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1 Aims and scope of the paper

This paper recomposes under a unifying framework two styles of analysis con-
cerned with the production of ideas, but so far developed in separate and seem-
ingly independent strands of the literature. One is the evolutionary approach
to the knowledge based analysis of the division of labour1 . This takes place not
only in the production of goods, but also and most crucially in the production
of ideas (a review essay is Marengo, Pasquali and Valente [19]). The second �eld
of enquiry is concerned with the incentive based explanation (as opposed to the
statistical explanation) of collaboration networks in scienti�c research. Recent
contributions in the second �eld are Carayol and Roux [5], Goyal, van der Leij
and Moraga [10], [9].
The social network approach to the production of ideas has paid only lip

service to the fact that agents are widely heterogeneous with respect to their
knowledge endowment, and that the distribution of this endowment is a main
determinant of the network architectures which can be sustained as equilib-
rium outcomes. This paper argues that knowledge heterogeneity is a crucial
motivation to scienti�c collaboration. This view bears a close relation with the
recombinant approach to the growth of knowledge (Reiter, [28], [27], Weitzman,
[34]) which is here quali�ed to suggest that a new lineage of useful ideas, say,
the family of the di¤erent versions of the steam-engine, grows out of recom-
binations of heterogeneous pre-existing ideas. There are certainly motivations
behind collaboration in scienti�c research, which are not knowledge based, in
that they are not concerned with the costs and bene�ts of exploiting knowledge
complementarities. The varying individual preference for team work is a case
in point. We shall completely abstract from this type of considerations, in what
follows. Our primary aim is to develop a multi-agent foundation of the recom-
binant approach towards radical discovery. If regarded in this perspective, the
rising trend towards scienti�c collaboration is a direct outcome of the increasing
specialization of personal knowledge, which is itself produced by the growth of
ideas.
In this paper, agents�quality is exclusively determined by what they know.

The speci�cation of the aggregate knowledge stock leads to an endogenous de-
termination of the knowledge �elds in the economy, with the expectation that
individual knowledge is mostly specialized in a particular �eld or sub�eld. The
further speci�cation of a knowledge distribution over the set of agents induces a
measure of knowledge heterogeneity on this set (as opposed to the geographical
distance introduced in Carayol and Roux [5]), which gives rise to a trade o¤
in the allocation of private e¤ort to research projects, carried out in isolation,
or in collaboration with other agents. For a given size of i�s and j�s knowledge
endowments, the larger the knowledge heterogeneity between them, the higher
the joint competence of their collaboration project. Still, a higher heterogeneity
between agents�specializations makes collaboration more demanding in terms
of the private e¤ort which is necessary to make that competence e¤ective.

1This style of analysis has often availed itself of Stuart Kau¤man�s N�K �tness landscapes
(Kau¤man, [15]) and of other tools and concepts borrowed from the natural sciences.
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The paper is organized as follows. Section 2 presents a short list of the struc-
tural properties shared by the co-authorship networks in a number of scienti�c
disciplines. Section 3 presents the main line of argument. Section 4 builds
the basic framework concerning the de�nition and properties of a knowledge
endowment and produces an endogenous partition of the aggregate knowledge
stock at a given date into disciplinary �elds, based on the notion of modular-
ity. Section 5 introduces a knowledge distribution over the set of agents and
provides an accurate distinction between basic research, aimed at discovering
new types (lineages) of ideas, and development, the activity of �nding improved
ideas within the existing lineages. The paper is mainly concerned with the
former. Section 6 develops the knowledge based approach to the formation of
collaboration networks in basic research. Section 7 concludes.

2 Scienti�c collaboration networks: empirical prop-
erties

The networks of scienti�c collaboration in a number of disciplines, such as math-
ematics, physics, biology, medical science, and economics2 share a number of
structural characteristics. A review is available in Newman [23] and in Goyal,
van der Leij and Moraga [9]. A scienti�c collaboration network is built as
follows. Every node identi�es a researcher, and two nodes are linked if they
co-authored a paper in a given time interval. The weight of the link in question
is an increasing function of the number of co-authored papers. Scienti�c collab-
oration, de�ned as above, has been growing through time in every discipline,
though possibly at a di¤erent pace (Laband and Tollison, [17]). We list below
the characteristics of the empirical collaboration networks, which are of special
interest in the present context.

1. The distribution of collaborators has a fat tail: a small fraction of scientists
has a very large number of collaborators3 .

2. The typical collaboration network has 1 giant component comprising the
majority of nodes; the other components, if present, are relatively small.

3. The average relational distance4 between the nodes is small, and the max-
imum relational distance between a couple of nodes (the diameter) is also
small.

4. The average clustering coe¢ cient (the fraction of a node�s neighbours that
are each-other neighbours) is high, at least compared to random networks.

2According to the �ndings reported in Moody ([20]) sociology may be a partial exception,
but the hypothesis seems to require corroboration through more directly comparable tests.

3Unlike other networks, the distribution for these collaboration networks do not strictly
follow a power-law (are not scale free), although it has been suggested that they may follow
a power law with an exponential cut-o¤ (Newman, [23]).

4The relational distance between two nodes is the minimum number of links separating
the nodes.
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5. Nodes with many collaborators have a higher than average probability of
being directly connected (positive assortativity), and most of their indirect
connections go through a small number of collaborators.

6. Network connectivity is susceptible to the removal of the most connected
nodes5 .

The above properties 1-6 are broadly consistent with the preferential attach-
ment model of network formation6 . Taken together, they suggest the stylized
approximation that the undirected representation of a typical co-authorship net-
work is a system of quasi-stars, hierarchically connected, mostly through their
centres.

De�nition 1 A N star is a connected undirected network with N nodes and
N � 1 links. The centre node is directly connected to each of the other N � 1
nodes, which form the periphery. A N quasi star is a connected undirected
network with N nodes, such that: the number of links is larger than N � 1;
the centre node is directly connected to each of the other N � 1 nodes; self-
loops are allowed; a periphery node may have P > 1 links, provided that P

N�1 is
su¢ ciently small.

