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Abstract

In this paper we consider the problem of listing the maximal k-degenerate induced subgraphs of a chordal

graph, and propose an output-sensitive algorithm using delay O(m · ω(G)) for any n-vertex chordal graph

with m edges, where ω(G) ≤ n is the maximum size of a clique in G. Degeneracy is a well known sparsity

measure, and k-degenerate subgraphs are a notion of sparse subgraphs, which generalizes other problems

such as independent sets (0-degenerate subgraphs) and forests (1-degenerate subgraphs).

Many efficient enumeration algorithms are designed by solving the so-called Extension problem, which asks

whether there exists a maximal solution containing a given set of nodes, but no node from a forbidden set.

We show that solving this problem is np-complete for maximal k-degenerate induced subgraphs, motivating

the need for additional techniques.

Keywords: Graph enumeration; Graph algorithms; Polynomial delay; Degeneracy; Chordal graphs; Clique

trees

1. Introduction

One of the fundamental problems in network analysis is finding subgraphs with some desired properties.

A great body of literature has been devoted to develop efficient algorithms for many different types of

subgraphs, such as frequent subgraphs [14], dense subgraphs [15] or complete subgraphs [5, 9]. A more

comprehensive list can be found in [22].

Dense subgraphs are object of extensive research, especially due to their close relationship to community

detection; however, one may be interested in finding sparse graphs as many networks are sparse even if locally

dense. For instance, the paper [23] addresses the enumeration of induced trees in k-degenerate graphs.

The degeneracy of a graph is the smallest integer k for which every subgraph of the graph has a vertex

of degree at most k. A graph is said to be k-degenerate if its degeneracy is k or less. Degeneracy is also

referred to as the coloring number or k-core number, as a k-degenerate graph may contain a k-core but
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not a k+1-core, and is a widely used sparsity measure [5, 9, 17, 21, 23]. Several studies tend to take into

account the degeneracy of graphs, as it tends to be very small in real-world networks [21], many important

graph classes in structural graph theory are degenerate [17]. Furthermore, it is straightforward to see that k-

degenrate subgraphs generalize well known structures, as 0-degenerate subgraphs correspond to independent

sets, while 1-degenerate subgraphs correspond to induced forests.

Alon et al. [1] investigated the size of the largest k-degenerate induced subgraph in a graph, giving tight

lower bounds in relation to the degree sequence of the graph. Whilst Pilipczuk et al. [18] showed that a

maximum k-degenerate induced subgraph can be found in randomized time O((2 − εk)nnO(1)), for some

εk > 0 depending only on k, and moreover showed that there are at most (2 − εk)n such subgraphs. See

[2, 16] for other recent studies on degeneracy.

In this paper we address the enumeration of all maximal k-degenerate induced subgraphs of a given graph,

and provide an efficient polynomial delay algorithm for input chordal graphs. An enumeration algorithm is

of polynomial delay if the maximum computation time between two consecutive outputs is bounded by a

polynomial in the size of the input. Enumeration algorithms are of high importance in several areas such as

data-mining, biology, artificial intelligence, or databases (see for instance [7, 22]).

Chordal graphs (also known as triangulated graphs) have been a topic of intensive study in computer

science due to the applications in phylogenetic networks and also many np-complete problems become

tractable when the inputs are chordal graphs [3, 8, 13, 19, 20]. A graph is chordal if and only if every

cycle of length 4 or more has a chord, i.e. an edge joining two non-consecutive vertices. Chordal graphs

have been equivalently characterized in different ways: They are the graphs that allow a perfect elimination

ordering, that is an elimination ordering in which every eliminated vertex is simplicial (its neighbors form

a clique) [19, 20]; the graphs that allow a clique tree [3] (see Section 2.1); the intersection graphs of subtree

families in trees [13]. In our case, we will consider the characterization by clique-trees. It is well-known

that n-vertex chordal graphs have at most n maximal cliques. A clique-tree of a chordal graph G is a tree

T whose nodes are in bijection with the set of maximal cliques, and such that for each vertex x the set of

maximal cliques containing x form a subtree of T .

Our algorithm is based on the well-known Extension Problem (also known as backtracking or flashlight

or binary partition) and uses the clique-tree. The enumeration can be reduced to the following question:

Given two subsets of vertices S and X, decide whether there is a maximal k-degenerate induced subgraph

which contains S and does not intersect X. Indeed, if we can answer this question in polynomial time, the

algorithm can be summarized as follows: Start from the empty set, and in each iteration with given sets

(S,X) pick a vertex v and partition the problem into those containing v (a call to the iteration (S∪{v}, X))

or those not containing v (a call to the iteration (S,X ∪ {v}), both calls depending on the answer given by

the Extension problem. The delay of such algorithms is usually O(n ·poly(n)) with poly(n) being the time to

decide the Extension problem. As we will show in Section 3, however, this problem is np-complete for generic

graphs, and even for split graphs, which are a subset of chordal graphs. This motivates the investigation of
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the problem, which is not solvable by trivial application of known techniques, and highlights the need for

a deeper understanding of the problems’ structure. On one hand, we want to define suitable constraint so

that the Extension problem can be solved efficiently. On the other hand, if the constraints are too strong

(say, requiring the excluded set X to be empty), the result will not be powerful enough to yield an exact

algorithm. For our algorithm, thus, we do not consider all possible sets (S,X) for the Extension problem,

but a sufficient amount of special cases driven by the clique-tree. Our special case of the Extension problem

is the following (we consider the clique-tree T to be rooted):

Input. A node C of T , a partition (S,X) of the set of vertices in all the cliques preceding C in a pre-order

traversal of T and a partition (S′, X ′) of C \ (S ∪X).

