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Abstract

Background: The high throughput of modern NGS sequencers coupled with the huge sizes of genomes currently
analysed, poses always higher algorithmic challenges to align short reads quickly and accurately against a reference
sequence. A crucial, additional, requirement is that the data structures used should be light. The available modern
solutions usually are a compromise between the mentioned constraints: in particular, indexes based on the
Burrows-Wheeler transform offer reduced memory requirements at the price of lower sensitivity, while hash-based
text indexes guarantee high sensitivity at the price of significant memory consumption.

Methods: In this work we describe a technique that permits to attain the advantages granted by both classes of
indexes. This is achieved using Hamming-aware hash functions–hash functions designed to search the entire
Hamming sphere in reduced time–which are also homomorphisms on de Bruijn graphs. We show that, using this
particular class of hash functions, the corresponding hash index can be represented in linear space introducing
only a logarithmic slowdown (in the query length) for the lookup operation. We point out that our data structure
reaches its goals without compressing its input: another positive feature, as in biological applications data is often
very close to be un-compressible.

Results: The new data structure introduced in this work is called dB-hash and we show how its implementation–
BW-ERNE–maintains the high sensitivity and speed of its (hash-based) predecessor ERNE, while drastically reducing
space consumption. Extensive comparison experiments conducted with several popular alignment tools on both
simulated and real NGS data, show, finally, that BW-ERNE is able to attain both the positive features of succinct
data structures (that is, small space) and hash indexes (that is, sensitivity).

Conclusions: In applications where space and speed are both a concern, standard methods often sacrifice
accuracy to obtain competitive throughputs and memory footprints. In this work we show that, combining
hashing and succinct indexing techniques, we can attain good performances and accuracy with a memory
footprint comparable to that of the most popular compressed indexes.

Background
The advent of New Generation Sequencing (NGS) tech-
nologies opened a new era in the field of DNA sequen-
cing, providing researchers with powerful instruments
able to produce millions of short (and, lately, long) reads
per single run. This technology breakthrough poses con-
siderable computational challenges since the sequenced

fragments need to be quickly aligned–usually admitting
errors–against genomes whose size is often of the order
of giga-bases. From the algorithmic point of view, the
problem of indexing texts to support pattern matching in
the big-data domain is receiving significant attention,
also due to the recent computational breakthroughs in
the fields of succinct and compressed text indexes (a
typical example is the FM self-index [1] used nowadays
by many aligners, e.g. Bowtie [2]). Even though these
important results solved most of the problems related to
exact pattern matching, the problem of indexing a text
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with a succinct–or compressed–data structure that sup-
ports inexact pattern matching, still represents a consid-
erable challenge. Due to the fact that BWT indexes are
natively designed for exact pattern matching, in practice
this problem is solved by splitting the pattern in frag-
ments (e.g. using q-grams), searching for all possible var-
iants of the modified pattern (e.g. by backtracking), or
mixing the two strategies (hybrid). SOAP2 [3] adopts the
first strategy, splitting the pattern in k + 1 blocks, that is
admitting at most k errors, and searching for exact occur-
rences of the blocks. The strategy is then completed by
accelerating the search using a hash table to pre-compute
backward search results on the BWT reference index.
Bowtie [2] adopts a backtracking strategy on the FM
index, inserting a mismatch in correspondence to low-
quality bases during backward search. BWA [4] adopts a
backtracking strategy on a BWT-based index that allows
to (recursively) retrieve the occurrences of the pattern
once an upper bound to the number of admitted mis-
matches is fixed. ERNE [5,6] implements a hybrid strat-
egy, splitting the pattern in t blocks and computing, for
each of them, its hash value. The particular class of hash
functions employed (Hamming-aware hash function)
allows to compute efficiently fingerprints of blocks at
Hamming distance at most k/t from the original block.
These fingerprints are then finally searched in the hash
index. We mention also a similar hybrid strategy, based
on perfect Hamming codes, adopted in [7].
One of the strengths of BWT-based tools is their

