

• ecc-xs: the semi-clean extraction of nodes where the uncovered edge selection uses the variant x ∈ {M, m, r} of
max degree, min degree, or random.

• ecc-rc: the clean extraction of nodes where the uncovered edge selection uses the random variant.

For each distribution, we also report the range of values for the CV for all the variants of ecc-xy we considered.
As it can be seen in Table 6, for each measure there is at least one algorithm in our framework which outperforms
g-alg.

Figure 5 reports the plots for distributions (a)–(c) for the graphs as-itdk0304_rlinks (autonomous system
network), cit-HepPh (citation network), and email-Enron (communication network). It displays the distribution
achieved by g-alg and the best algorithms reported in Table 6. For the sake of clarity, in the case of ties we have
decided to show in the plots just one of the options, so that the reported methods are: ecc-ms, ecc-Mp, ecc-Ms, and
ecc-rc.
ecc-Mp achieves more often a larger maximum clique, that is the maximum value on the x-axis such that the line

is draw in the plots in the first column of Figure 5 (namely, (a-1),(a-2), and (a-3)). On the other hand, the area under
curve of clique size distributions in these latter plots corresponds to the number of cliques returned by each algorithm:
the plots confirm that ecc-ms is the more effective, since the y-axis is in log scale and ecc-ms seems to achieve much
less small cliques with respect to the other methods.

For the sake of completeness we show the plots for the node covering distribution in the second column of Figure 5,
where the situation appears more complicated. However, numerically, we have seen that ecc-Ms and ecc-rc correspond
to the curve more likely to be close to the y-axis, meaning that the maximum and average covering index induced by
these distribution is more likely to be smaller. The same can be said looking at the third column of Figure 5, where
the edge covering distribution is shown: in this case, the higher improvement permits to appreciate better the lower
maximum and average covering index of the edges in the solutions of ecc-Ms and ecc-rc.

In the rest of this section, we give more details on the experimental study of these measures for distributions (a)–
(c).

4.2.1. Analyzing Clique Size Distribution
Number of Cliques. In the great majority of cases we found that ecc-rs and ecc-ms are the most effective. On the
average, they provide about 9% fewer cliques than g-alg. In general, the latter finds more cliques than all ecc-xy

14



as-itdk0304_rlinks

 1

 10

 100

 1000

 10000

 100000

 1x106

 2  4  6  8  10  12  14  16  18

Clique Size

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(a-1) clique size distribution

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000

Node Covering Index

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(b-1) node covering distribution

 1

 10

 100

 1000

 10000

 100000

 1x106

 1  10  100

Edge Covering Index

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(c-1) edge covering distribution

cit-HepPh

 1

 10

 100

 1000

 10000

 100000

 2  4  6  8  10  12  14  16  18  20

Clique Size

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(a-2) clique size distribution

 1

 10

 100

 1000

 10000

 1  10  100  1000

Node Covering Index

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(b-2) node covering distribution

 1

 10

 100

 1000

 10000

 100000

 1x106

 1  10  100

Edge Covering Index

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(c-2) edge covering distribution

email-Enron

 1

 10

 100

 1000

 10000

 100000

 2  4  6  8  10  12  14  16  18

Clique Size

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(a-3) clique size distribution

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000

Node Covering Index

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(b-3) node covering distribution

 1

 10

 100

 1000

 10000

 100000

 1x106

 1  10  100

Edge Covering Index

ECC-ms
ECC-Mp
ECC-Ms
ECC-rc
g-Alg

(c-3) edge covering distribution

Figure 5: Distributions (a)–(c) of the best performing algorithms (mentioned in Table 6) together with g-alg for a sample of three graphs, namely,
as-itdk0304_rlinks (autonomous system network), cit-HepPh (citation network), and email-Enron (communication network). The axes
are in logarithmic scale, except for the x-axis of (a-1), (a-2), and (a-3). The plots can be zoomed in the electronic version of this paper.
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in more than 60% of the cases. Moreover, many edges of real-world networks do not belong to any triangle and
hence they must be covered by trivial cliques (i.e. of size 2). The ratio between the number of trivial cliques and the
number of edges seems to be positively correlated with the inverse of the average degree in the graph, i.e. n/m: the
correlation is quite high indeed, 0.7. We have thus considered the difference between the number of cliques found
by each algorithm and the number of trivial cliques. Also in this case, the best methods to minimize the number of
cliques are ecc-rs and ecc-ms and they find 12% fewer cliques than g-alg.