Output. Decide whether there is a maximal solution M such that S∪S′ ⊆ V (M) and (X∪X ′)∩V (M) = ∅.

We propose a notion of greedy solution and show that this special case of the Extension problem is a

Yes-instance if and only if a greedy solution exists; we also propose an O(m)-time algorithm to compute the

greedy solution.

2. Preliminaries

An algorithm is said to be output-polynomial if the running time is bounded by a polynomial in the

input and the output sizes. The delay is the maximum computation time between two consecutive outputs,

pre-processing, and post-processing. If the delay is polynomial in the input size, the algorithm is called

polynomial delay.

For two sets A and B we denote by A \B the set {x ∈ A | x /∈ B}. Our graph terminology is standard,

we refer to the book [6]. In this paper, we assume that graphs are simple, finite, loopless, and each graph

is given with an arbitrary linear ordering of its vertices. Whenever we will say that a vertex is “smaller” or

“bigger” than another, we mean that it occurs respectively earlier or later than the other in this ordering.

We can further assume graphs to be connected as the solutions of a non-connected graph are obtained by

combining those of its connected components. We use n and m to denote respectively the numbers of vertices

and edges in the input graph. The vertex set of a graph G is denoted by V (G) and its edge set by E(G).

The subgraph of G induced by X ⊆ V (G), denoted by G[X], is the graph (X, (X × X) ∩ E(G)), and we

write G \X to denote G[V (G) \X]. For a vertex x of G we denote by NG(x) the set of neighbors of x, i.e.,

the set {y ∈ V (G) | xy ∈ E(G)}, and we let NG[x], the closed neighborhood of x, be NG(x)∪{x}; the degree

of a vertex x, dG(x), is defined as the size of NG(x). In what follows, we usually omit the subscript G if it

is clear from the context.

A tree is an acyclic connected graph. A clique of a graph G is a subset C of G that induces a complete

graph, and a maximal clique is a clique C of G such that C ∪ {x} is not a clique for all x ∈ V (G) \ C. We

denote by Q(G) the set of maximal cliques of G, and by ω(G) the maximum number of vertices in a clique

in Q(G). For a vertex x, we denote by Q(G, x) the set of maximal cliques containing x.
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Figure 1: A chordal graph (left) and its clique tree (right) rooted in the clique {1, 2, 3}. Each node of the clique tree corresponds
to a maximal clique of the graph, with its private vertices (i.e., those not in common with the parent clique) in the bottom half.

For a rooted tree T and two nodes u and v of T , we call v an ancestor of u, and u a descendant of v, if v

is on the unique path from the root to u; u and v are incomparable if v is neither an ancestor or descendant

of u.

2.1. Chordal Graphs and Clique Trees

A graph G is a chordal graph if it does not contain an induced cycle of length more than three. It is

well-known that a chordal graph G has at most n maximal cliques, and they can be enumerated in linear

time [4]. With every chordal graph G, one can associate a tree that we denote by QT (G), called a clique

tree, whose nodes are the maximal cliques of G and such that for every vertex x ∈ V (G) the set Q(G, x) is

a subtree of QT (G) [13]. Moreover, for every chordal graph G, one can compute a clique tree in linear time

(see for instance [11]). In the rest of the paper all clique trees are considered rooted. Furthermore, for any

clique in the clique tree, we call private vertices the vertices of the clique which are not in common with its

parent in the tree. A visual example is given in Figure 1.

In what follows, for a maximal clique C of a chordal graph G, C depending on the context, may refer to

its set of vertices, the subgraph induced by C, or the corresponding node in the clique tree.

2.2. k-Degenerate Graphs

A graph G is a k-degenerate graph if for any induced subgraph H in G, H has a vertex whose degree is

at most k. The degeneracy of a graph is the minimum value k for which the graph is k-degenerate, and is a

well known sparsity measure [5, 9, 17, 21, 23]. We consider the following question.

Problem 1. Given a chordal graph G and a positive integer k, enumerate all maximal k-degenerate induced

subgraphs in G, with polynomial delay.

Note that a complete graph Kn is an (n − 1)-degenerate graph, as all its vertices have degree n − 1.

Therefore, for any clique C of a graph G, any k-degenerate induced subgraph of G may have no more than

k + 1 vertices belonging to C. Chordal graphs have the following property.
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Theorem 1. The degeneracy of a chordal graph is exactly ω(G)− 1.

Proof. Since the degeneracy is a hereditary property (i.e., any subgraph of a k-degenerate graph is k-

degenerate), and the complete graph Kn has degeneracy n−1, ω(G)−1 is a lower bound for the degeneracy

of any graph. The fact that ω(G) − 1 is an upper bound on chordal graphs relies on the fact that every

chordal graph has at least a vertex whose neighbor is a clique [19]. Therefore, in any chordal graph (and all

its subgraphs) we can find a vertex of degree at most ω(G)− 1.

We also remark that, in a given graph G, there is an essential difference between k-degenerate induced

subgraphs (defined by subsets of the vertices), and k-degenerate edge subgraphs (defined by subsets of the

edges): For example the 0-degenerate induced subgraphs of G are its independent sets, while any graph has

a single 0-degenerate edge subgraph corresponding to an empty set of edges.2 In this paper we focus on

induced subgraphs, and leave open the problem of enumerating maximal k-degenerate edge subgraphs.