reduced space requirement. The space for the data struc-
ture is often close to that required by the reference string
(the genome). As an example, Bowtie requires only
2.7GB of RAM to index the Human genome. On the
other hand, hash-based tools such as ERNE or SOAP [8]
require much more memory to store their indexes, due
to the fact that they need to explicitly memorize pointers
to the reference. ERNE and SOAP require 19GB and
14GB of RAM to index the Human genome, respectively.
From a theoretical point of view, indexing for approxi-

mate string matching is still at an early research stage:
even the most efficient solutions are, in practice, far from
being usable. As a matter of fact, the most advanced
results to date are able to guarantee efficiency on either
space or speed. Not both at the same time. Letting m and
k be the query length and the maximum number of
allowed errors, respectively, simple backtracking strate-
gies have a complexity that rapidly blows up with a factor
of mk: impractical for searching with a reasonable
amount of errors on (even not exceedingly) long patterns.
Other solutions improve query time by trading on space
requirements: letting n be the text length, the index of
Cole et al. in [9] solves the problem in time O((log n)k
log log n + m + occ) and spaceO(n(log n)k+1) bits, which
in practice is too much even for small pattern lengths

and number of errors. The solution of Chan et al. pre-
sented in [10] improves on space consumption requiring
O(n log n) bits, but query time increases to O(m + occ +
(c log n)k(k+1) log log n), which exponentially blows up
with the square of the number of errors.
We tackled the problem with a hash-based rando-

mized algorithm that is able to reach expected fast per-
formances and requires linear space. The two goals are
obtained providing a hash function belonging to two
particular classes of hash functions at the same time.
The two classes are Hamming-aware and de Bruijn hash
functions, respectively. Functions in the former class
allow to “squeeze” the Hamming sphere of radius k cen-
tered at the query pattern P, to a Hamming sphere of
radius O(k) centered at the hash value of the query.
Functions in the second class (de Bruijn) are homo-
morphisms on de Bruijn graphs. We show that their
corresponding hash indexes can be represented in linear
space introducing only a small slowdown of O(log m) in
the lookup operation.
We call dB-hash the resulting succinct hash data

structure.
Letting n and m be the sizes of text and pattern,

respectively, our algorithm reaches an expected time
complexity of O((log n)klog m + m) while requiring
O(n log s) bits (s being the alphabet size) of space for
the index only. Our result extends the strategy pre-
sented in [5,6], substituting a standard hash index with
the new proposed dB-hash data structure and allowing
us to improve on both time and space complexities with
respect to [5,6]. Under the hypothesis that the indexed
text is perturbed by random noise (e.g. genetic muta-
tions in DNA), our algorithm improves upon theoretical
linear-space upper-bounds discussed in the literature (a
full formal proof of this can be found in [11]).
The resulting algorithm has been implemented in the

short-reads aligner BW-ERNE, the natural adaptation of
the hash-based ERNE aligner (ERNE-MAP) to the dB-
hash data structure. Aim of this paper is to compare the
performances of BW-ERNE with those of state-of-the-art
short-read aligners. BW-ERNE uses a succinct dB-hash
index based on the Burrows-Wheeler transform coupled
with wavelet tree and not using any kind of compression
(more on this aspect later). Moreover, the implementa-
tion takes into account biological information–such as
base quality values–to improve performances without
any significant loss in sensitivity.
Experimental results on the Vitis vinifera and Human

genomes show that the dB-hash requires from 4 to 8
times less space than the standard hash used by ERNE
(see Section). Tests run on both simulated and real reads
show, in addition, that BW-ERNE maintains the same
sensitivity of ERNE, improving also its throughput if reli-
able base qualities are available.
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Methods
We begin to illustrate our general strategy, showing how
to represent a hash index in succinct space by building a
compact (O(n log s) bits) representation of all the fin-
gerprints of length-m text substrings. A succinct index
is then built over this representation, obtaining a suc-
cinct hash data structure.