A study by M. E. Newman and M. Girvan ([25]) extends the analysis to
the co-authorship between the researchers attached to a trans-disciplinary sci-
enti�c institution. They suggest that the set of researchers can be endogenously
partitioned into scienti�c communities on the ground that a node belongs to a
community if its within community relations are stronger than its between com-
munity relations. Newman and Girvan [25] apply their method of community-
structure identi�cation to the collaboration network of the scientists at the Santa
Fe Institute, and �nd that the communities thus identi�ed broadly correspond
to scienti�c �elds and sub-�elds. Each (sub) �eld is a system of quasi stars, hi-
erarchically connected, and the di¤erent �elds joined, mostly by a critical link,
joining two centre nodes.
There are two models which claim to provide a successful explanation of the

above empirical characterization of a co-authorship network. The preferential
attachment model (Barabasi and others [3]) introduces the following hypothesis:
the probability that a new published paper contributes new connections to an
individual researcher is an increasing function of the number of connections that
the individual already has. The incentive based, game theoretic model (Goyal,
van der Leij and Moraga [10]) is based on the hypothesis that there are two
types of researchers, the smart ones, which can produce high quality ideas (and
papers), and the others, which produce low quality ideas, but may contribute
to the routine work, which is needed in research.

5More precisely, of the nodes with the highest betweenness score (Newman[23]). Moreover,
the betweenness scores of collaborators are uncorrelated.

6 In the preferential attachment model (Barabasi et al., [3]) the probability that a new re-
search project contributes new connections to an individual researcher is an increasing function
of the number of connections that the individual already has.
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The present article is not directly concerned with paper publication and co-
authorship. It has to do with the production of radically new ideas by di¤erent
coalitions of researchers. Under the bold assumption that the quality-weighted
output of a research coalition is correlated with its (quality weighted) paper
publication, the data on co-authorship bear some relevance also in our case. On
this ground, it seems to be desirable that the predictions of the model to be
developed in this paper are prima facie consistent with the generic empirical
characteristics of co-authorship networks.

3 The line of argument

Our basic assumption is that there is a selection for modularity in the evolution
of knowledge (Simon, [31], Marengo et al. [19]). As a result, the knowledge
set characterizing a scienti�c discipline is nearly decomposable into modules
corresponding to more or less specialized �elds or sub�elds. Like in Simon and
Ando ([32]) original formulation of near-decomposability, the �tness interactions
between ideas belonging to di¤erent modules are unfrequent, but, contrary to
Simon ([31]), if the interaction occurs, it may have a strong in�uence on �tness
(relative performance). If this is the case, the interaction between the spe-
cialized modules cannot be neglected (see Watson, [33]). In the next section,
these notions will be made more precise through the language introduced by the
following de�nitions.

De�nition 2 Ideas are embodied in the human brains. An idea is codi�ed
knowledge de�ned by a string a 2 f0; 1; sgN of N elements. An element an
is identi�ed by its location n 2 N = f1; :::; Ng on the string. A location n is
silent (une¤ective) for idea a if and only if an = s. The set of non silent lo-
cations of a is NS(a) = fn 2 f1; :::; Ng s.t. an 6= sg. A family, or type, of
useful ideas, for instance, the family of the di¤erent versions of �the wheel�, is
the subspace F �f0; 1; sgN of ideas with identical silent and non silent locations:
if a 2 F and a0 2 F, then an = s if and only if a0n = s. A type F is uniquely
identi�ed by the set NS(F).

De�nition 3 Development is the search for better con�gurations of a set of
idea types, which leaves the set of types unchanged. Basic research is the activity
aimed at discovering new types of potentially useful ideas.

When a new type is �rst discovered, it may well be the case that its known
con�gurations are less �t than their competitor ideas already in existence. For
this reason, the potential usefulness of types matters. Every agent spends her
time endowment in development and basic research according to �xed propor-
tions. The time endowment available for basic research is E, which is uniform
across agents.
The bene�ts of modularity are most relevant in development. To make sure

that the bene�ts from knowledge specialization do not entail the loss of the
positive complementarities between the di¤erent �elds, it is necessary that a
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set of agents, the knowledge integrators, preserve in their endowment the core
ideas which provide the interfaces connecting the specialized �elds. The above
premises justify a distribution of knowledge, de�ned as a distribution of types,
such that the endowments of two specialists in di¤erent �elds are su¢ ciently
heterogeneous; the endowments of two specialists in the same �eld are highly
homogeneous; for every specialized endowment, there is a �knowledge integra-
tor�s endowment, which is only partly heterogeneous with respect to the former.
To make the notion of knowledge heterogeneity operational, we introduce a mea-
sure d(ij) of heterogeneity between i�s and j�s knowledge endowments. If i and
j form a collaboration, their joined competence is increasing with respect to
d(ij). The trade o¤ is that higher heterogeneity means that higher e¤ort is
required to make the collaboration e¤ective. Under the assumption that there
are H researchers in the economy, we introduce the following de�nitions.

De�nition 4 A collaboration strategy of agent i is a choice of e¤ort allocation
Si = fei1; :::; eiHg, where eij is i�s e¤ort contribution to the collaboration (ij).

De�nition 5 A strategy pro�le S� = fS�1; :::;S�Hg is a pairwise equilibrium if:
(i) S� is a Nash equilibrium. (ii) S� is robust to the formation of two-agents
coalitions. For every i and j in H, such that 0 = eij 2 S�i , 0 = eji 2 S�j , there
is no strategy pair (S0i;S

0
j), such that: 0 < eij 2 S0i, 0 < eji 2 S0j , and both i

and j prefer the strategy pro�le S0 = (S��(i+j);S
0
i;S

0
j) the the pro�le S

�.

We claim that a highly stylized characterization of the knowledge distribu-
tions re�ecting the historical trend towards rising specialization cum knowledge
integration (explained by selection for modularity) supports a quasi-star net-
work of collaboration in basic research as a pairwise equilibrium outcome.