3. Hardness of the Extension Problem

In this section we consider the Extension problem for maximal k-degenerate induced subgraphs, which

corresponds to answering the following question:

Problem 2 (Extension problem for maximal k-degenerate induced subgraphs).

Input. A graph G, and two sets of vertices S ⊆ V (G) and X ⊆ V (G) such that S ∩ X = ∅ and G[S] is

k-degenerate.

Output. Yes, if there is a maximal k-degenerate induced subgraph M such that S ⊆ V (M) and X∩V (M) =

∅. No, otherwise.

Assuming that G[S] is k-degenerate is without loss of generality: Indeed if G[S] is not k-degenerate then

the answer to the problem is always negative, as any subgraph containing S may not have smaller degeneracy

than G[S].

For brevity we reuse the notation in Problem 2 in the remainder of the section, so as not to similarly

redefine G,S,X and M multiple times. Furthermore, we use simply “Extension problem” as a shorthand

for “Extension problem for maximal k-degenerate induced subgraphs”.

As we mentioned in Section 1, if we could answer this question in polynomial time, say, p(|V (G)|), then

we could use this as a black box to create a binary partition algorithm with polynomial delay, as it is

straightforward to see that its delay would be bounded by O(|V (G)| · p(|V (G)|)).

In the following, however, we show that this problem is np-complete, even when G is a split graph. A

graph G is a split graph if its vertices can be partitioned into a clique and an independent set. It has long

been known that this is equivalent to saying that both G and its complement Ḡ (i.e., the graph on the same

vertices as G that has an edge iff the edge is not in G) are chordal [10].

2Indeed, any edge induces a subgraph which has degeneracy at least 1.

5



As split graphs are chordal, this hardness result also applies to chordal graphs, and, of course, to generic

graphs.

3.1. Hardness Proof

In the following we show that, for arbitrary subsets S and X of vertices, the Extension problem is

np-complete even on split graphs.

In order to do so, we will use a polynomial-time reduction from an instance of the Hitting Set problem,

whose definition we recall below, to that of solving the Extension problem on a split graph G.

Problem 3 (Hitting Set Problem).

Input. A set of elements U , called universe, an integer h, and a family W of subsets of U whose union

equals U .

Output. Yes, if there is a subset T ⊆ U of size at most h, such that for each W ∈ W, |W ∩ T | ≥ 1. No,

otherwise.

The Hitting Set problem is a well known np-complete problem, and is equivalent to set cover, one of

Karp’s 21 np-complete problems. The problem is also reported in [12], which shows that it is still np-complete

even if W is constrained so that every W ∈ W has at most two elements.

Theorem 2. Deciding whether the Extension problem for maximal k-degenerate induced subgraphs (Prob-

lem 2) has a positive answer is np-complete, even if the considered graph G is a split graph.

Proof. Firstly, the problem is in np: The degeneracy of a graph can be found in linear time (see, e.g., [5]),

and as the degeneracy is hereditary, it means that if a k-degenerate subgraph M of G is not maximal, then

there exists a node x ∈ V (G) \ V (M) such that G[V (M) ∪ {x}] is k-degenerate. Thus verifying a positive

instance of the problem takes polynomial time.

We now prove the problem’s hardness by reducing an arbitrary instance of the Hitting Set problem to

the Extension problem on a split graph. In the following we consider an instance (U,W, h) of the Hitting Set

problem, referring to the notation in Problem 3. We assume |U | > h without loss of generality, as otherwise

the problem is trivial (U itself would be a solution).

Building the instance. Let us build a suitable instance of the Extension problem (G,S,X) for the given

Hitting Set problem. Let V be a set of vertices, in bijection withW so that Wv ∈ W is the set corresponding

to v ∈ V ; let U be a set of vertices disjoint from V , corresponding to the universe of the given Hitting Set

problem, and let vx be a vertex disjoint from U ∪ V . Finally, let G be a graph with vertex set V ∪U ∪ {vx}

whose edges are as follows: U ∪ {vx} is a clique in G, V is an independent set in G, and all the other edges

are of the form uv, for each u ∈ U and v ∈ V such that u /∈ Wv. G is clearly a split graph, whose vertex

set can be partitioned into the clique U and the independent set I = V ∪ {vx}, and its size is polynomial in

|U | + |W|, the size of the input Hitting Set problem. Let S = V , X = {vx} and k = h − 1. We claim that
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the Extension problem with instance (G,S,X) has positive answer iff the Hitting Set problem has positive

answer.

Equivalence. Let M be a maximal (h − 1)-degenerate induced subgraph of G, with S = V ⊆ V (M) and

X ∩ V (M) = ∅. Recalling Proposition 1, since vx ∈ I ∩ X, then |V (M) ∩ U | = h, i.e., M must contain

exactly h vertices from U . Moreover, for each v ∈ V = I ∩S, |N(v)∩ (V (M)∩U)| < h. Since, for u ∈ U and

v ∈ V , uv ∈ E(G) only when u /∈Wv, we can conclude that |(V (M)∩U) \N(v)| = |(V (M)∩U)∩Wv| ≥ 1,

for all Wv ∈ W, and thus the answer to the Hitting Set problem is yes, with T = V (M)∩U . Conversely, let

T be a solution to the Hitting Set problem. We will show that there exists a set T ′ such that M = G[V ∪T ′]

is a maximal (h− 1)-degenerate induced subgraph of G.

We define T ′ as a set such that T ⊆ T ′ ⊂ U , and |T | = h. T ′ may be equal to T (i.e., when |T | = h),

and always exists since |U | > h by assumption.