Definitions
Throughout this paper we will work with the alphabet
ΣDN A = {A, C, G, T, N, $} (with N and $ being the
undefined base and the contig end-marker, respec-
tively) which, in practice, will be encoded in ΣDN A’ =
{0, 1, 2, 3} assigning a numerical value in ΣDN A’ to N
and $ characters. The size of our alphabet is, therefore,
s = |ΣDN A ’| = 4, while with n, m, and w we will
denote the reference length, the pattern length, and
the (fixed) size of a computer memory-word (i.e. the
number sw − 1 is assumed to fit in a memory word),
respectively. As hash functions we will use functions of
the form h : Σm ® Σw mapping length-m Σ-strings to
length-w Σ-strings. If necessary, we will use the symbol
m
wh instead of h when we need to be clear on h ’s

domain and codomain sizes. Given a string P ∈
∑m

,

the value h(P) ∈
∑m

will be also dubbed the finger-

print of P (in Σw). With T ∈ ∑n we will denote the

text that we want to index using our data structure. Tj
i

will denote T[i, ..., i + j − 1], i.e. the length-j prefix of the
i-th suffix of T. A hash data structure H for the text T
with hash function h, will be a set of ordered pairs (an
index) such that H = {〈h (

Tm
i

)
, i

〉
: 0 ≤ i ≤ n − m}, that

can be used to store and retrieve the positions of
length-m substrings of T (m is therefore fixed once the
index is built). A lookup operation on the hash H given
the fingerprint h(P), will consist in the retrieval of all
the positions 0 ≤ i < n such that

〈
h(P), i

〉 ∈ H and cases

where
〈
h(P), i

〉 ∈ H but Tm
i �= P will be referred to as

false positives.
The symbol ⊕ represents the exclusive OR (XOR) bit-

wise operator. a ⊕ b where a, b ∈ ∑
, will indicate the

bitwise XOR among the bits of the binary encoding of a
and b. Analogously, x ⊕ y, where x, y ∈ ∑m will indicate
the bitwise XOR operation among the bits of the binary
encoding of the two words x and y and V will denote
the bitwise OR operator. dH(x, y) is the Hamming dis-
tance between x, y ∈ ∑m. We point out that the Ham-
ming distance is computed between characters in Σ, and
not between the bits of the binary encoding of each of
them. Patterns and fingerprints are viewed as bit vectors
only when computing bitwise operations such as OR,
AND, and XOR.

Succinct representation of hash indexes
We begin by introducing the technique allowing suc-
cinct representation of hash indexes. The central prop-
erty of the class of hash functions we are going to use is
given by the following definition:
Definition 1 Let Σ = {0,..., |Σ| −1}. We say that a

function h : Σm ® Σw is a de Bruijn hash function if and
only if, for every pair of strings P, Q ∈ Σm

Pm−1
1 = Qm−1

0 ⇒ h(P)w−1
1 = h(Q)w−1

0

With the following theorem we introduce the hash
function used in the rest of our work and in the imple-
mentation of our structure:
Theorem 1 Let P ∈ Σm. The hash function h⊕ : Σm ® Σw

w ≤ m defined as

h ⊕ (P) =

(�m/w�−2
⊕
i=0

Pw
i w

)
⊕ Pw

m−w

is a de Bruijn hash function.
A detailed proof of this theorem is given in Additional

file 1. Given a de Bruijn hash function m
wh :

∑m → ∑w

we can “extend” it to another de Bruijn hash function

n
n−m+wh :

n∑
→

n−m+w∑
, operating on input strings of

length n greater than or equal to m, as follows:
Definition 2 Given m

wh :
∑m → ∑w de Bruijn hash

function and n ≥ m, the hash value of nn−m+wh on T ∈ Σn,

is the unique string n
n−m+wh(T) ∈

n−m+w∑
such that:

n
n−m+wh(T)

w
i =mw h(Tm

i ),

for every 0 ≤ i ≤ n − m.
It is easy to show that a function enjoying the prop-

erty in Definition 2 is a homomorphism on de Bruijn
graphs (having as sets of nodes Σm and Σw, respectively).
Since m