4 Near-decomposability in idea space

An idea is a con�guration of a family type. A type F is useful, if at least
one useful idea in F has been discovered. �t is the set of useful types at t,
and �(�t) = #�t is the number of such types. We �x a labelling of types
in �, such that � = fF1;F2; :::;F�(�)g. A con�guration of �, or knowledge
con�guration, is a list � = fa(F1);a(F2); :::;a(F�(�))g specifying one idea con-
�guration af = a(Ff ) for each family Ff in �. � = faf [ a�fg, where a�f
is the con�guration of the families other than Ff . In general, only a vanishing
small fraction of the possible con�gurations of each idea type is �useful�. The
usefulness of an idea con�guration af is, like �tness in biology, a relative, not
an absolute concept, and can only be evaluated in the context of the given con-
comitant knowledge con�guration a�f . This is because usefulness is a¤ected by
the positive or negative complementarities between ideas. The relative �tness
of two ideas af and a0f belonging to the same type Ff is evaluated by a �tness
ratio V (af ;a�f )=V (a0f ;a�f ), where V () is a real function V : � ! R+. At
any date t, development aims at selecting and evaluating alternative relevant
con�gurations (af ;a�f ), (a0f ;a�f ) within a given space �t. Evaluation takes
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place through the local �computation�of V (). In contrast, a (radical) discovery
at time t de�nes a new set �t+1 � �t. It may also (though not invariably)
expand the set of locations from Nt to Nt+1 = f1; :::; Nt; :::; Nt+1g.
Ideas can be used as building blocks for the production of other ideas. If

a is a building block of a0, then an = a0n, for every n 2 NS(a). The subset
NS(a)\NS(a0) � N is the overlap between the types F and F0, such that a 2 F
and a0 2 F0, or between a and a0 for short7 . The overlap size is the cardinality of
the overlap. Types F and F0 are independent if and only if they have an empty
overlap: NS(F) \NS(F0) = ; . � is separable if every couple of types in � is
independent. � is block separable (alternatively, nearly decomposable), if there
exists a partition f�1; :::;�Zg of �, such that the size of the overlap between
every couple of subsets �j , �h in the partition, with j 6= h, j; h = 1; :::; Z,
is zero (alternatively, su¢ ciently small). We assume that if the types Ff and
Fg are independent, then there are no positive or negative complementarities
between them. This means that the relative �tness of two di¤erent ideas af and
a0f belonging to Ff is invariant to a change of a�f , if the latter is produced
exclusively by a change ag ! a0g in the state of Fg.

4.1 Modularity in idea space

Both discovery and development face constraints resulting from the comple-
mentarities between non independent ideas. The di¢ culty arising from a wide
potential overlap (interaction) between the types in � is that the improvements
in the design of one type may con�ict with other potential improvements in the
design of the types with which it interacts (Simon [31], p. xì).
The di¢ culty can be reduced if � can be partitioned into subsets with (su¢ -

ciently) small overlaps between the components. Consistently with the literature
(Callebaut and Rasskin-Gutman [?]) we call modularity the measure of the ex-
tent in which the interaction (complementarity) between the elements (ideas)
in the same subset is stronger than the interaction between the subsets. Sys-
tems exhibiting this structural property are nearly decomposable (Simon [30],
[29] ), or modular, and are shown to develop a greater ability to evolve through
adaptive change (Altenberg [1], Marengo et al. [19])8 .

7By extension, if B and C are subsets of A, the set f[c2CNS(c)g \ f[b2BNS(b) � N is
the overlap between B and C.

8The bene�ts of modularity should not be overemphasized or misrepresented. Some de-
gree of interaction between modules may yield the optimal trade-o¤ between the advantage
of reducing the dimension of the search space, and the bene�t resulting from the exploitation
of positive between module complementarities. In particular, if the �tness functions embed
a su¢ ciently strong non linearity, the additional gain obtained from solving the coordination
between the con�gurations of two weakly (at a low time frequency) interacting modules �h
and �f is potentially very large. Watson [33] provides examples of such strongly non linear
cases, in which �nding the appropriate coordination between the modules may confer a de-
cisive advantage in evolution. Examples of compositional evolution abound in nature and in
engineered systems, as shown by sex, by symbiosis, by the relations between a cell and its
environment, or by the interactions between a subroutine and the rest of a computer program.
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4.1.1 Modularity measures in idea space

The relevance of a modularity measure on � is here judged from the view point of
the relation between �modularity�and the minimum number �Min(�) of con�g-
urations of � which need evaluation, to �nd the optimal con�guration. �Min(�)
is the minimum dimension of the search space �. Intuitively, the modularity of
a search space is a measure of the relative extent in which the dimension of the
search space can be reduced.
To avoid the di¢ culties faced by other measures of modularity in idea space

(appendix A), we propose that modularity measures suggested in the network
literature are borrowed for the purpose of measuring the decomposability of �.
A preliminary step in this direction is the de�nition of the network structure
between the types in �.

De�nition 6 We �x an ordering of the types in �, such that � = fF1;F2; :::;F�(�)g.
L(�) = f1; 2; :::; �(�)g is the set of labels corresponding to the types in �. NSj is
the set of the active locations corresponding to type Fj. The knowledge network
induced by � is the weighted directed network (L(�);W(�)), where L is the set
of nodes, W(�) is the set of weighted links between such nodes, and will be re-
ferred to as networkW(�)9 . The strength whg of the link from node g to node h
is derived as follows. Let nhg = ngh = #fNSh\NSgg, for g 6= h; nhh = #NSh.
For every g and h in L, whg =

nhg
#NSg

. By de�nition, 0 � whg � 1. For ease
of notation, W shall also denote the �(�) � �(�) matrix [whg] of connection
weights.

whg is a measure of the average frequency with which a con�guration change
in one active component of type g may a¤ect the relative �tness of type h�s con-
�guration. Accordingly, the network (L;W) is separable ifW is diagonal; it is
block-separable if there exists a partition fL1; :::;LZg of L and a corresponding
permutation matrix P, such that PWPT is block diagonal10 .
If the conditions for the block separability of W are quite demanding, the

modularity of W is more a matter of degree. From an intuitive view point,
the modularity of the interaction matrix W has to do with the possibility of
�nding a partition of L into groups fL1; :::;LZg, such that the frequency of
interaction between any two di¤erent groups of the partition is su¢ ciently low,
relative to the average frequency of interaction within the two groups 11 . This
intuitive and quite general idea of modularity admits a quantitative expression,
based on recent contributions to the mathematical theory of networks and its
applications. The construction of a network between idea types, brings to our
disposal the measures of network modularity, such as the Newman and Girvan