Maximum clique size dimension. In all the experiments the most effective algorithm in finding a maximum size clique
are ecc-Mp and ecc-Up. In particular they are the most effective, respectively, for the 95% and 90% of the cases. On the
average both of them find a clique that is 6% larger than that of g-alg. In all the cases, g-alg never finds a maximum
clique larger than the one found by the two algorithms above. When considering all ecc-xy, the algorithm finding the
smallest among all is g-alg for 60% of the cases.

Average clique size. In all the cases ecc-mp and ecc-Mp achieve the maximum average size among all the algorithms.
In the 85% of the cases, the average size of the cliques in the solution provided by g-alg is smaller than the average
size of the cliques found by ecc-mp or ecc-Mp. The average clique sizes returned by ecc-mp and ecc-Mp are, respectively,
27% and 26% larger than the one by g-alg.

CV of clique size distribution. We observe that the CV ranges between 0.013 (ecc-rs) and 0.016 (ecc-Mp). The CV
of g-alg is 0.015. This means that the overall variability of the distributions is quite similar when comparing the
algorithms by averaging each of them on all the graphs.

4.2.2. Node Covering Index
Mean node covering. In order to avoid redundancy it could be preferable to minimize this measure, that is minimizing
the space occupied by the solution. Evaluating

∑
u∈V c(u) corresponds to evaluate the sum of the sizes of the cliques

in terms of nodes, i.e.
∑k

i=1 |Ci|, so that the average node covering index is
∑k

i=1 |Ci |

n . The method ecc-rc achieves more
often (in the 45% of the cases) a solution whose mean is less than all the others. On the average this value is 11%
smaller than that of g-alg. In the 22% of the cases the minimum mean is achieved by ecc-mc. On the average its value
is 6% smaller than that of g-alg. Note that the latter never finds the minimum mean among all the algorithms.

Max node covering. The smallest maximum node covering index is achieved by ecc-Ms in almost 62% of the net-
works, never by g-alg. On the average, the former achieves a max node node covering index that is 37% smaller than
the one provided by the latter.

CV. The coefficient of variation ranges in between 0.026 (ecc-rc) and 0.035 (ecc-Ud). An higher variability is
achieved by ecc-xr and ecc-xd, while a lower variability is achieved for the variants of ecc-xc.

4.2.3. Edge Covering Index
Mean edge covering. The algorithms ecc-rc and ecc-mc achieve the lowest mean edge covering for the majority of
the networks: they are the best algorithms, respectively, in the 38% and in the 36% of the cases. In all the remaining
instances, g-alg is never the most effective. On the average the mean edge covering index of the solution returned
by ecc-rc and ecc-mc is, respectively, 23% and 13% smaller than that by g-alg. Note that the average edge covering
index is equal to

∑k
i=1 |Ci |·|Ci−1|

2·m , where C1,C2, . . . ,Ck are the the cliques in ecc.

Max edge covering. For half of the networks, the algorithm achieving the minimum among the maximum edge
covering indexes is ecc-Ms. Other effective algorithms for are ecc-rc and ecc-mc (respectively, in the 18% and 12%
of the cases). Also for this measure, g-alg is never the most effective. On the average the maximum edge covering
indexing of a solution found by ecc-Ms is 87% smaller than that by g-alg.

CV. The coefficient of variation of the edge covering distributions for all the algorithms range between 0.021 (ecc-Ms)
and 0.026 (ecc-Mc, ecc-Uc, and Kellerman algorithm).
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5. Conclusions

Inspired by the clique cover graph, in this paper we have introduced several measures to assess the quality of a
solution rather just the classical ones, e.g. minimizing the number of cliques.

To deal with these measures, we proposed new and simple algorithms which are part of a simple framework and
scale well to deal with large real-world networks. Moreover, we showed that our algorithms improve the state of
the art according to all the several measures we considered based on the clique cover graph, experimenting our 20
variants of the framework on a data set of 44 networks. Our algorithms improve in practice the quality of the solution,
also according to the traditional measures. In particular, one of our variants emerged as particularly effective both for
quality and running times, which can be considered linear in practice, as shown by our extensive experiments.
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