wh univocally determines n
n−m+wh and the two

functions coincide on the common part Σm of their
domain, in what follows we will simply use the symbol
h to indicate both.
From Definitions 1 and 2 we can immediately derive

the following important property:
Lemma 1 If h is a de Bruijn hash function, n ≥ m,

and P ∈ Σm occurs in T ∈ Σn at position i, then h(P)
occurs in h(T) at position i. The opposite implication
does not (always) hold; we will refer to cases of the latter
kind as false positives.
On the ground of Lemma 1 we can propose, differently

from standard approaches in the literature, to build an
index over the hash value of the text, instead of building
it over the text. This can be done while preserving our
ability to locate substrings in the text, since we can sim-
ply turn our task into that of locating fingerprints in the

Policriti and Prezza BMC Bioinformatics 2015, 16(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/16/S9/S4

Page 3 of 8



hash of the text T. We call dB-hash the data structure
obtained with this technique. Notice that the underlying
hash data structure is simulated by searching the occur-
rences of h(P) in h(T) during a lookup operation, so the
algorithm is transparent to the particular indexing tech-
nique used.

Search algorithm
The core of our searching procedure is based on the
algorithm rNA (Vezzi et al. [5], Policriti et al. [6]), a
hash-based randomized numerical aligner based on the
concept of Hamming-aware hash functions (see [5] and
[6] for more details). Hamming-aware hash functions
are particular hash functions capable to “squeeze” the
Hamming ball of radius k around a pattern P to a Ham-
ming ball of the same radius around the hash value of
P. This feature allows to search the entire Hamming
ball around P much more efficiently. The following the-
orem holds:
Theorem 2 The de Bruijn function h⊕ defined in

Definition 1 is a Hamming aware hash function. In
particular:

dH(P,P′) ≤ k ⇒ dH(h⊕(P), h⊕(P′)) ≤ 2k

for every P,P′ ∈ ∑m
DN A′

See Additional file 1 for a detailed proof of this theo-
rem. Since h⊕ is a de Bruijn and Hamming aware hash
function, we can use it to build our structure and adapt
the rNA algorithm to it. We call dB-rNA the new ver-
sion of the rNA algorithm adapted to the dB hash data
structure. More in detail, the Hamming-awareness prop-
erty of h⊕ guarantees that, given a pattern P to be
searched in the index, the set {h⊕(P’) : dH(P, P’) ≤ k} is
small–O((2s − 2)k wk) = O(6k wk) elements in our appli-
cation–and can be computed in time proportional to its
size. Notice that, with a generic hash function h, only
the trivial upper bound O((s − 1)k mk) can be given to
the size of this set since each different P’ such that dH
(P, P’) ≤ k could give rise to a distinct fingerprint. Our
proposed algorithm is almost the same as the one
described in [5,6], the only difference being that the
underlying data structure is a dB-hash instead of a stan-
dard hash. Briefly, the search proceeds in 3 steps. For
each pattern P:

1 h⊕(P) is computed;
2 the index is searched for each element in the set
{h(P′) : dH(P,P′) ≤ k},
3 for each occurrence found, the text and the pat-
tern P are compared to determine Hamming dis-
tance and discard false positives.

In practice, in our implementation we also split the
pattern P in non-overlapping blocks before searching

the index. With this strategy we reduce the maximum
number of errors to be searched, improving the speed
of the tool.

Complexity analysis
Let occ be the number of occurrences with at most k
errors of the searched pattern P in T. Assuming that
the alphabet size s is a power of 2 (condition satisfied
in our application), the expected complexity on uni-
formly distributed inputs of our algorithm has an
upper bound of

O((2σ )k(log n)k logm + (occ + 1) · m),

here, s = 4 is the size of the alphabet ΣDN A’. A fully
formal proof of (an extended version of) this analysis
can be found in [11].