9The script (�) will be omitted, if unnecessary.
10Here, T is the transpose operator.
11"Another way to describe this structure is to state that the frequencies of interaction

among elements in any particular subsystem of a system are an order of magnitude or two
greater than the frequencies of interaction between the subsystems. We call systems with this
property nearly completely decomposable systems, or for short, nearly decomposable (ND)
systems (Simon and Ando [32] )". (Simon [31], p. x, citation in the original).
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([26]) Q measure, extended by Leicht and Newman ([18]) to weighted directed
networks. For each possible partition of L(�) Leicht and Newman ([18]) de�ne
a corresponding Q measure of modularity. Network modularity Q(W) is the
measure corresponding to the Q maximizing partition. If there is no meaning-
ful way of de�ning di¤erent modules in W, Q(W) is zero. If W is diagonal,
Q(W) is maximal for the given �(�), which is written Q(W) = Q�(�), and
lim�(�)!1Q�(�) = 1 (see appendix B).
The notion of a knowledge network W induced by � and the related op-

erational de�nition of network modularity, together with de facto observation,
motivate the de�nition of a disciplinary knowledge �eld as a module in the space
�.12

De�nition 7 The set of disciplinary �elds f1; :::; Zg is endogenously de�ned by
the Q maximizing partition of L into modules fL1; :::;LZg.

We developed a number of simulations suggesting that the Q measure per-
forms well as an indicator of the extent in which the dimension of a search space
� can be reduced to the end of �nding its optimal con�guration. If � and �0

are such that �(�) = �(�0), and �Min(�) < �Min(�
0), then Q(�) > Q(�0). In

this respect, Q performs better than the measure of modularity on technological
�tness landscapes recently suggested in Frenken [8] (see appendix A).

5 The carriers of ideas

In what follows, we expand on the fact that ideas are embodied in the human
brains. H is the set of agents, and H is the cardinality thereof. The statement
that a is an element in the set Ai of i�s ideas, does not simply mean that agent
i has the information a. It means that i has the capability to carry out a set of
operations on �i., which use the information a as input. We may refer here to
a standard example, which marks the di¤erence between having a mathematics
handbook at one�s disposal, and having a full grasp of the proofs and potential
applications of the mathematical proposition printed in the text. As a rule,
agents�knowledge is specialized in a disciplinary �eld de�ned as above and a
�eld identi�es a scienti�c community13 .
An agent i at time t is here simply de�ned by the set Ai(t), which de�nes

also the set �i(t) of the types to which such ideas belong. We shall abstract in
what follows from innate exogenous di¤erences between agents, concerning their

12Some quantitative evidence of the modular organization of knowledge into disciplinary
�elds, which broadly correspond to application domains, is o¤ered by the network of patent-
citation �ows connecting the technology �elds. The patent citation networks recovered from
USPTO data for the periods 1975-1986 and 1987-1999 yield Q measures above 0:6 (Caminati
and Stabile[6]).

13This means that there exists a partition of H into M communities, fH1; :::;HMg, such
that the union of the knowledge sets of the agents belonging to the same community, covers
some disciplinary �eld (formally, there exist �z in f�1; :::;�Zg, and Hm in fH1; :::;HMg,
such that �z � [i�i; i 2 Hm, where �i is agent i�s knowledge set).
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capabilities in the processing of ideas, or their individual preferences. Every
agent engages in both basic-research and development activities, according to
�xed proportions.
The knowledge output of a development project is measured, not by the

number of the new ideas produced, but by the �tness improvement enabled
by these new con�gurations of �. In basic research, the �tness improvement
corresponding to a new type of idea is only potential, because the new type
may need to go through a long development phase, before it can successfully
compete with pre-existing ideas. Since usefulness is only potential in basic
research, novelty and originality is all what matters. We assume that research
output is measured by the number of new types produced by a research project.
A research contribution is more �original�if it produces a larger number of new
and potentially useful types.
There are complementarities between development and research. On the

ground that modularity reduces the dimension of the search space faced by the
activity of development, there is a powerful incentive to specialization in human
capital formation. This intuition is made more precise as follows.

5.1 Specialization in development

Given the set L of labels corresponding to the types in �, consider the Q max-
imizing partition fL1; :::;LZg of L into label groups, which de�ne the set of
disciplinary �elds or sub�elds. If the groups Ly and Lx have an empty overlap,
the activity of developing the types in Ly can be carried out independently of
the corresponding activity on Lx. This provides a straightforward powerful in-
centive to specialization in development, and through this, also to specialization
in human capital formation. If instead the groups Ly and Lx have a low, but
non zero, frequency of interaction, the possibility of reducing the dimension of
the search space is still provided by the organization of the search activity ac-
cording to a hierarchic modular design. In particular, if the weak interactions
between Ly and Lx are not sparse, but are carried by speci�c nodes (types),
then the hierarchic form of modularity is supported by a decentralization of
development to specialized agents. We may think of the example in which
Ly = fy; y + 1; :::; y + mg, Lx = fx; x + 1; :::; x + ng and the interaction be-
tween the two groups takes place through the link connecting the nodes (types)
y and x. Conditional on the con�guration of y and x, the choice of the optimal
con�guration of the two sub�elds fLy � yg and fLx � xg can be assigned to
di¤erent specialized agents, which may have in their knowledge endowment only
the �elds Ly and Lx, respectively. The two specialists do not need to commu-
nicate between them, if they communicate with a third agent who is endowed
with the knowledge of both types y and x. These types contain the core ideas,
connecting the �elds Ly and Lx. The agent endowed with the core ideas acts like
a knowledge integrator. Upon communication of the best selections separately
made by the specialists, the integrator(s) can �x the optimal joint con�guration
of the types y and x.
This argument provides useful guidelines suggesting what may be relevant
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distributions of the knowledge endowment across the set of agents. To the ex-
tent that the knowledge network is highly, but not perfectly modular, we expect
a distribution of the knowledge endowments such that a large number of agents
is specialized in a speci�c �eld or sub�eld14 . The number of types shared by
agents i and j will be typically high or low, depending on whether they are
specialized in the same or in di¤erent �elds. Simultaneously, knowledge special-
ization requires that there agents preserving in their knowledge endowment the
core ideas providing the knowledge interfaces connecting the specialized �elds
or sub�elds.

