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Abstract
We introduce a generalization of the Heterogeneous Autoregressive (HAR)

model for estimating the presence of jumps in volatility, using the realized-
range measure as a volatility proxy. By focusing on a set of 36 NYSE stocks,
we show that there is a positive probability of jumps in volatility.
Keywords: Volatility, Jumps in volatility, Realized range, HAR.

1 Introduction

Recent empirical studies indicate that diffusive stochastic volatility and
jumps in returns are incapable of capturing the empirical features of eq-
uity index returns. Instead, it has been stressed that jumps in volatility can
improve the overall fitting of stochastic volatility models. Eraker et al. (2003),
for instance, report convincing evidence that volatility of financial returns is
affected by rapid and large increments. We focus on the modeling and on
the estimation of the volatility jump component in a discrete time setting.
As a distinctive feature of our contribution, we use the realized range as non
parametric ex-post measure of the daily integrated variance. Such a choice
allows us to simplify the computational burden of estimating the jumps in
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volatility. In fact it circumvents the need to integrate out unobservable quan-
tities. As suggested by Todorov (2009, 2011) we can make inference on the
volatility jumps regardless of how complicated the model for the stochas-
tic volatility is. Furthermore, recent theoretical findings by Christensen and
Podolskij (2007, 2012) prove that realized range is a very efficient estima-
tor of the quadratic variation of the returns. In our framework, efficiency of
the integrated variance estimation is a crucial element, since the potential
reduction in the measurement error obtained with realized-range measures
can lead to more precise evaluations of the volatility jump component. In
order to evaluate the contribution of jumps to the daily volatility dynamics
we specify and estimate a parametric model in discrete time. In particular,
given the well documented long-range dependence of the realized variance es-
timators, see Andersen et al. (2003) among others, and the persistent effects
of jumps in volatility, we propose a conditional model that generalizes the
HAR model, introduced by Corsi (2009). The Heterogeneous Autoregressive-
Volatility-Jump (HAR-V-J) model includes an additive volatility jump term,
which is modeled as a compound Poisson process allowing for multiple jumps
per day, as in Chan and Maheu (2002) and Maheu and McCurdy (2004),
whose intensity and magnitude parameters are varying over time according
to an autoregressive specification. In this way, we are able to model and iden-
tify periods with higher volatility jump activity, that are also periods of high
market stress. The empirical analysis focuses on 36 stocks quoted at the New
York Stock Exchange, representing nine sectors of the U.S. economy: banks,
insurance and financial services, oil gas and basic materials, food beverage
and leisure, health care, industrial goods, retail and telecommunications, ser-
vices, and technology. The estimation results point out that the jump activity
is characterized by two different periods. The first one, from 2004 to 2007,
of low jump activity, the second, from mid-2008 to mid-2009, of high jump
activity. In particular, during the second period the jump component repre-
sents a relevant part of the estimated conditional volatility. Such a finding
is perfectly in line with the known feature of equity data during the sam-
ple period we consider. Furthermore, we find an ex-post positive correlation
between volatility and price jumps, in line with Bandi and Renò (2011).

2 A model for realized range with jumps

We choose to estimate the integrated variance by the realized range which
produce considerable efficiency gains relative to a standard return-based es-
timator, even when the latter employs subsampling to exhaust the entire
database (e.g. Zhang et al., 2005). We consider the bias-corrected realized
range-based bipower variation, denoted as RBV ∆

m,BC , see Christensen et al.
(2009). Such a quantity, which is a proxy of the integrated variance in
presence of jumps in prices and microstructure noise, is evaluated at the
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daily level from stock prices sampled at 1 minute intervals. Here we focus
on the extension of the HAR model proposed by Corsi (2009), adding a
jump component to the conditional mean of the realized range sequence.
Let Xt = logRBV ∆

m,BC,t be the daily logarithm of bias-corrected realized

range-based bipower variation and It−1 be the time t−1 information set, the
HAR-Volatility Jump (HAR-V-J) model for Xt is given by,

Xt = µ+ ϕDXt−1 + ϕWXW
t−1 + ϕMX

M
t−1 + Zt + ϵt ϵt ∼ N(0, σ2

ϵ ) (1)

where XW
t = 1

5

∑4
j=0Xt−j and XM

t = 1
22

∑21
j=0Xt−j represent the weekly

and monthly volatility components, respectively, see also Corsi (2009). This
model for Xt implies that the RBV ∆

m,BC is given by a multiplicative struc-

ture such as RBV ∆
m,BC,t = exp {X̄t−1} exp {Zt} exp {ϵt} where X̄t−1 =

µ+ϕDXt−1 +ϕWXW
t−1 +ϕMX

M
t−1. Hence, the jump term Jt = exp {Zt} acts

as a multiplicative term in the volatility process, such that it can be consid-
ered as a burst factor of the volatility dynamics. In case of no jumps Jt = 1,
and the volatility follows a HAR process. In the period t, the jump term, Zt,

is given by Zt =
∑Nσ,t

k=1 Yt,k where the jump size is Yt,k ∼ i.i.d.N (Θσ,t, ∆σ,t),
and ϵt and Yt,k are assumed to be independent. Following Chan and Maheu
(2002), Θσ,t and ∆σ,t are modeled as a function of past log-volatility, namely