Quality-aware strategy
Our tool implements a quality-aware heuristic that sig-
nificantly improves search speed, at the price of a small
loss in sensitivity. Briefly, we use base qualities to pick
up only a small fraction of the elements from the Ham-
ming ball centred on the hash h(B) of the searched
block B, following the assumption that a high quality
base is unlikely to be a miscall. Since in practice we
divide the read in non-overlapping blocks and the heur-
istic affects only the searched block, with this strategy
we lose only a small fraction of single variants like
SNPs. More in detail, let Q ∈ N

m be (e.g.) the Phred
quality (see [12]) string associated to the searched block
B. We compute a hash value on Q using the following
hash function:
Definition 3 With h∨ : Nm → {0, 3}w we indicate the

hash function defined as

h∨(Q) =
(
∨�m/w�−2
i=0 fq(Qw

iw)
)

∨ fq(Qw
m−w)

where fq : Nw → {0, 3}w is defined as

fq(Q)[i] =
{
0 if Q[i] > q
3 otherwise

, i = 0, ...,w − 1

q is a quality threshold (in our implementation we use
q = 15). The values 0 and 3 have been chosen due to
their binary representation (00 and 11, respectively). If
h∨(Q)[i] = 3, then during search we try to insert an
error in position i of h⊕ (B) since at least one of the
bases used to compute h⊕ (B)[i] has a low-quality. The
quality-aware strategy is then implemented as follows:
let B be the block to be searched and Q its associated
Phred quality string. A fingerprint f (representing a
block at distance at most k from B) is searched in the
structure if and only if (f ⊕ h⊕(B)) ∨ h∨(Q) = h∨(Q), i.e.
if f differs from h⊕(B) only in positions corresponding to
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low quality bases. Since the number of low-quality base
pairs in a read is typically low, this strategy allows to
drastically reduce search space (which in practice leads
approximately to a 10x speedup) if reliable qualities are
available. In the results section we show, moreover, that
this strategy has only a negligible impact on SNP detec-
tion and on the overall precision of our tool.

BW-ERNE: implementation details
We implemented our algorithm and data structure in
the short reads aligner BW-ERNE (Burrows-Wheeler
Extended Randomized Numerical alignEr), downloadable
at http://erne.sourceforge.net. As hash function for our
index we use h⊕. Given a text T ∈ ∑n

DN A, we calculate
h⊕ (T)BW T–the Burrows-Wheeler transform of h⊕(T)–
adding the necessary additional structures needed to
perform backward search and to retrieve text positions
from h⊕ (T)BW T positions. BW-ERNE includes (from its
predecessor ERNE) also a simple and fast strategy to
allow a single indel in the alignment. This strategy does
not affect running times and permits to correctly align a
large fraction of short reads that come with indels (see
Results section). It is well known that DNA is extremely
difficult to compress and for this reason we choose not
to introduce compression in our structure. Even if our
index is not compressed, experiments show (see Section)
that its memory requirements are similar or even smal-
ler than those of other tools based on the FM index
such as Bowtie [2], BWA [4] and SOAP2 [3]. Briefly, the
structure is composed by three parts: the index, the
plain text, and an auxiliary (standard) hash.
BWT index
The BWT index is constituted by h⊕(T)BWT stored as a
wavelet tree (n log s bits), rank counters (o(n log s)
bits), and sampled suffix array pointers for its navigation
(n + o(n)) bits for one rank structure and 2n bits for
one SA pointer every 16 text positions; the user can
however modify the SA pointers density).
Plain text
T ∈ ∑n

DN A is stored in a 3-bits per base format in
blocks of 8 symbols (3n bits). We exploit this encoding
to perform O(1) text-query comparison of a single
block, improving the speed of the algorithm.
Auxiliary hash
To speed up lookup operations, we finally store an auxili-
ary hash HAU X that indexes the waux most significant
digits of the fingerprints: the intervals obtained by back-
ward search on all the numbers in the set {0, ..., σwaux − 1}
are precomputed and stored in HAU X. In this way, a
lookup operation on HBW T requires one lookup in HAU X

followed by w − waux steps of backward search. We
require HAU X to occupy only n bits. This limit gives us an
upper bound for waux of logσn − logσ logn. It can be

proved [11] that the optimal word size for our algorithm
is w = logσ (mn). Combining these results it follows that
the cost of a lookup operation in our data structure is
O(log m).
Summing up, the total space occupancy of the dB-

hash data structure implemented in BW-ERNE is of
2n log σ + 4n + o(n log σ ) bits, corresponding in prac-
tice to approximately 1.4n Bytes (this fraction may
slightly vary for different reference sizes): the index is
succinct.