6 Collaboration networks in basic research

Discoveries originate from the e¤ort produced by the agents engaged in basic
research15 . Research projects may be carried out in collaboration, or in isolation
(self-collaboration). For the sake of simplicity, we assume that at most two
members of H collaborate on a single project. A couple jointly working on a
project is also called a collaboration; at any date a collaboration is engaged
in a single project, although a single agent can participate in many projects
simultaneously.
We hold to the view that new types of ideas grow out of recombinations of

pre-existing types (Weitzman [34])16 . On this premise, we move some steps
toward the construction of a knowledge based approach to the explanation of
collaboration networks in basic research.
We assume that for every i 2 H, the set �i 6= ;. B(i; j) is the �ow of new

basic ideas (new types) produced by the collaboration (ij) between agents i
and j. We assume that B(i; j) depends on the e¤ective competence k(ij) =
k(eij ; eji) and e¤ective e¤ort e(ij) � 0 of the coalition (ij). Formally:

B(ij) = B(k(ij); e(ij)) = B(k(eij ; eji); e(eij ; eji)) (1)

B(k; e) = k�e � � 1 (2)

14 If there are non negligible interactions between �elds Ly and Lx in idea space, we expect
to �nd meaningful knowledge �ows between the communities working in such �elds. These
knowledge �ows take place in a variety of ways (e.g. access to paper and patent publications,
as evidenced by citations), including direct collaboration between the scientists. The point
made in the text is that the desirable extent of knowledge specialization is increased, if the
need of direct and frequent communication between di¤erent-�eld specialists is replaced by
the �xation and adaptation of the appropriate interface standards between the �elds. The
ideas providing such interfaces are in the knowledge endowment of one or more agents acting
as knowledge integrators. This argument is partly reminiscent of the literature on system
integration in production technology ( [7]).
15Occasionally, the discovery of a new type is the serendipitous outcome of a development

project. For the sake of simplicity, we rule the possibility of serendipitous discoveries and
assume that a research output is the outcome of a deliberate allocation of e¤ort to a research
project.
16There is some evidence that radical discoveries are occasionally produced by recombination

of seemingly obsolete input ideas.
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For the sake of simplicity we assume that every project has a maximum scale:
0 � e(ij) � D.
The competence of the collaboration (ij) re�ects the joint size of i�s and j�s

knowledge contributions, provided that their respective e¤ort in the collabora-
tion is strictly positive.

k(eij ; eji) = �(�i [�j) if eij � eji > 0; k(eij ; 0) = �(�i); k(0; eji) = �(�j) (3)

where eij , 0 � eij � E, is the individual e¤ort produced by i in the collabo-
ration (ij).
The joint e¤ort e(ij) = e(eij ; eji) is a performance function e() which de-

pends on the parameters wij and d = d(ij).

e(ij) = [f(d)]
�1
h
wij (eij)

�
+(1� wij) (eji)

�
i1=�

(4)

where: � = 1� d, f 0 � 0, and limd!1 f(d) = F .
wij enters the performance function to characterize how the relative size of

i�s and j�s knowledge contributions:

wij =
�(�i)

�(�i) + �(�j)
; wji = (1� wij) =

�(�j)

�(�i) + �(�j)
; wii = 1 (5)

d(ij) is the heterogeneity between i�s and j�s idea types:

d(ij) =
�(�i [ �j)� �(�i \ �j)

�(�i \ �j)
=
�(�i [ �j)
�(�i \ �j)

� 1; d(ii) = 0 (6)

d(ij) has the properties: 0 � d(ij) � 1; d(ii) = 0; d(ij) = d(ji); d(ij) =
1 if and only if �i \ �j = ;. Is is worth stressing that the function d(ij)
may not meet the triangle inequality. For instance, if i and j do not have
any idea in common, but each of them shares some idea with h, then 1 =
d(ij) > d(ih) + d(hj). d(ij) a¤ects the joint e¤ective e¤ort in two ways. In
the �rst place, the productivity of i�s and j�s individual e¤orts is lower (ceteris
paribus), if the heterogeneity d(ij) grows above d(ij) = 1. Beyond this threshold
level, higher knowledge heterogeneity makes communication between i and j
more time consuming, and the production of coordinated research e¤ort more
demanding. We therefore assume that a parametric increase in d(ij) beyond
the threshold d(ij) = 1 lowers the e¤ective joint e¤ort e(ij):

@e

@d
= 0 if 0 � d � 1; @e

@d
< 0 if d > 1 (7)

More precisely, we assume the following speci�cation of f(d) in equation (4):
f(d) = 1 + �(d), �(d) = 0 if 0 � d � 1; �0 > 0 if d > 1.
In the second place, the rules by which the e¤orts eij and eji cooperate to

produce new ideas depend on the circumstances a¤ecting the substitutability or
complementarity between i�s and j�s idea sets. We assume that the higher the
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heterogeneity d(i; j), the lower the substitutability between i�s and j�s knowl-
edge, hence, the higher the complementarity between eij and eji. If i and j have
identical types of ideas, d(ij) = 0, and their e¤orts are perfect complements, if
they do not have any idea in common, d(ij) = 1, and their e¤orts are perfect
complements; in the intermediate situation where d(ij) = 1, e() is Cobb Dou-
glas (see appendix C). In particular, if �(�i) = �(�j), so that wij = wji = 1=2,
we obtain the restrictions:

d(ij) = 1 ! e(ij) = e
1=2
ij e

1=2
ji (8)

d(ij) = 0! e(ij) =
1

2
(eij + eji) (9)

e(ii) = eii

The B(�) function determines the knowledge output of the R&D e¤ort produced
by the collaboration (ij). The reputation payo¤ earned by each member of the
coalition (ij) is rB(ij), where 0 < r � 1, if i 6= j, and r = 1, if i = j. The cost
to agent i of her participation in the project (ij) is a linear increasing function
c � eij of the e¤ort produced.
A basic research strategy by agent i is a choice Si = (ei1; :::; eiH). eij = 0

means that i is not prepared to collaborate with j 2 H. Agent i chooses Si to
maximize net pay-o¤:

