

ISTITUTO NAZIONALE DI RICERCA METROLOGICA Repository Istituzionale

HUMIDITY AND MOISTURE MEASUREMENTS IN FOOD PROCESSING APPLICATIONS

This is the author's submitted version of the contribution published as:

Original

HUMIDITY AND MOISTURE MEASUREMENTS IN FOOD PROCESSING APPLICATIONS / Smorgon, D.; Tabandeh, S.; Cavallarin, L.; Lamberti, C.; Nebbia, S.; Giannattasio3, A.; Negro, S.; Fernicola, V.. - (2019). ((Intervento presentato al convegno Tempmeko 2019.

Availability: This version is available at: 11696/61148 since: 2020-02-06T16:50:57Z

Publisher:

Published DOI:

Terms of use: Visibile a tutti

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

HUMIDITY AND MOISTURE MEASUREMENTS IN FOOD PROCESSING APPLICATIONS

D. Smorgon¹, S. Tabandeh¹, L. Cavallarin², C. Lamberti², S. Nebbia², A. Giannattasio³, S. Negro³, V. Fernicola¹ ¹ Istituto Nazionale di Ricerca Metrologica, Torino, Italy ² CNR-ISPA, Torino, Italy ³ GBV – BROVIND Impianti srl, Cortemilia (CN), Italy

E-mail (corresponding author): d.smorgon@inrim.it

In the framework of the EMPIR Project 14IND11 HIT (Metrology for humidity at high temperatures and transient conditions), a method for estimating in real time the water loss in a hazelnuts roasting process, through humidity measurements, and its correlation with food quality parameters was demonstrated in an industrial application.

At the industrial plant of a manufacturer of food processing systems, two separate measurement setups were designed and implemented on laboratory-scale roasting ovens, based on infrared and hot-air heating, in order to estimate both the water loss and the volume temperature distribution in real time during roasting tuning processes. In such a roasting process, air temperature and dew point temperature were associated with the detailed roasting protocol which in turns produces different quality of the final processed product. To perform such in-process measurements, the above quantities were measured by several PRTs and by a chilled-mirror hygrometer at temperatures between 120 °C to 180 °C and dew-point temperatures up to 35 °C, respectively.

This work reports on the measurement set-up, the details about preventing volatile organic contamination of the chilled-mirror hygrometer and the validation of real-time humidity measurements by comparison against a gravimetric (water-loss) method. Suitable data processing methods of humidity measurements were implemented in order to the estimate water loss from dew-point measurements and correlate it with selected food-quality parameters. The overall results of the study are presented.