Results
In order to assess the performances of BW-ERNE, we
performed extensive experiments on two genomes: Vitis
vinifera (480 Mbp) and Human genome (hg19 reference,
3.2 Gbp).
Simulations on Vitis vinifera were used to compare

the alignment accuracy and speed of BW-ERNE, its
(old) standard-hash counterpart ERNE, Bowtie, BWA,
and SOAP2, in presence of reliable base qualities on a
medium-sized genome. Hence, in order to precisely
asses the correctness of our results, we used simulated
data produced by the SimSeq simulator, https://github.
com/jstjohn/SimSeq. Experiments on real data (not
reported here as subsumed by the experiments on
human) confirm the conclusions.
Experiments on the Human genome, instead, were

performed in order to assess the precision of BW-ERNE
in absence of base quality information (we per-formed a
GCAT test, www.bioplanet.com/gcat/), to assess the
impact of BW-ERNE’s quality-aware strategy on SNPs
detection (using SimSeq and random SNP simulation),
and to assess the performances of our aligner on a real
10x coverage Illumina library downloaded from the
1000genomes project’s database (http://www.1000ge-
nomes.org/).
All experiments were performed on a intel core i7

machine with 12 GB of RAM running Ubuntu 14.04
operating system. See Additional file 2 and Additional
file 3 for further informations about the implementation
usage and the commands used to perform the experi-
ments, respectively.

Memory footprint of the indexes
BW-ERNE significantly reduces the space requirements
of ERNE, requiring approximately 8.7 times less space on
the Vitis Vinifera genome (730 MB vs 64 GB) and
approximately 4.4 times less space on the Human gen-
ome (4.3 GB vs 19 GB). The plot in Figure 1 compares
the different indexes sizes on Vitis Vinifera and gives a
clear idea of the most important difference between full-
text and succinct indexes, the former requiring space
proportional to n log n (n pointers to the text) while the
latter is using an amount of space close to that necessary
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for the plain text. More-over, differences among BWT-
based tools are minimal (few hundred MB) if compared
to the gap between hash-based (ERNE) and BWT-based
(Bowtie, BWA, SOAP2, BW-ERNE) aligners. Among the
tested tools only Bowtie requires less space than our tool,
even if in the dB-hash data structure we do not perform
any data compression. This is due to the fact that DNA is
a high-entropy string and, therefore, almost incompressi-
ble using standard techniques such as the ones imple-
mented in the FM index. Finally, the horizontal green
line, marking the size of the reference fasta file, gives an
idea of how efficiently can succinct and compressed
indexes represent their structures: in particular, Bowtie is
able to reach a RAM memory footprint that is smaller
than that of the reference file itself, while BWA and BW-
ERNE require slightly more space. On the Human gen-
ome, BW-ERNE index requires only 4.3 GB of space to
be stored and loaded during alignment. This is slightly
more than the indexes of Bowtie and BWA (2.7 GB and
3.2 GB of RAM, respectively), but considerably less than
ERNE’s hash table, which requires 19 GB of space to be
stored and loaded during alignment.