Since each set Wv intersects T , it also intersects T ′. By the definition of the edge set of G, there is a

vertex in T ′ (corresponding to a vertex in Wv ∩ T ′) that is not adjacent to v in G. As |T ′| = h it implies

that |N(v) ∩ T ′| < h, meaning that v may not participate in a clique of size h+ 1 in M = G[V ∪ T ′]. This

means that M may not have a clique of size larger than h, so it is (h− 1)-degenerate by Theorem 1 since it

is chordal.

Furthermore, it is easy to see that M is maximal: Since U is a clique, for each u ∈ (U \ T ′) ∪ {vx} we

have |N(u) ∩ T ′| = h, i.e., {u} ∪ T ′ is a clique of size h+ 1, thus G[V (M) ∪ {u}] is not (h− 1)-degenerate.

The statement follows.

As mentioned above, this hardness result extends to chordal graphs, as split graphs are chordal, and of

course to general graphs, motivating our interest in finding more refined techniques for the associated enu-

meration problem. Furthermore, this is a somewhat surprising result if compared to our proposed algorithm

kMIG, as the algorithm itself exploits a restricted form of the Extension problem, which can be solved in

polynomial time, but is still powerful enough to allow the algorithm to find all solutions. Let’s first show

in the next subsection a somewhat characterization of maximal k-degenerate graphs in split graphs, which

yields a restricted form of the Extension problem that can be solved in polynomial time. This restricted

form of the Extension problem allows a polynomial delay algorithm on split graphs, which is a special case

of kMIG on split graphs.

3.2. Polynomiality of restricted cases

The following considering the case X = ∅ is folklore and informs that computing a solution is easy.

Lemma 1. For any graph G, if X = ∅ then the answer to the Extension problem is always yes.

Proof. As X is empty, M may not contain vertices of X, thus the question is simply whether there exists

a maximal k-degenerate induced subgraph M which contains S. As mentioned in the proof of Theorem 1,

any subgraph of a k-degenerate graph is itself k-degenerate. This means that M may be found in a greedy
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fashion by initially setting M = G[S], and adding arbitrary vertices to it for which M is still k-degenerate.

When no such vertex can be found, then M is a maximal k-degenerate induced subgraph which contains all

vertices in S but none of those in X (which is empty).

More in general, the above lemma can be applied to the Extension problem of not just maximal k-

degenerate subgraphs, but to that of maximal subgraphs for all hereditary properties.

We now restrict our attention to split graphs, in which we can prove the polynomiality of a less restricted

case. Firstly, Proposition 1 shows some necessary condition for the Extension problem to have a positive

answer on split graphs, which will be useful in the following.

Proposition 1. For any split graph G, whose vertices are partitioned into a clique C and an independent

set I, a maximal k-degenerate induced subgraph M of G satisfies |N(x)∩V (M)| = k+1 for all x ∈ I \V (M).

Proof. Assume there is a vertex x ∈ I \ V (M) with |N(x) ∩ V (M)| < k + 1. Then M ′ = G[V (M) ∪ {x}] is

k-degenerate: Indeed, the largest clique in M has size at most k + 1, since x has degree at most k in M ′,

and M ′ may not contain cliques larger than k+ 1 not involving x since M = M ′ \ {x} is k-degenerate. Thus

M ′ is k-degenerate by Theorem 1, which contradicts the maximality of M .

We now show a second, less strict, case in which the Extension problem is still solvable in polynomial

time.

Proposition 2. Let G be a split graph, with vertices partitioned in a clique C and an independent set I.

If I ∩ S = ∅ and I ∩ X 6= ∅, then the answer to the Extension problem can be found in polynomial time.

Furthermore, if S∪X ⊂ C, and |C\X| ≥ k+1 then the answer to the Extension problem is yes iff |S| ≤ k+1.

Proof. Firstly, recall that k-degenerate subgraphs may contain cliques with up to k+1 vertices, that induced

subgraphs of chordal graphs are chordal, and by Theorem 1 that chordal graphs have degeneracy ω(G)− 1.

Thus a subgraph of G is k-degenerate if and only if its largest clique is of size at most k+ 1. Note that every

vertex in I is simplicial (i.e., its neighbors form a clique) as its neighbors are a subset of the clique C.

Case 1: I ∩S = ∅ and I ∩X 6= ∅. First notice that, if a k-degenerate induced subgraph M not intersecting

X is maximal, then |N(x) ∩ V (M)| = k + 1 for any x ∈ I \ V (M) by Proposition 1. Thus, we can conclude

that “|N(x)∩V (M)| = k+1 for each x ∈ I∩X” is a necessary condition if I∩X is not empty, independently

from S. We now show that this is also sufficient and a suitable M can be found in polynomial time, if any

exists.

Let C ′ =
⋂

x∈I∩X
N(x), and note that C ′ ⊆ C. Recall also that a maximal k-degenerate induced subgraph

of G can contain at most k + 1 vertices from C ′ since C is a clique. Moreover, if M is a maximal k-

degenerate induced subgraph of G, then V (M) ∩ C ⊆ C ′, otherwise there is a vertex x ∈ I ∩X such that

|N(x) ∩ (V (M) ∩ C)| ≤ k, i.e., G[V (M) ∪ {x}] is also k-degenerate, contradicting the maximality of M .