Θσ,t = ζ0 + ζ1Xt−1 (2)

and
∆σ,t = η0 + η1X

2
t−1. (3)

The jump component has a compound Poisson structure where the number
of jumps arriving between t − 1 and t, Nσ,t, is a Poisson counting process
with intensity parameter Λσ,t > 0 and density

P
(
Nσ,t = j|It−1

)
=
e−Λσ,tΛj

σ,t

j!
, j = 0, 1, 2, ...

This implies that E
[
Nσ,t|It−1

]
= Var

[
Nσ,t|It−1

]
= Λσ,t so that the condi-

tional density of Zt given Nσ,t and I
t−1 is

Zt|Nσ,t = j, It−1 ∼ N (jΘσ,t, j∆σ,t) . (4)

Since E
[
Zt|Nσ,t = j, It−1

]
= jΘσ,t, the conditional expected value of the

jump component is
E
[
Zt|It−1

]
= Θσ,tΛσ,t (5)

where Θσ,t is assumed to be measurable with respect to It−1, as in (2).
Given the conditional density of Zt in (4), the conditional variance of the
jump component is

Var
[
Zt|It−1

]
=

(
∆σ,t +Θ2

σ,t

)
Λσ,t, (6)
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where ∆σ,t is assumed to be measurable with respect to It−1, see (3).
Whereas, as in Chan and Maheu (2002), the unobserved log-volatility jump
intensity is assumed to follow an autoregressive specification

Λσ,t = Λ0 + λ1Λσ,t−1 + ψξt−1. (7)

As a result, the conditional jump intensity in period t depends on its own lag
and on the lag of the innovation term ξt, which represents the measurable
shock constructed ex-post. This shock, or jump intensity residual, is defined as
ξt = E [Nσ,t|It]−Λσ,t. Therefore, ξt depends on the expected number of jumps
measured with respect to the information set including the contemporaneous
information, i.e. at time t. It follows that the jump intensity equation can be
rewritten as

Λσ,t = Λ0 + (λ1 − ψ)Λσ,t−1 + ψE
[
Nσ,t−1|It−1

]
with

E
[
Nσ,t|It

]
=

∞∑
j=0

jP
(
Nσ,t = j|It

)
. (8)

As noted by Chan and Maheu (2002), other functional forms that include
nonlinearity also may be very useful. For example, in Bandi and Renò (2011),
the intensities of the jumps are nonlinear functions of the underlying variance
level. The filtered probabilities P (Nσ,t = j|It) are obtained by means of the
Bayes’ law

P
(
Nσ,t = j|It

)
=
P
(
Xt|Nσ,t = j, It−1

)
P
(
Nσ,t = j|It−1

)
P (Xt|It−1)

, j = 0, 1, 2, . . .

(9)
where

P
(
Xt|It−1

)
=

∞∑
j=0

P
(
Xt|Nσ,t = j, It−1

)
P
(
Nσ,t = j|It−1

)
and P

(
Xt|Nσ,t = j, It−1

)
is given by the density of ϵt. Analogously, we can

compute the conditional probability of tail events, such as P (Xt > u|It−1).
This allows us to compare the probability of extreme events implied by the
HAR-V-J model, with those implied by the Gaussian HAR. Model estimation
is performed by maximum likelihood methods introducing a truncation equal
to 20 when integrating with respect to the number of jumps.
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HAR Size Variance Intensity LR Q5
ϵ Q20

ϵ

µ ϕD ϕW ϕM ζ0 ζ1 η0 η1 λ0 λ1 ψ

BA -0.79a 0.24a 0.39a 0.21a 0.56a 0.08a 0.02b 0.01b 0.00 0.99a 0.08b 0.00 0.0102 0.06
IBM -1.03a 0.26a 0.45a 0.10a 0.73a 0.11a 0.00 0.01 0.00 0.99a 0.12b 0.00 0.00 0.00
JPM -0.56 0.35a 0.32a 0.22 0.42 0.04 0.00 0.00 0.03 0.95b 0.40 0.00 0.19 0.14

UPS -0.41a 0.25a 0.50a 0.17a 0.22 -0.01 0.29a 0.00 0.00 0.99a 0.11 0.00 0.02 0.06

Table 1: Estimated parameters of the HAR-V-J model using price data from
January 2, 2004 to December 31, 2009 for selected companies. Q5

ϵ and Q20
ϵ

are the p-values of the Ljung-Box test on the residuals, with 5 and 20 lags,
respectively. LR is p-value of the likelihood-ratio test for the null hypothesis
Zt = 0.