�i = B(ii)� ceii +
" X
z2H�i

rB(iz)� c
X

z2H�i
eiz

#
(10)

subject to the constraint: X
z2H

eiz = E

Network formation is formalized as a simultaneous �collaboration game�. Each
agent i 2 H simultaneously announces her strategy Si. The collaboration (ij)
takes place if and only if eij > 0, eji > 0; gij(S) = g(eij) for eij 2 Si 2 S. �i(S)
is i�s payo¤ induced by the strategy pro�le S.
It is worth summarizing some implications which follow from the knowledge

production function B(ij). and the payo¤ function (10).
a. Since it is never optimal to o¤er collaboration to an agent who is not

reciprocating the o¤er, a very weak necessary requirement for S being a pairwise
equilibrium is gij(S) > 0 only if gji(S) > 0.
b. An agent obtains a competence advantage from collaborating with those

agents which contribute with ideas that are not in her �eld of specialization. In
particular, for �xed cardinalities �(�i) and �(�j), competence k(ij) increases
with heterogeneity d(ij). If i and j have identical ideas the competence bene�t
from a positive collaboration (ij) is null: k(ij) = k(ii) = k(jj); moreover, i�s
and j�s e¤orts are perfect substitutes in the production of joint e¤ort.
c. There is a drawback in collaborating with an agent whose �eld of special-

ization is too remote from ours. A productive collaboration (ij) will be one in
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which i and j share some knowledge background. This is formalized by choosing
f(d) so that limd!1 e(ij) = 0.

De�nition 8 The strategy pro�le S generates the square H �H weight matrix
g(S), such that for every i and j in H, gij(S) = eij. This de�nes the weighted
directed network fH;g(S)g, where H is the set of nodes, and there exists a
directed link from node i to node j, if and only if the weight gij(S) > 0. g(S)
fully de�nes the weighted directed network supported by S and will be referred to
as network g(S) in what follows.

De�nition 9 The weighted directed network g(S) de�nes the H�H adiacency
matrix G(S), such that for every i and j in H, Gij(S) = Gji(S) = 1, if and only
if gij(S) > 0 and gji(S) > 0; Gij(S) = Gji(S) = 0 otherwise. G(S) uniquely
de�nes the unweighted undirected network fH;�(S)g such that ij is a link in
�(S) if and only if Gij(S) = Gji(S) = 1. For ease of reference, G(S) denotes
in what follows the undirected network supported by S.

6.1 Equilibrium in collaboration in a system with �eld
specialists and knowledge integrators

Equipped with the remarks above, we consider the collaboration equilibria which
are supported by specialization in the knowledge system of the form discussed
above. We assume that the there exists a partition fH1; :::;HM ;HM+1g of H,
such that Hz, with z = 1; :::;M , is the scienti�c community of agents which
develop the ideas belonging to �eld z. HM+1 is the community of agents en-
dowed with the knowledge interfaces which may directly or indirectly connect
the specialized �elds. In our stylized representation, we assume: The size of the
knowledge endowment is uniform; every community Hz z = 1; :::;M , contains
the same number R of researchers; any two agents belonging to the same com-
munity Hz have identical knowledge endowments; if they belong to di¤erent
specialized �elds, their endowment are �su¢ ciently�heterogeneous. We study
the equilibrium collaborations which are supported by the varying heterogene-
ity, as opposed to the varying size, of agents�endowments. In particular, we
consider the following special case:

Case 10 A knowledge distribution with �eld specialists and knowledge integra-
tors

1. For every i 2 H, �(�i) = �.

2. #Hz = R, z = 1; :::;M ; H = RM + P , where P = # HM+1 �M .

3. Fix z 2 f1; :::;Mg. If i 2 Hz, j 2 Hz, then, d(ij) = 0.

4. There is an ordering fh1; h2; :::; hP g of the agents in HM+1, such that:
d(hqhq+1) = 1, q = 1; :::; P � 1; d(hPh1) = 1; d(hxhy) > 1, for 1 <
ky � xk < P � 1.
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5. If i 2 Hz, j 2 Hv, with v 6= z, fv; zg � f1; :::;Mg, then, d(ij) � 
 > 1.

6. Fix z 2 f1; :::;Mg. There exists one and only one j 2 HM+1such that, if
i 2 Hz and h 2 fHM+1 � jg, then: d(ij) = 1; 1 < 
z � d(ih) � 
.

Proposition 11 Assume the case above. The following restriction holds.

k(ij) = 2�
d(ij) + 1

d(ij) + 2
= k(d(ij)) (11)

Remark 12 We may notice from 11 that competence k(ij) increases with het-
erogeneity d(ij), but at a slower rate; moreover, d(ij) = 0 implies k(ij) = �;
d(ij) = 1 implies k(ij) = � 43 .

De�nition 13 A collaboration (ij) is symmetric if and only if eij = eji.

Proposition 14 Assume the case above. If eii < D and ejj < D, a symmetric
collaboration project (ij) such that d(ij) = 0 can not be sustained as a Nash
outcome..

Proof: For any value of r 2 [0; 1], i�s marginal bene�t from increasing e¤ort
in project (ii) is higher than i�s marginal bene�t from increasing e¤ort in (ij).