Therefore, if |C ′ \X| < k+ 1 or (C \C ′)∩S 6= ∅, then the answer to the Extension problem is no. Assuming

|C ′ \X| ≥ k + 1 and (C \ C ′) ∩ S = ∅, let CM be any arbitrary subset of C ′ \X of size k + 1, and IM be
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the set of all vertices v in I \X such that |N(v) ∩ CM | < k + 1, and let M = G[CM ∪ IM ]. Clearly, all the

vertices w in I \ IM may not be added to M as it would form a clique of size k + 2 with CM . Hence, M is

a maximal k-degenerate induced subgraph of G, which means the answer to the Extension problem is yes.

Since constructing C ′, CM and IM can all be done in polynomial time, we are done.

Case 2: S ∪X ⊂ C, and |C \X| ≥ k+ 1. As S ⊆ C is a clique, if |S| > k+ 1 then G[S] is not k-degenerate

and the answer to the Extension problem is clearly no. Otherwise, let CM be a set of vertices such that

S ⊆ CM ⊆ C \X and |CM | = k + 1 (we know that a suitable CM always exists from the assumption that

|C \X| ≥ k + 1). Furthermore, let IM be the set of all vertices v ∈ I such that |N(v) ∩ CM | < k + 1. We

claim that M := G[CM ∪ IM ] is a maximal k-degenerate induced subgraph of G. Indeed, as |CM | = k + 1,

no vertex from C can be added to M , otherwise M would have a clique of size k + 2. Also, any vertex

w in I \ IM is such that CM ⊆ N(w), i.e., G[CM ∪ {w}] is a clique of size k + 2. Thus M is a maximal

k-degenerate induced subgraph of G and the answer to the Extension problem is yes.

Let G be a split graph with its vertex set partitioned into a clique C and an independent set I. By

Propositions 1 and 2, one easily checks that if M is a maximal k-degenerate induced subgraph of G, then

k ≤ |M ∩ C| ≤ k + 1, and

• if |M ∩ C| = k + 1, then I \M = {x ∈ I |M ∩ C ⊆ NG(x)},

• if |M ∩ C| = k, then I ⊂M , and for all x ∈ C \M , there is v ∈ I such that C ∪ {x} ⊆ NG(x).

We can therefore in G restrict the Extension problem to instances (S,X) with S ∪X being a partition

of C. By Proposition 2 this restricted Extension problem can be solved in polynomial time, and yields a

polynomial delay algorithm as explained in Section 1. Our algorithm kMIG for chordal graphs is an extension

of this algorithm, but requires a more refined characterization of maximal k-generate induced subgraphs.

4. Enumeration algorithm

This section describes our algorithm for enumerating all maximal k-degenerate induced subgraphs of a

given chordal graph G = (V,E). In the following, we sometimes refer to maximal k-degenerate induced

subgraphs as solutions, and we denote them by their vertex set as for cliques, to ease the reading.

Our proposed algorithm is based on the binary partition method. The outline of our algorithm is as

follows. We start with an empty induced subgraph S. Then we pick a vertex v from G and add v to S.

If S + v is a maximal k-degenerate induced subgraph, then we output S + v, otherwise we choose another

vertex and add it to S+v. After that we backtrack and add v to an excluded set X, to generate all solutions

that contain S and not v. By recursively applying the above operation to G we can enumerate all solutions.

However, certain pairs (S,X) may not generate a solution, as there may be no maximal k-degenerate induced

subgraph containing S but no vertex in X (e.g., if S = ∅, X = V ). If we test all the possibilities that will

not lead to a solution, the cost of this process is not output sensitive, i.e., not bounded by a polynomial in
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the number of solutions. To develop an efficient enumeration algorithm, we have to limit such redundant

testing as much as possible by answering instances of the Extension problem. But, this later problem is

np-complete. To overcome this difficulty, we focus on the rooted clique tree QT (G) to restrict the instances

of the Extension problem to tractable cases. For doing so, we introduce the concepts of greedy filling and

partial solution. In what follows we let G be a fixed chordal graph.

4.1. Greedy filling strategy

Let R be a fixed maximal clique, called the root of QT (G), and let us root QT (G) at R. For a maximal

clique C of G, whose parent in QT (G) is the clique P , we call private vertices of C, denoted by Pv(C),

the set of vertices in C \ P .3 Because all cliques in QT (G) are different and inclusion-maximal, and by the

properties of the clique tree, one can deduce the following.

Lemma 2. Given a clique tree QT (G), every clique in QT (G) contains at least one private vertex, and

every vertex v is private in exactly one clique in QT (G).

Let C be a maximal clique of G. For X ⊆ V (G), let A(C,X) = 1 if |C \X| ≥ k + 1, and A(C,X) = 0

otherwise. For any vertex v ∈ X, let A(v,X) =
∑

C∈Q(G,v)A(C,X), i.e., the number of maximal cliques

containing v for which |C\X| ≥ k+1. As adding more than k+1 vertices from the same clique to any solution

M would cause M to not be k-degenerate anymore, we say that C is saturated in M if |C ∩V (M)| = k+ 1.

The function A allows us to check the maximality of a k-degenerate induced subgraph, thanks to the

following lemma.

Lemma 3. Let G = (V,E) be a chordal graph and M be a k-degenerate induced subgraph of G, with

X = V \ V (M). Then, M is maximal if and only if A(x,X) ≥ 1 for each x ∈ X.