3 Volatility jumps in the US stock market

Our empirical analysis is based on the intradaily returns of 36 equities of the
S&P 500 index. Prices are sampled at one minute frequency, from January
2, 2004 to December 31, 2009, for a total of 1510 trading days. The com-
panies details are available upon request. We compute the RBV ∆

m,BC,t, for
each stock, using one-minute returns. Figure ?? plots the dynamic behavior
of the volatility of Boeing (BA), IBM, JP Morgan (JPM), and UPS. The
volatility is characterized by two dominant regimes. A long period of low
volatility, approximately from 2004 to 2007, which is followed by a period of
high volatility in correspondence of the financial crisis. It is interesting to note
that the first part of the sample is not characterized by large jumps, while the
period in correspondence of the recent financial crisis has many large spikes.
As expected, this suggests that during financial crises, the probability and
the magnitude of the jumps could be higher. We estimate the model in (1)
and report in Table 1 the estimated parameters of the HAR-V-J for the 4
stocks mentioned before. Introducing the jump component in the model in-
duces a better in-sample fit. The likelihood-ratio test strongly rejects the null
hypothesis, i.e. the HAR model with no jumps, in all cases. Thus, when Λσ,t,
Θσ,t and ∆σ,t are allowed to vary over time, we obtain an improvement over
the more traditional HAR model without jumps. Looking at the Ljung-Box
test on the model residuals, see the last columns of Table 1 for an example,
for some series the HAR-V-J model is not able to completely capture the dy-
namics of the log-volatility series. This is due to the peculiar autoregressive
lag structure of the HAR-RV model which appears too restrictive for many
series under exam, thus leaving some autocorrelation in the residuals. It is
important to stress that the autocorrelation in the residuals is not due to the
inclusion of the jump term in the HAR-V-J model.

Focusing on the jump size mean, Θσ,t, the estimates of ζ0 in (2) are sig-
nificant in 18 out of 36 cases, while those of ζ1 are generally positive but not
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statistically different from zero. However, this does not imply that jumps do
not affect the conditional moments of log-volatility.

Figure 1 reports some illustrative plots for the JPM company, where we
note that the estimated jump size increases as the level of volatility increases,
such as during the last two years.

The persistence parameter in the jump intensity, λ1, is strongly significant
and greater than 0.9 in 24 out of 36 cases. This result confirms the evidence
in Eraker et al. (2003) and Duffie et al. (2000), where the jump arrivals in
volatility are highly persistent, producing clusters in jumps. The close-to-
unit-root behavior of the jumps intensity could stem from a change of regime
in the number of jumps arrivals during the financial crisis. Interestingly, the
expected number of jumps (see Figure 1 for an example) suggest the presence
of three regimes in the jumps intensity. The first period, from 2004 to the
beginning of 2007, is characterized by an absence of jumps in volatility (the
number of jumps is on average one in twenty days). In the second period,
the estimated jump arrivals sharply increase to a daily average of 0.5-0.6,
while between mid-2008 and mid-2009, the average number of jump arrivals
dramatically increases, implying approximately one jump per day. This result
is in line with the findings of Todorov and Tauchen (2011), where the high
number of jumps in volatility is attributed to the pure jump nature of the
volatility process.

The sample averages of the estimated Λσ,t turn out to be, in a few cases,
larger than one. However, on average across all assets, the probability of a
volatility jump is around 0.5. This result is in line with the findings in Dotsis
et al. (2007), who estimate a constant probability of jumps equal to 0.4 for
a set of implied volatility series, during the period 1997-2004. On the other
hand, our results suggest that time variation in the jumps intensity is not
negligible, so that the assumption of constant jump arrival probability turns
out to be unrealistic, especially during periods of financial turmoil. This is
also confirmed by looking at the parameter ψ in the intensity equation which
is always positive, and significant in most of the cases. As a consequence the
unobserved past innovation has always a positive and significant impact on
the jump intensity.

Finally, the estimated expected exponential jumps, Ĵt|t−1 is reported in
Figure 1 for JPM. The expected exponential jumps increase during the period
2008-2009 for all stock, while for JPM the increase starts even in 2007.

4 Concluding remarks

This paper studies the contribution of volatility jumps to the evolution of
volatility. Differently from some earlier contribution we propose a modified
version of the HAR, the HAR-V-J, for modeling the realized range instead
of relying on continuous-time stochastic volatility specification.
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We model the corrected bipower realized range, a consistent estimator
of the integrated variance in presence of jumps in prices and microstruc-
ture noise, with a HAR-V-J model that allows for the presence of jumps in
volatility. The inference on the parameters of the model is carried out utiliz-
ing maximum likelihood estimation, after having specified the dynamics of
the jumps sizes and intensities.

The estimation results of the HAR-V-J model with high-frequency data
from 36 NYSE stocks suggest that jumps in volatility are more likely to
happen during the financial crises, i.e., when the level of volatility is high,
and are positively correlated with jumps in prices.
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Fig. 1: Illustrative plots for JPM