�� � c > 1

2
r�� � c

Proposition 15 Assume the case above, and ejj = eii = D < E. A symmetric
collaboration project (ij) such that d(ij) = 0 can be sustained as a Nash outcome
only if

1

2
r��(eij + eji)� ceij = eij

�
r�� � c

�
> 0

Proposition 16 Assume that agent i has the opportunity to participate in a
collaboration (ih) such that d(ih) = 1. i�s marginal e¤ort re-allocation away
from a symmetric collaboration (ij) such that d(ij) = 0, towards (ih) is payo¤
increasing (decreasing) if:

eih
ehi

< (>)

�
4

3

�2�
(12)

i�s marginal e¤ort re-allocation away from a project (ii) towards (ih) is payo¤
increasing (decreasing) if:

eih
ehi

< (>)
r2

4

�
4

3

�2�
(13)

Proposition 17 Assume that the restrictions of the case above hold,
�
r�� � c

�
>

0, r=2 > (3=4)�, P =M , 2 +
�
4
3

�� � E=D �
h
1 +

�
4
3

��i
, and 
z is su¢ ciently

large. For any M � 2, there exists a non empty range of the parameters �, R,
E=D supporting a pairwise equilibrium with the following properties. (i) Every

16



collaboration (ij) with d(ij) = 0 is symmetric. (ii) For every h 2 HM+1there
exists a unique z 2 f1; :::;Mg such that, for every i 2 Hz, h enters a size D
collaboration (ih) with d(ih) = 1. Every h 2 HM+1enters 2 collaborations (ph)
such that d(ph) = 1, and p 2 HM+1. (iii) For each z 2 f1; :::;Mg, every i 2 Hz

invests simultaneously her e¤ort: in a project (ii) of size D; in one and only
one project (ih) such that d(ih) = 1 and h 2 HM+1; in V projects (ij) such that
d(ij) = 0 and j 2 Hz, where 0 � V � R� 1.

The proof of the proposition is in two steps. In the �rst step, we introduce the
working hypothesis that the Nash equilibria to be described in the �rst step are
robust to the formation of any collaboration (iy), where i 2 Hz, z 2 f1; :::;Mg,
y 2 HM+1 and d(iy) � 
z. The hypothesis is proved in the second step.

1. For any given z 2 f1; :::;Mg, every i 2 Hz has a unique opportunity to
enter a collaboration (ih) such that d(ih) = 1. We introduce the following
restrictions on the parameters �, R, and E=D:

R =

�
4

3

�2�
� =

logR

2[log 4� log 3] �
logR

0:5754
(14)

E=D � 2 +R1=2 = 2 +
�
4

3

��
(15)

With this restriction, at eih=ehi = R, the condition (12) holds with strict
equality. In this state, agent i strictly prefers project (ii) to project (ih);
this, in turn, is indi¤erent to any project (ij) such that d(ij) = 0. The
working hypothesis implies that i invests eii = D in the project (ii) and

she is prepared to invest up to eih =
�
4
3

��
D = R1=2D in the project (ih)

of size D. She invests the residual endowment E � (R1=2 + 1)D � 0 in
V projects of type d(ij) = 0, where 0 � V � R � 1. Such projects of
type d(ij) = 0 are sustainable as Nash outcomes under the speci�ed con-
ditions. For every h 2 HM+1there exists one and only one z 2 f1; :::;Mg,
such that i 2 Hz implies that (ih) is of type d(ih) = 1. (ih) is h�s

best investment opportunity at ehi=eih =
�
3
4

�2�
. h invests a total e¤ort

R
�
3
4

��
D =

�
4
3

��
D = R1=2D in R projects of this type. At

�
4
3

��
> 2=r,

h strictly prefers a symmetric collaboration (hp) such that d(hp) = 1 to a
project (hh). With the restrictions imposed by the case above, and by 15,
h enters 2 symmetric collaborations (hp) such that d(hp) = 1, p 2 HM+1,
investing ehp = D in each. This concludes the �rst step.

2. We are left with the proof that under the chosen parametrization, the
Nash equilibria described in step 1 are robust to the formation of any col-
laboration (iy), where i 2 Hz, z 2 f1; :::;Mg, y 2 HM+1 and d(iy) � 
z.
y is prepared to enter any such collaboration (iy) only if eiy=eyi � �(
z),
which is the critical ratio which makes y indi¤erent between (iy) and (yy).
Here �(
z) is a strictly increasing function, and the assumption that 
z is
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Figure 1: Figure 1. Undirected network representation of a pairwise equilibrium
of the collaboration game supported by the case above, for H = 25, R = 4,
E = 4, P =M = 5, D = 1, � = logR

2(log 4�log 3) � 2:4093.

su¢ ciently large implies �(
z) > R. Recall that R = eiy=eyi is the critical
ratio which makes i indi¤erent between (ih), such that d(ih) = 1 and the
symmetric collaboration (ij) such that d(ij) = 0. Under the chosen para-
metrization, i 2 Hz is not constrained by the opportunity to increase her
collaboration with some j 2 Hz. This shows that collaborations (iy) such
that d(iy) � 
z can not be sustained as Nash outcomes. This completes
the proof.

Figure 1 shows the undirected network representation of a pairwise equilib-
rium supported by the case above under the parametrization (14), with H = 25,
R = E = 4, D = 1, P =M = 5.

7 Conclusions and directions of further work

The main goal of this paper is to move some steps towards a foundation of
a knowledge based approach to the analysis of the division of labour and of
collaboration in research. In this closing section we outline some implications
of our approach, and suggest promising directions of further work.
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The general intuition behind the propositions of the preceding section is that
the heterogeneity of agents�knowledge endowments induces a trade o¤. For a
given size of i�s and j�s knowledge endowment, the larger the heterogeneity d(ij)
between them, the higher the competence k(ij) of their joint project. The other
side of the coin is that the private e¤ort which is necessary to make the col-
laboration e¤ective is weakly increasing with d(ij), and it is strictly increasing,
if d(ij) exceeds a minimum threshold. This points to a situation in which two
specialists in highly heterogeneous �elds will �nd that direct collaboration be-
tween them is too e¤ort-consuming. Simultaneously, collaboration between two
specialists in the same narrow �eld may o¤er little, if any, competence advan-
tage. Ceteris paribus, the agents which are only weakly specialized, occupy a
critical favourable position in the distribution of knowledge17 , which gives them
the opportunity to act as knowledge integrators. A knowledge integrator is in
the position to collaborate with a specialized agent under favourable terms; as
a result, the former will be able to enter a larger number of collaborations than
the latter. On this ground, we o¤er a knowledge based interpretation of the
quasi stars which are observed in the empirical scienti�c-collaboration networks
based on co-authorship data.
The rising historical trend in scienti�c collaboration can be explained, on the

same ground, not only (and most obviously) by the fact that the appropriation
parameter r may have risen in the meanwhile to a level su¢ ciently close to
1. More interestingly, the observed growth in the number of collaborators per-
capita appears to be a result of the very growth in the number of researchers,
in particular, in the average number R of researchers belonging to a specialized
�eld.
To the extent that the model is about knowledge production, it is natural

to think of dynamic extensions in which i�s knowledge endowment at t is the
outcome of her endowment at t�1, and of the knowledge output of the projects
entered by i at t�1. In this dynamic version, the knowledge endowment becomes
an endogenous variable.