Simulated data with reliable base qualities
In this experiment we compared the tools on 5M of 100bp
single-end reads with simulated base qualities. This dataset
was generated from the Vitis Vinifera genome using the
SimSeq simulator, adopting the built-in Illumina error
model. The number of correctly mapped reads was esti-
mated comparing the bam files generated by SimSeq and
the aligners (reads mapping in multiple locations were
evaluated on the unique reported alignment).
The plots in Figure 2 show that BW-ERNE is able to

exploit at best quality information without losing accu-
racy with respect to ERNE while, at the same time,
improving significantly its performances. BWERNE was
executed with default settings and using 1 thread. The
plot on the left hand side of Figure 2 shows that BW-
ERNE was 2 times faster than Bowtie, and 4 times faster
than BWA. This speed came with no penalties on the
number of mapped reads, which was the highest among
all tools, with BW-ERNE and ERNE aligning 97% of all
reads, BWA 94%, Bowtie 90% and SOAP2 82%. Finally,
the plot on the right hand side of Figure 2 shows the
accuracy of the tools in terms of correctly mapped
reads. The gap between mapped and correctly mapped
reads is due to reads mapping in multiple locations,
which were judged on the base of the unique reported
alignment. The plot shows that ERNE and BW-ERNE
were the most accurate tools, correctly aligning the
highest number of reads.

Simulated data without reliable base qualitie
A public GCAT experiment (Human genome) was per-
formed in order to assess the precision of our tool in
absence of reliable base qualities. The experiment con-
sisted of 12M 100bp single-end reads with 0.02% small
indel frequency. The results are available at the address
www.bioplanet.com/gcat/reports/3705-muwwfqmbjb/
alignment/100bp-se-small-indel/BW-ERNE/compare-26-
27-38. In this experiment, BWERNE was executed with
the option –sensitive, which ignores base qualities (not
meaningful in the GCAT simulation), and using 4
threads. BW-ERNE completed the alignment in 1 hour
and 28 minutes, for an overall throughput of 8M reads
per hour (approximately 4x faster than with only 1
thread). The results are reported in Table 1: BW-ERNE
was one of the most accurate aligners, correctly aligning
97.3% of all the reads. This fraction is comparable to that
of Novoalign and BWA-mem, and higher than that of
Bowtie2 and BWA.

Validation of the quality-aware strategy in presence
of SNPs
In order to assess the impact of our quality-aware strat-
egy on SNP detection, we simulated (using SimSeq)
10M of 100bp single-end reads, using as reference the

Figure 1 Space required by the tested tools (Vitis Vinifera
genome) This plot compares the space needed by some of the
most popular short-read aligners to index the Vitis Vinifera
genome. We reported space on disk (storage of the index) and
RAM (structures loaded in memory). Full text indexes such as the
hash data structure implemented in ERNE require much more space
than the succinct and compressed indexed used by the other tools.
Notice that the space required by succinct (BW-ERNE) and
compressed (Bowtie, SOAP2, BWA) indexes is almost the same in
DNA indexing: this is due to the fact that DNA is, in general,
extremely difficult to compress.
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Human genome (hg19). After the simulation, each base
was randomly substituted with probability 0.005 to simu-
late SNPs (which, from the aligner’s point of view, are
simply mismatches with high base-quality). This strategy
allowed us to track reads containing SNPs, permitting a
separate verification of the alignment’s correctness for
reads with and without this kind of mutations. BW-
ERNE was executed twice on the mutated dataset: with
default settings (quality-aware strategy enabled) and with
the –sensitive option enabled (quality-aware strategy dis-
abled). An alignment was considered correct if and only
if both chromosome and strand coincided with those
outputted by SimSeq and if the alignment’s position was
within 50 bases from the position outputted by Simseq
(in order to account for indels and clipped bases). Reads
with multiple alignments were judged on the basis of
their unique reported alignment. Of the 10M simulated
reads, 39.42% contained at least one SNP. BWERNE in
sensitive mode (quality-aware strategy disabled) correctly
aligned 87.80% of the reads without SNPs and 87.64% of
the reads with SNPs, thus showing (as expected) no sig-
nificant bias towards reads without SNPs (the 0.16% dif-
ference can be explained with the fact that reads with
SNPs are inherently more difficult to align). BW-ERNE
with the quality-aware strategy enabled correctly aligned
86.54% of the reads without SNPs and 85.25% of the
reads with SNPs, thus showing only a slight bias towards
reads without SNPs.