Proof. Assume that A(x,X) ≥ 1 for each x ∈ X, and there exists a k-degenerate induced subgraph M ′

with V (M ′) ⊃ V (M); let v ∈ V (M ′) \ V (M). As v ∈ X we have A(v,X) ≥ 1, thus there exists a clique

C containing v s.t. |C \ X| ≥ k + 1. As V (M) = V \ X, we have |C \ X| = |C ∩ V (M)| ≥ k + 1. As

V (M) ∪ {v} ⊆ V (M ′) we have |C ∩ V (M ′)| ≥ k + 2, thus M ′ contains a complete subgraph with k + 2

vertices and is not k-degenerate, which contradicts the hypothesis.

On the other hand, if for a vertex x ∈ X we have A(x,X) = 0, then for any clique C containing x we have

|(V (M)∪{x})∩C| ≤ k+1, since |C \X| = |C∩V (M)| < k+1. Thus the largest clique in G[V (M)∪{x}] has

size at most k+ 1, and as V (M)∪ {x} is a chordal graph (it is an induced subgraph of G) it is k-degenerate

by Theorem 1. Thus M is not maximal, which contradicts the hypothesis.

We now define the notion of partial solution as a pair of disjoint vertex subsets (S,X), where S contains

vertices (to include) in the k-degenerate induced subgraph, and X is a set of vertices that must be excluded

from the solution, with some additional properties:

3As the root R of the clique tree has no parent, we consider all its vertices private in R.
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Definition 1 (Partial solution). A pair (S,X) of subsets of V (G) with S ∩X = ∅ is a partial solution if

1. |S ∩ C| ≤ k + 1 for any maximal clique C,

2. A(x,X) ≥ 1 for each x ∈ X, and

3. for each maximal clique C, if Pv(C) ∩ (S ∪X) 6= ∅, then C ′ ⊆ S ∪X for all ancestors C ′ of C.

Given a pair (S,X) of disjoint subsets of V (G), it is not trivial to decide whether there exists a solution

M , with V (M) ⊇ S and V (M) ∩ X = ∅ (see Section 3.1). However, as we will later demonstrate, this is

always true if (S,X) is a partial solution. Next, we introduce the strategy that will be used by our algorithm

to guarantee the existence of solutions. Let π : {1, . . . , |Q(G)|} → Q(G) be a fixed linear ordering of Q(G)

obtained from a pre-order traversal of QT (G), and let us call π−1(C) the rank of C ∈ Q(G). We use the

rank of the cliques to define the order in which they are considered by the following procedure.

Definition 2 (Greedy filling). The greedy filling of a partial solution (S,X) consists in the following. Let

C be the maximal clique with the smallest rank for which C \ (S ∪X) 6= ∅. Add vertices one by one from C

to S until C is saturated for S or C \ (S ∪X) = ∅. Then add the remaining vertices in C \ (S ∪X) to X, if

any, and repeat the process until no such clique C exists.

Finally, we can now show that a partial solution can always be extended into a maximal one by means

of a greedy filling.

Lemma 4. For any partial solution (S,X), the greedy filling yields a maximal k-degenerate induced subgraph

M of G such that S ⊆ V (M) and V (M) ∩X = ∅.

Proof. Let M be the greedy filling of (S,X). By definition, S ⊆ V (M) and X ∩ V (M) = ∅.

We prove the statement by showing that at all times during the greedy filling (S,X) maintains the

property of being a partial solution (see Definition 1), so in the end we have A(x, V \ V (M)) ≥ 1 for each

x ∈ V \ V (M), making M a maximal k-degenerate induced subgraph by Lemma 3. Let Q be the maximal

clique of the smallest rank for which Q \ (S ∪X) 6= ∅. Let (S′, X ′) be the new pair constructed from Q by

the greedy filling, and let (SQ, XQ) be the partition of Q \ (S ∪X) such that S′ = S ∪SQ and X ′ = X ∪XQ.

First notice that for all the ancestors Q′ of Q we have Q′ \ (S ∪X) = ∅ as their rank is smaller than the one

of Q.

By definition of greedy filling, |Q ∩ S′| = |(Q ∩ S) ∪ SQ| ≤ k + 1. If XQ = ∅, then X ′ = X and

A(x,X ′) = A(x,X) ≥ 1 for each x ∈ X ′. Otherwise, by definition of greedy filling, Q is saturated in S′

(|Q∩S′| = k+1). Hence, A(Q,X ′) = 1, and for each x ∈ Q A(x,X ′) ≥ 1, while for each x ∈ X ′ \Q = X \Q

A(x,X ′) = A(x,X) ≥ 1. Thus, (S′, X ′) is a partial solution, which completes the proof.

4.2. Binary partition method

We are now ready to describe our algorithm kMIG(G, k), whose pseudo-code is given in Algorithm 1.
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Algorithm 1: kMIG: Enumerating all maximal k-degenerate induced subgraphs in a chordal graph
G = (V,E)

1 Procedure kMIG(G, k)
2 Compute QT (G) of G;
3 R← the root clique of QT (G);
4 π : {1, . . . |Q(G)|} → Q(G) be a pre-order traversal of QT (G);
5 Call SubkMIG(G,R, ∅, ∅, k);

6 Procedure SubkMIG(G,Q, S,X, k)
7 if V = S ∪X then
8 Output S;

9 if Q \ (S ∪X) 6= ∅ then
10 v ← the smallest vertex in Q \ (S ∪X);
11 if |Q ∩ S| < k + 1 then
12 SubkMIG(G,Q, S ∪ {v} , X, k);

13 if there exists a solution S∗ s.t. S ⊆ S∗ ∧ S∗ ∩ (X ∪ {v}) = ∅ then
14 SubkMIG(G,Q, S,X ∪ {v} , k);