8 Appendix

8.1 Appendix A. On a pleiotropy based measure of mod-
ularity

The structural complementarities imposed by wide overlaps between idea types
can be partly described by adapting to our purpose the biologically inspired
de�nition of a system pleiotropy. The number Pj of idea types in � sharing the
active location j is the pleiotropy of j. Assuming that location j is not always
silent in �, then 1 � Pj � �. Frenken [8] measures system pleiotropy P as:

P =� log

 
NY
n=1

Pn

!
(16)

17This critical position is partly reminiscent of the notion of a structural hole (Burt, [4]).
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Here � log is base � logarithm. The structural relation between string compo-
nents and types is described by the ��N matrix � = [�fn]. Each row in this
matrix corresponds to a di¤erent type in �, and �fn = 1, or �fn = 0 depending
on whether n is or is not a active location of the fth type in �. Biologically
inspired problem representations identify a string a with a phenotype character
and label � the genotype�phenotype map. Following Frenken [8], we may as-
sume a non-separable space �, and observe that the proposed P measure (16)
achieves its minimum Pmin when N � 1 components have Pj = 1 and one and
only one component has Pj = �. This yields Pmin =� log(�) = 1. Maximum
system pleiotropy Pmax obtains when all components j have Pj = �, yielding
Pmax =

� log(�N ) = N . Frenken [8] suggests a measureM of system modularity
based on the notion that the lower P , the lower the average interdependency
between the idea types. More precisely, M depends on the comparison between
Pmax and the observed value of P .

M = 1� P

Pmax
= 1� P

N
(17)

According to this measure, the modularity of a non-separable system is in-
versely related with system pleiotropy; its maximum Mmax =

N�1
N tends to 1 as

N tends to 1; its minimum is Mmin = 0. Apart from the restriction that M is
by de�nition applicable only to non-separable systems, the main problem with
this measure is that, in so far as it depends only on the product of pleiotropy
measures Pn, it does not retain more detailed information on the interdepen-
dence structure between the types in �. It turns out that two sets � and �0,
such that N(�) = N(�0), �(�) = �(�0), and M(�) = M(�0) may nevertheless
have �Min(�) 6= �Min(�

0).

8.2 Appendix B. Modularity measure on weighted directed
networks

For the given partition f�1; :::;�Zg of �, the total intensity of an outward
link from group h directed to itself or to other groups is âh =

P
i

P
j wij ,

j 2 �h; i = 1; :::; Z.. The corresponding total intensity of an inward link to
group h from itself or from other groups is �ah =

P
j

P
i wij , i 2 �h, j = 1; :::; Z.

If the total intensity of links in W is T =
P

i

P
j wij , i; j = 1; :::; Z, then the

average relative frequency with which an outward link in W originates from,
and arrives to, group h is êh = âh

T and �eh = �ah
T , respectively. The modularity

measure Qh of the links from and to group h in the context of the given network
W, is then expressed by the extent to which the frequency of within-group links
exceeds the frequency that would be expected from the hypothesis of a random
wiring.

Qh =
1

T

24 X
i2fFhg

X
j2fFhg

wij

35� êh�eh (18)
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The modularity ofW according to the partition f�igZi=1 = f�1; :::;�Zg is then
expressed by the sum Q =

PZ
h=1Qh, which may be negative, if the partition

is ill-chosen. Indeed, the relative goodness of two alternative partitions of � is
evaluated by choosing the partition yielding a higher value of Q. In this spirit,
the modules of the network f�;Wg are endogenously determined by selecting
the Q-maximizing partition f�i�gZ�i=1([26]), and the modularity of f�;Wg) is
the Q-measure induced by such partition. Z� is the number of modules in the Q
maximizing partition. Since the Q modularity of the null partition f�g is zero,
the Q modularity ofW takes values in the interval [0; 1]. IfW is diagonal, then
Q(W) ! 1 as F ! +1. A fast algorithm for the computation of Q in large
undirected networks [24] was subsequently extended to weighted undirected and
directed networks([18], [6]).

8.3 Appendix C. Complementarity and substitutability in
the production of e¤ective collaboration e¤ort

We assume that e¤ective joint e¤ort e(ij) is speci�ed by:

e(ij) = = [f(d(ij)]
�1
h
wij (eij)

�
+(1� wij) (eji)

�
i1=�

(19)

where: � = 1 � d(ij); f(d) = 1 + �(d) � d; �(d) = 0 if 0 � d � 1; f 0 > 0 if
d > 1; limd!1 f(d) = F . For a given �xed speci�cation of the parameters wij ,
and d(ij), the e(�) function 19 belongs to the family of CES functions, linear
homogeneous with respect to eij , eji (Klump and Preissler [16], p.46), and
elasticity of substitution 1=(� � 1) = �1=d(ij) between eij and eji. If agents i
and j contribute to the coalition with identical types of ideas, d(ij) = 0, and
wik = wji = 1=2. i�s and j�s e¤orts are then perfect substitutes, with constant
marginal contributions to e¤ective e¤ort e(ij).

e(ij) =
wijeij
f(d(ij))

+
wjieji
f(d(ij))

=
eij + eji
2f(d(ij))

=
1

2
(eij + eji) (20)

The intermediate case d(ij) = 1 implies � = 0, so that e(�) is Cobb-Douglas:

e(ij) =

�
eij

f(d(ij))

�wij � eji
f(d(ij))

�wji
= e

wij
ij e

wji
ji (21)

Finally, if d(ij) = +1, then � = �1: when i�s and j�s knowledge sets are
disjoint, their e¤orts are perfect complements; the performance function is then
Leontiev.

e(ij) = min

�
eij

f(d(ij))
;

eji
f(d(ij))

�
= min

heij
F
;
eji
F

i
(22)
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