Real data – Human genome
To conclude, the experiment on a real high-coverage
Human Illumina library, allowed us to validate the results
obtained on simulated reads and to assess the perfor-
mances of BW-ERNE on large datasets. In this experiment
we aligned 320M of 100bp pairedend reads, corresponding
to a 10x coverage of the Human genome, downloaded
from the 1000genomes project’s database (top 160M reads
in ftp://ftp. 1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/
sequence_read/SRR622457_1.filt.fastq.gz and top 160M
reads in ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/
NA12878/sequence_read/SRR622457_2.filt.fastq.gz). BW-
ERNE was executed with default settings (quality-aware
strategy enabled) and using 4 threads. Our tool completed
the alignment in 3 hours and 15 minutes, for an overall

Figure 2 Results on 5M 100 bp single-end reads simulated using the tool SimSeq (Vitis Vinifera genome) These experiments allowed
us to judge how the presence of reliable base qualities affected the quality-aware strategies of Bowtie and BW-ERNE. The left plot
shows that BW-ERNE is able to exploit at best the presence of reliable base qualities: our tool was several times faster than the other tools, while
at the same time correctly aligning the highest number of reads (together with ERNE).

Table 1. Results of the GCAT experiment (data coming
from GCAT website)

Tool Total Reads Correct Incorrect Unmapped

BW-ERNE 11,945,249 97.30% 2.311% 0.3900%

Bowtie2 11,945,249 93.52% 5.284% 1.192%

Novoalign 11,945,249 97.47% 0.08329% 2.445%

Novoalign3 11,945,249 97.47% 0.08300% 2.442%

BWA 11,945,249 93.91% 1.707% 4.385%

BWA-SW 11,971,702 94.29% 4.139% 1.576%

BWA-MEM 11,951,583 97.47% 2.515% 0.01361%

BW-ERNE ranks among the most precise tools, correctly aligning a number of
reads comparable to that of slower aligners such as Novoalign.
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throughput of 98 millions of reads per hour. 15916364
reads (5% of all the reads) were automatically discarded by
the builtin trimmer due to low base quality. Of the remain-
ing 304083636 reads, 300717664 (98.9%) were successfully
aligned to the reference and 3365972 (1.1%) were not
found. Among the aligned reads, 284650317 (94.6%) were
aligned in only one position and 16067347 (5.4%) in multi-
ple positions.

Conclusions
In this paper we presented a new technique that permits
a succinct representation of hash indexes using hash
functions with the property of being Hamming-aware
and homomorphisms on de Bruijn graphs. We used this
technique to build a succinct index–dubbed dB-hash–
which, combined with a previously published hash-based
algorithm, allowed us to lower the upper bound to the
average-case complexity of the k-mismatch problem in
succinct space. We implemented our algorithm and data
structure in the short-reads aligner BW-ERNE. Tests on
both simulated and real data, using the most popular
short reads aligners, allowed us to validate also in prac-
tice the efficiency of our algorithm, which proved to be
extremely accurate and fast, especially if reliable base
qualities are available.
We are exploring numerous extensions of the work dis-

cussed here, on both the theoretical and practical side.
From the theoretical point of view, we are studying ways
to extend our complexity results to a more general analysis
of hashing, which could turn out useful in the complexity
analysis of hash-based algorithms. Other theoretical exten-
sions of our work include the study of the properties of h⊕
as a text transform, randomizing the text and to be used in
combination with existing pattern-matching algorithms.
From the practical point of view, we are extending our
BW-ERNE aligner with several new features such as long-
reads alignment (combining the techniques discussed here
with gapped strategies) and bisulfite-treated reads align-
ment (see [13]).

Availability
ERNE (Extended Randomized Numerical alignEr, ver-
sion 2) is a short string alignment package whose goal is
to provide an all-inclusive set of tools to handle short
reads. ERNE comprises: ERNE-MAP, ERNE-DMAP,
ERNE-FILTER, ERNE-VISUAL, ERNE-BS5, and ERNE-
METH. ERNE is free software and distributed with an
Open Source License (GPL V3) and can be downloaded
at: http://erne.sourceforge.net.
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