15 else
16 Q′ ← π(π−1(Q) + 1);
17 SubkMIG(G,Q′, S,X, k);

The principle is to start from the partial solution S = ∅, X = ∅, where S represent the vertices that will

be in the solution, and X the vertices that are excluded from the solution, and proceed with binary partition:

In each recursive call we consider a vertex v ∈ Q, initially from the clique Q with the smallest rank, i.e.,

the root of QT (G); we will first add v to S and find all the solutions containing S ∪ {v} and nothing in

X; then add v to X and find all the solutions containing S and nothing in X ∪ {v}, if any exists. At any

step, we keep the invariant that (S,X) is a partial solution: If we add v to S (Line 12), this is equivalent to

performing a step of the greedy filling, thus we know that (S ∪ {v}, X) is still a partial solution (see proof

of Lemma 4). When, on the other hand, we try to add v to X (Line 14), we only explore this road if there

exists a solution that contains all the vertices in S and no vertex in X ∪ {v}. Thanks to (S,X) being a

partial solution we will be able to discover this efficiently, and we will demonstrate (Lemma 5 in Section 4.3)

that this is true if and only if (S,X ∪ {v}) is still a partial solution. Only once Q \ (S ∪ X) is empty, we

then proceed to the clique Q′ next in the ranking (Lines 16-17). This guarantees that Q is always the clique

of smallest rank such that Q \ (S ∪X) 6= ∅, thus Condition 3 of Definition 1 still holds, and so (S,X) is still

a partial solution. It is important to remark that, as all ancestors of Q are fully contained in S ∪ X, and

v 6∈ S ∪X, then v is always a private vertex of Q, not contained in the ancestors of Q.

Finally, if S ∪X = V we can output S as a solution: By keeping the invariant that (S,X) is a partial

solution, we know by Lemma 3 that S is a maximal k-degenerate induced subgraph of G.

4.3. Correctness

In this section we show the following theorem, that is the correctness of our algorithm.
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Theorem 3. Let G be a chordal graph and k be a non-negative integer. Then kMIG(G, k) outputs all and

only maximal k-degenerate induced subgraphs of G without duplicates.

As mentioned in the description, kMIG(G, k) uses binary partition, thus every recursive call has either

a single child (Line 17) which will simply extend the current solution, or will produce two recursive calls

(Lines 12 and 14) that will lead to different solutions, as the first one considers only solutions for which

v ∈ S, and the second only solutions for which v 6∈ S (if any). Thus the same solution cannot be found more

than once.

Furthermore, as we keep the invariant that (S,X) is a partial solution, by Lemma 3 we know that when

V = S ∪X then S is a maximal k-degenerate induced subgraph, thus kMIG(G, k) outputs only solutions.

Finally, any solution, i.e., maximal k-degenerate induced subgraph M is found by the algorithm, and

we can prove this by induction: Consider the set of cliques Q1, Q2, . . . in QT (G), ordered by ranking. As a

base condition, assume that (S,X) is a partial solution such that S ⊆ V (M), X ∩ V (M) = ∅; this is always

true in the beginning, when (S = ∅, X = ∅). Let Qi be the clique that we are considering, i.e., the one of

smallest rank such that Qi \ (S ∪ X) 6= ∅, and v be the smallest vertex4 in Qi \ (S ∪ X). If v ∈ V (M),

then the recursive call in Line 12 will consider a partial solution which has one more vertex in common

with M , i.e., (S ∪ {v} , X). Otherwise, v 6∈ V (M), that is, there exists a solution S∗ such that S ⊆ S∗ and

S∗ ∩ (X ∪ {v}) = ∅, thus the recursive call in Line 14 is executed; this recursive call will consider a partial

solution that has one more vertex in common with V \ V (M), i.e., (S,X ∪ {v}). In both cases the base

condition is still true, thus by induction kMIG(G, k) will find M . In order to prove Theorem 3, it only remains

to show how to decide whether, given (S,X), there is a solution containing S but nothing in X ∪ {v}, i.e.,

how to compute Line 13. This is shown in the following lemma.

Lemma 5. Let (S,X) be any partial solution of G, Q a clique such that its ancestor cliques are fully

contained in S ∪X, and v 6∈ S ∪X a private vertex of Q. Then, there exists a solution S∗ such that S ⊆ S∗

and S∗ ∩ (X ∪ {v}) = ∅, if and only if A(x,X ∪ {v}) ≥ 1 for each vertex x ∈ N [v] ∩ (X ∪ {v}).

Proof. Let X ′ = X ∪ {v}. If for each vertex x ∈ N [v] ∩X ′, A(x,X ′) ≥ 1, then (S,X ′) still satisfies all the

properties in Definition 1, as A(w,X) is unchanged for any vertex w ∈ X \N(v). Thus (S,X ′) is a partial

solution, and a solution S∗ is given by Lemma 4.

Suppose that there is a vertex x ∈ X ′ such that A(x,X ′) = 0, i.e., there is no clique Q containing x such

that |Q \X ′| ≥ k+ 1. As X ′ ⊆ V \S∗ for any solution S∗ disjoint from X ′, there is no clique Q containing x

such that |Q\ (V \S∗)| ≥ k+1, thus A(x, V \S∗) = 0, and there is no maximal solution S∗ by Lemma 3.

Thus Theorem 3 is true, and kMIG(G, k) finds all and only maximal k-degenerate induced subgraphs of

the chordal graph G exactly once.

4According to the arbitrary linear ordering associated to G.
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5. Complexity Analysis

In this section we analyze the cost of our algorithm, and prove that it can enumerate all maximal k-

degenerate induced subgraphs of G in O(m · ω(G)) time per solution. First, we recall some important

properties of cliques in chordal graphs.

Remark 1 (From [3] and [11]). Let G be a connected chordal graph with n > 1 vertices and m edges. Then

the number of maximal cliques in G is at most n− 1, and the sum of their sizes is
∑

C∈Q(G) |C| = O(m).

And regarding the cliques in G containing a specific node, we can state the following.

Lemma 6. In a chordal graph G, the number of maximal cliques containing a vertex v is at most |N(v)|.

Proof. Consider G[N [v]], the subgraph of G induced by vertices of N [v]. G[N [v]] is chordal as it is an induced

subgraph of a chordal graph, it has |N [v]| vertices, and at most |N [v]| − 1 = |N(v)| maximal cliques, which

exactly correspond to the maximal cliques in G containing v.

Now, consider the cost of executing Line 13, which dominates the cost of each iteration of the algorithm.

We show in the next lemma that it can be done efficiently by exploiting Lemma 5. We recall that ω(G)

denotes the maximum size of a clique in G.

Lemma 7. Line 13 can be executed in time O(ω(G) · |N(v)|).

Proof. By Lemma 5 it is sufficient to check, for every vertex x ∈ N [v], whether there is a clique Q′ containing

x such that |Q′ \(X∪{v})| ≥ k+1. As (S,X) is a partial solution, if a vertex x is not contained in any clique

such that |Q′\(X∪{v})| ≥ k+1, then there exists a clique Q′ such that |Q′\X| ≥ k+1 > |Q′\(X∪{v})| = k,

and thus x is contained in one of the cliques containing v.

Assume we have a table that keeps track of the value B(Q) = |Q \ (X ∪ {v})| for every clique Q, and

one that keeps the value A(x) = |{Q | x ∈ Q and B(Q) ≥ k + 1}|. When adding v to X, we can update the

B table by decrementing B(Q) by 1 for every clique containing v. The number of such cliques in a chordal

graph is at most |N(v)| by Lemma 6. Every time the value of B(Q) is decremented to less than k + 1, we

can update the A table by decrementing A(x) by 1 for each vertex x in Q. During this process, the check

fails if and only if A(x) is decremented to 0 for any x. The time required is |Q| ≤ ω(G) for each considered

clique, for a total cost of O(ω(G) · |N(v)|).

Finally, we are ready to prove the complexity bound for kMIG(G, k).

Theorem 4. kMIG(G, k) runs with delay O(m · ω(G)).

Proof. First, we need to compute QT (G), which takes O(n+m) time [11]. Note that O(m+ n) = O(m) as

G is connected. Computing a pre-order traversal of QT (G) takes O(n) time as QT (G) has at most n nodes.

In each recursive call we add a vertex either in S or in X or consider a next maximal clique. Hence, the

depth of the tree of recursive calls is bounded by 2n. To bound the delay between two solutions M and M ′,
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it is enough to bound the sum of the cost of all recursive calls in the path from the recursive call outputting

M to the one that outputs M ′. For clarity, let us use the term recursive node to refer a node in the tree of

the recursive calls. Note that the recursive nodes that output a solution are exactly the leaves of this tree,

thus the path between M and M ′ is bounded by the sum of the cost of a root-to-leaf and a leaf-to-root path.

As to execute Line 13 we use tables A and B (see Lemma 7), let us explain how to initialise them (we

already explain in Lemma 7 how to update them). For each vertex x, we set A(x) = |{Q ∈ Q(G, x) | |Q| ≥

k + 1}|, and set B(Q) = |Q| for each Q ∈ Q(G). In order to set these values we can simply iterate over all

maximal cliques in QT (G): Initializing B(Q) takes O(1) time, and if |Q| ≥ k + 1 we increment A(x) by 1

for each x ∈ Q, which takes O(|Q|) time. The total running time for initializing the tables A and B take

thus O(n+m) = O(m) time (see Remark 1).

Let v1, . . . vt be the recursive nodes in the path from the root to the node that outputs M ′. First, t ≤ 2n

as in each step either we add v to S or to X or we take another Q. The delay now is the sum of the cost of

each vi. Lines 9-14 can be done in time O(|N(x)| ·ω(G)) by Lemma 7. The cost for Lines 16-17 is O(1). By

summing, we have the upper bound
∑

Q∈Q(G)O(1) +
∑

x∈V (G)O(|N(x)| · ω(G)) = O(m · ω(G)). The O(m)

preprocessing cost is negligible as there always exists at least one solution.

Note that this holds for any value of k: Indeed, by Theorem 1 we know that chordal graphs are ω(G)−1-

degenerate, thus for any k ≥ ω(G), the problem is trivial as the only maximal solution is G itself.

6. Conclusions

We presented the first output-polynomial algorithm for enumerating maximal k-degenerate induced sub-

graphs in a chordal graph. The algorithm runs in O(m · ω(G)) time per solution for any given k. While

the enumeration problem on general graphs seems challenging, partially due to the proven hardness of the

Extension problem, special cases seem to be solvable: For example, listing maximal 0-degenerate induced

subgraphs corresponds to listing maximal independent sets, for which output-polynomial algorithms are

known. It would thus be interesting for future work to investigate the feasibility of an output-polynomial

algorithm in a more general setting. Another interesting problem which remains open is the enumeration of

maximal k-degenerate edge subgraphs, which is in essence a different problem.
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